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Abstract

Weak-to-strong generalization refers to the phenomenon where a stronger model
trained under supervision from a weaker one can outperform its teacher. While
prior studies aim to explain this effect, most theoretical insights are limited to
abstract frameworks or linear/random feature models. In this paper, we provide
a formal analysis of weak-to-strong generalization from a linear CNN (weak) to
a two-layer ReLU CNN (strong). We consider structured data composed of label-
dependent signals of varying difficulty and label-independent noise, and analyze
gradient descent dynamics when the strong model is trained on data labeled by
the pretrained weak model. Our analysis identifies two regimes—data-scarce
and data-abundant—based on the signal-to-noise characteristics of the dataset,
and reveals distinct mechanisms of weak-to-strong generalization. In the data-
scarce regime, generalization occurs via benign overfitting or fails via harmful
overfitting, depending on the amount of data, and we characterize the transition
boundary. In the data-abundant regime, generalization emerges in the early phase
through label correction, but we observe that overtraining can subsequently degrade
performance.

1 Introduction

As the capabilities of today’s AI models grow, recent models such as state-of-the-art large language
models (LLMs) increasingly demonstrate superhuman performance in various domains. The com-
plex and often unpredictable behaviors of superhuman models make it crucial to align them with
human intent, a challenge known as superalignment. In order to tackle this challenge, human-level
supervision techniques, such as reinforcement learning from human feedback (RLHF), are commonly
applied. This situation, where a less capable supervisor guides a more advanced model, reverses the
traditional teaching paradigm and raises an important question: What happens when a model with
stronger capabilities is trained under the supervision of a weaker one?

To address this question, Burns et al. (2024) performed extensive experiments training strong student
models, like GPT-4 (OpenAI, 2023), with supervision from a weaker teacher model, such as a
fine-tuned GPT-2 (Radford et al., 2019). They observe that the strong model consistently surpasses
their supervisor’s performance, and refer to this phenomenon as weak-to-strong generalization.
This surprising phenomenon has attracted considerable attention, and several recent studies have
investigated it from theoretical perspectives.

Lang et al. (2024) introduce a theoretical framework that establishes weak-to-strong generalization
when the strong model is unable to fit the weak model’s mistakes. Building on this framework, Shin
et al. (2025) propose a mechanism for weak-to-strong generalization in data exhibiting both easy
and hard patterns. Concurrently, another line of work has focused on quantifying the weak-to-strong
gain. Charikar et al. (2024) investigate the relationship between weak-to-strong gains and the misfit
between weak and strong models in regression with squared loss. Specifically, they show that the
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gain in weak-to-strong generalization correlates with the degree of misfit between the weak and
strong models. Mulgund and Pabbaraju (2025) and Yao et al. (2025) extend this analysis to a broader
class of loss functions, including the reversed Kullback–Leibler divergence. However, both lines
of work often rely on abstract theoretical frameworks and typically do not guarantee that weak-to-
strong generalization can be achieved through practical training procedures such as gradient-based
optimization.

Wu and Sahai (2025) explore weak-to-strong generalization in an overparameterized spiked covariance
model and prove transitions between generalization and random guessing by considering both weak
and strong models as minimum ℓ2 norm interpolating solutions on feature spaces of differing
expressivity. Ildiz et al. (2024) investigate a more general form of knowledge distillation (Hinton
et al., 2015) in a high-dimensional regression setting and show that distillation from a weak model
can outperform distillation from a strong model, while it fails to improve the overall scaling law.
Dong et al. (2025) also study a linear regression setting from a variance reduction perspective via the
intrinsic dimension of feature spaces. However, these works are limited to linear models and rely on
specific assumptions on structural differences between the feature spaces of weak and strong models.
A more recent work by Medvedev et al. (2025) alleviates some of these limitations by using random
feature networks of differing widths for the strong and weak models. However, in their approach, the
trainable component is still linear. These limitations motivate the following question:

When and how does weak-to-strong generalization emerge through nonlinear feature learning?

1.1 Summary of Contributions

In this paper, we investigate a classification problem on structured data composed of patches, which
consist of signals and noise. We employ linear CNNs as the weak model and two-layer ReLU CNNs
as the strong model. We focus on the following training scenario: training the weak model under true
supervision and then training the strong model under supervision from the pretrained weak model.
We investigate how models trained through this scenario perform, particularly focusing on when and
how weak-to-strong generalization emerges. We summarize our contributions as follows:

• We compare the capability of weak models and strong models in our data distribution, showing that
any weak model makes non-negligible errors (Proposition 2.1) while there exists a strong model
that exhibits zero errors (Proposition 2.2).

• We prove that training a weak model using a finite number of training samples and gradient descent
can result in a test error that is close to the best possible error achievable by the weak model
architecture (Theorem 3.3).

• We also demonstrate that when a strong model is trained on a finite set of samples using supervision
from a weak model that makes non-negligible errors, it either achieves near-optimal generalization
via benign overfitting or suffers from degraded performance due to harmful overfitting. We further
characterize the conditions under which this transition occurs (Theorem 3.4).

• We further explore weak-to-strong training in the regime where more data is available than the
previously considered scenario, and perhaps surprisingly, we find that it exhibits a notably different
behavior. The strong model can achieve near-zero test error even while the training error on
pseudo-labels remains non-negligible (Theorem 3.6). However, we also empirically observe that
“overtraining” until convergence to zero training loss eliminates this benefit, resulting in test error
levels close to those of the weak model.

2 Problem Setting

In this section, we introduce the data distribution and weak/strong model architectures that we focus
on, and formally describe the training scenario considered in our work.

In our analysis, we adopt a patch-wise structured data distribution and patch-wise convolutional
neural network architectures. This approach follows a recent line of work on feature learning theory
starting from Allen-Zhu and Li (2020). This type of setting provides a simple but useful framework
for studying training dynamics in deep learning. Similar problem settings have been widely used to
understand several aspects of deep learning, such as benign overfitting (Cao et al., 2022; Kou et al.,
2023; Meng et al., 2024), optimizer (Jelassi and Li, 2022; Zou et al., 2023b; Chen et al., 2023), data
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augmentation (Shen et al., 2022; Chidambaram et al., 2023; Zou et al., 2023a; Oh and Yun, 2024;
Li et al., 2025), and architecture (Huang et al., 2023; Jiang et al., 2024). The broad utility of such
settings confirms their value in understanding fundamental aspects of deep learning.

2.1 Data Distribution

We investigate a binary classification problem on structured data consisting of multiple patches. These
patches contain label-dependent vectors (called signal) and label-independent vectors (called noise).
Definition 1. We define a data distribution D on Rd×3 × {±1} such that a sample (X, y) ∼ D with
X =

(
x(1),x(2),x(3)

)
and y ∈ {±1} is constructed as follows.

1. Choose the label y ∈ {±1} uniformly at random.

2. Let {µ1,µ−1,ν1,ν−1} be a set of mutually orthogonal signal vectors. We choose two signal
vectors v(1),v(2) ∈ Rd for data point X associated with the label y as follows:

(
v(1),v(2)

)
∼


(µy,µy) with probability pe
Unif{(νy,νy), (νy,−νy), (−νy,νy), (−νy,−νy)} with probability ph
Unif{(µy,νy), (µy,−νy), (νy,µy), (−νy,µy)} with probability pb

For simplicity, we assume ∥µ1∥ = ∥µ−1∥ and ∥ν1∥ = ∥ν−1∥, and refer to their norms as ∥µ∥
and ∥ν∥, respectively, omitting the subscripts.

3. A noise vector ξ is drawn from a Gaussian distribution N
(
0, σ2

pΛ
)
, where the covariance matrix

is given by Λ = Id − µ1µ
⊤
1

∥µ∥2 − µ−1µ
⊤
−1

∥µ∥2 − ν1ν
⊤
1

∥ν∥2 − ν−1ν
⊤
−1

∥ν∥2 .

4. The components x(1),x(2),x(3) of the data point X are formed by assigning the generated vectors
v(1),v(2), ξ in a randomly shuffled order.

Our data distribution is based on characteristics of image data, where inputs consist of multiple
patches. Some patches contain information relevant to the label (such as a face or a tail for “dog”),
while others contain irrelevant information, like grass in the background. Intuitively, a model can fit
data by learning signals and/or memorizing noise. However, relying primarily on noise memorization
instead of learning signals leads to poor generalization since noise is label-irrelevant. Therefore,
effectively learning signals is crucial for achieving better generalization.

Real-world data often contains multiple types of label-relevant information, and these corresponding
signals can exhibit varying levels of learning difficulty. For example, both a face and a tail are useful
for recognizing “dog”, but learning the tail could be harder since it occupies only a small region of
the image or appears only in a small number of images. To reflect this difference, we consider two
types of signals. We refer to µ1,µ−1 as easy signals and ν1,ν−1 as hard signals. These signal types
are designed to have different levels of learning difficulty within the architectures we focus on, as
detailed in the following subsection. We categorize a data point having only easy signals as easy-only
data, only hard signals as hard-only data, and both types of signals as both-signal data. We denote
by Se, Sh, and Sb the supports of these data categories, respectively.

2.2 Neural Network Architecture

We now define the weak and strong model architectures in our analysis. First, weak models are linear
convolutional neural networks where patch-wise convolution is applied.
Definition 2 (Weak Model). We consider our weak model as linear CNN fwk(w, ·) : Rd×3 → R
parameterized by w ∈ Rd defined as follows. For each input X =

(
x(1),x(2),x(3)

)
∈ Rd×3, we

define
fwk(w,X) =

〈
w,x(1)

〉
+
〈
w,x(2)

〉
+
〈
w,x(3)

〉
Our choice of weak model has limited capability for learning our data distribution D. In particular,
any weak model shows random-guess level performance on hard-only data, as formalized below.
Proposition 2.1. Let (X, y) ∼ D be a test example. For any weak model fwk(w, ·), it satisfies
P[yfwk(w,X) < 0 | (X, y) ∈ Sh] =

1
2 .
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Proof. Consider a hard-only data (X, y) ∈ Sh with the noise vector ξ. If the two underlying signals
in a hard-only data point have opposite signs, the weak model’s output fwk(w,X) simplifies to
⟨w, ξ⟩. This results in a 1/2 conditional error rate due to symmetry of noise. For a hard-only data
having two signal vectors of identical signs, we may assume two signal vectors of (X, y) ∈ Sh are
both νy , without loss of generality. Define (X̃, y) ∈ Sh to be a data point where both signal vectors
are −νy and the noise vector is −ξ. Then, yfwk(w,X) = −yfwk(w, X̃). From the symmetry of ξ,
it implies the model has 1/2 error rate conditioned on the case where two signal vectors are identical.
By combining two cases, we have the desired conclusion.

The strong model is a 2-layer convolutional neural network with ReLU activation, also applying
patch-wise convolution, where the second layer weights are fixed and only the first layer is trainable.
Definition 3 (Strong Model). We consider our strong model as 2-layer CNN fst(W , ·) : Rd×3 →
R parameterized by W = {W1,W−1} where Ws = {ws,r}r∈[m] for s ∈ {±1} represents
the set of positive/negative filters, each containing m filters ws,r ∈ Rd. For each input X =(
x(1),x(2),x(3)

)
∈ Rd×3, we define

fst(W ,X) = F1(W1,X)− F−1(W−1,X),

where for each s ∈ {±1},

Fs(Ws,X) =
1

m

∑
r∈[m]

[
σ
(〈

ws,r,x
(1)
〉)

+ σ
(〈

ws,r,x
(2)
〉)

+ σ
(〈

ws,r,x
(3)
〉)]

and σ(·) denotes the ReLU activation function.

In contrast to the limitations of the weak model, the following proposition demonstrates the strong
model architecture’s capability for perfect generalization.
Proposition 2.2. Let (X, y) ∼ D be a test example. If m ≥ 2, then there exists a strong model with
parameter W ∗ that achieves zero test error: P [yfst(W

∗,X) < 0] = 0.

Proof. We construct W ∗ by defining, for each s ∈ {±1}, the filters w∗
s,1 = µs+νs, w∗

s,2 = µs−νs,
and setting w∗

s,r = 0 for r > 2. Direct calculation shows that yfst(W ∗,X) > 0 for all (X, y) ∼ D,
leading to zero test error.

2.3 Training Scenario

Our goal is to train the weak and strong models, using a finite training set sampled from the distribution
D, to correctly classify unseen test examples from D. We first outline the training procedure of the
weak model and then describe the training of the strong model supervised by the weak model.

2.3.1 Weak Model Training

In weak model training, we use nwk labeled data points {(Xi, yi)}nwk
i=1

i.i.d.∼ D and training loss is
defined as

Lwk (w) =
1

nwk

∑
i∈[nwk]

ℓ (yifwk (w,Xi)) ,

where ℓ(z) = log(1+exp(−z)) is the logistic loss. We consider using gradient descent with learning
rate η to minimize training loss Lwk(w) and model parameters are initialized as w(0) = 0. The
parameters are updated at each iteration t as

w(t+1) = w(t) − η∇wLwk

(
w(t)

)
= w(t) − η

nwk

∑
i∈[nwk]

yiℓ
′
(
yifwk

(
w(t),Xi

))(
x
(1)
i + x

(2)
i + x

(3)
i

)
= w(t) +

η

nwk

∑
i∈[nwk]

yig
(t)
i

(
x
(1)
i + x

(2)
i + x

(3)
i

)
(1)

where Xi =
(
x
(1)
i ,x

(2)
i ,x

(3)
i

)
and we use g

(t)
i = −ℓ′

(
yifwk

(
w(t),Xi

))
.
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2.3.2 Weak-to-Strong Training

Let {(X̃i, ỹi)}nst
i=1

i.i.d.∼ D denote a dataset drawn from the data distribution D. Then the strong model
is trained on the dataset {(X̃i, ŷi)}nst

i=1, where the supervision ŷi is provided by a pretrained weak
model fwk(w

∗, ·), i.e., ŷi = sign(fwk(w
∗, X̃i)) instead of using true label ỹi. The training objective

is defined as
Lst(W ) =

1

nst

∑
i∈[nst]

ℓ
(
ŷifst(W , X̃i)

)
and we use gradient descent with learning rate η to minimize Lst(W ), where the model parameters
are initialized as w(0)

s,r ∼ N (0, σ2
0Id) for all s ∈ {±1} and r ∈ [m]. The parameters are updated at

each iteration t as

w(t+1)
s,r = w(t)

s,r − η∇ws,r
Lst(W

(t))

= w(t)
s,r −

sη

mnst

∑
i∈[nst]

ŷi ℓ
′
(
ŷifst(W

(t), X̃i)
) ∑

p∈[3]

σ′
(〈

w(t)
s,r, x̃

(p)
i

〉)
x̃
(p)
i

= w(t)
s,r +

sη

mnst

∑
i∈[nst]

ŷi g̃
(t)
i

∑
p∈[3]

σ′
(〈

w(t)
s,r, x̃

(p)
i

〉)
x̃
(p)
i , (2)

where X̃i =
(
x̃
(1)
i , x̃

(2)
i , x̃

(3)
i

)
and we use g̃

(t)
i = −ℓ′

(
ŷifst(W

(t), X̃i)
)

for each i ∈ [nst].

3 Provable Weak-to-Strong Generalization

In this section, we provide theoretical results on when and how weak-to-strong generalization occurs
in our setting. For our analysis, we denote by T ∗ the maximum admissible training iterates and
we assume T ∗ = η−1poly(ε−1, d, nst, nwk,m), where ε is a target training loss and poly(·) is a
sufficiently large polynomial. Furthermore, we focus on an asymptotic regime where parameters
ε−1, d, nst, nwk,m are considered sufficiently large. Consequently, our theoretical guarantees will
often be expressed using asymptotic notation such as O(·),Ω(·), o(·), ω(·), as well as Õ(·), Ω̃(·),
which hide logarithmic factors. Our main results depend on the conditions detailed below.

Condition 3.1. There exists a sufficiently large constant C > 0 such that the following hold:

(C1) d ≥ Cmax
{
n2
wk log

(
Cn2

wk

δ

)
, nst log

(
Cnst

δ

)}
(log T ∗)2

(C2) nwk, nst ≥ Cmax
{
p−2
e , p−2

b , p−2
h

}
log
(
C
δ

)
, m ≥ C log

(
Cnst

δ

)
(C3) σ0 ≤ C−1 min

{
1

∥µ∥ ,
1

∥ν∥ ,
1

σp

√
d

}
min

{
nstpb∥ν∥2

σ2
pd

,
σ2
pd

(2pe+pb)n1
st∥µ∥2

}(
log
(
Cmnst

δ

))− 1
2

(C4) η ≤ C−1σ−2
p d−

3
2

(C5) (2pe + pb)∥µ∥2 ≥ Cpb∥ν∥2, nwk, nst = ω
(

σ4
pd

(2pe+pb)2∥µ∥4

)
(C6) pb ≥ Cmax{ph, σp ∥µ∥ ∥ν∥−2

(log T ∗)
1
2 }

(C1) and (C2) allow us to apply concentration inequalities and ensure that our training data samples
and initial model parameters satisfy certain desirable properties with high probability. (C3) and (C4)
ensure that initialization is negligible compared to the update and that learning dynamics are stable.
They facilitate our analysis of the learning dynamics. (C5) guarantees that easy signals are easier
to learn than hard signals for both weak and strong models, as the difficulty of learning signals is
determined by their frequency and strength. This also ensures that both models are guaranteed to
learn these easy signals. Furthermore, a large enough portion of both-signal data stated in (C6) is
essential to weak-to-strong generalization, in line with the insights discussed in Shin et al. (2025).

As we mentioned before, in our problem setting, there are two mechanisms for minimizing training
loss: learning signals and memorizing noise. Since signals repeatedly appear in data while noise is
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independent across data points, the amount of data affects which mechanism predominantly influences
the learning dynamics. In our analysis, we consider two regimes based on this observation: the
data-scarce regime and the data-abundant regime.

In the data-scarce regime, we demonstrate two key findings. First, we prove that weak model training
can achieve performance close to the optimal limit of the weak model class even in this regime.
Second, we demonstrate that even within the data-scarce regime, weak-to-strong training can achieve
low test error through benign overfitting, provided that the given dataset size is not too small. We
also characterize tight conditions under which the weak-to-strong training exhibits benign or harmful
overfitting. In the data-abundant regime, we analyze weak-to-strong training and, perhaps surprisingly,
observe that weak-to-strong generalization behaves differently compared to the data-scarce regime:
Early stopping plays a crucial role.

3.1 Data-Scarce Regime

In this regime, the amount of available data is small. Consequently, noise memorization is more
prevalent than signal learning, leading to model outputs on training data points mainly determined by
activations from noise vectors. We formalize this regime as follows.
Condition 3.2 (Data-Scarce Regime). All conditions in Condition 3.1 hold, using the same con-
stant C > 0 as introduced therein, and the following additional condition holds: nwk, nst ≤
C−1σ2

pd/((2pe + pb) ∥µ∥2 log T ∗).

The following theorem provides convergence and test error guarantees for weak model training.
Theorem 3.3 (Weak Model Training). Let w(t) be the iterates of weak model training. For any
ε > 0 and δ ∈ (0, 1) satisfying Condition 3.2, with probability at least 1 − δ, there exists Twk =

Õ(η−1ε−1nwkd
−1σ−2

p ) such that for all t ∈ [Twk, T
∗], the following statements hold:

1. The training loss converges below ε: Lwk

(
w(t)

)
< ε.

