
Solver-Free Decision-Focused Learning
for Linear Optimization Problems

Senne Berden, Ali İrfan Mahmutoğulları, Dimos Tsouros, Tias Guns
Department of Computer Science, KU Leuven

{senne.berden,irfan.mahmutogullari,dimos.tsouros,tias.guns}@kuleuven.be

Abstract

Mathematical optimization is a fundamental tool for decision-making in a wide
range of applications. However, in many real-world scenarios, the parameters of the
optimization problem are not known a priori and must be predicted from contextual
features. This gives rise to predict-then-optimize problems, where a machine
learning model predicts problem parameters that are then used to make decisions
via optimization. A growing body of work on decision-focused learning (DFL)
addresses this setting by training models specifically to produce predictions that
maximize downstream decision quality, rather than accuracy. While effective, DFL
is computationally expensive, because it requires solving the optimization problem
with the predicted parameters at each loss evaluation. In this work, we address
this computational bottleneck for linear optimization problems, a common class of
problems in both DFL literature and real-world applications. We propose a solver-
free training method that exploits the geometric structure of linear optimization
to enable efficient training with minimal degradation in solution quality. Our
method is based on the insight that a solution is optimal if and only if it achieves an
objective value that is at least as good as that of its adjacent vertices on the feasible
polytope. Building on this, our method compares the estimated quality of the
ground-truth optimal solution with that of its precomputed adjacent vertices, and
uses this as loss function. Experiments demonstrate that our method significantly
reduces computational cost while maintaining high decision quality.

1 Introduction

Linear optimization is widely used to model decision-making problems across many domains [5, 18,
20, 41]. Given a linear objective function and a set of linear constraints, an optimization solver can
compute the optimal decisions. However, in many real-world scenarios, the cost coefficients that
define the objective function are not known at solving time. For example, a delivery company may
need to plan delivery routes without knowing the future traffic conditions. In such cases, the problem
parameters must first be predicted from available contextual information (e.g., the weather conditions
or temporal features). This gives rise to predict-then-optimize problems [26], where the predictions
of a machine learning model serve as inputs to an optimization problem. The quality of the produced
solutions thus hinges on the parameters predicted by the machine learning model, making the loss
function used to train this model highly important.

Traditionally, the machine learning model is trained to maximize accuracy (e.g., by minimizing the
mean squared error over all its predictions). However, this may lead to suboptimal decisions. This is
because, while perfect predictions lead to perfect decisions, different kinds of imperfect predictions
affect downstream decision-making in different ways. Decision-focused learning (DFL) addresses
this by training models specifically to make predictions that lead to good decisions. As numerous
works have shown, this generally improves decision quality [2, 9, 10, 24, 28, 33, 40].

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

However, a large limitation of DFL is its high computational cost and limited scalability. This stems
from the fact that gradient-based DFL involves solving the optimization problem with the predicted
parameters during each loss evaluation, to assess the impact of the predictions on decision quality.

In this paper, we address this issue and greatly improve the efficiency of DFL for linear optimization
problems, which have received much attention in DFL literature [2, 10, 24, 28, 26, 40], and are a
mainstay in mathematical optimization. Our solver-free approach significantly reduces training time
by eliminating the need for solve calls during training altogether, and hence bypassing the most
computationally expensive part of the training process. It is based on the insight that a solution is
optimal if and only if it achieves an objective value that is at least as good as that of its adjacent
vertices on the feasible polytope. Building on this, we propose a new loss function named LAVA, that
compares the quality of the ground-truth optimal solution with that of its adjacent vertices, evaluated
with respect to the predicted cost vector. These adjacent vertices can be precomputed efficiently
prior to training, by performing simplex pivots. Our experiments show that our solver-free LAVA loss
enables efficient training with minimal degradation in solution quality, particularly on problems that
are not highly degenerate.

2 Background

In this section, we formalize the predict-then-optimize problem setting, and give the necessary
background from linear programming, which we will utilize in our methodology.

2.1 Predict-then-optimize

We assume a parametric linear program (LP) of the following form.

min c⊤z (1a)
s.t. Az = b (1b)

z ≥ 0 (1c)

with c ∈ Rn, A ∈ Rm×n, b ∈ Rm, and m ≤ n. We denote the set of optimal solutions as
Z⋆(c) ⊆ Rn, and a particular optimal solution as z⋆(c) ∈ Z⋆(c). The parametric LP is written in
standard form (i.e., with equality constraints), without loss of generality: if an LP is not initially in
standard form, it can be converted by introducing slack variables. We further assume that the rows of
the constraint matrix A are linearly independent. If not, the problem includes redundant (implied)
constraints that can be removed without affecting the feasible region. Finally, we assume that the
feasible region {z ∈ Rn | Az = b, z ≥ 0} is non-empty and bounded.

The cost parameters c = [c1 c2 . . . cn], where ci ∈ R, are unknown, but correlated with a known
feature vector x ∈ Rd according to some distribution P . Though P is not known, we assume access
to a training set of examples D, sampled from P . Two settings can be distinguished:

1. Complete information: each example in D is of the form (x, c, z⋆(c)), providing direct
access to historical realizations of cost parameters c, and corresponding solutions z⋆(c).

2. Incomplete information: each example in D is of the form (x, z⋆(c)), offering only the
observed optimal solutions z⋆(c) without revealing the underlying parameters c.

The incomplete information setting poses a notably more difficult learning problem than the complete
information setting. The method we develop in this work does not assume access to the historical
cost parameters c, and can thus be applied to both settings. In either setting, training set D is used to
train a model mω with learnable parameters ω – usually a linear regression model or a neural network
– which makes predictions ĉ.

Unlike conventional regression, the objective in training is not to maximize the accuracy of predicted
costs ĉ. Rather, the aim is to make predictions that maximize the quality of the resulting decisions.
This is measured by the regret, which expresses the suboptimality of the made decisions z⋆(ĉ) with
respect to true costs c (lower is better).

Regret(ĉ, c) = c⊤z⋆(ĉ)− c⊤z⋆(c) (2)

2

2.2 Linear programming preliminaries

We briefly review core concepts from linear programming that we use in our methodology. The
feasible region {z ∈ Rn | Az = b, z ≥ 0} is a convex polytope, assuming non-emptiness and
boundedness. Its vertices correspond to basic feasible solutions, defined in the following.

Definition 2.1 (Basis). Given a matrix A ∈ Rm×n with full row rank, a basis is a set of m linearly
independent columns of A. These columns form an invertible matrix B ∈ Rm×m. The variables
corresponding to the columns in the basis are called basic variables; the remaining n−m variables
are called non-basic variables.

Definition 2.2 (Basic solution). Let B be a basis. The corresponding basic solution is obtained by
setting the non-basic variables to zero and solving BxB = b for the basic variables (i.e., xB = B−1b).

Definition 2.3 (Basic feasible solution (BFS)). A basic solution is called a basic feasible solution
(BFS) if it satisfies xB ≥ 0. Every vertex of the feasible region corresponds to a BFS, and every BFS
corresponds to a vertex of the feasible region. Thus, we use the terms interchangeably.

Definition 2.4 (Degeneracy). A BFS z is said to be degenerate if one or more of its basic variables is
zero. In such cases, multiple bases lead to the same BFS. We refer to the number of zero-valued basic
variables as the degree of degeneracy.

For any cost vector c, there exists an optimal solution z⋆(c) that is a BFS, and therefore, lies at a
vertex of the feasible polytope. The methodology we propose in this paper will make use of the
vertices adjacent to this optimal solution. This notion of adjacency is defined as follows.

Definition 2.5 (Adjacent bases). Two bases B1 and B2 are said to be adjacent if they differ by
exactly one column; that is, the set of basic variables for B2 can be obtained from that of B1 by
replacing a single basic variable with a non-basic one (an operation referred to as a pivot).

Definition 2.6 (Adjacent vertices). Two BFSs (i.e., vertices of the feasible region) are said to be
adjacent if there exists a pair of adjacent bases such that each basis in the pair corresponds to one of
the two BFS.

3 Related work

A lot of work on DFL has focused specifically on LPs and combinatorial problems, as handling these
problems is particularly challenging. This is because they make the gradient of any loss that depends
on z⋆(ĉ) (like the regret) zero almost everywhere. This can be seen when applying the chain rule:

∂L(z⋆(ĉ), c)
∂ω

=
∂L(z⋆(ĉ), c)

∂z⋆(ĉ)

∂z⋆(ĉ)

∂ĉ

∂ĉ

∂ω
(3)

The second factor ∂z⋆(ĉ)
∂ĉ expresses the change in z⋆(ĉ) when ĉ changes infinitesimally. However, for

LPs and combinatorial problems, this factor is zero almost everywhere, and nonexistent otherwise. In
other words, a small change in the problem’s parameters ĉ either does not change its solution z⋆(ĉ),
or changes it discontinuously (leading to nonexistent gradients). Most work on DFL has focused
on circumventing this obstacle. Three general types of approaches can be distinguished. We briefly
discuss them here, but refer the reader to [26] for a comprehensive overview of the field.

The first type of approach is based on analytical smoothing of the optimization problem, in which the
problem’s formulation is altered such that the optimal solution changes smoothly in function of the
parameters. This creates a new problem that, while only an approximation of the original, leads to
non-zero gradients of the regret [25, 40]. To compute these gradients, differentiable optimization is
used, which offers a way of differentiating through continuous convex optimization problems [1, 2].

The second type instead computes weight updates for the predictive model by perturbing the objective
vector. Here, the difference between the solution for the predicted vector and the solution for a
perturbed vector is used to compute a meaningful gradient [4, 29, 33].

The third type uses surrogate loss functions that are smooth but still reflect decision quality. The loss
we propose fits this category. Other examples are the seminal SPO+ loss, as well as losses based on
noise-contrastive estimation [28] and learning to rank [24]. Also [35] and [36] – which first learn
surrogate losses, to then use them to train a predictive model – are of this type.

3

-ĉ

-ĉ

z*

zadj

zadj
(1)

(2)

ɛ
ɛ

Figure 1: Optimal solution z⋆ has two adjacent vertices, z(1)adj and z
(2)
adj . Geometrically, these vertices

define the facets of the optimality cone of z⋆. All cost vectors c for which −c lies within this cone
lead to z⋆. Cost vector ĉ is predicted. ĉ correctly prefers z⋆ to z

(1)
adj (i.e., ĉ⊤z⋆ < ĉ⊤z

(1)
adj), and

thus lies on the correct side of the corresponding facet. This adds no penality to LAVA. However, ĉ
wrongly prefers z(2)adj to z⋆, and thus lies on the wrong side of the corresponding facet. This adds

ĉ⊤z⋆ − ĉ⊤z
(2)
adj to LAVA.

Some work within DFL has instead focused on improving efficiency and scalability. Because DFL
involves repeatedly solving optimization problems, training can be computationally expensive. To
improve efficiency, [27] has investigated the use of problem relaxations and warm-starting techniques.
Additionally, [28] and [24] have introduced losses that use a solution pool that is incrementally grown.
Finally, and most directly related to this paper, [39] proposed a surrogate loss that measures the
distance between the predicted cost vector and the optimality cone of the true optimal solution, which
can be computed by solving a non-negative least squares problem, which is a quadratic program (QP).

In summary, most existing methods repeatedly solve the (smoothed) LP or a QP corresponding to a
non-negative least squares problem at training time. Alternatively, they solve the LP to construct a
surrogate loss or solution pool for training. Our approach, however, is completely solver-free, making
it significantly faster than existing methods, without compromising on decision quality.

4 Solver-free training by contrasting adjacent vertices

We now present our approach to enable solver-free DFL for linear optimization problems. We first
present a novel loss function that uses only the adjacent vertices of the optimal solutions. We then
describe how these adjacent vertices can be efficiently precomputed.

4.1 Loss based on adjacent vertices

We construct a loss function based on the following proposition, which follows from the convexity of
the feasible polytope (as proven in Appendix A).

Proposition 4.1. Let z be a vertex of the feasible polytope, and let Zadj(z) be the set of vertices
adjacent to z. Vertex z is an optimal solution for cost vector c if and only if c⊤z ≤ c⊤zadj for all
zadj ∈ Zadj(z).

The proposition expresses that a solution is optimal if and only if none of its adjacent vertices have a
better objective value. Recall that in predict-then-optimize problems, a predicted cost vector ĉ leads
to zero regret if it makes the known solution z⋆(c) optimal. So, for any suboptimal cost vector ĉ (not
leading to z⋆(c)), one or more of the adjacent vertices will score better than z⋆(c). We construct a
loss – named Loss via Adjacent Vertex Alignment (LAVA) – that penalizes ĉ for each such adjacent
vertex.

LAVA(ĉ, z
⋆(c)) =

∑
zadj∈Zadj(z⋆(c))

max(ĉ⊤z⋆(c)− ĉ⊤zadj ,−ϵ) where ϵ ≥ 0 (4)

4

The geometric interpretation of the LAVA loss is shown in Figure 1. The loss evaluates how well
the predicted cost vector ĉ distinguishes a true optimal solution z⋆(c) from its adjacent vertices.
Specifically, it penalizes cases where an adjacent solution zadj ∈ Zadj appears more favorable than
the optimal one under ĉ. Geometrically, this occurs when the predicted cost vector ĉ falls outside
the optimality cone of z⋆(c), defined as the set of cost vectors for which z⋆(c) remains optimal. For
each adjacent vertex, the loss increases proportionally to the margin by which c⊤z⋆(c) is worse than
c⊤zadj − ϵ. Once z⋆(c) is better than zadj by at least ϵ, no further gain is enforced, reflecting the fact
that, in Proposition 4.1, the precise margin by which c⊤z ≤ c⊤zadj is irrelevant. In case there are
multiple optimal solutions for ground-truth c (i.e., |Z⋆(c)| > 1), the loss is more conservative, and is
minimized only for a proper subset of cost vectors that leads to z⋆(c) as optimal solution.