2. Let (X, y) ∼ D be an unseen test example, independent of the training set {(Xi, yi)}nwk
i=1 . Then,

we have

P
[
yfwk

(
w(t),X

)
< 0

∣∣∣ (X, y) ∈ Se ∪ Sb

]
≤ exp

(
−nwk(2pe + pb)

2∥µ∥4

C1σ4
pd

)
= o(1).

Here, C1 > 0 is a constant.

The proof is provided in Appendix B. Combined with Proposition 2.1, Theorem 3.3 guarantees
the convergence of training loss and shows that the trained weak model achieves low test error on
easy-only data and both-signal data, while performing random guessing on unseen hard-only data.
This corresponds to the near optimal error attainable by the weak model, but not perfect because the
overall test error will be of order ph

2 + o(1).

The following theorem provides convergence and test error guarantees for weak-to-strong training.
Theorem 3.4 (Weak-to-Strong Training, Data-Scarce Regime). Let W (t) be the iterates of weak-
to-strong training, with the weak model fwk(w

∗, ·) satisfying the conclusion of Theorem 3.3. For
any ε > 0 and δ ∈ (0, 1) satisfying Condition 3.2, with probability at least 1 − δ, there exists
Tw2s = O(η−1ε−1mnstd

−1σ−2
p ) such that for any t ∈ [Tw2s, T

∗] the following statements hold:

1. The training loss converges below ε: Lst

(
W (t)

)
< ε.

2. Let (X, y) ∼ D be an unseen test example, independent of the training set {(X̃i, ŷi)}nst
i=1.

• (Benign Overfitting) When nstp
2
b ∥ν∥

4
/(σ4

pd) ≥ C2,1 we have

P
[
yfst

(
W (t),X

)
<0
]
≤ (pe+pb) exp

(
−nst(2pe + pb)

2∥µ∥4

C3σ4
pd

)
+ph exp

(
−nstp

2
b∥ν∥4

C3σ4
pd

)
.

• (Harmful Overfitting) When nstp
2
b ∥ν∥

4
/(σ4

pd) ≤ C4,

P
[
yfst

(
W (t),X

)
< 0
]
≥ 0.12ph.

1We emphasize that this condition does not contradict Condition 3.2 due to (C6).
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Here, C2, C3, C4 > 0 are constants.

The proof is provided in Appendix C. Theorem 3.4 guarantees training loss convergence and further
characterizes the overall test error in the weak-to-strong scenario. Specifically, it shows that the error
is much smaller than the lower bound for the weak model’s error (Proposition 2.1) when the number
of data nst exceeds a certain threshold. Conversely, when nst falls below a similar threshold, the
error remains lower-bounded by a constant multiple of ph, as in the case of the supervising weak
model’s error. The fact that these two thresholds differ only by constant factors provides a tight
characterization of these distinct regimes.

3.2 Data-Abundant Regime

In this regime, a sufficient amount of data is available, allowing signal learning to dominate the effects
of noise memorization. We formalize this regime as follows.

Condition 3.5 (Data-Abundant Regime). All conditions in Condition 3.1 hold, using the same
constant C > 0 as introduced therein, and the following additional condition holds: nst ≥
Cσ2

pd log T
∗/(pb ∥ν∥2).

Due to the limited availability of costly true-labeled data, the defining conditions for this data-
abundant regime primarily focus on nst. Thus, the characteristics of the supervising weak model, as
established in Theorem 3.3, remain applicable in this regime. The following theorem demonstrates
the emergence of weak-to-strong generalization in the early phase, where training loss remains large.

Theorem 3.6 (Weak-to-Strong Training, Data-Abundant Regime). Let W (t) be the iterates of the
weak-to-strong training, with the weak model fwk(w

∗, ·) satisfying the conclusion of Theorem 3.3.
For any δ ∈ (0, 1) satisfying Condition 3.5, with probability at least 1− δ, there exists early stopping
time Tes = O(η−1m(2pe + pb)

−1 ∥µ∥−2
) such that the following statements hold:

1. The early stopped strong model fst
(
W (Tes), ·

)
perfectly fits all training data points having correct

labels (i.e. ŷi = ỹi) but fails on all training data points with flipped labels (i.e. ŷi ̸= ỹi). In other
words, the model predicts the true label ỹi for any training data point X̃i.

2. Let (X, y) ∼ D be an unseen test example, independent of the training set {(X̃i, ŷi)}nst
i=1. We

have

P
[
yfst

(
W (Tes),X

)
<0
]
≤ (pe+pb) exp

(
−nst(2pe + pb)

2∥µ∥4

C5σ4
pd

)
+ph exp

(
−nstp

2
b∥ν∥4

C5σ4
pd

)
.

Here, C5 > 0 is a constant.

The proof is provided in Appendix D. Theorem 3.6 shows that weak-to-strong generalization can arise
via early stopping in this regime. It provides guarantees for an early-stopped model and thus does
not provide guarantees on the model’s performance at convergence. One might therefore be curious
how training until convergence influences performance. We conducted experiments in our setting
and observed that after this early phase, performance often degrades and then plateaus, exhibiting
accuracy similar to or even lower than that of the supervising weak model. While we leave a rigorous
proof for this late-phase behavior open, we provide an intuitive explanation in Section 4.

The role of early stopping for weak-to-strong generalization is also discussed in the literature. Burns
et al. (2024) observe that in ChatGPT Reward Modeling tasks and a subset of NLP tasks, early
stopping can improve weak-to-strong generalization, while overtraining can lead to degradation.
Medvedev et al. (2025) also discuss early stopping in their theoretical setting, where it becomes
essential due to their consideration of training on the population risk over the distribution of pseudo-
labeled data. In contrast, in our finite-sample setting, early stopping is not strictly required to achieve
weak-to-strong generalization. In fact, a strong model that perfectly fits the pseudo-labeled training
data may lead to either low or high test error, as observed in the data-scarce regime. Thus, the fact
that training dynamics can converge to a solution with poor generalization, even under abundant data
and the existence of good solutions, is somewhat surprising.
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4 Key Theoretical Insights

In this section, we provide key insights behind our theoretical analysis. We formally prove this
intuition using several theoretical tools, such as the signal-noise decomposition (Cao et al., 2022).

For weak model training, its update rule (1) implies that the model weight vector w is updated in
directions determined by the signal and noise vectors within the training samples. The evolution
of w along each such vector’s direction is influenced by that vector’s strength and its frequency of
appearance in the dataset. Due to the limited capability of the weak model, it cannot learn hard
signals with opposite signs (e.g., ν1,−ν1). Furthermore, the cancellation of updates along hard signal
directions and our condition (C5) ensure that the learning of easy signals predominates over that
of hard signals. This dominance means that while easy signals are effectively learned, the learning
of hard signals is largely suppressed. Consequently, in both-signal data, the contribution from the
poorly learned hard signal component is not large enough to disrupt the classification guided by the
well-learned easy signals. Therefore, the weak model can correctly predict not only easy-only data
but also both-signal data.

We now explain how the supervision from the pretrained weak model affects the learning dynamics
of weak-to-strong training. Let us first introduce some notation. For each i ∈ [nst], we denote by
ṽ
(1)
i , ṽ(2)

i , and ξ̃i the signal vectors and noise vector of the i-th input X̃i, respectively. For each
v ∈ {µ1,µ−1,±ν1,±ν−1} and l ∈ [2], we define C(l)

v and F (l)
v as the sets of indices i ∈ [nst] such

that ṽ(l)
i = v and the supervision corresponds to the clean label (i.e., ŷi = ỹi) or the flipped label

(i.e., ŷi = −ỹi), respectively. Lastly, recall that g̃(t)i = −ℓ′(ŷifst(W
(t), X̃i)) denotes the negative

of the loss derivative for i-th sample.

Update rule for weak-to-strong training (2) implies that for any s ∈ {±1} and r ∈ [m],〈
w(t+1)

s,r ,µs

〉
=
〈
w(t)

s,r,µs

〉
+

η

mnst

∑
l∈[2]

( ∑
i∈C(l)

µs

g̃
(t)
i −

∑
i∈F(l)

µs

g̃
(t)
i

)
∥µ∥2 1

[〈
w(t)

s,r,µs

〉
> 0
]
.

Since the supervising weak model achieves low test error on easy-only and both-signal data, the
pseudo-labels for training samples involving µs have a low flipping probability, and this implies
|F (l)

µs |/nst ≈ 0. This ensures that, in both data-scarce and data-abundant regimes, ⟨w(t)
s,r,µs⟩

increases if it is positive.

Similarly, an update for learning hard signals can be written as follows:〈
w(t+1)

s,r ,νs

〉
=
〈
w(t)

s,r,νs

〉
+

η

mnst

∑
l∈[2]

( ∑
i∈C(l)

νs

g̃
(t)
i −

∑
i∈F(l)

νs

g̃
(t)
i

)
∥ν∥2 1

[〈
w(t)

s,r,νs

〉
> 0
]

− η

mnst

∑
l∈[2]

( ∑
i∈C(l)

−νs

g̃
(t)
i −

∑
i∈F(l)

−νs

g̃
(t)
i

)
∥ν∥2 1

[〈
w(t)

s,r,νs

〉
< 0
]
.

However, weak-to-strong generalization exhibits different behaviors across the two regimes, in-
fluenced by the presence of a non-negligible fraction of data containing hard signals with flipped
pseudo-labels. In the data-scarce regime, noise memorization is a dominant component of the learning
process. This can lead to the learning effort being more balanced across different data points. A
sufficient fraction of both-signal data guarantees |C(l)

νs |, |C
(l)
−νs

| ≫ |F (l)
νs |, |F

(l)
−νs

| and this indicates
that ⟨w(t+1)

s,r ,νs⟩ > ⟨w(t)
s,r,νs⟩ if ⟨w(t)

s,r,νs⟩ > 0 and ⟨w(t+1)
s,r ,νs⟩ < ⟨w(t)

s,r,νs⟩ if ⟨w(t)
s,r,νs⟩ < 0.

Therefore, the strong model can learn hard signals with opposite signs νs and −νs, simultaneously,
by utilizing different sets of filters {r ∈ [m] : ⟨w(0)

s,r ,νs⟩ > 0} and {r ∈ [m] : ⟨w(0)
s,r ,νs⟩ < 0}.

In contrast to the data-scarce regime, in the early phase of the data-abundant regime, the strong
model can learn both easy and hard signals quickly (even faster than noise is memorized) due to the
significant abundance of signal vectors from the clean-labeled training data. This leads to almost
perfect generalization on unseen data. Let us describe our intuition for why overtraining can lead
to performance degradation. Rapid learning of signals also creates a growing discrepancy in the
negative loss derivatives g̃(t)i ’s between clean-label data and flipped-label data. The non-negligible
portion of flipped-label hard-only data combined with the imbalance in loss derivatives can lead to the
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contributions from these flipped-label data points (e.g.,
∑

i∈F(l)
νs

g̃
(t)
i ) predominating over those from

clean-labeled data points (e.g.,
∑

i∈C(l)
νs

g̃
(t)
i ). Consequently, the strong model may start “forgetting”

learned signals as it continues to minimize the training loss defined by these pseudo-labels.

Practical Insights. Our analysis reveals the following mechanism for weak-to-strong generalization:
the weak model first successfully labels data containing easy-to-learn information. This data includes
a subset that contains both easy information and harder-to-learn information (which the weak model
fails to capture). The strong model then utilizes this correctly labeled subset to successfully learn
the harder-to-learn information. We believe that this insight can be applied to practical scenarios,
potentially leading to the development of data selection techniques that preferentially select such
beneficial data for better weak-to-strong generalization.

5 Experiments
We conduct experiments to support our findings, using NVIDIA RTX A6000 GPUs.

5.1 Experiments on Our Theoretical Setting
We perform experiments in our setting described in Section 2. We set the dimension d = 2000 and
the signal vectors µ1,µ−1,ν1,ν−1 are constructed from randomly generated orthonormal vectors,
which are subsequently scaled so that their respective norms are ∥µ∥ = 0.4 and ∥ν∥ = 0.35. The
noise strength is σp = 0.1 and the data type probabilities are pe = 0.4 and ph = pb = 0.3.

We first train the weak model using nwk = 5000 true-labeled data points. The training is conducted
for 1000 epochs using stochastic gradient descent with batch size 256 and learning rate η = 0.1,
which results in a test accuracy of 0.851. For weak-to-strong training, we use the strong model with
m = 50 filters and an initialization scale σ0 = 0.01. We train the strong model using stochastic
gradient descent with batch size 256 and learning rate η = 0.1 on the dataset labeled by the pretrained
weak model. We use three different values for the number of data points, nst = 75, 2000, 20000.

Figure 1 provides the training and test accuracy for weak-to-strong training with three different
training dataset sizes. We train the strong model for 2000 training epochs when nst = 75 or
nst = 2000, and for 10000 epochs when nst = 20000, as this requires more iterations for convergence
compared to the other cases. We observe three different types of results revealed in our analysis.

The cases nst = 75 and nst = 2000 support our analysis in the data-scarce regime. In both cases, the
training accuracy initially increases faster than the test accuracy. However, their final test accuracies
differ. In the case of nst = 75, the strong model achieves perfect training accuracy, while its test
accuracy remains close to that of the supervising weak model. This aligns with our findings on
the failure of weak-to-strong generalization due to harmful overfitting. In contrast, for nst = 2000,
the increased amount of data allows the test accuracy to sufficiently increase, eventually exceeding
the weak model’s test accuracy. This aligns with our findings on the emergence of weak-to-strong
generalization via benign overfitting.

The case of nst = 20000 corresponds to the data-abundant regime in our analysis. Unlike the prior
two cases, test accuracy grows faster than training accuracy and achieves near-perfect accuracy, while
training accuracy remains comparable to that of the weak model; this aligns with Theorem 3.6. We
also observe that continued training deteriorates test accuracy, while training accuracy increases.
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(a) nst = 75
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(b) nst = 2000
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(c) nst = 20000

Figure 1: Weak-to-strong training with varying training dataset sizes (nst). These align with our
theoretical findings: (a) harmful overfitting for nst = 75; (b) benign overfitting for nst = 2000; and
(c) for nst = 20000, an early emergence of generalization and degradation with overtraining.
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5.2 Experiments on MNIST

We also provide empirical results using a real-world dataset MNIST. Since it is hard to clearly
delineate signal and noise in real data, we modify the MNIST dataset to emphasize their roles.

First, we multiply each pixel in the original images of digits 4, 5, 6, 7, 8, and 9 by 0.02, while keeping
the images of other digits unchanged. This corresponds to the presence of hard signals, with digits
4–9 serving as the hard signals. To emphasize the role of noise, we replace the border region of each
28×28 image—a 5-pixel-wide frame along the edges—with standard Gaussian noise. This results in
images where the central 18×18 region contains the digit, surrounded by Gaussian noise. Finally, we
randomly concatenate two such modified images that share the same parity (i.e., both even or both
odd), producing 28×56 images. We assign binary labels based on their parity.

Figure 2 provides examples of the modified data. The resulting data includes a variety of signal types:
some pairs contain two bright digits, others contain one bright and one dark digit, and some consist of
two dark digits. These types serve as easy-only data, both-signal data, hard-only data in our setting.

For the weak model, we use an MLP consisting of a single hidden layer with 128 units followed by a
ReLU activation. For the strong model, we use a CNN with three convolutional layers of increasing
channels (64, 128, 256), each followed by batch normalization, ReLU, and max pooling. The extracted
features are then flattened and passed through a fully connected layer with 512 units. We first train
the weak model using 500 samples. Then, we train the strong model using labels predicted by the
trained weak model, with varying numbers of training samples nst = 500, 1000, 1500, 2000, 2500.
We train each model for 300 epochs using the full-batch Adam optimizer with default parameters.

In Table 1, we observe a trend in which the weak-to-strong gain increases with nst and then decreases.
These observations are consistent with our theoretical findings, which describe a transition from
harmful overfitting to benign overfitting, and eventually to the data-abundant regime.

Label: 1 Label: 0

Label: 0 Label: 1

Figure 2: Examples of the modified MNIST.

Table 1: Test accuracy (%) for the weak model
and the resulting weak-to-strong model. Results
are calculated as the mean and standard deviation
over five independent runs.

nst Weak Model Weak-to-Strong

500 86.06 (0.45) 84.62 (3.95)
1000 85.93 (0.13) 88.34 (1.28)
1500 86.42 (1.50) 88.46 (2.85)
2000 86.69 (0.52) 87.44 (2.73)
2500 85.86 (1.39) 86.55 (1.22)

6 Conclusion

We theoretically investigated weak-to-strong generalization by analyzing the training dynamics of a
two-layer ReLU CNN under supervision from a pre-trained linear CNN on patch-wise data containing
both signals and noise. Interestingly, our results reveal that weak-to-strong training exhibits distinct
behaviors across different data regimes. In the data-scarce regime, we prove that weak-to-strong
training converges and that generalization can emerge via benign overfitting when data availability
is not extremely limited. Furthermore, we characterize the conditions leading to a transition from
this benign overfitting to harmful overfitting. In the data-abundant regime, we show that weak-to-
strong generalization arises in an early phase of training, and we observe that overtraining leads to
performance degradation. We hope our theoretical approaches provide valuable insights.

Limitation and Future Work. Our work has some limitations regarding the simplified data
distribution and model architectures used for theoretical analysis. Extending our analysis to more
complex data or models could be a future direction. Also, it would be interesting to analyze methods
for improving weak-to-strong generalization (e.g., auxiliary confidence loss (Burns et al., 2024)) in
our theoretical framework. Lastly, developing techniques for better weak-to-strong generalization
based on our theoretical insights is an important future direction.
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A Proof Preliminaries

We use the following notation for the proof.

Notation. We define SNRµ = ∥µ∥ /(σp

√
d),SNRν = ∥ν∥ /(σp

√
d). Let S be the orthogonal

complement of the span of the signal vectors {µ1,µ−1,ν1,ν−1}. We denote an orthonormal basis
for S by {b1, . . . , bd−4}. For any vector v ∈ Rd, ΠSv represents the projection of v onto S.

A.1 Proof Preliminaries for Weak Model Training

In this subsection, we sequentially introduce signal-noise decomposition (Cao et al., 2022; Kou et al.,
2023) in our setting, high-probability properties of data sampling, and quantitative bounds frequently
used throughout the proof for weak model training.

We use the following notation for the analysis of weak model training.

Notation. For each i ∈ [nwk], we denote by v
(1)
i , v(2)

i , and ξi the signal vectors and noise vector
of the i-th input Xi, respectively. For each v ∈ {µ1,µ−1,±ν1,±ν−1}, we define S(1)

v and S(2)
v as

the sets of indices i ∈ [nwk] such that v(1)
i = v and v

(2)
i = v, respectively.

A.1.1 Signal-Noise Decomposition

Lemma A.1. For any iteration t ≥ 0, we can write w(t) as

w(t) = M
(t)
1

µ1

∥µ∥2
−M

(t)
−1

µ−1

∥µ∥2
+N

(t)
1

ν1

∥ν∥2
−N

(t)
−1

ν−1

∥ν∥2
+

∑
i∈[nwk]

yiρ
(t)
i

ξi
∥ξi∥2

,

where M
(t)
s , N

(t)
s , ρ

(t)
i are recursively defined as

M (t+1)
s = M (t)

s +
η

nwk

 ∑
i∈S(1)

µs

g
(t)
i +

∑
i∈S(2)

µs

g
(t)
i

 ∥µ∥2,

N (t+1)
s = N (t)

s +
η

nwk

 ∑
i∈S(1)

νs

g
(t)
i +

∑
i∈S(2)

νs

g
(t)
i −

∑
i∈S(1)

−νs

g
(t)
i −

∑
i∈S(2)

−νs

g
(t)
i

 ∥ν∥2,

ρ
(t+1)
i = ρ

(t)
i +

η

nwk
g
(t)
i ∥ξi∥2,

starting from M
(0)
s = N

(0)
s = ρ

(0)
i = 0. It follows that M (t)

s and ρ
(t)
i are increasing in iteration t.