The value of ϵ defines a margin for how much better the optimal solution must be before further
improvements are not rewarded. In principle, ϵ = 0 is most in line with the optimality condition
expressed in Proposition 4.1. However, after meeting the optimality condition, subsequent updates
during training (e.g., from other instances) may shift the predicted cost vector slightly such that an
adjacent vertex becomes preferred again. To prevent this, using a small positive value (e.g., ϵ = 0.1,
which we use in our experiments) introduces a buffer zone that tends to lead to smoother and more
stable learning, likely by reducing sensitivity to minor fluctuations near the decision boundary. In
Appendix B, we provide a visualization of how this margin parameter affects the learning curve.

The LAVA loss function has the following desirable properties:

1. It is differentiable with respect to ĉ almost everywhere and offers non-zero gradients when-
ever ĉ does not yet lead to the ground-truth optimal solution z⋆(c).

2. It only requires access to ground-truth solution z⋆(c), and not to the underlying true cost
vector c. Thus, it can be applied to both the incomplete and complete information settings.

3. It is convex, ensuring that any local minimum is also a global minimum. To see why, note
that both terms in ĉ⊤z⋆(c)− ĉ⊤zadj are affine functions of ĉ, and thus their difference is also
affine (and hence convex). Taking the maximum of this affine function and constant−ϵ leads
to a hinge-like function that remains convex. And since the sum of convex functions remains
convex, the overall loss remains convex when taking the sum over all zadj ∈ Zadj(z

⋆(c)).
4. It is computationally efficient to evaluate, as it does not require computing z⋆(ĉ) through a

call to a solver. Instead, it only involves dot products between ĉ and a set of precomputed
solution vectors, making it highly efficient.

The LAVA loss is somewhat related to the recently proposed CaVE [39], particularly in terms of
underlying objectives. The CaVE loss is the cosine distance between ĉ and its projection onto the
optimality cone of solution z⋆(c). Computing the projection involves solving a QP. Instead, LAVA
penalizes the “violation” of each facet of the cone separately, as illustrated in Figure 1. This requires
no solve calls. Another important difference is that CaVE represents the optimality cone through its
extreme rays, which correspond to the binding constraints in z⋆(c). In contrast, LAVA operates on the
cone’s facets, each defined by the hyperplane separating z⋆(c) from an adjacent vertex zadj .

LAVA is also related to the NCE loss from [28], but whereas NCE requires an arbitrary set of feasible
solutions constructed via solve calls on predicted cost vectors during training, LAVA contrasts the
optimal solution with its adjacent vertices, which can be precomputed without solving. Additionally,
LAVA is a hinge-like loss thresholded at −ϵ, aligning with the LP optimality condition (Proposi-
tion 4.1), whereas NCE seeks to increase the difference in objective values as much as possible. This
thresholding is crucial to LAVA’s performance, as demonstrated in an ablation in Appendix B.

Note that LAVA is not differentiable everywhere, because each of its max(ĉ⊤z⋆(c) − ĉ⊤zadj ,−ϵ)
terms has a hinge-like form, which is not smooth at the kink where ĉ⊤z⋆(c)− ĉ⊤zadj = −ϵ. However,
these kink points constitute a measure-zero set, meaning that the probability of the predicted cost
vector ĉ ending up exactly at a kink point is zero. Consequently, LAVA can be optimized reliably
using standard gradient-based methods.

Also note that, although the zero vector technically lies within every optimality cone and could in
principle minimize LAVA when the margin ϵ is zero, this does not occur in practice. Standard random
initialization of the predictive model ensures that the predicted cost vector starts away from zero, and
gradient updates induced by LAVA push predictions toward differences between optimal and adjacent
solutions, rather than toward the origin. While pathological scenarios could be constructed in which

5

all gradients align exactly toward zero, such cases are extremely unlikely and have not been observed
in practice.

We presented LAVA in the context of LPs. However, it also extends to integer linear programs (ILPs)
and mixed-integer linear programs (MILPs) by operating on their LP relaxations. The effect of doing
so depends on the properties of the original problem. For binary ILPs, each optimality cone in the LP
relaxation is contained within the corresponding cone of the binary ILP [39]. This only makes LAVA
somewhat conservative: it will always push predicted cost vectors toward the correct optimality cone,
but it may push them further into the cone than strictly needed. For non-binary ILPs and MILPs, this
containment does not necessarily hold, and the performance of using LAVA largely depends on the
integrality gap of the relaxation.

4.2 Precomputing the adjacent vertices

Algorithm 1 Find adjacent vertices of a basic feasible solution

1: Input: Basic feasible solution z⋆, basic indices B(1), . . . , B(m), non-basic indices
N(1), . . . , N(n−m), constraint matrix A

2: Output: Set Zadj of vertices adjacent to z⋆

3: B ← [A∗B(1) . . . A∗B(m)]
4: N ← [A∗N(1) . . . A∗N(m)]
5: Zadj ← ∅
6: Queue← [(B,N)]
7: V isited← {(B,N)}
8: while Queue is not empty do
9: Dequeue a basis Bcurr and corresponding Ncurr from Queue

10: Compute directions of movement D = −B−1
currNcurr

11: for each non-basic variable z⋆j as entering variable do
12: d′ = D∗j is the direction of movement of the basic variables when increasing z⋆j by 1

13: Perform minimum ratio test θ⋆ = min
{i|di<0}

(
− z⋆

Bcurr(i)

di

)
14: if θ⋆ > 0 then ▷ Nondegenerate pivot
15: Let d be the unit vector ej ∈ Rn

16: for k = 1 . . .m do
17: Set direction dBcurr(k) = d′k for basic variable Bcurr(k)
18: Add new adjacent vertex Zadj = Zadj ∪ {z⋆ + θ⋆d}
19: else ▷ Degenerate pivot
20: Identify Bcurr(i) as the leaving basic variable according to the TNP rule
21: Construct new basis Bnew and corresponding Nnew by replacing B(i) with N(j)
22: if (Bnew, Nnew) /∈ V isited then
23: Add (Bnew, Nnew) to Queue and to V isited
24: return Zadj

We outline the procedure that precomputes the adjacent vertices Zadj of a vertex z⋆ in Algorithm 1.
The algorithm takes as input a basic feasible solution z⋆, the constraint matrix A, and a basis of z⋆
(expressed through the indices of the basic and non-basic variables). It outputs the set Zadj of all
adjacent vertices. The algorithm starts by constructing the initial basis matrix B (and the associated
matrix of non-basic columns N), and uses these to perform pivots, as performed in the (revised)
simplex method [5, 7]. Here, a pivot refers to the swapping of a basic variable and a non-basic
variable. The progression through the algorithm differs depending on whether z⋆ is a nondegenerate
or degenerate solution. We now discuss each case separately.

4.2.1 Base case: nondegenerate vertices

When z⋆ is nondegenerate, it has a unique associated basis, and every adjacent vertex can be obtained
through a single pivot operation (i.e., by replacing one basic variable with a non-basic one). To
do so, D = −B−1N is computed at line 10 of Algorithm 1. Each column D∗j expresses how the
basic variables must change to maintain Az = b when non-basic variable zj is increased by 1. The
algorithm then loops through the non-basic variables, and considers each z⋆j in turn as the variable

6

that enters the basis (line 11). This differs from the simplex method, which selects a single entering
variable heuristically.

For each entering variable, the algorithm must determine the corresponding variable that should leave
the basis. To do so, it computes the maximum step size θ⋆ that can be taken in direction d′ = D∗j
without violating the nonnegativity constraints z ≥ 0. This is computed using the standard minimum
ratio test θ⋆ = mini:d′

i<0 (−z⋆
i/d′

i) [5, 7]. Since z⋆ is nondegenerate, θ⋆ > 0 will hold, and the
if-block at line 14 will be entered. The corresponding adjacent vertex is now given by z⋆ + θ⋆d,
where d ∈ Rn is obtained by setting the entry corresponding to the entering variable j to 1, and setting
the value of each basic variable index B(i) to d′i, with all other entries remaining zero (lines 15-18).

Because of nondegeneracy, the else-block at line 19 is never entered, and all adjacent vertices are
found after a single iteration of the while-loop.

4.2.2 Edge case: degenerate vertices

In the degenerate case, multiple bases correspond to z⋆. This makes efficiently computing all adjacent
vertices much more challenging, as they cannot all be obtained by performing pivots on any single
basis B of z⋆. In this case, some of the basis pivots performed in Algorithm 1 have a step size of
θ⋆ = 0, and result in the same vertex z⋆. These pivots thus produce other bases associated with z⋆,
which subsequently have to be explored. Thus, to ensure that all adjacent vertices of z⋆ are identified,
one in principle needs to consider all pivot operations across all bases associated with z⋆. However,
as shown in [12] and [23], this quickly becomes intractable.

Some work has aimed to address this, primarily between the late 1970s and early 1990s, but has since
remained relatively obscure, receiving limited attention in recent research. For an overview, we refer
the reader to [13, 14, 16]. Particularly relevant to this paper is the work by Geue [17] and Kruse [23],
which showed that to compute all adjacent vertices of a degenerate solution, not all bases of that
solution need to be explored. It suffices to only consider those bases that can be reached through
lexicographic pivoting [8]. To further reduce the required number of pivots, Geue later introduced
a dedicated Transition Node Pivoting (TNP) rule [15], which we employ in Algorithm 1. More
information on the TNP rule can be found in Appendix C.

To systematically explore bases using the TNP rule, we use the Queue and Visited data structures
initialized in lines 6 and 7, respectively. When an entering variable results in a step size θ⋆ = 0 in
line 13, the algorithm applies the TNP rule to select a leaving variable (line 20). If the resulting basis
is not in Visited yet, it is added to the Queue for later exploration. The Visited set ensures that each
basis is processed only once, preventing redundant pivot operations.

4.3 Putting it together

Given a dataset D = {(x, c, z⋆(c))} or D = {(x, z⋆(c))}, we use Algorithm 1 to find all adjacent
vertices Zadj(z

⋆(c)). For each z⋆(c) this will be an k×n matrix with k the number of adjacent vertices.
Using these matrices, we can train a predictive model mω over dataset D with LAVA(mω(x), z

⋆(c)).

5 Experimental evaluation

We evaluate our method against state-of-the-art approaches, focusing on the trade-off between training
time and decision quality, and how performance scales with the number of variables and constraints.

5.1 Experimental setup

Here we give an overview of our experimental setup; more details can be found in Appendix D. The
models are linear regressors, as is common in existing literature [10, 24, 26, 28, 34]. We train these
models using the Adam optimizer [22]. All hyperparameters are tuned on independent validation
sets prior to training. We train the models until their performance on the validation set has not
improved by at least 1% for three checks in a row, or until training time has surpassed 600 seconds
(not including evaluation on the validation set), whichever comes first. For LAVA, this training time
includes both adjacent vertex precomputation and actual training. We report the test set performance
of the model state that led to the best validation set performance during training. When reporting

7

training times, we report the time it took to reach this state. Reported results are the average taken
over 5 independent runs with varying train-validation-test splits. We report the normalized regret:

Normalized Regret =
∑ntest

i=1 c⊤z⋆(ĉ)− c⊤z⋆(c)∑ntest

i=1 c⊤z⋆(ĉ)
(5)

All experiments were conducted on a machine equipped with an Intel(R) Core(TM) i7-1165G7
processor and 16 GB of RAM. All code is implemented in Python, and builds on the PyEPO
library [38]. Our code and data are available at https://github.com/ML-KULeuven/Solver-Free-DFL/.

5.2 Baselines

We compare with the same set of methods as used in the evaluation of [39]. These methods are:

1. Mean Squared Error (MSE): This method minimizes the mean squared error (MSE)
between the predicted cost coefficients ĉ and the ground-truth cost coefficients c. This is not
a decision-focused approach, but is typically included in DFL evaluations to demonstrate
the decision quality obtained when predictive accuracy is maximized during training.

2. Smart Predict-Then-Optimize (SPO+): This is the smart predict-then-optimize approach
from [10], which minimizes the surrogate SPO+ loss, a convex upper bound of the regret
that uses the true cost vector c. This method generally achieves great decision quality in
existing comparative analyses [26, 38].

3. Perturbed Fenchel-Young Loss (PFYL): This method, proposed in [4], uses the Fenchel-
Young losses from [6] in combination with an approach that obtains informative gradients
through perturbation of the cost vectors ĉ. The size of the perturbations is controlled by
hyperparameter σ.

4. Noise-Contrastive Estimation (NCE): This method compares the quality of the optimal
solution with a set of suboptimal solutions that is gradually grown throughout training [28].
This method was introduced with the intention of improving the efficiency of DFL. For only
5% of the instances in each epoch, a solver is used to compute a solution and add it to the
pool of feasible solutions; the other 95% use the pool as is.

5. Cone-Aligned Vector Estimation (CaVE): This method projects the predicted cost vector
onto the optimality cone of the optimal solution. Doing so involves solving a non-negative
least squares problem, which is a QP. The intention is that solving this QP is computationally
cheaper than solving the original LP.

It is worth noting that MSE and SPO+ are given access to the true cost vectors c, as they are only
applicable in the complete information setting. PFYL, NCE, CaVE, as well as our proposed LAVA
also work in the incomplete information setting, and do not require access to c.

5.3 Benchmarks

We compare these methods on the following predict-then-optimize benchmarks, listed in increasing
order of degeneracy. We refer to Appendix D for further details.

1. Random LPs: We construct LPs by sampling the entries of A and b uniformly at random,
which ensures that the feasible space contains only nondegenerate vertices [19]. Each LP
contains 150 variables and 50 constraints. We make sure that all generated constraints
are nonredundant. As true mapping between features and cost values, we use a degree 8
polynomial that is approximated using linear regression to simulate model misspecification.
This is common practice in DFL evaluations [10, 24, 34, 38, 39], and is especially relevant
when training interpretable models [11, 21, 37].