Proof of Lemma A.1. It is trivial for the case t = 0. Suppose that it holds at iteration τ . From the
update rule, we have

w(τ+1) = w(τ) +
η

nwk

∑
i∈[nwk]

yig
(τ)
i

∑
p∈[3]

x
(p)
i

= M
(τ)
1

µ1

∥µ∥2
−M

(τ)
−1

µ−1

∥µ∥2
+N

(τ)
1

ν1

∥ν∥2
−N

(τ)
−1

ν−1

∥ν∥2
+

∑
i∈[nwk]

yiρ
(τ)
i

ξi
∥ξi∥2

+
η

nwk

∑
i∈[nwk]

yig
(τ)
i

∑
p∈[3]

x
(p)
i .

Here x
(p)
i ’s are one of µ1,µ−1,ν1,ν−1, and ξi. By grouping the terms accordingly, we obtain

w(τ+1) = M
(τ+1)
1

µ1

∥µ∥2
−M

(τ+1)
−1

µ−1

∥µ∥2
+N

(τ+1)
1

ν1

∥ν∥2
−N

(τ+1)
−1

ν−1

∥ν∥2
+
∑

i∈[nwk]

yiρ
(τ+1)
i

ξi
∥ξi∥2

,
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with

M (τ+1)
s = M (τ)

s +
η

nwk

 ∑
i∈S(1)

µs

g
(τ)
i +

∑
i∈S(2)

µs

g
(τ)
i

 ∥µ∥2,

N (τ+1)
s = N (τ)

s +
η

nwk

 ∑
i∈S(1)

νs

g
(τ)
i +

∑
i∈S(2)

νs

g
(τ)
i −

∑
i∈S(1)

−νs

g
(τ)
i −

∑
i∈S(2)

−νs

g
(τ)
i

 ∥ν∥2,

ρ
(τ+1)
i = ρ

(τ)
i +

η

nwk
g
(τ)
i ∥ξi∥2.

Hence, we have desired conclusion.

A.1.2 Properties of Data Sampling

We establish concentration results for the data sampling.
Lemma A.2. Let Ewk denote the event in which all the following hold for some large enough
universal constant Cwk > 0:

1. For each s ∈ {±1} and l ∈ [2], we have∣∣∣∣ ∣∣∣S(l)
µs

∣∣∣− (pe
2

+
pb
4

)
nwk

∣∣∣∣, ∣∣∣∣ ∣∣∣S(l)
±νs

∣∣∣− (ph
4

+
pb
8

)
nwk

∣∣∣∣ ≤
√

nwk

2
log

(
Cwk

δ

)
.

2. For any i ∈ [nwk],∣∣∣∥ξi∥2 − σ2
p(d− 4)

∣∣∣ ≤ Cwkσ
2
pd

1
2

√
log

(
Cwknwk

δ

)
.

3. For any i, j ∈ [nwk] with i ̸= j,

|⟨ξi, ξj⟩| ≤ Cwkσ
2
pd

1
2

√
log

(
Cwkn2

wk

δ

)
.

Then, the event Ewk occurs with probability at least 1− δ.

Proof of Lemma A.2. For each s ∈ {±1}, l ∈ [2], and i ∈ [nwk],

P
[
v
(l)
i = µs

]
=

pe
2

+
pb
4
, P

[
v
(l)
i = νs

]
= P

[
v
(l)
i = −νs

]
=

ph
4

+
pb
8
.

Hence, by Höeffding’s inequality, we have

P

[∣∣∣∣ ∣∣∣S(l)
µs

∣∣∣− (pe
2

+
pb
4

)
nwk

∣∣∣∣ ≥
√

nwk

2
log

(
Cwk

δ

)]
≤ 2δ

Cwk

and

P

[∣∣∣∣ ∣∣∣S(l)
±νs

∣∣∣− (ph
4

+
pb
8

)
nwk

∣∣∣∣ ≥
√

nwk

2
log

(
Cwk

δ

)]
≤ 2δ

Cwk
.

Note that for each i ∈ [nwk], we can write ξi as

ξi = σp

∑
h∈[d−4]

zi,hbh,

where zi,h
i.i.d.∼ N (0, 1). The sub-gaussian norm of standard normal distribution N (0, 1) is

√
8
3 and

then (zi,h)
2 − 1’s are mean zero sub-exponential random variables with sub-exponential norm 8

3
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(Lemma 2.7.6 in Vershynin (2018)). In addition, zi,hzj,h’s with i ̸= j are mean zero sub-exponential
random variables with sub-exponential norm less than or equal to 8

3 (Lemma 2.7.7 in Vershynin
(2018)). We use Bernstein’s inequality (Theorem 2.8.1 in Vershynin (2018)), with c being the absolute
constant stated therein. We then have the following:

P

[∣∣∣∥ξi∥2 − σ2
p(d− 4)

∣∣∣ ≥ Cwkσ
2
pd

1
2

√
log

(
Cwknwk

δ

)]

= P

∣∣∣∣∣∣
∑

h∈[d−4]

(
(zi,h)

2 − 1
)∣∣∣∣∣∣ ≥ Cwkd

1
2

√
log

(
Cwknwk

δ

)
≤ 2 exp

(
− 9cC2

wkd

64(d− 4)
log

(
Cwknwk

δ

))
≤ 2 exp

(
− log

(
Cwknwk

δ

))
≤ 2δ

Cwknwk
.

In addition, for i, j ∈ [nwk] with i ̸= j, we have

P

[
|⟨ξi, ξj⟩| ≥ Cwkσ

2
pd

1
2

√
log

(
Cwkn2

wk

δ

)]

= P

∣∣∣∣∣∣
∑

h∈[d−4]

zi,hzj,h

∣∣∣∣∣∣ ≥ Cwkd
1
2

√
log

(
Cwkn2

wk

δ

)
≤ 2 exp

(
− 9cC2

wkd

64(d− 4)
log

(
Cwkn

2
wk

δ

))
≤ 2δ

Cwkn2
wk

.

From union bound and a large choice of universal constant Cwk > 0, we conclude that the event Ewk

occurs with probability at least 1− δ.

A.1.3 Properties Used Throughout the Proof

We introduce some notation and properties that are frequently used throughout the proof.

Let us define

βwk := 4Cwknwk

√
1

d
log

(
Cwknwk

δ

)
, γwk =

√
1

2nwk
log

(
Cwk

δ

)
, κwk =

1

2
.

Under Condition 3.2 and the event Ewk, the following hold:

• By combining (C1) and (C5), applying (C2), and from Condition 3.2, βwk and γwk satisfy the
following:

βwk ≤ κwk

256 log T ∗ , γwk ≤ min{pe, ph, pb}
8

. (3)

• From (C1), the following holds for any i, j ∈ [nwk] with i ̸= j:

σ2
pd

2
≤ ∥ξi∥2 ≤

3σ2
pd

2
,

|⟨ξi, ξj⟩|
∥ξi∥2

≤ βwk

nwk
,

∣∣∣∣∣1− ∥ξj∥2

∥ξi∥2

∣∣∣∣∣ ≤ βwk

nwk
. (4)

• For any s, l ∈ {±1}, we have∣∣∣∣ ∣∣∣S(l)
µs

∣∣∣− (pe
2

+
pb
4

)
nwk

∣∣∣∣, ∣∣∣∣ ∣∣∣S(l)
±νs

∣∣∣− (ph
4

+
pb
8

)
nwk

∣∣∣∣ ≤ nwkγwk. (5)
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A.2 Proof Preliminaries for Weak-to-Strong Training

In this subsection, we sequentially introduce signal-noise decomposition (Cao et al., 2022; Kou et al.,
2023) in our setting, high-probability properties of data sampling, quantitative bounds frequently used
throughout the proof, and a technical lemma (Meng et al., 2024) for the analysis of weak-to-strong
training.

We use the following notation for the analysis of weak-to-strong training.

Notation. For each i ∈ [nst], we denote by ṽ
(1)
i , ṽ(2)

i , and ξ̃i the signal vectors and noise vector of
the i-th input X̃i, respectively. For each v ∈ {µ1,µ−1,±ν1,±ν−1} and l ∈ [2], we define C(l)

v and
F (l)

v as the sets of indices i ∈ [nst] such that ṽ(l)
i = v and the supervision corresponds to the clean

label (i.e., ŷi = ỹi) or the flipped label (i.e., ŷi = −ỹi), respectively.

A.2.1 Signal-Noise Decomposition

Lemma A.3. For any iteration t ≥ 0, we can write each weights w(t)
s,r with s ∈ {±1}, r ∈ [m] as

w(t)
s,r = w(0)

s,r +M
(t)

s,r

µs

∥µ∥2
+M (t)

s,r

µ−s

∥µ∥2
+N

(t)

s,r

νs

∥ν∥2
+N (t)

s,r

ν−s

∥ν∥2
+
∑

i∈[nst]

ρ
(t)
s,r,i

ξ̃i

∥ξ̃i∥2
,

where M
(t)

s,r,M
(t)
s,r, N

(t)

s,r, N
(t)
s,r, ρ

(t)
s,r,i are recursively defined as

M
(t+1)

s,r = M
(t)

s,r +
η

mnst

∑
l∈[2]

 ∑
i∈C(l)

µs

g̃
(t)
i −

∑
i∈F(l)

µs

g̃
(t)
i

 ∥µ∥2 · 1
[〈

w(t)
s,r,µs

〉
> 0
]
,

M (t+1)
s,r = M (t)

s,r −
η

mnst

∑
l∈[2]

 ∑
i∈C(l)

µ−s

g̃
(t)
i −

∑
i∈F(l)

µ−s

g̃
(t)
i

 ∥µ∥2 · 1
[〈

w(t)
s,r,µ−s

〉
> 0
]
,

N
(t+1)

s,r = N
(t)

s,r +
η

mnst

∑
l∈[2]

∑
i∈C(l)

νs

g̃
(t)
i −

∑
i∈F(l)

νs

g̃
(t)
i

 ∥ν∥2 · 1
[〈

w(t)
s,r,νs

〉
> 0
]
,

− η

mnst

∑
l∈[2]

 ∑
i∈C(l)

−νs

g̃
(t)
i −

∑
i∈F(l)

−νs

g̃
(t)
i

 ∥ν∥2 · 1
[〈

w(t)
s,r,νs

〉
< 0
]
,

N (t+1)
s,r = N (t)

s,r −
η

mnst

∑
l∈[2]

 ∑
i∈C(l)

ν−s

g̃
(t)
i −

∑
i∈F(l)

ν−s

g̃
(t)
i

 ∥ν∥2 · 1
[〈

w(t)
s,r,ν−s

〉
> 0
]

+
η

mnst

∑
l∈[2]

 ∑
i∈C(l)

−ν−s

g̃
(t)
i −

∑
i∈F(l)

−ν−s

g̃
(t)
i

 ∥ν∥2 · 1
[〈

w(t)
s,r,ν−s

〉
< 0
]
,

ρ
(t+1)
s,r,i = ρ

(t)
s,r,i +

sŷiη

mnst
g̃
(t)
i ∥ξ̃i∥2 · 1

[〈
w(t)

s,r, ξ̃i

〉
> 0
]
,

starting from M
(t)

s,r = M (t)
s,r = N

(t)

s,r = N (t)
s,r = ρ

(t)
s,r,i = 0. For simplicity, for any iteration

t ∈ [0, T ∗], r ∈ [m] and i ∈ [nst], we define ρ
(t)
r,i := ρ

(t)
ŷi,r,i

and ρ(t)
r,i

:= ρ
(t)
−ŷi,r,i

. It follows that ρ(t)r,i

is increasing and ρ(t)
r,i

is decreasing in iteration t.
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Proof of Lemma A.3. It is trivial for the case t = 0. Suppose it holds at iteration τ . From the update
rule, we have

w(τ+1)
s,r = w(τ)

s,r +
sη

mnst

∑
p∈[3]

∑
i∈[nst]

ŷi g̃
(τ)
i 1

[〈
w(τ)

s,r , x̃
(p)
i

〉
> 0
]
x̃
(p)
i

= w(0)
s,r +M

(τ)

s,r

µs

∥µ∥2
+M (τ)

s,r

µ−s

∥µ∥2
+N

(τ)

s,r

νs

∥ν∥2
+N (τ)

s,r

ν−s

∥ν∥2
+
∑

i∈[nst]

ρ
(τ)
s,r,i

ξ̃i

∥ξ̃i∥2

+
sη

mnst

∑
p∈[3]

∑
i∈[nst]

ŷi g̃
(τ)
i 1

[〈
w(τ)

s,r , x̃
(p)
i

〉
> 0
]
x̃
(p)
i .

Here, x̃(p)
i ’s are one of µ1,µ−1,ν1,ν−1, and ξ̃i. By grouping the terms accordingly, we obtain

w(τ+1)
s,r = w(0)

s,r+M
(τ+1)

s,r

µs

∥µ∥2
+M (τ+1)

s,r

µ−s

∥µ∥2
+N

(τ+1)

s,r

νs

∥ν∥2
+N (τ+1)

s,r

ν−s

∥ν∥2
+
∑

i∈[nst]

ρ
(τ+1)
s,r,i

ξ̃i

∥ξ̃i∥2
,

with

M
(τ+1)

s,r = M
(τ)

s,r +
η

mnst

∑
l∈[2]

 ∑
i∈C(l)

µs

g̃
(τ)
i −

∑
i∈F(l)

µs

g̃
(τ)
i

 ∥µ∥2 · 1
[〈

w(τ)
s,r ,µs

〉
> 0
]
,

M (τ+1)
s,r = M (τ)

s,r − η

mnst

∑
l∈[2]

 ∑
i∈C(l)

µ−s

g̃
(τ)
i −

∑
i∈F(l)

µ−s

g̃
(τ)
i

 ∥µ∥2 · 1
[〈

w(τ)
s,r ,µ−s

〉
> 0
]
,

N
(τ+1)

s,r = N
(τ)

s,r +
η

mnst

∑
l∈[2]

∑
i∈C(l)

νs

g̃
(τ)
i −

∑
i∈F(l)

νs

g̃
(τ)
i

 ∥ν∥2 · 1
[〈

w(τ)
s,r ,νs

〉
> 0
]
,

− η

mnst

∑
l∈[2]

 ∑
i∈C(l)

−νs

g̃
(τ)
i −

∑
i∈F(l)

−νs

g̃
(τ)
i

 ∥ν∥2 · 1
[〈

w(τ)
s,r ,νs

〉
< 0
]
,

N (τ+1)
s,r = N (τ)

s,r − η

mnst

∑
l∈[2]

 ∑
i∈C(l)

ν−s

g̃
(τ)
i −

∑
i∈F(l)

ν−s

g̃
(τ)
i

 ∥ν∥2 · 1
[〈

w(τ)
s,r ,ν−s

〉
> 0
]

+
η

mnst

∑
l∈[2]

 ∑
i∈C(l)

−ν−s

g̃
(τ)
i −

∑
i∈F(l)

−ν−s

g̃
(τ)
i

 ∥ν∥2 · 1
[〈

w(τ)
s,r ,ν−s

〉
< 0
]
,

ρ
(τ+1)
s,r,i = ρ

(τ)
s,r,i +

sŷiη

mnst
g̃
(τ)
i ∥ξ̃i∥2 · 1

[〈
w(τ)

s,r , ξ̃i

〉
> 0
]
.

Hence, we have desired conclusion.

A.2.2 Properties of Data Sampling and Model Initialization

We establish concentration results for data sampling and model initialization.

Throughout the proof, we frequently use the following quantities. For each s ∈ {±1} and i ∈ [nst],
we define:

• nµ := (2pe+pb)nst

4 , nν = pbnst

8 .

• Ms :=
{
r ∈ [m] :

〈
w

(0)
s,r ,µs

〉
> 0
}
.

• As :=
{
r ∈ [m] :

〈
w

(0)
s,r ,νs

〉
> 0
}

, Bs :=
{
r ∈ [m] :

〈
w

(0)
s,r ,νs

〉
< 0
}
.
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• Xi :=
{
r ∈ [m] :

〈
w

(0)
ŷi,r

, ξ̃i

〉
> 0
}
.

Lemma A.4. Let Est denote the event in which all the following hold for some large enough universal
constant Cst > 0:

1. For each s ∈ {±1}, l ∈ [2], we have(
1− C−1

st

)
· nµ ≤

∣∣∣C(l)
µs

∣∣∣ ≤ (1 + C−1
st

)
· nµ,

∣∣∣F (l)
µs

∣∣∣ ≤ C−1
st · nµ

and(
1− C−1

st

)
· nν ≤

∣∣∣C(l)
νs

∣∣∣ , ∣∣∣C(l)
−νs

∣∣∣ ≤ (1 + C−1
st

)
· nν ,

∣∣∣F (l)
νs

∣∣∣ , ∣∣∣F (l)
−νs

∣∣∣ ≤ C−1
st · nν

2. For each s ∈ {±1}, r ∈ [m], and i ∈ [nst],∣∣∣|Ms| −
m

2

∣∣∣ , ∣∣∣|As| −
m

2

∣∣∣ , ∣∣∣|Bs| −
m

2

∣∣∣ ≤√m

2
log

(
Cst

δ

)
and ∣∣∣|Xi| −

m

2

∣∣∣ ≤√m

2
log

(
Cstnst

δ

)
.

3. For each s, s′ ∈ {±1} and r ∈ [m],∣∣∣∣〈w(0)
s,r ,

µs′

∥µ∥

〉∣∣∣∣ , ∣∣∣∣〈w(0)
s,r ,

νs′

∥ν∥

〉∣∣∣∣ ≤ σ0

√
2 log

(
Cstm

δ

)
.

4. For any i ∈ [nst], ∣∣∣∥ξ̃i∥2 − σ2
p(d− 4)

∣∣∣ ≤ Cstσ
2
pd

1
2

√
log

(
Cstnst

δ

)
.

5. For any i, j ∈ [nst] with i ̸= j,∣∣∣〈ξ̃i, ξ̃j〉∣∣∣ ≤ Cstσ
2
pd

1
2

√
log

(
Cstn2

st

δ

)
.

6. For any s ∈ {±1}, r ∈ [m], and i ∈ [nst],∣∣∣〈w(0)
s,r , ξ̃i

〉∣∣∣ ≤ Cstσ0σpd
1
2

√
log

(
Cstmnst

δ

)
.

7. For any s ∈ {±1} and r ∈ [m], ∥∥∥ΠSw
(0)
s,r

∥∥∥2 ≤ 2σ2
0d.

Then, the event Est occurs with probability at least 1− δ.

Proof of Lemma A.4. We begin by showing that each statement holds with high probability, and
conclude the proof by applying a union bound. We prove the statements one by one, marking each
with ■ once established.