2. Multi-dimensional knapsack: The optimization task is a multi-dimensional knapsack
problem, as also considered in [25, 28, 38]. Because this problem has integer variables, we
compute the adjacent vertices for LAVA on its LP relaxation, but evaluate the test set regret
on the original integer problem. In the first experiment, the problem is three-dimensional
and considers 300 items. In the second, we vary the problem size. Most vertices are
nondegenerate, some are slightly degenerate. We use real-world data, taken from a common

8

https://github.com/ML-KULeuven/Solver-Free-DFL/

0 100 200 300 400 500
Training Time (s)

10 1
Te

st
 R

eg
re

t

Random LP

0 200 400 600
Training Time (s)

10 1

8 × 10 2

9 × 10 2

Te
st

 R
eg

re
t

Multi-dim. Knapsack

0 10 20 30
Training Time (s)

10 1

6 × 10 2

Te
st

 R
eg

re
t

Shortest path

MSE SPO+ PFYL NCE CaVE LAVA (Ours)

Figure 2: Comparison of the efficiency of different methods

machine learning benchmark in which the median house prices of districts in California
must be predicted from 8 correlated features, including spatial features, features about the
districts’ populations and other aggregate housing statistics [31].

3. Shortest path: We include this common benchmark from the DFL literature [10, 24, 26, 28].
The optimization problem involves computing the shortest path from the bottom-left node
to the top-right node of a 5 × 5 grid, giving rise to 40 variables and 25 constraints. The
predicted values serve as edge costs in the grid. The true predictive mapping is the same as
used in the first benchmark. All vertices are highly degenerate, making this a particularly
challenging benchmark for our method.

5.4 Results and discussion

Figure 2 shows the training time and test set regret (log scale) of the various methods (full results with
standard errors are given in tabular format in Appendix E). LAVA is Pareto-efficient on all benchmarks,
meaning it is never bested in both training time and test regret by another method. On the random
LPs and multi-dimensional knapsack problems, it offers a highly desirable trade-off: training time is
reduced significantly with minimal degradation in solution quality compared to the best-performing
methods (SPO+ and PFYL). On the highly degenerate shortest path problem, the relative test regret of
LAVA is slightly worse, and the improvement in training time is less significant. Despite the shortest
path being the smallest problem considered, it is the benchmark on which LAVA takes the longest.

Random LP Knapsack Shortest Path
0.0

2.5

5.0

7.5

10.0

12.5

Tr
ai

ni
ng

 T
im

e
(s

)

5.3
8.3

12.7
0.5

1.5

0.3
Computing Adj. Vert.
Gradient descent

Figure 3: Breakdown of LAVA’s
training time

Figure 3 shows why: the majority of LAVA’s computation time
is spent precomputing the adjacent vertices, which is compu-
tationally expensive due to the shortest path’s high degree of
degeneracy (see Section 4.2.2). Because of this, LAVA may not
be the most appropriate method to address network flow prob-
lems, which tend to be highly degenerate [5]. Fortunately, these
problems do not suffer much from efficiency issues in the first
place, as specialized solving algorithms are available [3, 30].
Figure 3 also highlights another advantage of LAVA. In hyperpa-
rameter tuning, the adjacent vertices can be precomputed once
and subsequently used in each configuration explored. Since
the majority of LAVA’s computation time is spent on this pre-
computation, the tuning process becomes particularly efficient.

Figure 4 shows how the training time and normalized test regret scale with increasing problem size.
This is shown for the multi-dimensional knapsack problem, where we vary the number of items (i.e.,
variables) and dimensions (i.e., constraints). The left column shows that LAVA’s test regret remains
on par with SPO+ and PFYL for increasing problem size. The right column shows that LAVA remains
highly efficient when the problem size increases, whereas SPO+ and PFYL scale significantly worse.
This is especially true for an increasing number of constraints, by which LAVA’s total computation
time is largely unaffected.

9

50 100 200 400
Number of Items

10 1

7 × 10 2

8 × 10 2

9 × 10 2

Te
st

 R
eg

re
t

50 100 200 400
Number of Items

0

200

400

600

Tr
ai

ni
ng

 T
im

e
(s

)

1 2 4 8
Number of Dimensions

10 1

6 × 10 2Te
st

 R
eg

re
t

1 2 4 8
Number of Dimensions

0

100

200

300

400

500

Tr
ai

ni
ng

 T
im

e
(s

)

MSE SPO+ PFYL NCE CaVE LAVA (Ours)

Figure 4: Comparison of performance in function of the problem size of multi-dimensional knapsack

6 Conclusions and future work

In this work, we significantly improve the efficiency of DFL for linear predict-then-optimize problems,
by proposing a solver-free method that exploits the geometric structure of these problems. Our method,
named LAVA, compares the estimated quality of the known optimal solution with that of its adjacent
vertices on the feasible polytope, based on the insight that a solution is optimal if and only if it scores
at least as good as its adjacent vertices. Experiments demonstrate that LAVA significantly reduces
computational cost while maintaining high decision quality, and that it scales well with problem size.

Directions for future work include improving the performance of LAVA on highly degenerate problems,
possibly through problem-specific adjacent vertex computation methods or heuristics. Another avenue
is to investigate ways for LAVA to utilize the ground-truth cost coefficients when available (i.e., in the
complete information setting). Finally, an extension of the approach to other problem classes, such as
mixed-integer linear programs, through more principled methods than linear programming relaxation,
is another worthwhile direction.

7 Acknowledgements

This research received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (Grant No. 101002802, CHAT-Opt). Senne
Berden is a fellow of the Research Foundation-Flanders (FWO-Vlaanderen, 11PQ024N).

References
[1] Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J. Zico

Kolter. Differentiable convex optimization layers. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

[2] Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural
networks. In International Conference on Machine Learning, pages 136–145. PMLR, 2017.

[3] Mokhtar S Bazaraa, John J Jarvis, and Hanif D Sherali. Linear programming and network flows.
John Wiley & Sons, 2011.

[4] Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean-Philippe Vert, and
Francis Bach. Learning with differentiable pertubed optimizers. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing
Systems, volume 33, pages 9508–9519. Curran Associates, Inc., 2020.

[5] Dimitris Bertsimas and John N Tsitsiklis. Introduction to linear optimization, volume 6. Athena
scientific Belmont, MA, 1997.

10

[6] Mathieu Blondel, André FT Martins, and Vlad Niculae. Learning with fenchel-young losses.
Journal of Machine Learning Research, 21(35):1–69, 2020.

[7] George B Dantzig. Maximization of a linear function of variables subject to linear inequalities.
Activity analysis of production and allocation, 13:339–347, 1951.

[8] George B Dantzig, Alex Orden, Philip Wolfe, et al. The generalized simplex method for
minimizing a linear form under linear inequality restraints. Pacific Journal of Mathematics,
5(2):183–195, 1955.

[9] Priya Donti, Brandon Amos, and J Zico Kolter. Task-based end-to-end model learning in
stochastic optimization. Advances in neural information processing systems, 30, 2017.

[10] Adam N. Elmachtoub and Paul Grigas. Smart “predict, then optimize”. Management Science,
68(1):9–26, 2022.

[11] Joseph Futoma, Michael C Hughes, and Finale Doshi-Velez. Popcorn: Partially observed
prediction constrained reinforcement learning. arXiv preprint arXiv:2001.04032, 2020.

[12] Tomas Gal. On the structure of the set bases of a degenerate point. Journal of Optimization
Theory and Applications, 45:577–589, 1985.

[13] Tomas Gal. Degeneracy in mathematical programming and degeneracy graphs—a concise
version of a tutorial. In Papers of the 19th Annual Meeting/Vorträge der 19. Jahrestagung,
pages 73–86. Springer, 1992.

[14] Tomas Gal. Degeneracy graphs: theory and application an updated survey. Annals of Operations
Research, 46:81–105, 1993.

[15] Tomas Gal and Ferdinand Geue. A new pivoting rule for solving various degeneracy problems.
Operations Research Letters, 11(1):23–32, 1992.

[16] Tomas Gal, Hermann-Josef Kruse, and Peter Zörnig. Survey of solved and open problems in
the degeneracy phenomenon. In DGOR/NSOR: Papers of the 16th Annual Meeting of DGOR in
Cooperation with NSOR/Vorträge der 16. Jahrestagung der DGOR zusammen mit der NSOR,
pages 612–621. Springer, 1988.

[17] Ferdinand Geue. An improved n-tree algorithm for the enumeration of all neighbors of a
degenerate vertex. Annals of Operations Research, 46:361–391, 1993.

[18] Bruce Golden, Linus Schrage, Douglas Shier, and Lida Anna Apergi. The unexpected power of
linear programming: an updated collection of surprising applications. Annals of Operations
Research, 343(2):573–605, 2024.

[19] Clóvis C Gonzaga. Generation of degenerate linear programming problems. Journal of
optimization theory and applications, 135:333–342, 2007.

[20] Frederick S Hillier and Gerald J Lieberman. Introduction to operations research. McGraw-Hill,
2015.

[21] Michael C Hughes, Gabriel Hope, Leah Weiner, Thomas H McCoy Jr, Roy H Perlis, Erik B
Sudderth, and Finale Doshi-Velez. Semi-supervised prediction-constrained topic models. In
AISTATS, pages 1067–1076, 2018.

[22] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[23] H-J Kruse. Degeneracy graphs and the neighbourhood problem, volume 260. Springer Science
& Business Media, 2012.

[24] Jayanta Mandi, Víctor Bucarey, Maxime Mulamba Ke Tchomba, and Tias Guns. Decision-
focused learning: Through the lens of learning to rank. In Kamalika Chaudhuri, Stefanie
Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the
39th International Conference on Machine Learning, volume 162 of Proceedings of Machine
Learning Research, pages 14935–14947. PMLR, 17–23 Jul 2022.

11

[25] Jayanta Mandi and Tias Guns. Interior point solving for lp-based prediction+optimisation. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 7272–7282. Curran Associates, Inc., 2020.

[26] Jayanta Mandi, James Kotary, Senne Berden, Maxime Mulamba, Victor Bucarey, Tias Guns,
and Ferdinando Fioretto. Decision-focused learning: Foundations, state of the art, benchmark
and future opportunities. Journal of Artificial Intelligence Research, 80:1623–1701, 2024.

[27] Jayanta Mandi, Peter J Stuckey, Tias Guns, et al. Smart predict-and-optimize for hard combina-
torial optimization problems. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 1603–1610, 2020.

[28] Maxime Mulamba, Jayanta Mandi, Michelangelo Diligenti, Michele Lombardi, Victor Bucarey,
and Tias Guns. Contrastive losses and solution caching for predict-and-optimize. In Zhi-Hua
Zhou, editor, Proceedings of the Thirtieth International Joint Conference on Artificial Intelli-
gence, IJCAI-21, pages 2833–2840. International Joint Conferences on Artificial Intelligence
Organization, 8 2021. Main Track.

[29] Mathias Niepert, Pasquale Minervini, and Luca Franceschi. Implicit mle: Backpropagating
through discrete exponential family distributions. In M. Ranzato, A. Beygelzimer, Y. Dauphin,
P.S. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing
Systems, volume 34, pages 14567–14579. Curran Associates, Inc., 2021.

[30] James B Orlin. A polynomial time primal network simplex algorithm for minimum cost flows.
Mathematical Programming, 78:109–129, 1997.

[31] R Kelley Pace and Ronald Barry. Sparse spatial autoregressions. Statistics & Probability Letters,
33(3):291–297, 1997.

[32] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[33] Marin Vlastelica Pogančić, Anselm Paulus, Vit Musil, Georg Martius, and Michal Rolinek.
Differentiation of blackbox combinatorial solvers. In International Conference on Learning
Representations, 2020.

[34] Noah Schutte, Krzysztof Postek, and Neil Yorke-Smith. Robust losses for decision-focused
learning, 2023.

[35] Sanket Shah, Kai Wang, Bryan Wilder, Andrew Perrault, and Milind Tambe. Decision-focused
learning without differentiable optimization: Learning locally optimized decision losses. arXiv
preprint arXiv:2203.16067, 2022.

[36] Sanket Shah, Bryan Wilder, Andrew Perrault, and Milind Tambe. Leaving the nest: Going
beyond local loss functions for predict-then-optimize. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pages 14902–14909, 2024.

[37] Abhishek Sharma, Catherine Zeng, Sanjana Narayanan, Sonali Parbhoo, and Finale Doshi-Velez.
On learning prediction-focused mixtures. arXiv preprint arXiv:2110.13221, 2021.

[38] Bo Tang and Elias B Khalil. Pyepo: A pytorch-based end-to-end predict-then-optimize library
with linear objective function. In OPT 2022: Optimization for Machine Learning (NeurIPS
2022 Workshop), 2022.

[39] Bo Tang and Elias B. Khalil. Cave: A cone-aligned approach for fast predict-then-optimize
with binary linear programs, 2024.

[40] Bryan Wilder, Bistra Dilkina, and Milind Tambe. Melding the data-decisions pipeline: Decision-
focused learning for combinatorial optimization. Proceedings of the AAAI Conference on
Artificial Intelligence, 33(01):1658–1665, Jul. 2019.

[41] Wayne L Winston. Operations research: applications and algorithm. Thomson Learning, Inc.,
2004.

12

A Proof of Proposition 4.1

We start by repeating Proposition 4.1 here:

Proposition A.1. Let z be a vertex of the feasible polytope, and let Zadj(z) be the set of vertices
adjacent to z. Vertex z is an optimal solution for cost vector c if and only if c⊤z ≤ c⊤zadj for all
zadj ∈ Zadj(z).

This is a well-known property of linear programming, and is the basis of the simplex method [5, 7].
For instance, it is stated in standard textbook [20] as ‘Property 3’, though without formal proof. For
the sake of completeness, and to provide some intuition for why it holds, we formally prove the
proposition here.

Proof. The forward implication holds trivially: if z is an optimal solution for cost vector c, then
∀z′ ∈ F : c⊤z ≤ c⊤z′, where F denotes the feasible region (F = {z ∈ Rn | Az = b, z ≥ 0}).
Since Zadj(z) ⊆ F , it holds that ∀zadj ∈ Zadj(z) : c

⊤z ≤ c⊤zadj .

We must now prove the backward implication. That is, we must prove that if ∀zadj ∈ Zadj(z) :
c⊤z ≤ c⊤zadj holds, then z is optimal for cost vector c.

We prove this by contradiction. Assume ∀zadj ∈ Zadj(z) : c
⊤z ≤ c⊤zadj holds, but that there exists

a z′ ∈ F for which c⊤z′ < c⊤z.