We fix an arbitrary s ∈ {±1}, l ∈ {±1} and i ∈ [nst]. We have

P
[
i ∈ C(l)

µs

]
= P

[
ỹifwk

(
w∗, X̃i

)
> 0

∣∣∣ (ṽ(l)
i , ṽ

(3−l)
i

)
= (µs,µs)

]
P
[(

ṽ
(l)
i , ṽ

(3−l)
i

)
= (µs,µs)

]
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+ P
[
ỹifwk

(
w∗, X̃i

)
> 0

∣∣∣ (ṽ(l)
i , ṽ

(3−l)
i

)
= (µs,νs)

]
P
[(

ṽ
(l)
i , ṽ

(3−l)
i

)
= (µs,νs)

]
+ P

[
ỹifwk

(
w∗, X̃i

)
> 0

∣∣∣ (ṽ(l)
i , ṽ

(3−l)
i

)
= (µs,−νs)

]
P
[(

ṽ
(l)
i , ṽ

(3−l)
i

)
= (µs,−νs)

]
= P

[
ỹifwk

(
w∗, X̃i

)
> 0

∣∣∣ (ṽ(l)
i , ṽ

(3−l)
i

)
= (µs,µs)

]
· pe
2

+ P
[
ỹifwk

(
w∗, X̃i

)
> 0

∣∣∣ (ṽ(l)
i , ṽ

(3−l)
i

)
= (µs,νs)

]
· pb
8

+ P
[
ỹifwk

(
w∗, X̃i

)
> 0

∣∣∣ (ṽ(l)
i , ṽ

(3−l)
i

)
= (µs,−νs)

]
· pb
8
.

From the conclusion of Theorem 3.3, we have

P
[
ỹifwk

(
w∗, X̃i

)
> 0

∣∣∣ (ṽ(l)
i , ṽ

(3−l)
i

)
= (µs,µs)

]
≥ 1− 1

2Cst
,

P
[
ỹifwk

(
w∗, X̃i

)
> 0

∣∣∣ (ṽ(l)
i , ṽ

(3−l)
i

)
= (µs,νs)

]
≥ 1− 1

2Cst
,

and
P
[
ỹifwk

(
w∗, X̃i

)
> 0

∣∣∣ (ṽ(l)
i , ṽ

(3−l)
i

)
= (µs,−νs)

]
≥ 1− 1

2Cst
.

Therefore, (
1− 1

2Cst

)
· nµ ≤ E

[∣∣∣C(l)
µs

∣∣∣] ≤ nµ

and
E
[∣∣∣F (l)

µs

∣∣∣] = nµ − E
[∣∣∣C(l)

µs

∣∣∣] ≤ nµ

2Cst

By Höeffding’s inequality, we have

P

[∣∣∣∣ ∣∣∣C(l)
µs

∣∣∣− E
[∣∣∣C(l)

µs

∣∣∣] ∣∣∣∣ ≥
√

nst

2
log

(
Cst

δ

)]
≤ 2δ

Cst

and

P

[∣∣∣∣ ∣∣∣F (l)
µs

∣∣∣− E
[∣∣∣F (l)

µs

∣∣∣] ∣∣∣∣ ≥
√

nst

2
log

(
Cst

δ

)]
≤ 2δ

Cst
.

Hence, combining with (C2),(
1− C−1

st

)
· nµ ≤

∣∣∣C(l)
µs

∣∣∣ ≤ (1 + C−1
st

)
· nµ,

∣∣∣F (l)
µs

∣∣∣ ≤ C−1
st · nµ,

with probability at least 1− 4δ
Cst

.

Now we address the case νs. We have

P
[
i ∈ C(l)

νs

]
= P

[
ỹifwk

(
w∗, X̃i

)
> 0

∣∣∣ (ṽ(l)
i , ṽ

(3−l)
i

)
= (νs,µs)

]
P
[(

ṽ
(l)
i , ṽ

(3−l)
i

)
= (νs,µs)

]
+ P

[
ỹifwk

(
w∗, X̃i

)
> 0

∣∣∣ (ṽ(l)
i , ṽ

(3−l)
i

)
= (νs,νs)

]
P
[(

ṽ
(l)
i , ṽ

(3−l)
i

)
= (νs,νs)

]
+ P

[
ỹifwk

(
w∗, X̃i

)
> 0

∣∣∣ (ṽ(l)
i , ṽ

(3−l)
i

)
= (νs,−νs)

]
P
[(

ṽ
(l)
i , ṽ

(3−l)
i

)
= (νs,−νs)

]
= P

[
ỹifwk

(
w∗, X̃i

)
> 0

∣∣∣ (ṽ(l)
i , ṽ

(3−l)
i

)
= (νs,µs)

]
· pb
8

+ P
[
ỹifwk

(
w∗, X̃i

)
> 0

∣∣∣ (ṽ(l)
i , ṽ

(3−l)
i

)
= (νs,νs)

]
· ph
8

+ P
[
ỹifwk

(
w∗, X̃i

)
> 0

∣∣∣ (ṽ(l)
i , ṽ

(3−l)
i

)
= (νs,−νs)

]
· ph
8
.

From the conclusion of Theorem 3.3, we have

P
[
ỹifwk

(
w∗, X̃i

)
> 0

∣∣∣ (ṽ(l)
i , ṽ

(3−l)
i

)
= (νs,µs)

]
≥ 1− 1

2Cst
,
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From (C6), we have

E
[∣∣∣C(l)

νs

∣∣∣] ≤ (pb
8

+
ph
4

)
nst ≤

(
1 +

1

2Cst

)
· nν

and

E
[∣∣∣C(l)

νs

∣∣∣] ≥ (1− 1

2Cst

)
· pbnst

8
=

(
1− 1

2Cst

)
· nν .

In addition, we have∣∣∣E [∣∣∣F (l)
νs

∣∣∣]∣∣∣ = ∣∣∣(pb
8

+
ph
4

)
nst − E

[∣∣∣C(l)
νs

∣∣∣]∣∣∣ ≤ 1

2Cst
· pb
8

+
ph
4

≤ 2nν

3Cst
.

By Höeffding’s inequality, we have

P

[∣∣∣∣ ∣∣∣C(l)
νs

∣∣∣− E
[∣∣∣C(l)

νs

∣∣∣] ∣∣∣∣ ≥
√

nst

2
log

(
Cst

δ

)]
≤ 2δ

Cst

and

P

[∣∣∣∣ ∣∣∣F (l)
νs

∣∣∣− E
[∣∣∣F (l)

νs

∣∣∣] ∣∣∣∣ ≥
√

nst

2
log

(
Cst

δ

)]
≤ 2δ

Cst
.

From (C2), we have(
1− C−1

st

)
· nν ≤

∣∣∣C(l)
νs

∣∣∣ ≤ (1 + C−1
st

)
· nν ,

∣∣∣F (l)
νs

∣∣∣ ≤ C−1
st · nν

with probability at least 1− 4δ
Cst

, where the last inequality follows from Condition 3.1.

Using a similar argument, we also have the desired conclusion for the case −νs. ■

Let us prove that the second statement holds with high probability. we fix arbitrary s ∈ {±1} and
i ∈ [nst]. For each r ∈ [m], P[r ∈ Ms] = P[r ∈ As] = P[r ∈ Bs] = P[r ∈ Xi] =

1
2 . By

Höeffding’s inequality, we have

P

[∣∣∣|Ms| −
m

2

∣∣∣ ≥√m

2
log

(
Cst

δ

)]
≤ 2δ

Cst
,

P

[∣∣∣|As| −
m

2

∣∣∣ ≥√m

2
log

(
Cst

δ

)]
≤ 2δ

mCst
,

P

[∣∣∣|Bs| −
m

2

∣∣∣ ≥√m

2
log

(
Cst

δ

)]
≤ 2δ

Cst
,

and

P

[∣∣∣|Xi| −
m

2

∣∣∣ ≥√m

2
log

(
Cstnst

δ

)]
≤ 2δ

Cstnst
.

■

For the third statement, we fix arbitrary s, s′ ∈ {±1} and r ∈ [m]. We have〈
w(0)

s,r ,
µs′

∥µ∥

〉
,

〈
w(0)

s,r ,
νs′

∥ν∥

〉
i.i.d.∼ N (0, σ2

0).

Hence, by Höeffding’s inequality, we have

P

[∣∣∣∣〈w(0)
s,r ,

µs′

∥µ∥

〉∣∣∣∣ > σ0

√
2 log

(
Cstm

δ

)]
≤ 2δ

Cstm
.

Similarly, we also have

P

[∣∣∣∣〈w(0)
s,r ,

νs′

∥ν∥

〉∣∣∣∣ > σ0

√
2 log

(
Cstm

δ

)]
≤ 2δ

Cstm
.
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■

Before moving on to the remaining part, note that for each i ∈ [nst], s ∈ {±1}, and r ∈ [m], we can
write ξ̃i and ΠSw

(0)
s,r as

ξ̃i = σp

∑
h∈[d−4]

zi,hbh, ΠSw
(0)
s,r = σ0

∑
h∈[d−4]

zs,r,hbh

where zi,h, zs,r,h
i.i.d.∼ N (0, 1). The sub-gaussian norm of standard normal distribution N (0, 1) is√

8
3 and then (zi,h)

2 − 1, (zs,r,h)
2 − 1’s are mean zero sub-exponential random variables with

sub-exponential norm 8
3 (Lemma 2.7.6 in Vershynin (2018)). In addition, zs,r,hzi,h’s and zi,hzj,h’s

with i ̸= j are mean zero sub-exponential random variables with sub-exponential norm less than or
equal to 8

3 (Lemma 2.7.7 in Vershynin (2018)).

We use Bernstein’s inequality (Theorem 2.8.1 in Vershynin (2018)), with c being the absolute constant
stated therein. We then have the following for any i ∈ [nst]:

P

[∣∣∣∥ξ̃i∥2 − σ2
p(d− 4)

∣∣∣ ≥ Cstσ
2
pd

1
2

√
log

(
Cstnst

δ

)]

= P

∣∣∣∣∣∣
∑

h∈[d−4]

(
(zi,h)

2 − 1
)∣∣∣∣∣∣ ≥ Cstd

1
2

√
log

(
Cstnst

δ

)
≤ 2 exp

(
− 9cC2

std

64(d− 4)
log

(
Cstnst

δ

))
≤ 2 exp

(
− log

(
Cstnst

δ

))
≤ 2δ

Cstnst
.

■

For i, j ∈ [nst] with i ̸= j, we have

P

[∣∣∣⟨ξ̃i, ξ̃j⟩∣∣∣ ≥ Cstσ
2
pd

1
2

√
log

(
Cstn2

st

δ

)]

= P

∣∣∣∣∣∣
∑

h∈[d−4]

zi,hzj,h

∣∣∣∣∣∣ ≥ Cstd
1
2

√
log

(
Cstn2

st

δ

)
≤ 2 exp

(
− 9cC2

std

64(d− 4)
log

(
Cstn

2
st

δ

))
≤ 2δ

Cstn2
st

.

■

For any s ∈ {±1}, r ∈ [m] and i ∈ [nst], by applying Bernstein’s inequality, we have

P

[∣∣∣〈w(0)
s,r , ξ̃i

〉∣∣∣ ≥ Cstσ0σpd
1
2

√
log

(
Cstmnst

δ

)]

= P

∣∣∣∣∣∣
∑

h∈[d−4]

zi,hzs,r,h

∣∣∣∣∣∣ ≥ Cstd
1
2

√
log

(
Cstmnst

δ

)
≤ 2 exp

(
− 9cC2

std

64(d− 4)
log

(
Cstmnst

δ

))
≤ 2δ

16mnst
.
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■

By applying Bernstein’s inequality, for any s ∈ {±1} and r ∈ [m], we have

P
[∥∥∥ΠSw

(0)
s,r

∥∥∥2 ≥ 2σ2
0d

]
≤ P

[∣∣∣∣∥∥∥ΠSw
(0)
s,r

∥∥∥2 − σ2
0(d− 4)

∣∣∣∣ ≥ Cstσ
2
0d

1
2

√
log

(
Cstm

δ

)]

= P

∣∣∣∣∣∣
∑

h∈[d−4]

(
(zs,r,h)

2 − 1
)∣∣∣∣∣∣ ≥ Cstd

1
2

√
log

(
Cstm

δ

)
≤ 2 exp

(
− 9cC2

std

64(d− 4)
log

(
Cstm

δ

))
≤ 2 exp

(
− log

(
Cstnst

δ

))
≤ 2δ

Cstm
,

where the first inequality follows from (C1). ■

From union bound and a large choice of universal constant Cst > 0, we conclude that the event Est

occurs with probability at least 1− δ.

A.2.3 Properties Used Throughout the Proof

We introduce some notation and properties that are frequently used throughout the proof.

Let us define

αst := 2Cstσ0 max
{
∥µ∥ , ∥ν∥ , σpd

1
2

}√
2 log

(
Cstmnst

δ

)
,

βst := 4Cstnst

√
1

d
log

(
Cstnst

δ

)
,

and
κst := 8 log(12), λst := exp(2κst).

Under Condition 3.1 and the event Est, the following hold:

• αst and βst are small enough to satisfy

αst ≤ min

{
1

100
,
pbnst ∥ν∥2

σ2
pd

,
σ2
pd

(2pe + pb)nst ∥µ∥2

}
, βst log T

∗ ≤ 1

100
. (6)

• For any s, s′ ∈ {±1}, r ∈ [m], and i ∈ [nst],∣∣∣〈w(0)
s,r ,µs′

〉∣∣∣ , ∣∣∣〈w(0)
s,r ,νs′

〉∣∣∣ , ∣∣∣〈w(0)
s,r , ξ̃i

〉∣∣∣ ≤ αst. (7)

• From (C3), for any i, j ∈ [nst] with i ̸= j, we have

σ2
pd

2
≤ ∥ξ̃i∥2 ≤

3σ2
pd

2
,

∣∣∣⟨ξ̃i, ξ̃j⟩∣∣∣
∥ξ̃i∥2

≤ βst

nst
,

∣∣∣∣∣1− ∥ξ̃j∥2

∥ξ̃i∥2

∣∣∣∣∣ ≤ βst

nst
,
∣∣∣∥ξ̃i∥2 − σ2

p(d− 4)
∣∣∣ ≤ βstσ

2
pd

nst
.

(8)
• For any s ∈ {±1}, r ∈ [m], and i ∈ [nst], we have∣∣∣∣ |Ms|

m
− 1

2

∣∣∣∣ , ∣∣∣∣ |As|
m

− 1

2

∣∣∣∣ , ∣∣∣∣ |Bs|
m

− 1

2

∣∣∣∣ , ∣∣∣∣ |Xi|
m

− 1

2

∣∣∣∣ ≤ 1

10
. (9)

• The learning rate η is small enough to satisfy

η ≤ min

{
βstmnst

2σ2
pd

,
βstm

2λst ∥µ∥2
,

βstm

2λst ∥ν∥2

}
. (10)
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A.2.4 Technical Lemma

We also introduce a technical lemma that enables a tight characterization of the learning dynamics.
Lemma A.5 (Lemma D.1 in Meng et al. (2024)). Suppose that a sequence at, t ≥ 0 follows the
iterative formula

at+1 = at +
c

1 + beat
,

for some c ∈ [0, 1] and b ≥ 0. Then it holds that

xt ≤ at ≤
c

1 + bea0
+ xt

for all t ≥ 0. Here, xt is the unique solution of

xt + bext = ct+ a0 + bea0 .
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B Proof of Theorem 3.3

For the proof, we first introduce properties preserved during training (Appendix B.1), then prove
the convergence of the training loss (Appendix B.2), and finally establish a bound on the test error
(Appendix B.3).

B.1 Preserved Properties during Training

In this subsection, we present several properties that remain preserved throughout training.

Lemma B.1. Under Condition 3.2 and the event Ewk, we have the following for any iteration
t ∈ [0, T ∗]:

(W1) 0 ≤ ρ
(t)
i ≤ 4 log T ∗ for any i ∈ [nwk].

(W2) nwk(2pe+pb)
12 SNR2

µ · ρ(t)i ≤ M
(t)
s ≤ 3nwk(2pe + pb)SNR2

µ · ρ(t)i for any i ∈ [nwk], s ∈ {±1}.

(W3)
∣∣∣ρ(t)i − ρ

(t)
j

∣∣∣ ≤ κwk

4 for any i, j ∈ [nwk].

(W4)
∣∣yifwk

(
w(t),Xi

)
− yjfwk

(
w(t),Xj

)∣∣ ≤ κwk

2 for any i, j ∈ [nwk].

(W5) 1− κwk ≤ g
(t)
j

g
(t)
i

≤ 1 + κwk for any i, j ∈ [nwk].

(W6)
∣∣∣N (t)

s

∣∣∣ ≤ (2ph + pb)nwkSNR2
ν · ρ(t)i for any s ∈ {±1}, i ∈ [n].

Proof of Lemma B.1. It is trivial for the case t = 0. Assume the conclusions hold at iteration t = τ
and we will prove for the case t = τ + 1. Note that (W2) and (W6) at iteration t = τ , along with
(C5) and (C6) imply that∣∣∣N (τ)

s

∣∣∣ ≤ (2ph + pb)nwkSNR2
ν · ρ(τ)i ≤ 1

24
nwk(2pe + pb)SNR2

µ · ρ(τ)i ≤ 1

2
M

(τ)
s′ , (11)

for any s, s′ ∈ {±1} and i ∈ [n].

(W1): We fix an arbitrary i ∈ [nwk] and we want to show ρ
(τ+1)
i ≤ 4 log T ∗. If ρ(τ)i ≤ 2 log T ∗,

then we have

ρ
(τ+1)
i = ρ

(τ)
i +

η

nwk
g
(τ)
i ∥ξi∥2 ≤ 2 log T ∗ +

η

nwk
·
3σ2

pd

2
≤ 4 log T ∗,

where the first inequality follows from g
(τ)
i ≤ 1 and (4), and the last inequality follows from (C4).

Otherwise, there exists t̂ < τ such that ρ(t̂)i ≤ 2 log T ∗ < ρ
(t̂+1)
i since ρ(t)i is increasing in iteration t.

From (4) and (C4), we have

ρ
(τ+1)
i = ρ

(t̂)
i +

(
ρ
(t̂+1)
i − ρ

(t̂)
i

)
+

τ∑
t=t̂+1

(
ρ
(t+1)
i − ρ

(t)
i

)

= ρ
(t̂)
i +

η

nwk
g
(t̂)
i ∥ξi∥2 +

η

nwk

τ∑
t=t̂+1

g
(t)
i ∥ξi∥2

≤ 2 log T ∗ +
η

nwk
· 3
2
σ2
pd+

η

nwk
· 3
2
σ2
pd

τ∑
t=t̂+1

g
(t)
i

≤ 3 log T ∗ +
3ησ2

pd

2nwk

τ∑
t=t̂+1

exp
(
−yifwk

(
w(t),Xi

))
.
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For any iteration t ∈
[
t̂+ 1, τ

]
, we have

yifwk

(
w(t),Xi

)
=
〈
w(t), yiv

(1)
i

〉
+
〈
w(t), yiv

(2)
i

〉
+
〈
w(t), yiξi

〉
≥ −2max

{∣∣∣N (t)
1

∣∣∣ , ∣∣∣N (t)
−1

∣∣∣}+ ρ
(t)
i +

∑
j∈[nwk]\{i}

yiyjρ
(t)
j

⟨ξi, ξj⟩
∥ξj∥2

≥ −2max
{∣∣∣N (t)

1

∣∣∣ , ∣∣∣N (t)
−1

∣∣∣}+ ρ
(t)
i −

∑
j∈[nwk]\{i}

ρ
(t)
j

|⟨ξi, ξj⟩|
∥ξj∥2

≥ −4nwk(2ph + pb)SNR2
ν · ρ(t)i + ρ

(t)
i −

∑
j∈[nwk]\{i}

ρ
(t)
j

|⟨ξi, ξj⟩|
∥ξj∥2

≥ −4nwk(2ph + pb)SNR2
ν · 4 log T ∗ + 2 log T ∗ − 4 log T ∗ · βwk

=
(
1− 8nwk(2ph + pb)SNR2

ν − 2βwk

)
· 2 log T ∗

≥ log T ∗,

where the first inequality follows from the fact that M (t)
1 ,M

(t)
−1 ≥ 0, the third from applying (W2) at

iteration t, the fourth from (W1) at iteration t and (4), and the last from (3) and Condition 3.2.