We know that the feasible region F is a convex polytope. Thus, the vector z′ − z can be written as a
conic combination of the differences {zadj − z | zadj ∈ Zadj}:

∃λ ≥ 0 : z′ − z =

|Zadj |∑
i

λi(zadj − z) (6)

Now, since c⊤z′ < c⊤z, it must hold that

c⊤(z′ − z) < 0 (7)

⇔ c⊤
|Zadj |∑

i

λi(zadj − z) < 0 (8)

⇔
|Zadj |∑

i

λic
⊤(zadj − z) < 0 (9)

However, because of the assumption that ∀zadj ∈ Zadj(z) : c
⊤z ≤ c⊤zadj , and because each λi > 0,

each summand λic
⊤(zadj − z) must be nonnegative. This is a contradiction. Thus, z is optimal.

B Ablation of thresholding in LAVA

In Table 1, we show the importance of thresholding the LAVA loss at zero (i.e., ϵ = 0 or using a small
constant (e.g., ϵ = 0.1), in comparison with removing the threshold (i.e., ϵ =∞). In Figure 5, we
show the effect of using a small non-zero value for ϵ on the learning curves, using the random LP
benchmark.

Table 1: Test regrets of LAVA for various thresholds
Method Random LP Multi-dim. Knapsack Shortest Path

LAVA (ϵ = 0) 0.023± 0.001 0.127± 0.007 0.061± 0.008
LAVA (ϵ = 0.1) 0.016± 0.001 0.086± 0.002 0.060± 0.012
LAVA (ϵ =∞) 0.166± 0.009 0.156± 0.003 0.243± 0.022

13

0 20 40 60 80 100
Epoch

10 2

10 1

R
eg

re
t (

lo
g

sc
al

e)

LAVA (= 0) (Train)
LAVA (= 0) (Val)
LAVA (= 0.1) (Train)
LAVA (= 0.1) (Val)

Figure 5: Learning curves for LAVA on the random LP benchmark, comparing margin parameter
values ϵ = 0 and ϵ = 0.1.

C More information on the TNP rule

When a vertex z⋆ is degenerate, it has multiple corresponding bases. This makes efficiently computing
all adjacent vertices of z⋆ much more challenging, as they cannot all be obtained by performing pivots
on any single basis B of z⋆. To ensure that all adjacent vertices of z⋆ are identified, one in principle
needs to consider all pivot operations across all bases associated with z. However, for a σ-degenerate
n-dimensional vertex z⋆ – where σ refers to the number of zero-valued basic variables – this number
of bases is lower-bounded by Umin = 2σ−1(n− σ + 2) [23], and upper-bounded by Umax =

(
n+σ
σ

)
[12]. For instance, for n = 100 and σ = 30, Umin = 3.865 · 1010 and Umax = 2.6 · 1039. This
makes the exhaustive exploration of all bases of z⋆ intractable.

This has inspired an investigation into more efficient ways of generating all adjacent vertices of
a degenerate vertex – a problem which sometimes gets referred to as the neighborhood problem
[23]. Some work has aimed to address this, primarily between the late 1970s and early 1990s, but
has since remained relatively obscure, receiving limited attention in recent research. This line of
work takes a graph-theoretic approach to the neighborhood problem. It associates with degenerate
vertex z⋆ a degeneracy graph G(z⋆) = (V,E) where V = {B|B is a feasible basis of z⋆} and
E = {{Bu, Bv} ⊆ V | Bu ←→ Bv}. In words, the nodes of the graph are the bases associated
with z⋆, and an edge connects two bases if one can be obtained from the other through a single pivot
operation. The nodes can be further separated into two types: internal nodes and transition nodes.
Internal nodes correspond to bases from which all possible pivots lead to other bases associated
with the same vertex z⋆. Transition nodes correspond to bases for which at least one basis of an
adjacent vertex zadj can be reached through a pivot. This framework of degeneracy graphs has led
to numerous valuable insights into various aspects of linear programming, including cycling in the
simplex method, the neighborhood problem, the construction of degenerate solutions, and sensitivity
analysis. For an overview, we refer the reader to [13, 14, 16].

Particularly relevant to this paper is the work by Geue [17] and Kruse [23], which showed that
to compute all adjacent vertices of a degenerate solution, not all bases of that solution need to
be explored. It suffices to only consider those bases that can be reached through lexicographic
pivoting [8]. To further reduce the required number of pivots, Geue later introduced a dedicated
Transition Node Pivoting (TNP) rule [15], which we employ in Algorithm 1. The TNP rule is a
pivoting rule that only pivots from transition nodes to other transition nodes, and that ensures that
with each pivot, at least one new basis of an adjacent vertex is discovered. This is a desirable property,
as internal nodes do not contribute directly to the solution of the neighborhood problem.

To apply TNP pivoting, we must start from a transition node associated with z⋆. If our initial basis is
not a transition node, we can obtain one by applying random pivots (with respect to an anti-cycling
rule [8]). Since the starting node is now a transition node, there will be a column d of D = −B−1N

such that min
{i|di<0}

(
− z⋆

Bcurr(i)

di

)
> 0, i.e., θ⋆ > 0 in the minimum ratio test (line 13 in Algorithm 1).

This column is referred to as the transition column, and is denoted by t. This column will remain
a transition column throughout all the subsequent TNP pivots. The TNP rule comes into effect
when, for an entering variable with index j, θ⋆ = 0 (line 13 of Algorithm 1) and there are multiple

14

minimizers, i.e.,
∣∣∣I(j)min

∣∣∣ > 1, where I
(j)
min = {i | − z⋆

Bcurr(i)

di
= 0}. The TNP rule is used to decide

which i ∈ Imin to select as leaving variable. This i is selected as maxk{Dkt

Dkj
|k ∈ I

(j)
min}, which

ensures that t remains a transition column. For a proof of this statement, as well as further details on
the TNP rule, we refer the reader to [15] and [17].

D Further details of experimental setup

D.1 Hyperparameters

All methods were tuned on a validation set per benchmark. The hyperparameter configuration
that led to the best validation set regret was selected. Considered values for the learning rate were
0.001, 0.01, 0.1 and 1. For all methods, 0.01 performed best. For PFYL, considered values for σ were
0.01, 0.1, 1 and 10. For the random LPs, 0.1 performed best. For the multi-dimensional knapsack
problem and the shortest path problem, 1 performed best. A single perturbed cost vector was sampled
per backward pass. For NCE, the solve ratio was set to 5%. For CaVE, both the CaVE-E and CaVE+
variants were considered. On random LPs and the shortest path problem, CaVE-E performed best.
On the multi-dimensional knapsack problem, CaVE+ performed best. For LAVA, ϵ = 0.1 was chosen
for all benchmarks.

D.2 Optimization problems

Random LPs: Random linear programs were generated in the form {z ∈ Rn | Az ≤ b, z ≥ 0},
which were subsequently converted to standard form. The entries of A were sampled uniformly from
the interval [0, 1]. The right-hand side vector b was determined in two stages. First, a solution vector
z⋆ was sampled uniformly from [0, 1]. The initial entries of b were then set as Az⋆. Subsequently, 50
randomly selected entries of b were increased by a random value sampled uniformly from [0, 0.2]. A
check was performed to ensure that none of the generated constraints were redundant (i.e., implied by
other constraints). No further modifications were necessary to achieve nonredundancy. The process
described above, applied to the specified problem dimensions (100 variables and 50 constraints), did
not produce any redundant constraints.