Now, we have our conclusion

ρ
(τ+1)
i ≤ 3 log T ∗ +

3ησ2
pd

2nwk

τ∑
t=t̂+1

exp
(
−yifwk

(
w(t),Xi

))

≤ 3 log T ∗ +
3ησ2

pd

2nwk

τ∑
t=t̂+1

exp (− log T ∗)

≤ 3 log T ∗ +
3ησ2

pd

2nwk
T ∗ exp (− log T ∗)

≤ 4 log T ∗,

where we applied (C4) for the last inequality.

(W2): We fix arbitrary s ∈ {±1} and i ∈ [nwk]. We have

M (τ+1)
s −M (τ)

s =
η

nwk

 ∑
j∈S(1)

µs

g
(τ)
j +

∑
j∈S(2)

µs

g
(τ)
j

 · ∥µ∥2

≤ η

nwk
· 2 ·

(pe
2

+
pb
4

+ γwk

)
nwk ·

(
g
(τ)
i (1 + κwk)

)
· ∥µ∥2

≤ η

nwk
· 2 · 3

2

(pe
2

+
pb
4

)
nwk · 2g(τ)i · ∥µ∥2

=
3

2
η (2pe + pb) g

(τ)
i ∥µ∥2,

where the first inequality follows from (W3) at iteration τ and (5), the second follows from (3).

From (4), we have

ρ
(τ+1)
i − ρ

(τ)
i =

η

nwk
g
(τ)
i ∥ξi∥2 ≥

ησ2
pd

2nwk
g
(τ)
i ,

and thus,
M (τ+1)

s −M (τ)
s ≤ 3nwk (2pe + pb) SNR2

µ

(
ρ
(τ+1)
i − ρ

(τ)
i

)
.

Combining with (W2) at iteration τ , we have

M (τ+1)
s = M (τ)

s +
(
M (τ+1)

s −M (τ)
s

)
≤ 3nwk(2pe + pb)SNR

2
µ · ρ(τ)i + 3nwk (2pe + pb) SNR2

µ

(
ρ
(τ+1)
i − ρ

(τ)
i

)
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= 3nwk(2pe + pb)SNR2
µ · ρ(τ+1)

i .

Similarly, we have

M (τ+1)
s −M (τ)

s =
η

nwk

 ∑
j∈S(1)

µs

g
(τ)
j +

∑
j∈S(2)

µs

g
(τ)
j

 ∥µ∥2

≥ η

nwk
· 2 ·

(pe
2

+
pb
4

− γwk

)
nwk ·

(
g
(τ)
i (1− κwk)

)
∥µ∥2

≥ η

nwk
· 2 · 1

2

(pe
2

+
pb
4

)
nwk ·

1

2
g
(τ)
i · ∥µ∥2

=
1

8
η (2pe + pb) g

(τ)
i · ∥µ∥2,

where the first inequality follows from (W5) at iteration τ and (5), and the second follows from (3).
From (4), we have

ρ
(τ+1)
i − ρ

(τ)
i =

η

nwk
g
(τ)
i ∥ξi∥2 ≤

3ησ2
pd

2nwk
g
(τ)
i ,

and thus, we have

M (τ+1)
s −M (τ)

s ≥ 1

12
nwk (2pe + pb) SNR2

µ

(
ρ
(τ+1)
i − ρ

(τ)
i

)
.

Combining with (W2) at iteration τ , we have

M (τ+1)
s = M (τ)

s +
(
M (τ+1)

s −M (τ)
s

)
≥ 1

12
nwk(2pe + pb)SNR2

µ · ρ(τ)i +
1

12
nwk (2pe + pb) SNR2

µ

(
ρ
(τ+1)
i − ρ

(τ)
i

)
=

1

12
nwk(2pe + pb)SNR2

µ · ρ(τ+1)
i .

(W3): We fix arbitrary i, j ∈ [nwk] with i ̸= j. Without loss of generality, we assume that ρ(τ)i ≥ ρ
(τ)
j .

From (4) and (C4), we have

ρ
(τ+1)
i − ρ

(τ+1)
j = ρ

(τ)
i − ρ

(τ)
j +

η

nwk

(
g
(τ)
i ∥ξi∥2 − g

(τ)
j ∥ξj∥2

)
≥ − η

nwk
·
3σ2

pd

2
≥ −κwk

4
.

Thus, we want to show that ρ(τ+1)
i − ρ

(τ+1)
j ≤ κwk

4 .

If ρ(τ)i − ρ
(τ)
j < κwk

8 , from triangular inequality, (4), and (C4), we have

ρ
(τ+1)
i − ρ

(τ+1)
j = ρ

(τ)
i − ρ

(τ)
j +

η

nwk

(
g
(τ)
i ∥ξi∥2 − g

(τ)
j ∥ξj∥2

)
≤ κwk

8
+

η

nwk
·
3σ2

pd

2
≤ κwk

4
.

Otherwise, we have

yifwk

(
w(τ),Xi

)
− yjfwk

(
w(τ),Xj

)
=
〈
w(τ), yi

(
v
(1)
i + v

(2)
i + ξi

)〉
−
〈
w(τ), yj

(
v
(1)
j + v

(2)
j + ξj

)〉
≥
(
ρ
(τ)
i − ρ

(τ)
j

)
− 3M (τ)

yj
+

∑
i′∈[nwk]\{i}

yiyi′ρ
(τ)
i′

|⟨ξi, ξi′⟩|
∥ξi′∥2

−
∑

j′∈[nwk]\{j}

yjyj′ρ
(τ)
j′

|⟨ξj , ξj′⟩|
∥ξj′∥2

≥
(
ρ
(τ)
i − ρ

(τ)
j

)
− 3M (τ)

yj
−

∑
i′∈[nwk]\{i}

ρ
(τ)
i′

|⟨ξi, ξi′⟩|
∥ξi′∥2

−
∑

j′∈[nwk]\{j}

ρ
(τ)
j′

|⟨ξj , ξj′⟩|
∥ξj′∥2

≥ κwk

8
− 3 · 3nwk(2pe + pb)SNR2

µ · 4 log T ∗ − 2 · 4 log T ∗ · βwk

≥ κwk

16
> 0,
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where the first inequality follows from (11), and the fourth inequality follows from (3) and Condi-
tion 3.2. Then, we have

g
(τ)
i ∥ξi∥2

g
(τ)
j ∥ξj∥2

=
1 + exp

(
yjfwk

(
w(τ),Xj

))
1 + exp

(
yifwk

(
w(τ),Xi

)) · ∥ξi∥
2

∥ξj∥2

≤ exp
[
yjfwk

(
w(τ),Xj

)
− yifwk

(
w(τ),Xi

)]
·
(
1 +

βwk

nwk

)
≤ exp

[
−κwk

16
+

βwk

nwk

]
≤ 1.

Therefore, we have

ρ
(τ+1)
i − ρ

(τ+1)
j = ρ

(τ)
i − ρ

(τ)
j +

η

nwk

(
g
(τ)
i ∥ξi∥2 − g

(τ)
j ∥ξj∥2

)
≤ ρ

(τ)
i − ρ

(τ)
j ≤ κwk

4
.

(W4): For any i, j ∈ [nwk], we have

yifwk

(
w(τ+1),Xi

)
− yjfwk

(
w(τ+1),Xj

)
=
〈
w(τ+1), yi

(
v
(1)
i + v

(2)
i + ξi

)〉
−
〈
w(τ+1), yj

(
v
(1)
j + v

(2)
j + ξj

)〉
≤
(
ρ
(τ+1)
i − ρ

(τ+1)
j

)
+ 3M (τ+1)

yj

+
∑

i′∈[nwk]\{i}

yiyi′ρ
(τ+1)
i′

⟨ξi, ξi′⟩
∥ξi′∥2

−
∑

j′∈[nwk]\{j}

yjyj′ρ
(τ+1)
j′

⟨ξj , ξj′⟩
∥ξj′∥2

≤
(
ρ
(τ+1)
i − ρ

(τ+1)
j

)
+ 3M (τ+1)

yj
+

∑
i′∈[nwk]\{i}

ρ
(τ+1)
i′

|⟨ξi, ξi′⟩|
∥ξi′∥2

+
∑

j′∈[nwk]\{j}

ρ
(τ+1)
j′

|⟨ξj , ξj′⟩|
∥ξj′∥2

≤ κwk

8
+ 3 · 3nwk(2pe + pb)SNR2

µ · 4 log T ∗ + 2 · 4 log T ∗ · βwk

≤ κwk

2
,

where the first inequality follows from (11), the third inequality follows from (W1) and (W2) at
iteration τ + 1, which we have shown earlier, and the last inequality is due to (3) and Condition 3.2.

(W5): Let us fix arbitrary i, j ∈ [nwk] and assume yifwk

(
w(τ+1),Xi

)
≥ yjfwk

(
w(τ+1),Xj

)
,

without loss of generality. Then, we have

1 ≤
g
(τ+1)
j

g
(τ+1)
i

=
1 + exp

(
yifwk

(
w(τ+1),Xi

))
1 + exp

(
yjfwk

(
w(τ+1),Xj

))
≤ exp

[
yifwk

(
w(τ+1),Xi

)
− yjfwk

(
w(τ+1),Xj

)]
≤ 1 + 2

[
yifwk

(
w(τ+1),Xi

)
− yjfwk

(
w(τ+1),Xj

)]
≤ 1 + κwk,

where we use the inequality ez ≤ 1 + 2z for any z ∈ (0, 1), which is applicable due to (W4) at
iteration τ + 1. In addition, we have

1 ≥ g
(τ+1)
i

g
(τ+1)
j

=
1 + exp

(
yjfwk

(
w(τ+1),Xj

))
1 + exp

(
yifwk

(
w(τ+1),Xi

))
≥ exp

[
yjfwk

(
w(τ+1),Xj

)
− yifwk

(
w(τ+1),Xi

)]
≥ 1 +

[
yjfwk

(
w(τ+1),Xj

)
− yifwk

(
w(τ+1),Xi

)]
≥ 1− κwk,
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where we use the inequality ez ≥ 1 + z for any z ∈ R.

(W6): We fix arbitrary s ∈ {±1} and i ∈ [nwk]. We have

N (τ+1)
s −N (τ)

s

=
η

nwk

 ∑
j∈S(1)

νs

g
(τ)
j +

∑
j∈S(2)

νs

g
(τ)
j −

∑
j∈S(1)

−νs

g
(τ)
j −

∑
j∈S(2)

−νs

g
(τ)
j

 ∥ν∥2

≤ η

nwk

[(∣∣∣S(1)
νs

∣∣∣+ ∣∣∣S(2)
νs

∣∣∣) (1 + κwk)−
(∣∣∣S(1)

−νs

∣∣∣+ ∣∣∣S(2)
−νs

∣∣∣) (1− κwk)
]
g
(τ)
i ∥ν∥2

≤ η
[
2
(ph
4

+
pb
8

+ γwk

)
(1 + κwk)− 2

(ph
4

+
pb
8

− γwk

)
(1− κwk)

]
g
(τ)
i ∥ν∥2

= ηg
(τ)
i

(
2ph + pb

2
· κwk + 4γwk

)
∥ν∥2

≤ η(2ph + pb)g
(τ)
i ∥ν∥2

2

=
(2ph + pb)nwk∥ν∥2

2∥ξi∥2
(
ρ
(τ+1)
i − ρ

(τ)
i

)
,

where the inequalities follow from (W5) at iteration τ , (3), and (4) , respectively. Hence, we obtain

N (τ+1)
s ≤ N (τ)

s +
(2ph + pb)nwk∥ν∥2

2∥ξi∥2
(
ρ
(τ+1)
i − ρ

(τ)
i

)
≤ N (τ)

s + (2ph + pb)nwkSNR2
ν ·
(
ρ
(τ+1)
i − ρ

(τ)
i

)
≤ (2ph + pb)nwkSNR2

ν · ρ(τ)i + (2ph + pb)nwkSNR2
ν ·
(
ρ
(τ+1)
i − ρ

(τ)
i

)
= (2ph + pb)nwkSNR

2
ν · ρ(τ+1)

i ,

where the second and last inequalities follow from (5) and (W6) at iteration τ , respectively. Similarly,
we have

N (τ+1)
s −N (τ)

s

=
η

nwk

 ∑
j∈S(1)

νs

g
(τ)
j +

∑
j∈S(2)

νs

g
(τ)
j −

∑
j∈S(1)

−νs

g
(τ)
j −

∑
j∈S(2)

−νs

g
(τ)
j

 ∥ν∥2

≥ η

nwk

[(∣∣∣S(1)
νs

∣∣∣+ ∣∣∣S(2)
νs

∣∣∣) (1− κwk)−
(∣∣∣S(1)

−νs

∣∣∣+ ∣∣∣S(2)
−νs

∣∣∣) (1 + κwk)
]
g
(τ)
i ∥ν∥2

≥ η
[
2
(ph
4

+
pb
8

+ γwk

)
(1− κwk)− 2

(ph
4

+
pb
8

− γwk

)
(1 + κwk)

]
g
(τ)
i ∥ν∥2

= −ηg
(τ)
i

(
2ph + pb

2
· κwk + 4γwk

)
∥ν∥2

≥ −η(2ph + pb)g
(τ)
i ∥ν∥2

2

= − (2ph + pb)nwk∥ν∥2

2∥ξi∥2
(
ρ
(τ+1)
i − ρ

(τ)
i

)
,

where the inequalities follow from (W5) at iteration τ , (5), and (3), respectively. Hence, we obtain

N (τ+1)
s ≥ N (τ)

s − (2ph + pb)nwk∥ν∥2

2∥ξi∥2
(
ρ
(τ+1)
i − ρ

(τ)
i

)
≥ N (τ)

s − (2ph + pb)nwkSNR2
ν ·
(
ρ
(τ+1)
i − ρ

(τ)
i

)
≥ −(2ph + pb)nwkSNR2

ν · ρ(τ)i − (2ph + pb)nwkSNR2
ν ·
(
ρ
(τ+1)
i − ρ

(τ)
i

)
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= −(2ph + pb)nwkSNR2
ν · ρ(τ+1)

i ,

where the second and last inequalities follow from (4) and (W6) at iteration τ , respectively.

Therefore, the conclusions hold at any iteration t ∈ [0, T ∗].

B.2 Convergence of Training Loss

In this subsection, we prove that the training loss converges below ε within Õ
(
η−1ε−1nwkd

−1σ−2
p

)
.

All the arguments in this subsection are under Condition 3.2 and the event Ewk.

Let us define
ŵ := 2 log(4/ε)

∑
i∈[nwk]

yiξi ∥ξi∥−2
,

which plays a crucial role in proving convergence.
Lemma B.2. Under Condition 3.2 and the event Ewk, we have the following:

• ∥ŵ∥ ≤ 3 log(4/ε)n
1
2

wkd
− 1

2σ−1
p .

• yi
〈
∇wfwk

(
w(t),Xi

)
, ŵ
〉
≥ log(4/ε) for any t ∈ [T, T ∗].

•
∥∥∇wLwk

(
w(t)

)∥∥2 ≤ 2σ2
pd · Lwk

(
w(t)

)
for any t ∈ [0, T ∗].

Proof of Lemma B.2. The first statement follows from

∥ŵ∥2 = (2 log(4/ε))
2

 ∑
i∈[nwk]

yiξi ∥ξi∥−2

2

= 4 log2(4/ε)

 ∑
i∈[nwk]

∥ξi∥−2
+

∑
i,j∈[nwk]

i ̸=j

yiyj
⟨ξi, ξj⟩

∥ξi∥2 ∥ξj∥2



≤ 4 log2(4/ε)

 ∑
i∈[nwk]

∥ξi∥−2
+

∑
i,j∈[nwk]

i ̸=j

|⟨ξi, ξj⟩|
∥ξi∥2 ∥ξj∥2


≤ 4 log2(4/ε)

(
nwk ·

2

σ2
pd

+ n2
wk ·

βwk

nwk
· 2

σ2
pd

)
= 4 log2(4/ε)

2nwk(1 + βwk)

σ2
pd

≤ 9 log2(4/ε)
nwk

σ2
pd

,

where the second inequality follows from (4) and the last inequality follows from (3).

Next, let us prove the second statement. For any t ∈ [0, T ∗], we have

yi

〈
∇wfwk

(
w(t),Xi

)
, ŵ
〉

= yi

〈
v
(1)
i + v

(2)
i + ξi, 2 log(4/ε)

∑
j∈[nwk]

yjξj ∥ξj∥−2

〉

= 2 log(4/ε)
∑

j∈[nwk]

yiyj
⟨ξi, ξj⟩
∥ξj∥2

≥ 2 log(4/ε)−
∑

j∈[nwk]\{i}

2 log(4/ε)
|⟨ξi, ξj⟩|
∥ξj∥2
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≥ 2(1− βwk) log(4/ε)

≥ log(4/ε)

where the second inequality follows from (4) and the last inequality follows from (3).

Let us prove the last statement. For any t ∈ [0, T ∗], we have

∥∥∥∇wLwk

(
w(t)

)∥∥∥2 =

∥∥∥∥∥∥ 1

nwk

∑
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i yi

(
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i + v
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i + v
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i + ξi

∥∥∥
2

≤

 1

nwk

∑
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(t)
i
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 1
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ℓ (yifwk (w,Xi))
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pd · Lwk

(
w(t)

)
,

where the first inequality follows from the triangle inequality, the second follows from (4) and the

bound ∥µ∥2 , ∥ν∥2 ≤ σ2
pd

4 implied by Condition 3.2, the third follows from 1
nwk

∑
i∈[nwk]

g
(t)
i ≤ 1,

and the last follows from −ℓ′(z) ≤ ℓ(z) for all z ∈ R.

Lemma B.3. Under Condition 3.1 and the event Ewk, for any iteration T ∈ [0, T ∗], we have

1

T

T∑
t=0

Lwk

(
w(t)

)
≤ ∥ŵ∥2

ηT
+

ε

2
.

Proof of Lemma B.3. For any t ∈ [0, T ∗], we have∥∥∥w(t) − ŵ
∥∥∥2 − ∥∥∥w(t+1) − ŵ

∥∥∥2
=
∥∥∥w(t) − ŵ

∥∥∥2 − ∥∥∥w(t) − ŵ − η∇Lwk

(
w(t)
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= 2η

〈
∇Lwk

(
w(t)

)
,w(t) − ŵ

〉
− η2
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(
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nwk
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(t)
i
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yi∇fwk

(
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)
, ŵ
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− η2
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(
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nwk

∑
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g
(t)
i

(
log(4/ε)− yifwk

(
w(t),Xi
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− η2
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(
w(t)

)∥∥∥2
≥ 2η

nwk

∑
i∈[nwk]

[
ℓ

(
yi f

(
w(t),Xi

))
− ε

4

]
− η2

∥∥∥∇Lwk

(
w(t)

)∥∥∥2
≥ ηLwk

(
w(t)

)
− ηε

2
,

where the first inequality follows from Lemma B.2, the second follows from the convexity of ℓ and
the bound ℓ(log(4/ε)) ≥ ε/4, and the last follows from Lemma B.2 and (C4).

By applying a telescoping sum and using the fact that w(0) = 0, we obtain the desired conclusion.
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Using lemmas above, we can prove that the training loss converges to below ε. By applying
Lemma B.3 with iteration T̃ = ⌈18η−1ε−1 log(4/ε)nwkd

−1σ−2
p ⌉ = Õ(η−1ε−1nwkd

−1σ−2
p ) and

using Lemma B.2, we obtain

1

T̃

T̃∑
t=0

Lwk

(
w(t)

)
≤ ∥ŵ∥2

ηT̃
+

ε

2
≤

9 log2(4/ε)nwkd
−1σ−2

p

ηT̃
+

ε

2
≤ ε.

Therefore, there exists Twk ∈ [0, T̃ ] such that Lwk(w
(Twk)) ≤ ε. In addition, for any w1,w2 ∈ Rd,

we have
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=
1

nwk

∥∥∥∥∥∥
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)
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(
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v
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1
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1
2
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i + v

(2)
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∥∥∥ · ∥w1 −w2∥

≤ σ2
pd∥w1 −w2∥,

where the first and third inequalities follow from the Cauchy-Schwarz inequality, the second and last

inequalities follow from (4) and the bound ∥µ∥2 , ∥ν∥2 ≤ σ2
pd

4 implied by Condition 3.2, and for the
second inequality, we also use the fact that 0 ≤ ℓ′ ≤ 1

4 .

Since Lwk(w) is σ2
pd-smooth and the learning rate satisfies (10), we can apply the descent lemma

(Lemma 3.4 in Bubeck (2015)). This proves the first part of our conclusion.

□

B.3 Test Error

In this subsection, we prove the second part of our conclusion. All the arguments in this subsection
are under Condition 3.2 and the event Ewk.

Define v(1), v(2), and ξ as the signal vectors and the noise vector in the test data (X, y), respectively.

For any iteration t ∈ [Twk, T
∗] and for the case given (X, y) ∈ Se ∪ Sb, we can express the test

accuracy as

P
[
yfwk

(
w(t),X

)
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2

]
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[
z < −M

(t)
y

2

]
,

where z ∼ N
(
0, σ2

p

∥∥ΠSw
(t)
∥∥2), and the inequality follows from (11). By Höeffding’s inequality,

we have

P
[
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(
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)
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]
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(
M
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y

)2
8σ2

p

∥∥ΠSw(t)
∥∥2
 .
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Let us characterize
∥∥ΠSw

(t)
∥∥2. We have
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where the first and second inequality follows from AM-GM inequality and (4), the third inequality
follows from (3), and the last inequality follows from (W2). Hence, we have

P
[
yfwk

(
w(t),X

)
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.
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C Proof of Theorem 3.4

It suffices to prove the following restatement of Theorem 3.4.

Theorem C.1 (Weak-to-Strong Training, Data-Scarce Regime). Let W (t) be the iterates of weak-
to-strong training, with the weak model fwk(w

∗, ·) satisfying the conclusion of Theorem 3.3. For
any ε > 0 and δ ∈ (0, 1) satisfying Condition 3.2, with probability at least 1 − δ, there exists
Tw2s = O(η−1ε−1mnstd

−1σ−2
p ) such that for any t ∈ [Tw2s, T

∗] the following statements hold:

1. The training loss converges below ε: Lst

(
W (t)

)
< ε.

2. Let (X, y) ∼ D be an unseen test example, independent of the training set {(X̃i, ŷi)}nst
i=1.

• (Benign Overfitting) When nstp
2
b ∥ν∥

4
/(σ4

pd) ≥ C2, we have

P
[
yfst

(
W (t),X

)
< 0

∣∣∣ (X, y) ∈ Se ∪ Sb

]
≤ exp

(
−nst(2pe + pb)

2∥µ∥4

C3σ4
pd

)
,

and

P
[
yfst

(
W (t),X

)
< 0

∣∣∣ (X, y) ∈ Sh

]
≤ exp

(
−nstp

2
b∥ν∥4

C3σ4
pd

)
.

• (Harmful Overfitting) When nstp
2
b ∥ν∥

4
/(σ4

pd) ≤ C4,

P
[
yfst

(
W (t),X

)
< 0
]
≥ 0.12ph.

Here, C2, C3, C4 > 0 are constants.

For the proof, we first introduce properties preserved during training (Appendix C.1), then prove
the convergence of the training loss (Appendix C.2), and finally establish a bound on the test error
(Appendix C.3).

C.1 Preserved Properties during Training

In this subsection, we present several properties that remain preserved throughout training.

Lemma C.2. Suppose for some iteration t ∈ [0, T ∗], it satisfies
∣∣∣M (t)

s,r

∣∣∣ , ∣∣∣N (t)
s,r

∣∣∣ ≤ αst + βst,

0 ≤ ρ
(t)
r,i ≤ 4 log T ∗, and −αst − 5βst log T

∗ ≤ ρ(t)
r,i

≤ 0 for any s ∈ {±1}, r ∈ [m], and i ∈ [nst].
Then, for any i ∈ [nst] it holds that

F−ŷi

(
W

(t)
−ŷi

, X̃i

)
≤ κst

16
,
∣∣∣σ (〈w(t)

ŷi,r
, ξ̃i

〉)
− ρ

(t)
r,i

∣∣∣ ≤ κst

16
.

Proof of Lemma C.2. For any i ∈ [nst], we have

F−ŷi

(
W

(t)
−ŷi

, X̃i

)
=

1

m

∑
r∈[m]

[
σ
(〈

w
(t)
−ŷi,r

, ṽ
(1)
i

〉)
+ σ

(〈
w

(t)
−ŷi,r

, ṽ
(2)
i

〉)
+ σ

(〈
w

(t)
−ŷi,r

, ξ̃i

〉)]
≤ 1

m

∑
r∈[m]

[∣∣∣〈w(t)
−ŷi,r

, ṽ
(1)
i

〉∣∣∣+ ∣∣∣〈w(t)
−ŷi,r

, ṽ
(2)
i

〉∣∣∣+ ∣∣∣〈w(t)
−ŷi,r

, ξ̃i

〉∣∣∣]
≤ 1

m

∑
r∈[m]

[∣∣∣〈w(0)
−ŷi,r

, ṽ
(1)
i

〉∣∣∣+ ∣∣∣〈w(0)
−ŷi,r

, ṽ
(2)
i

〉∣∣∣+ 2 · (αst + βst) +
∣∣∣〈w(t)

−ŷi,r
, ξ̃i

〉∣∣∣]
≤ (4αst + 2βst) +

1

m

∑
r∈[m]

∣∣∣〈w(t)
−ŷi,r

, ξ̃i

〉∣∣∣ ,
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where the last two inequalities follow from the given bounds on
∣∣∣M (t)

s,r

∣∣∣ , ∣∣∣N (t)
s,r

∣∣∣ and (7). In addition,
for any r ∈ [m], we have〈

w
(t)
−ŷi,r

, ξ̃i

〉
=
〈
w

(0)
−ŷi,r

, ξ̃i

〉
+ ρ(t)

r,i
+

∑
j∈[nst]\{i}

ρ
(t)
−ŷi,r,j

⟨ξ̃i, ξ̃j⟩
∥ξ̃j∥2

≥
〈
w

(0)
−ŷi,r

, ξ̃i

〉
+ ρ(t)

r,i
−

∑
j∈[nst]\{i}

∣∣∣ρ(t)−ŷi,r,j

∣∣∣ |⟨ξ̃i, ξ̃j⟩|
∥ξ̃j∥2

≥ −2αst − 9βst log T
∗,

where the last inequality follows from the given bound on ρ
(t)
r,i , ρ

(t)
r,i

, (7), and (8). Similarly, for any
r ∈ [m], we have〈

w
(t)
−ŷi,r

, ξ̃i

〉
=
〈
w

(0)
−ŷi,r

, ξ̃i

〉
+ ρ(t)

r,i
+

∑
j∈[nst]\{i}

ρ
(t)
−ŷi,r,j

⟨ξ̃i, ξ̃j⟩
∥ξ̃j∥2

≤
〈
w

(0)
−ŷi,r

, ξ̃i

〉
+ ρ(t)

r,i
+

∑
j∈[nst]\{i}

∣∣∣ρ(t)−ŷi,r,j

∣∣∣ |⟨ξ̃i, ξ̃j⟩|
∥ξ̃j∥2

≤ αst + 4βst log T
∗,

where the last inequality follows from the given bound on ρ
(t)
r,i , ρ

(t)
r,i

, (7), and (8). Hence, we have

F−ŷi

(
W

(t)
−ŷi

, X̃i

)
≤ 6αst + 2βst + 9βst log T

∗ ≤ κst

16
,

where the last inequality follows from (6).

Next, we prove the second part. For any i ∈ [nst] and r ∈ [m], we have∣∣∣σ (〈w(t)
ŷi,r

, ξ̃i

〉)
− ρ

(t)
r,i

∣∣∣ = ∣∣∣σ (〈w(t)
ŷi,r

, ξ̃i

〉)
− σ

(
ρ
(t)
r,i

)∣∣∣
≤
∣∣∣〈w(t)

ŷi,r
, ξ̃i

〉
− ρ

(t)
r,i

∣∣∣
≤
〈
w

(0)
ŷi,r

, ξ̃i

〉
+

∑
j∈[nst]\{i}

∣∣∣ρ(t)ŷi,r,j

∣∣∣ |⟨ξ̃i, ξ̃j⟩|
∥ξ̃i∥2

≤ αst + 4βst log T
∗

≤ κst

16
,

where the third inequality follows from the given bound on ρ
(t)
r,i , ρ

(t)
r,i

, (7), and (8).

Lemma C.3. Under Condition 3.2 and the event Est, we have the following for any iteration
t ∈ [0, T ∗]:

(S1) −αst − 5βst log T
∗ ≤ ρ(t)

r,i
≤ 0 and 0 ≤ ρ

(t)
r,i ≤ 4 log T ∗ for any i ∈ [nst] and r ∈ [m].

(S2) If t ≥ 1, then for any s ∈ {±1}, we have M
(t)

s,r ≥ M
(t−1)

s,r for all r ∈ [m], N
(t)

s,r ≥ N
(t−1)

s,r for

all r ∈ As, and N
(t)

s,r ≤ N
(t−1)

s,r for all r ∈ Bs. In addition,
∣∣∣M (t)

s,r

∣∣∣ , ∣∣∣N (t)
s,r

∣∣∣ ≤ αst + βst for all

r ∈ [m].

(S3) For any s ∈ {±1} and i ∈ [nst], we have

nµSNR2
µ

12λst
·
∑
r∈[m]

ρ
(t)
r,i ≤

∑
r∈[m]

M
(t)

s,r ≤ 6λstnµSNR2
µ ·

∑
r∈[m]

ρ
(t)
r,i

nνSNR2
ν

12λst
·
∑
r∈[m]

ρ
(t)
r,i ≤

∑
r∈As

N
(t)

s,r ≤ 6λstnνSNR2
ν ·

∑
r∈[m]

ρ
(t)
r,i
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nνSNR2
ν

12λst
·
∑
r∈[m]

ρ
(t)
r,i ≤−

∑
r∈Bs

N
(t)

s,r ≤ 6λstnνSNR2
ν ·

∑
r∈[m]

ρ
(t)
r,i .

(S4)
∣∣∣ŷifst (W (t), X̃i

)
− 1

m

∑
r∈[m] ρ

(t)
r,i

∣∣∣ ≤ κst

4 for any i ∈ [nst].

(S5) 1
m

∣∣∣∑r∈[m] ρ
(t)
r,i −

∑
r∈[m] ρ

(t)
r,j

∣∣∣ ≤ κst for any i, j ∈ [nst].

(S6)
g̃
(t)
j

g̃
(t)
i

≤ λst for any i, j ∈ [nst].

(S7) For any i ∈ [nst] and r ∈ [m],
〈
w

(t)
ŷi,r

, ξ̃i

〉
> 0 if

〈
w

(0)
ŷi,r

, ξ̃i

〉
> 0. Furthermore, for any

i ∈ [nst] and r ∈ Xi, ρ
(t)
r,i = maxr′∈[m] ρ

(t)
r′,i.

(S8) Let xt be the unique solution of

xt + exp(xt + κst/16) =
ησ2

pd

8mnst
t+ exp(κst/4).

It holds that for any i ∈ [nst],

xt ≤
1

m

∑
r∈[m]

ρ
(t)
r,i .

Proof of Lemma C.3. It is trivial for the case t = 0. Assume the conclusions hold at iteration t ≤ τ
and we will prove for the case t = τ + 1.

(S1): We fix arbitrary i ∈ [nst] and r ∈ [m].

Let us prove the first statement. If ρ(τ)
r,i

≥ −αst − 4βst log T
∗, then we have

ρ(τ+1)
r,i

= ρ(τ)
r,i

− η

mnst
g̃
(τ)
i ∥ξ̃i∥2 ≥ −αst − 4βst log T

∗ −
3ησ2

pd

2mnst
≥ −αst − 5βst log T

∗,

where the first inequality follows from (8) and the second inequality follows from (10). Otherwise,
we have 〈

w
(τ)
−ŷi,r

, ξ̃i

〉
=
〈
w

(0)
−ŷi,r

, ξ̃i

〉
+ ρ(τ)

r,i
+

∑
j∈[nst]\{i}

ρ
(τ)
−ŷi,r,j

⟨ξ̃i, ξ̃j⟩
∥ξ̃j∥2

≤ αst + (−αst − 4βst log T
∗) +

∑
j∈[nst]\{i}

∣∣∣ρ(τ)−ŷi,r,j

∣∣∣
∣∣∣⟨ξ̃i, ξ̃j⟩∣∣∣
∥ξ̃j∥2

≤ −4βst log T
∗ + nst · 4 log T ∗ · βst

nst

= 0.

It implies ρ(τ+1)
r,i

= ρ(τ)
r,i

≥ −αst − 5βst log T
∗ and we have desired conclusion.

Next, we prove the second statement. If ρ(τ)r,i < 3 log T ∗, then we have

ρ
(τ+1)
r,i ≤ ρ

(τ)
r,i +

η

mnst
g̃
(τ)
i ∥ξ̃i∥2 ≤ 3 log T ∗ +

3ησ2
pd

2mnst
≤ 4 log T ∗,

where the second inequality follows from (8) and the third inequality follows from (10). Otherwise,
there exists t̂ < τ such that ρ(t̂)r,i ≤ 3 log T ∗ < ρ

(t̂+1)
r,i . Then, we have

ρ
(τ+1)
r,i = ρ

(t̂)
r,i +

(
ρ
(t̂+1)
r,i − ρ

(t̂)
r,i

)
+

τ∑
t=t̂+1

(
ρ
(t+1)
r,i − ρ

(t)
r,i

)
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≤ 3 log T ∗ +
η

mnst
g̃
(t̂)
i ∥ξ̃i∥2 +

η∥ξ̃i∥2

mnst

τ∑
t=t̂+1

g̃
(t)
i

≤ 3 log T ∗ +
log T ∗

2
+

3ησ2
pd

2mnst

τ∑
t=t̂+1

1

1 + exp
(
Fŷi

(
W

(t)
ŷi

, X̃i

)
− F−ŷi

(
W

(t)
−ŷi

, X̃i

))
≤ 7

2
log T ∗ +

3ησ2
pd

2mnst

τ∑
t=t̂+1

exp
(
−Fŷi

(
W

(t)
ŷi

, X̃i

)
+ F−ŷi

(
W

(t)
−ŷi

, X̃i

))

≤ 7

2
log T ∗ +

3ησ2
pd

2mnst

τ∑
t=t̂+1

exp
(
−Fŷi

(
W

(t)
ŷi

, X̃i

)
+

κst

16

)
,

where the second inequality follows from (10) and (8) and the last inequality follows from Lemma C.2.
For any t = t̂+ 1, · · · , τ and r′ ∈ Xi, by applying (S7) with iteration t, we have〈

w
(t)
ŷi,r′

, ξ̃i

〉
=
〈
w

(0)
ŷi,r′

, ξ̃i

〉
+ ρ

(t)
r′,i +

∑
j∈[nst]\{i}

ρ
(t)
ŷi,r,j

· ⟨ξ̃i, ξ̃j⟩
∥ξ̃j∥2

≥ ρ
(t)
r,i − αst − 4βst log T

∗

≥ 3 log T ∗ − αst − 4βst log T
∗.

Therefore, we have
τ∑

t=t̂+1

exp
(
−Fŷi

(
W

(t)
ŷi

, X̃i

))
≤

τ∑
t=t̂+1

exp

(
− 1

m

∑
r′∈Xi

〈
w

(t)
ŷi,r′

, ξ̃i

〉)

≤
τ∑

t=t̂+1

exp

(
− (3 log T ∗ − αst − 4βst log T

∗) |Xi|
m

)

≤ T ∗ exp

(
− (3 log T ∗ − αst − 4βst log T

∗) |Xi|
m

)
≤ T ∗ exp(− log T ∗) = 1,

where the last inequality follows from (6) and (9). Finally, we conclude

ρ
(τ+1)
r,i ≤ 7

2
log T ∗ +

3ησ2
pd

2mnst
exp(κst/16) ≤ 4 log T ∗,

where the last inequality follows from (10).

(S2): We fix an arbitrary s ∈ {±1} and i ∈ [nst].

For any r ∈ [m], we have

mnst

η∥µ∥2
(
M

(τ+1)

s,r −M
(τ)

s,r

)

=
∑
l∈[2]

 ∑
j∈C(l)

µs

g̃
(τ)
j −

∑
j∈F(l)

µs

g̃
(τ)
j

 · 1
[〈

w(τ)
s,r ,µs

〉
> 0
]

≥
∑
l∈[2]

(∣∣∣C(l)
µs

∣∣∣ /λst −
∣∣∣F (l)

µs

∣∣∣λst

)
g̃
(τ)
i · 1

[〈
w(τ)

s,r ,µs

〉
> 0
]

≥ 2
( (

1− C−1
st

)
nµ/λst − C−1

st nµλst

)
g̃
(τ)
i · 1

[〈
w(τ)

s,r ,µs

〉
> 0
]

≥ nµg̃
(τ)
i

λst
· 1
[〈

w(τ)
s,r ,µs

〉
> 0
]

(12)

≥ 0,

37



where the first inequality follows from (S6) with iteration τ and the third inequality follows from
large choice of Cst.

For any r ∈ As, from (S2) at iteration 0, . . . , τ , we have
〈
w

(τ)
s,r ,νs

〉
> 0. Hence, we have

mnst

η∥ν∥2
(
N

(τ+1)

s,r −N
(τ)

s,r

)
=
∑
l∈[2]

 ∑
j∈C(l)

νs

g̃
(τ)
j −

∑
j∈F(l)

νs

g̃
(τ)
j


≥
∑
l∈[2]

(∣∣∣C(l)
νs

∣∣∣ /λst −
∣∣∣F (l)

νs

∣∣∣λst

)
g̃
(τ)
i

≥ 2
( (

1− C−1
st

)
nν/λst − C−1

st nνλst

)
g̃
(τ)
i

≥ nν g̃
(τ)
i

λst
(13)

≥ 0,

where the first inequality follows from (S6) with iteration τ and the third inequality follows from the
large choice of Cst.