Multi-dimensional knapsack: Given a set of items I = {1, . . . , n}, where each item i ∈ I has
a value ci and a weight wij for each of m knapsack constraints, the multi-dimensional knapsack
problem seeks to find the subset of items with maximum total value without exceeding the capacity
Wj for each constraint j ∈ {1, . . . ,m}.
Let

zi =

{
1 if item i is selected
0 otherwise

for all i ∈ I. The problem can then be formulated as follows:

max
∑
i∈I

cizi (10)

s.t.
∑
i∈I

wijzi ≤Wj , ∀j ∈ {1, . . . ,m} (11)

zi ∈ {0, 1} ∀i ∈ I. (12)

The objective function (10) maximizes the total value of the selected items. Constraints (11) ensure
that the weight of the selected items does not exceed the capacity for each dimension j. The domain
constraint (12) specifies that each item can either be selected in its entirety, or not at all. In generating
the multi-dimensional knapsack problems, the item weights were integer values sampled uniformly
at random from [1, 10], and the capacity in each constraint was set to 10% of the sum of the weights
in that constraint.

15

Shortest path problem: This problem is taken from [10], and was also used in [24, 26, 28].
Consider a directed 5x5 grid graph G = (V,E) where each node (i, j) ∈ V is connected to its right
and upward neighbors, forming a directed acyclic graph. Each edge (i, j) ∈ E has an associated cost
cij . The objective is to find the shortest path from the bottom-left node (1, 1) to the top-right node
(5, 5).

Let

zij =

{
1 if edge (i, j) is included in the path
0 otherwise

for all (i, j) ∈ E. The shortest path problem can then be formulated as the following linear program:

min
∑

(i,j)∈E

cijzij (13)

s.t.
∑

j : (1,j)∈E

z1j = 1 (14)

∑
i : (i,5)∈E

zi5 = 1 (15)

∑
j : (k,j)∈E

zkj −
∑

i : (i,k)∈E

zik = 0, ∀k ∈ V \ {(1, 1), (5, 5)} (16)

(17)

The objective function (13) minimizes the total cost of the path. Constraint (14) ensures that one unit
of flow is sent out from the bottom-left node (1, 1). Constraint (15) ensures that one unit of flow is
received at the top-right node (5, 5). The flow conservation constraints (16) maintains flow balance at
each intermediate node.

Since edges only exist to the right or upwards, the set of edges E can be explicitly defined as:

E = {((i, j), (i+ 1, j)) | i < 5} ∪ {((i, j), (i, j + 1)) | j < 5}

D.3 True predictive mappings

Polynomial mapping: This mapping is commonly used in experimental evaluations of DFL
methods. It was introduced in [10], and was later considered in [24, 26, 34, 38, 39].

The data generating process is the following. First, we generate the parameters of the true model as a
40× 5 matrix B, wherein each entry is sampled from a Bernoulli distribution with probability 0.5.
We then generate features-target pairs as follows:

1. First, each element of feature vector x ∈ R5 is sampled from the standard normal distribution
N (0, 1).

2. Then, the corresponding target value cj ∈ R is generated as follows:

cj =
1

3.5deg

(
1 + (

(B⊤x)j
5

+ 3)deg
)
· ϵj

where ϵj is sampled uniformly from [1− ϵ̄, 1 + ϵ̄].

In our experiments, we use deg = 8 and ϵ̄ = 0.

California house prices: This prediction task is taken from a common machine learning benchmark
[31], which is offered as a benchmark in the scikit-learn Python package [32]. In this benchmark,
the median house prices of districts in California must be predicted from 8 correlated local features,
including spatial features, features about the districts’ populations and other aggregate housing
statistics.

16

Table 2: Test regrets with standard errors for different methods
Method Random LP Multi-dim. Knapsack Shortest Path

MSE 0.136± 0.003 0.103± 0.002 0.144± 0.023
SPO+ 0.015± 0.001 0.082± 0.001 0.052± 0.007
PFYL 0.017± 0.001 0.082± 0.001 0.055± 0.010
NCE 0.025± 0.001 0.159± 0.003 0.151± 0.016
CaVE 0.017± 0.001 0.111± 0.002 0.080± 0.014
LAVA (Ours) 0.016± 0.001 0.086± 0.002 0.060± 0.012

Table 3: Training times with standard errors for different methods
Method Random LP Multi-dim. Knapsack Shortest Path

MSE 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
SPO+ 180.2 ± 21.8 303.3 ± 74.6 18.6 ± 1.3
PFYL 105.7 ± 11.8 581.1 ± 8.4 30.4 ± 4.6
NCE 8.1 ± 0.4 15.6 ± 5.3 0.6 ± 0.3
CaVE 469.1 ± 37.1 173.5 ± 37.5 3.4 ± 1.1
LAVA (Ours) 5.8 ± 0.1 9.8 ± 1.4 13.0 ± 1.0

E Results in tabular form

Tables 2 and 3 show the results of Figure 2 in tabular form.

F NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: we propose a new loss function and highlight some of its properties in the
abstract and introduction. We elaborate on these in Section 4.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The main limitation of our methodology is its limited applicability on highly
degenerate problems, as we highlight in our discussion of the experimental results (Section
5), and in the conclusion (section 6).

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We prove Proposition 4.1 in the appendix.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed pseudocode Algorithm 1, and detail the experimental
setup in Section 5.1 Further details and hyperparameter values are provided in the appendix.

5. Open access to data and code

17

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our code and data are available at https://github.com/ML-KULeuven/Solver-
Free-DFL/.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We detail the experimental setup in Section 5.1 Further details and hyperpa-
rameter values are provided in the appendix.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: standard errors for Figure 2 are reported in the appendix. Stardard errors for
Figure 3 are shown on the figure.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: This information is listed in Section 5.1.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper adheres to the code of ethics.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no direct societal impact of the work performed. We also see no direct
path to negative applications.

Guidelines:

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

18

https://github.com/ML-KULeuven/Solver-Free-DFL/
https://github.com/ML-KULeuven/Solver-Free-DFL/
https://neurips.cc/public/EthicsGuidelines

Justification: We refer to the assets we use in sections 5.1 and 5.3.
13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Other than the code and data already covered by point 5, the paper does not
release new assets.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

19

	Introduction
	Background
	Predict-then-optimize
	Linear programming preliminaries

	Related work
	Solver-free training by contrasting adjacent vertices
	Loss based on adjacent vertices
	Precomputing the adjacent vertices
	Base case: nondegenerate vertices
	Edge case: degenerate vertices

	Putting it together

	Experimental evaluation
	Experimental setup
	Baselines
	Benchmarks
	Results and discussion

	Conclusions and future work
	Acknowledgements
	Proof of Proposition 4.1
	Ablation of thresholding in lava
	More information on the TNP rule
	Further details of experimental setup
	Hyperparameters
	Optimization problems
	True predictive mappings

	Results in tabular form
	NeurIPS Paper Checklist