Similarly, for any r ∈ Bs, from (S2) with iteration 0, . . . , τ , we have
〈
w

(τ)
s,r ,νs

〉
< 0. Hence, we

have

mnst

η∥ν∥2
(
N

(τ)

s,r −N
(τ+1)

s,r

)
=
∑
l∈[2]

 ∑
j∈C(l)

−νs

g̃
(τ)
j −

∑
j∈F(l)

−νs

g̃
(τ)
j


≥
∑
l∈[2]

(∣∣∣C(l)
−νs

∣∣∣ /λst −
∣∣∣F (l)

−νs

∣∣∣λst

)
g̃
(τ)
i

≥ 2
( (

1− C−1
st

)
nνs/λst − C−1

st nνsλst

)
g̃
(τ)
i

≥ nνs
g̃
(τ)
i

λst

≥ 0,

where the first inequality follows from (S6) with iteration τ and the third inequality follows from
large choice of Cst > 0.

Let us prove the last part. For any r ∈ [m], if M (τ)
s,r ≤ −αst, then we have

〈
w

(τ)
s,r ,µ−s

〉
< 0. Hence,∣∣∣M (τ+1)

s,r

∣∣∣ = ∣∣∣M (τ)
s,r

∣∣∣ ≤ αst + βst by Lemma A.3. Otherwise, M (τ)
s,r > −αst implies

mnst

η∥µ∥2
(
M (τ+1)

s,r −M (τ)
s,r

)

= −
∑
l∈[2]

 ∑
j∈C(l)

µ−s

g̃
(τ)
j −

∑
j∈F(l)

µ−s

g̃
(τ)
j

 · 1
[〈

w(τ)
s,r ,µ−s

〉
> 0
]

≤ −
∑
l∈[2]

(∣∣∣C(l)
µ−s

∣∣∣ /λst −
∣∣∣F (l)

µ−s

∣∣∣λst

)
g̃
(τ)
i · 1

[〈
w(τ)

s,r ,µ−s

〉
> 0
]

≤ −2
( (

1− C−1
st

)
· nµ/λst − C−1

st nµλst

)
g̃
(τ)
i 1

[〈
w(τ)

s,r ,µ−s

〉
> 0
]

≤ 0,

where the first inequality follows from (S6) with iteration τ and the last inequality follows from the
large choice of Cst. Thus, M (τ+1)

s,r ≤ M (τ)
s,r ≤ αst + βst. In addition,

mnst

η∥µ∥2
(
M (τ+1)

s,r −M (τ)
s,r

)
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= −
∑
l∈[2]

 ∑
j∈C(l)

µ−s

g̃
(τ)
j −

∑
j∈F(l)

µ−s

g̃
(τ)
j

 · 1
[〈

w(τ)
s,r ,µ−s

〉
> 0
]

≥ −
∑
l∈[2]

(∣∣∣C(l)
µ−s

∣∣∣λst −
∣∣∣F (l)

µ−s

∣∣∣ /λst)
)
g̃
(τ)
i · 1

[〈
w(τ)

s,r ,µ−s

〉
> 0
]

≥ −2
( (

1− C−1
st

)
nµλst − C−1

st nµ/λst

)
g̃
(τ)
i · 1

[〈
w(τ)

s,r ,µ−s

〉
> 0
]

≥ −2λstnµ

≥ −2λstnst,

where the first inequality follows from (S6) with iteration τ . Therefore, we have

M (τ+1)
s,r ≥ M (τ)

s,r − 2λstη∥µ∥2

m
≥ −αst −

2λstη∥µ∥2

m
≥ −αst − βst,

where the last inequality follows from (10).

From Lemma A.3, for any r ∈ [m],∣∣∣N (τ+1)
s,r −N (τ)

s,r

∣∣∣ ≤ 2η ∥ν∥2

m
≤ αst.

Therefore, it suffices to show that N (τ+1)
s,r ≤ N (τ)

s,r when N (τ)
s,r > αst and N (τ+1)

s,r ≥ N (τ)
s,r when

N (τ)
s,r < −αst. If N (τ)

s,r > αst, then we have〈
w(τ)

s,r ,ν−s

〉
=
〈
w(0)

s,r ,ν−s

〉
+N (τ)

s,r > 0.

Hence, we have
mnst

η∥ν∥2
(
N (τ+1)

s,r −N (τ)
s,r

)

= −
∑
l∈[2]

 ∑
j∈C(l)

ν−s

g̃
(τ)
j −

∑
j∈F(l)

ν−s

g̃
(τ)
j


≤ −

∑
l∈[2]

(∣∣∣C(l)
ν−s

∣∣∣ /λst −
∣∣∣F (l)

ν−s

∣∣∣λst

)
g̃
(τ)
i

≤ −2
( (

1− C−1
st

)
nν/λst − C−1

st · nνλst

)
g̃
(τ)
i

≤ 0,

where the first inequality follows from (S6) with iteration τ and the last inequality follows from
the large choice of Cst. Using the similar argument, we can also show that N (τ+1)

s,r ≥ N (τ)
s,r when

N (τ)
s,r < −αst and we have desired conclusion.

(S3): We fix arbitrary s ∈ {±1} and i ∈ [nst].

From (12) and (S2) at iteration 0, . . . , τ , we have∑
r∈[m]

M
(τ+1)

s,r −
∑
r∈[m]

M
(τ)

s,r ≥ η ∥µ∥2

mnst
· nµg̃

(τ)
i

λst
· |Ms|

≥
nµSNR2

µ

12λstnst
ηg̃

(τ)
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≥
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µ

12λst

∑
r∈[m]

ρ
(τ+1)
r,i −

∑
r∈[m]

ρ
(τ)
r,i

 ,
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where the second inequality follows from (8) and (9). Combining with (S3) at iteration τ , we have

nµSNR2
µ

12λst
·
∑
r∈[m]

ρ
(τ+1)
r,i ≤

∑
r∈[m]

M
(τ+1)

s,r .

For any r ∈ [m], we have
mnst

η∥µ∥2
(
M

(τ+1)

s,r −M
(τ)

s,r

)

=
∑
l∈[2]

 ∑
j∈C(l)
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g̃
(τ)
j −

∑
j∈F(l)
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g̃
(τ)
j

 · 1
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w(τ)
s,r ,µs

〉
> 0
]

≤
∑
l∈[2]

(∣∣∣C(l)
µs

∣∣∣λst −
∣∣∣F (l)

µs

∣∣∣ /λst

)
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(τ)
i · 1

[〈
w(τ)

s,r ,µs

〉
> 0
]

≤ λst

∑
l∈[2]

∣∣∣C(l)
µs

∣∣∣ g̃(τ)i · 1
[〈

w(τ)
s,r ,µs

〉
> 0
]

≤ 2λst

(
1 + C−1

st

)
nµg̃

(τ)
i · 1

[〈
w(τ)

s,r ,µs

〉
> 0
]

≤ 3λstnµg̃
(τ)
i · 1

[〈
w(τ)

s,r ,µs

〉
> 0
]

where the first inequality follows from (S6) with iteration τ . Hence, we have∑
r∈[m]

M
(τ+1)

s,r −
∑
r∈[m]

M
(τ)

s,r ≤ λstη ∥µ∥2

mnst
nµg̃

(τ)
i |Ms|

≤ 6λstη

nst
nµSNR2

µg̃
(τ)
i ∥ξ̃i∥2

≤ 6λstnµSNR2
µ

∑
r∈[m]

ρ
(τ+1)
r,i −

∑
r∈[m]

ρ
(τ)
r,i

 ,

where the second and third inequalities follow from (8) and (9), and (S7) with iteration τ . Combining
with (S3) at iteration τ , we have∑

r∈[m]

M
(τ+1)

s,r ≤ 6λstnµSNR2
µ ·

∑
r∈[m]

ρ
(τ+1)
r,i .

From (13) and (S2) at iteration 0, . . . , τ , we have∑
r∈As

N
(τ+1)

s,r −
∑
r∈As

N
(τ)

s,r ≥ η ∥ν∥2

mnst
· nν g̃

(τ)
i

2λst
· |As|

≥ nνSNR2
ν

12λstnst
ηg̃

(τ)
i ∥ξ̃i∥2

≥ nνSNR2
ν

12λst

∑
r∈[m]

ρ
(τ+1)
r,i −

∑
r∈[m]

ρ
(τ)
r,i

 ,

where the second inequality follows from (8) and (9). Combining with (S3) at iteration τ , we have

nνSNR2
ν

12λst
·
∑
r∈[m]

ρ
(τ+1)
r,i ≤

∑
r∈As

N
(τ+1)

s,r .

For any r ∈ As, we have

mnst

η∥ν∥2
(
N

(τ+1)

s,r −N
(τ)

s,r

)
=
∑
l∈[2]

 ∑
j∈C(l)

νs

g̃
(τ)
j −

∑
j∈F(l)

νs

g̃
(τ)
j


40



≤ λst

∑
l∈[2]

∣∣∣C(l)
νs

∣∣∣ g̃(τ)i

≤ 2λst

(
1 + C−1

st

)
nν g̃

(τ)
i

≤ 3λstnν g̃
(τ)
i ,

where the first inequality follows from (S6) and the third inequality follows from the large choice of
Cst. Hence, we have∑

r∈As

N
(τ+1)

s,r −
∑
r∈As

N
(τ)

s,r ≤ η ∥ν∥2

mnst
· 3λstnν g̃

(τ)
i |As|

≤ 6λstnνSNR2
ν

nst
ηg̃

(τ)
i ∥ξ̃i∥2

≤ 6λstnνSNR2
ν

∑
r∈[m]

ρ
(τ+1)
r,i −

∑
r∈[m]

ρ
(τ)
r,i

 ,

where the second and third inequalities follow from (8) and (9). Combining with (S3) at iteration τ ,
we have ∑

r∈As

N
(τ+1)

s,r ≤ 6λstnνSNR2
ν ·

∑
r∈[m]

ρ
(τ+1)
r,i .

Using a similar argument, we can also show that

nνSNR2
ν

12λst
·
∑
r∈[m]

ρ
(τ+1)
r,i ≤ −

∑
r∈Bs

N
(τ+1)

s,r ≤ 6λstnνSNR2
ν ·

∑
r∈[m]

ρ
(τ+1)
r,i .

(S4): We fix arbitrary i ∈ [nst]. From (S3) at iteration τ + 1 which we have already shown, we have
1

m

∑
r∈Ms

M
(τ+1)

s,r ≤ 1

m

∑
r∈[m]

M
(τ+1)

s,r

≤
6λstnµSNR2

µ

m
·
∑
r∈[m]

ρ
(τ+1)
r,i

≤ 24λstnµSNR2
µ log T ∗

≤ κst

64
,

where the first equality follows from (S2) at iteration 0, . . . , τ , the second inequality follows from
(S1) and the last inequality follows from Condition 3.2. Similarly, we have

1

m

∑
r∈As

N
(τ+1)

s,r ≤ 6λstnνSNR2
ν

m
·
∑
r∈[m]

ρ
(τ+1)
r,i ≤ 24λstnνSNR2

ν log T ∗ ≤ κst

64

and

− 1

m

∑
r∈Bs

N
(τ+1)

s,r ≤ 6λstnνSNR2
ν

m
·
∑
r∈[m]

ρ
(τ+1)
r,i ≤ 24λstnνSNR2

ν log T ∗ ≤ κst

64
.

Therefore, for any s ∈ {±1}, due to (6) and the above three inequalities, we have
1

m

∑
r∈[m]

σ
(〈

w(τ+1)
s,r ,µs

〉)
,
1

m

∑
r∈[m]

σ
(〈
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,
1

m

∑
r∈[m]

σ
(〈

w(τ+1)
s,r ,−νs

〉)
≤ κst

32
.

(14)

Together with applying Lemma C.2 and , we have∣∣∣∣∣∣ŷifst
(
W (τ+1), X̃i

)
− 1

m

∑
r∈[m]

ρ
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r,i
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=

∣∣∣∣∣∣Fŷi
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4
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(S5): We fix i, j ∈ [nst] and we assume 1
m

∑
r∈[m]

[
ρ
(τ)
r,i − ρ

(τ)
r,j

]
> 0, without loss of generality.

From the triangular inequality, (8), and (10), we have∣∣∣∣∣∣ 1m
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Hence, we have 1
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Otherwise, we have κst
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− ŷjfst

(
W (τ), X̃j

)
= Fŷi
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ŷi,r

, ξ̃i

〉)
− σ

(〈
w

(τ)
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Therefore, we have
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− ŷjfst

(
W (τ), X̃j

))
42



≤
exp

(
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and the last inequality follows from applying z(z3+1)
z+1 = z(z2 − z + 1) ≥ z2 with z = exp(κst/16).

Therefore, we have ∑
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where the third inequality is due to (6) and 1 + z ≤ ez for any z ∈ R. Hence, we have
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(S6): We fix arbitrary i, j ∈ [nst] and we assume ŷifst
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(
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,

without loss of generality. By combining (S4) and (S5) at iteration τ + 1 which we already have
shown, we have
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(S7): We fix arbitrary i ∈ [nst]. From (S7) at iteration τ , we have
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Therefore, we have
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≥ 0,

where we use (S6) at iteration τ , (8) for the second inequality, and (6) for the last inequality. Hence,
we have

〈
w

(τ+1)
ŷi,r

, ξ̃i

〉
> 0. Now we prove the second part. For any r ∈ Xi and r′ ∈ [m], we have
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where the second inequality is due to (S7) with iteration τ .

(S8): From (S7) at iteration τ , we have

1
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ρ
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m
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ρ
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From (S4) at iteration τ , (8), and (9), we have

1
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ρ
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) .
By applying Lemma A.5, the fact that z + c

1+bez is an increasing function for any c ∈ [0, 1], b > 0,
and the comparison theorem, we have our conclusion.

C.2 Convergence of Training Loss

In this subsection, we prove that the training loss converges below ε within O(η−1ε−1nstmd−1σ−2
p ).

All the arguments in this subsection are under Condition 3.1 and the event Est.

For any t ∈ [0, T ∗], from the definition of xt, we have

xt ≤ log

(
ησ2

pd

8mnst exp(κst/4)
t+ 1

)
.

Combining the inequality above with the definition of xt, we have

exp(xt) ≥
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t+ 1− exp(−κst/4) log
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)
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≥
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≥
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1

2

≥
ησ2
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16mnst exp(κst/4)
t, (15)

where we use the inequality log z < z
2 for any z > 1.

For any t ∈ [0, T ∗] and i ∈ [nst], by applying (S4) and (S8), we have
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(
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where the third inequality follows from (15) and the fourth inequality follows from (6). Therefore,
we have
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where the inequality follows from log(1 + z) ≤ z for z > 0. If t ≥ 16λstη
−1ε−1mnstd
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p , then

we have Lst

(
W (t)

)
≤ ε. Hence, by defining Tst := ⌈16λstη

−1ε−1mnstd
−1σ−2

p ⌉, we have the first
conclusion.

C.3 Test Error

In this subsection, we prove the second part of our conclusion. All the arguments in this subsection
are under Condition 3.1 and the event Est.

Define v(1), v(2), and ξ as the signal vectors and the noise vector in the test data (X, y), respectively.
We fix an arbitrary iteration t ∈ [Tst, T

∗]. From the choice of iteration t and (15), for any i ∈ [nst],
we have

log
(
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)
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∑
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ρ
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C.3.1 Test Error Upper Bound

We define a function h : S → R as h(z) := 1
m

∑
r∈[m] σ

(〈
w

(t)
−y,r, z

〉)
for any z ∈ S. It plays a

crucial role when we prove the upper bounds on test error. We have

E[h(ξ)] =
1

m
Ez1,...,zm

 ∑
r∈[m]

σ(zr)

 =
1

2m
Ez1,...,zm

 ∑
r∈[m]

|zr|

 =
σp√
2πm

∑
r∈[m]

∥∥∥ΠSw
(t)
−y,r

∥∥∥ ,
where zr ∼ N

(
0, σ2

p

∥∥∥ΠSw
(t)
−y,r

∥∥∥2) for each r ∈ [m]. Also, for any z1, z2 ∈ S, we have

|h(z1)− h(z2)| ≤
1

m

∑
r∈[m]

∣∣∣σ (〈w(t)
−y,r, z1

〉)
− σ

(〈
w

(t)
−y,r, z2

〉)∣∣∣
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≤ 1

m

∑
r∈[m]

∣∣∣〈w(t)
−y,r, z1

〉
−
〈
w

(t)
−y,r, z2

〉∣∣∣
=

1

m

∑
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∣∣∣〈ΠSw
(t)
−y,r, z1

〉
−
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〉∣∣∣
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∑
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∥∥∥ ∥z1 − z2∥ .

Hence, h is 1
m

∑
r∈[m]

∥∥∥ΠSw
(t)
−y,r

∥∥∥-Lipschitz.

The following lemma characterizes
∑

r∈[m]

∥∥∥ΠSw
(t)
−y,r

∥∥∥’s which is related to key properties of h.

Lemma C.4. For any s ∈ {±1}, it holds that

∑
r∈[m]

∥∥∥ΠSw
(t)
s,r

∥∥∥ ≤ 20σ−1
p d−

1
2

 ∑
i∈[nst]

∑
r∈[m]

ρ
(t)
r,i

2


1
2

.

Proof of Lemma C.4. From triangular inequality and the event Est, for each r ∈ [m], we have∥∥∥ΠSw
(t)
s,r

∥∥∥ ≤
∥∥∥ΠSw

(0)
s,r

∥∥∥+
∥∥∥∥∥∥
∑

i∈[nst]

ρ
(t)
s,r,iξ̃i∥ξ̃i∥

−2

∥∥∥∥∥∥ ≤
√
2σ0d

1
2 +

∥∥∥∥∥∥
∑

i∈[nst]

ρ
(t)
s,r,iξ̃i∥ξ̃i∥

−2

∥∥∥∥∥∥ .
In addition, we have∥∥∥∥∥∥

∑
i∈[nst]

ρ
(t)
s,r,i, ξ̃i∥ξ̃i∥

−2

∥∥∥∥∥∥
2

=
∑

i∈[nst]

(
ρ
(t)
s,r,i

)2
∥ξ̃i∥−2 +

∑
i,j∈[nst]

i ̸=j

ρ
(t)
s,r,iρ

(t)
s,r,j⟨ξ̃i, ξ̃j⟩∥ξ̃i∥

−2∥ξ̃j∥−2

≤ 2σ−2
p d−1

∑
i∈[nst]

(
ρ
(t)
s,r,i

)2
+ 2βstn

−1
st σ−2

p d−1
∑

i,j∈[nst]
i̸=j

∣∣∣ρ(t)s,r,i

∣∣∣ ∣∣∣ρ(t)s,r,j

∣∣∣

≤ 2σ−2
p d−1

∑
i∈[nst]

(
ρ
(t)
s,r,i

)2
+ βstn

−1
st σ−2

p d−1
∑

i,j∈[nst]
i ̸=j

(
ρ
(t)
s,r,i

)2
+
(
ρ
(t)
s,r,j

)2
2

,

≤ 4σ−2
p d−1

∑
i∈[nst]

(
ρ
(t)
s,r,i

)2
where the first inequality follows from (8) and the second inequality follows from AM-GM inequality,
and the last inequality follows from (6). From the Cauchy-Schwarz inequality, we have

∑
r∈[m]

∥∥∥∥∥∥
∑

i∈[nst]

ρ
(t)
s,r,iξ̃i∥ξ̃i∥

−2

∥∥∥∥∥∥ ≤ 2σ−1
p d−

1
2

∑
r∈[m]

 ∑
i∈[nst]

(
ρ
(t)
s,r,i

)2 1
2

≤ 2m
1
2σ−1

p d−
1
2

∑
r∈[m]

∑
i∈[nst]

(
ρ
(t)
s,r,i

)2 1
2

.

In addition, from (S1) with iteration t, we have∑
i∈[nst]

∑
r∈[m]

(
ρ
(t)
s,r,i

)2
=
∑

i∈[nst]
ŷi=s

∑
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(
ρ
(t)
r,i

)2
+
∑
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ŷi=−s

∑
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(
ρ(t)
r,i

)2
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≤
∑

i∈[nst]
ŷi=s

∑
r∈[m]

(
ρ
(t)
r,i

)2
+ (αst + 5βst log T

∗)2mnst.

For any i ∈ [nst] such that ŷi = s, we have

∑
r∈[m]

(
ρ
(t)
r,i

)2
≤ m

(
max
r∈[m]

ρ
(t)
r,i

)2

≤ 16m−1

∑
r∈[m]

ρ
(t)
r,i

2

,

where the last inequality follows from (S7) and (9). Therefore, we have

∑
i∈[nst]

∑
r∈[m]

(
ρ
(t)
s,r,i

)2
≤ 16m−1

∑
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∑
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ρ
(t)
r,i

2

+ (αst + 5βst log T
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≤ 25m−1
∑
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∑
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ρ
(t)
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2

,

where the last inequality follows from (16) and (6). We conclude∑
r∈[m]

∥∥∥ΠSw
(t)
s,r

∥∥∥
≤

√
2mσ0d

1
2 + 10σ−1
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1
2
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i∈[nst]

∑
r∈[m]

ρ
(t)
r,i

2


1
2

≤ 20σ−1
p d−

1
2

 ∑
i∈[nst]

∑
r∈[m]

ρ
(t)
r,i

2


1
2

,

where the second inequality follows from (16), (6), and (C3).

By Theorem 5.2.2 in Vershynin (2018), for any z > 0, it holds that

P[h(ξ)− E[h(ξ)] ≥ z] ≤ exp

(
− cz2

σ2
p ∥h∥

2
Lip

)
where c is a universal constant and ∥·∥Lip denotes the best Lipschitz constant. Combining with
Lemma C.4, we have

P[h(ξ)− E[h(ξ)] ≥ z] ≤ exp

− cm2d

400
∑

i∈[nst]

(∑
r∈[m] ρ

(t)
r,i

)2 z2
 . (17)

Now, we characterize the test error. First, we consider the case (X, y) ∈ Se ∪ Sb. We have

yfst

(
W (t),X

)
= Fy

(
W (t)

y ,X
)
− F−y

(
W

(t)
−y ,X

)
=

1

m

∑
l∈[2]

∑
r∈[m]

σ
(〈

w(t)
y,r,v

(l)
〉)

+
1

m

∑
r∈[m]

σ
(〈

w(t)
y,r, ξ

〉)
− 1

m

∑
l∈[2]

∑
r∈[m]

σ
(〈

w
(t)
−y,r,v

(l)
〉)

− 1

m

∑
r∈[m]

σ
(〈

w
(t)
−y,r, ξ

〉)
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≥ − 1

m

∑
r∈[m]

σ
(〈

w
(t)
−y,r, ξ

〉)
+
∑
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σ
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σ
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(t)
−y,r, ξ
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1

m
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r∈[m]

M
(t)
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= −h(ξ) +
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M
(t)
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where the second inequality follows from (7) and (S2). From (S3), (S8), and (16), we have

1

m

∑
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M
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12λst
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(
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)
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where the last inequality follows from (6). Therefore, we have
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)
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1
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∑
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M
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and thus

P
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]
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∑
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M
(t)
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From Lemma C.4, we have

1
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where the last inequality follows from the condition nstp
2
b ∥ν∥

4 ≥ C2σ
4
pd and (C5).

From (17), we have
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≤ exp

(
−nst(2pe + pb)

2 ∥µ∥4

C3σ4
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,

with some constant C3 > 0.

Using a similar argument, we can prove the upper bound on test error for the case (X, y) ∈ Sh. In
this case, we have
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r∈[m]

σ
(〈

w(t)
y,r,v

(l)
〉)

+
1

m

∑
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where the last inequality follows from (6). Therefore, we have
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From Lemma C.4 and Condition 3.1, we have
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where the last inequality follows from the condition given in the statement. From (17), we have

P

h(ξ) > 1

m
min

∑
r∈Ay

N
(t)

y,r,−
∑
r∈By

N
(t)

y,r




= P

h(ξ)− E[h(ξ)] >
1

m
min

∑
r∈Ay

N
(t)

y,r,−
∑
r∈By

N
(t)

y,r

− E[h(ξ)]


≤ P

h(ξ)− E[h(ξ)] >
1

24λstmnst
nνSNR2

ν

∑
i∈[nst]

∑
r∈[m]

ρ
(t)
r,i


≤ exp

(
− cn2

ν ∥ν∥4

9 · 242λ2
st · nstσ4

pd

)

≤ exp

(
−nstp

2
b ∥ν∥

4

C3σ4
pd

)
,

with some constant C3 > 0.

C.3.2 Test Error Lower Bound

We consider the case (X, y) ∈ Sh. Define g : S → R as g(z) := 1
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where the second inequality follows from (18). Therefore, we have
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We define the set
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〈
w

(t)
1,r, ζ

〉

= C6pbSNR2
ν

 ∑
i∈[nst]
ŷi=1

ρ
(t)
r,i −

∑
i∈[nst]
ŷi=1

∑
j∈[nst]\{i}

ρ
(t)
1,r,j

⟨ξ̃i, ξ̃j⟩
∥ξ̃j∥2

+
∑

i∈[nst]
ŷi=1

〈
w

(0)
1,r , ξ̃i

〉

≥ C6pbSNR2
ν

 ∑
i∈[nst]
ŷi=1

ρ
(t)
r,i − 4βst log T

∗ − nstαst


where the first inequality follows from the convexity of ReLU, and the second inequality follows
from (S1), (7), and (8). In addition, for any r ∈ [m], we have

σ
(〈

w
(t)
−1,r, ξ + ζ

〉)
− σ

(〈
w

(t)
−1,r, ξ

〉)
+ σ

(〈
w

(t)
−1,r,−ξ + ζ

〉)
− σ

(〈
w

(t)
−1,r,−ξ

〉)
≤ 2

∣∣∣〈w(t)
−1,r, ζ

〉∣∣∣
≤ 2λ

 ∑
i∈[nst]
ŷi=1

∣∣∣ρ(t)
r,i

∣∣∣+ ∑
i∈[nst]
ŷi=1

∑
j∈[nst]\{i}

∣∣∣ρ(t)−1,r,j

∣∣∣
∣∣∣⟨ξ̃i, ξ̃j⟩∣∣∣
∥ξ̃j∥2

+
∑

i∈[nst]
ŷi=1

∣∣∣〈w(0)
−1,r, ξ̃i

〉∣∣∣


≤ 2C6pbSNR2
ν

(
nst(αst + 5βst log T

∗) + 4βst log T
∗ + nstαst

)
= 2C6pbSNR2

νnst(2αst + 9βst log T
∗),

where the first inequality holds since ReLU is 1-Lipschitz and the second inequality follows from
(S1), (7), and (8). Therefore, we have

g(ξ + ζ)− g(ξ) + g(−ξ + ζ)− g(−ξ)
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≥ C6pbSNR2
ν

m

 ∑
i∈[nst]
ŷi=1

ρ
(t)
r,i − nst(7αst + 12βst log T

∗)


≥ C6pbSNR2

ν

2m

∑
i∈[nst]
ŷi=1

ρ
(t)
r,i

≥ C6pbSNR2
ν

2m
·

∣∣∣C(1)
µ1

∣∣∣+ ∣∣∣C(1)
ν1

∣∣∣+ ∣∣∣C(1)
−ν1

∣∣∣
3λstnνSNR2

ν

· max
s∈{±1}

{∑
r∈As

N
(t)

s,r,−
∑
r∈Bs

N
(t)

s,r

}

≥ 12

m
max

s∈{±1}

{∑
r∈As

N
(t)

s,r,−
∑
r∈Bs

N
(t)

s,r

}
,

where the second inequality follows from (16) and (6), the third inequality follows from (S3) and the
last inequality follows from the choice of C6 > 0 and∣∣∣C(1)

µ1

∣∣∣+ ∣∣∣C(1)
ν1

∣∣∣+ ∣∣∣C(1)
−ν1

∣∣∣ ≥ (1− C−1
st

)
· nµ + 2(1− C−1

st )nν =

(
1− C−1

st

)
(pe + pb)nst

2
≥ nst

8
.

By the pigeonhole principle, it implies that at least one of ξ,−ξ, ξ+ ζ,−ξ+ ζ belongs to Ω. Hence,

P[ξ ∈ Ω] + P[−ξ ∈ Ω] + P[ξ + ζ ∈ Ω] + P[−ξ + ζ ∈ Ω] ≥ 1.

Also, from symmetry, we have P[ξ ∈ Ω] = P[−ξ ∈ Ω] and P[−ξ + ζ ∈ Ω] = P[ξ − ζ ∈ Ω]. The
following lemma allows us to relate the probability P[ξ ∈ Ω] to the probabilities P[ξ ± ζ ∈ Ω].
Lemma C.5 (Direct from Proposition 2.1 in Devroye et al. (2018)). For any v ∈ S the total variation
distance TV(·, ·) between N (0, σ2

pΛ) and N (v, σ2
pΛ) is smaller than ∥v∥

2σp
.

By Lemma C.5 and (19), we have

|P[ξ ∈ Ω]− P[ξ ∈ Ω± ζ]| ≤ TV
(
N (0, σ2

pΛ),N (±ζ, σ2
pΛ)

)
≤ ∥ζ∥

2σp
≤ 0.01.

Therefore, we have

1 ≤ P[ξ ∈ Ω] + P[−ξ ∈ Ω] + P[ξ + ζ ∈ Ω] + P[−ξ + ζ ∈ Ω] ≤ 4P[ξ ∈ Ω] + 0.02

and thus P[ξ ∈ Ω] ≥ 0.24. We conclude that

P
[
yfst

(
W (t),X

) ∣∣∣ (X, y) ∈ Sh

]
≥ 0.12.
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D Proof of Theorem 3.6

It suffices to prove the following restatements of Theorem 3.6.

Theorem D.1 (Weak-to-Strong Training, Data-Abundant Regime). Let W (t) be the iterates of the
weak-to-strong training, with the weak model fwk(w

∗, ·) satisfying the conclusion of Theorem 3.3.
For any δ ∈ (0, 1) satisfying Condition 3.5, with probability at least 1− δ, there exists early stopping
time Tes = O(η−1m(2pe + pb)

−1 ∥µ∥−2
) such that the following statements hold:

1. The early stopped strong model fst
(
W (Tes), ·

)
perfectly fits training data having correct label

(i.e. ŷi = ỹi) but fails to training data with flipped label (i.e. ŷi ̸= ỹi). In other words, the model
predicts the true label ỹi for any training data point X̃i.

2. Let (X, y) ∼ D be an unseen test example, independent of the training set {(X̃i, ŷi)}nst
i=1. We

have

P
[
yfst

(
W (Tes),X

)
< 0

∣∣∣ (X, y) ∈ Se ∪ Sb

]
≤ exp

(
−nst(2pe + pb)

2∥µ∥4

C5σ4
pd

)
,

and

P
[
yfst

(
W (Tes),X

)
< 0

∣∣∣ (X, y) ∈ Sh

]
≤ exp

(
−nstp

2
b∥ν∥4

C5σ4
pd

)
,

Here, C5 > 0 is a constant.

For the proof, we first analyze the early training dynamics and characterize the early stopping iteration
(Appendix D.1). We then show that the early-stopped model perfectly fits the training data with true
labels (Appendix D.2), and finally, we establish a bound on the test error (Appendix D.3).

D.1 Analyzing Early Phase

First, we establish upper bounds on the noise coefficients.
Lemma D.2. Under Condition 3.5 and the event Est, for any t ∈ [0, T ∗] , s ∈ {±1}, r ∈ [m] and
i ∈ [nst], it holds that ∣∣∣ρ(t)s,r,i

∣∣∣ ≤ 3ησ2
pd

2mnst
t,

∣∣∣〈w(t)
s,r, ξ̃i

〉∣∣∣ ≤ αst +
3ησ2

pd

mnst
t.

Proof of Lemma D.2. We fix arbitrary s ∈ {±1}, r ∈ [m] and i ∈ [nst]. For any iteration 0 < t ≤
T ∗, we have∣∣∣ρ(t)s,r,i

∣∣∣ ≤ ∣∣∣ρ(t−1)
s,r,i

∣∣∣+ η

mnst
g̃
(t−1)
i ∥ξ̃i∥2 ≤

∣∣∣ρ(t−1)
s,r,i

∣∣∣+ 3ησ2
pd

2mnst
≤ · · · ≤

∣∣∣ρ(0)s,r,i

∣∣∣+ 3ησ2
pd

2mnst
t =

3ησ2
pd

2mnst
t,

where the first inequality is due to the triangular inequality and the others are due to (8). Therefore,
we have ∣∣∣〈w(t)

s,r, ξ̃i

〉∣∣∣ ≤ ∣∣∣〈w(0)
s,r , ξ̃i

〉∣∣∣+ ∣∣∣ρ(t)s,r,i

∣∣∣+ ∑
j∈[nst]\{i}

∣∣∣ρ(t)s,r,j

∣∣∣
∣∣∣⟨ξ̃i, ξ̃j⟩∣∣∣
∥ξ̃j∥2

≤ αst +
3ησ2

pd

2mnst
t(1 + βst)

≤ αst +
3ησ2

pd

mnst
t,

where the second inequality follows from (7) and (8).

The following lemma can be inductively applied when we characterize the early phase of learning
dynamics.

Lemma D.3. Suppose the iteration τ ∈
[
0, mnst

ησ2
pd log T∗

]
satisfy the following:
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1. 1
m

∑
r∈[m] M

(τ)

1,r ,
1
m

∑
r∈[m] M

(τ)

−1,r < 1
2 .

2. For each s ∈ {±1}, it holds that M
(τ)

s,r ,
〈
w

(τ)
s,r ,µs

〉
> 0 if r ∈ Ms and M

(τ)

s,r = 0 if r /∈ Ms.

3. For each s ∈ {±1}, it holds that N
(τ)

s,r ,
〈
w

(τ)
s,r ,νs

〉
> 0 if r ∈ As and N

(τ)

s,r ,
〈
w

(τ)
s,r ,νs

〉
< 0 if

r ∈ Bs.

4. 1
60

∑
r∈[m] M

(τ)

−1,r ≤
∑

r∈[m] M
(τ)

1,r ≤ 60
∑

r∈[m] M
(τ)

−1,r.

5. For each s, s′ ∈ {±1},

pb ∥ν∥2

120(2pe + pb) ∥µ∥2
∑
r∈[m]

M
(τ)

s′,r ≤
∑
r∈As

N
(τ)

s,r , −
∑
r∈Bs

N
(τ)

s,r ≤
∑
r∈[m]

M
(τ)

s′,r

6. For any s ∈ {±1} and r ∈ [m], it holds that
∣∣∣M (τ)

s,r

∣∣∣ , ∣∣∣N (τ)
s,r

∣∣∣ ≤ αst + βst.

Then under Condition 3.5 and the event Est, the following hold:

1. For any s ∈ {±1}, it holds that M
(τ+1)

s,r ≥ M
(τ)

s,r if r ∈ [m], N
(τ+1)

s,r ≥ N
(τ)

s,r if r ∈ As, and

N
(τ+1)

s,r ≤ N
(τ)

s,r if r ∈ Bs.

2. For each s ∈ {±1}, it holds that M
(τ+1)

s,r ,
〈
w

(τ+1)
s,r ,µs

〉
> 0 if r ∈ Ms and M

(τ+1)

s,r = 0 if

r /∈ Ms.

3. For each s ∈ {±1}, it holds that N
(τ+1)

s,r ,
〈
w

(τ+1)
s,r ,νs

〉
> 0 if r ∈ As and

N
(τ+1)

s,r ,
〈
w

(τ+1)
s,r ,νs

〉
< 0 if r ∈ Bs.

4. For each s ∈ {±1},

1

m

∑
r∈[m]

M
(τ+1)

s,r ≥ 1

m

∑
r∈[m]

M
(τ)

s,r +
η(2pe + pb) ∥µ∥2

80m
.

5. For each s ∈ {±1},

1

m

∑
r∈As

N
(τ+1)

s,r − 1

m

∑
r∈As

N
(τ)

s,r ≥ ηpb ∥ν∥2

160m
, − 1

m

∑
r∈Bs

N
(τ+1)

s,r +
1

m

∑
r∈Bs

N
(τ)

s,r ≥ ηpb ∥ν∥2

160m
.

6. 1
60

∑
r∈[m] M

(τ+1)

−1,r ≤
∑

r∈[m] M
(τ+1)

1,r ≤ 60
∑

r∈[m] M
(τ+1)

−1,r .

7. For each s, s′ ∈ {±1},

pb ∥ν∥2

120(2pe + pb) ∥µ∥2
∑
r∈[m]

M
(τ+1)

s,r ≤
∑
r∈As

N
(τ+1)

s′,r , −
∑
r∈Bs

N
(τ+1)

s′,r ≤
∑
r∈[m]

M
(τ+1)

s,r .

8. For any s ∈ {±1} and r ∈ [m],
∣∣∣M (τ+1)

s,r

∣∣∣ , ∣∣∣N (τ+1)
s,r

∣∣∣ ≤ αst + βst.

Proof of Lemma D.3. For any i ∈ [nst], we have

ŷifst

(
W (τ), X̃i

)
= Fŷi

(
W

(τ)
ŷi

, X̃i

)
− F−ŷi

(
W

(τ)
ŷi

, X̃i

)
≤ Fŷi

(
W

(τ)
ŷi

, X̃i

)
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=
1

m

∑
l∈[2]

∑
r∈[m]

σ
(〈

w
(τ)
ŷi,r

, ṽ
(l)
i

〉)
+

1

m

∑
r∈[m]

σ
(〈

w
(τ)
ŷi,r

, ξ̃i

〉)
.

For each i ∈ [nst] and l ∈ [2], we have
1

m

∑
r∈[m]

σ
(〈

w
(τ)
ŷi,r

, ṽ
(l)
i

〉)
≤ 1

m

∑
r∈[m]

σ

(〈
w

(0)
ŷi,r

, ṽ
(l)
i

〉
+ max

s∈{±1}

{
M

(τ)

s,r ,±N
(τ)

s,r

})

≤ 1

m

∑
r∈[m]

[
σ
(〈

w
(0)
ŷi,r

, ṽ
(l)
i

〉)
+ σ

(
max

s∈{±1}

{
M

(τ)

s,r ,±N
(τ)

s,r

})]

≤ 1

m

∑
r∈[m]

[
σ
(〈

w
(0)
ŷi,r

, ṽ
(l)
i

〉)
+ max

s∈{±1}

{
σ
(
M

(τ)

s,r

)
, σ
(
N

(τ)

s,r

)
σ
(
−N

(τ)

s,r

)}]

≤ 1

m

∑
r∈[m]

σ
(〈

w
(0)
ŷi,r

, ṽ
(l)
i

〉)
+ max

s∈{±1}

 1

m

∑
r∈[m]

M
(τ)

s,r ,
1

m

∑
r∈As

N
(τ)

s,r ,−
1

m

∑
r∈Bs

N
(τ)

s,r


≤ αst +

1

2
.

Combining with Lemma D.2, for any i ∈ [nst], we have

ŷifst

(
W (τ), X̃i

)
≤ 2 ·

(
αst +

1

2

)
+ αst +

3

log T ∗ ≤ 2,

where the last inequality follows from (6) and thus we have

1 ≥ g̃
(τ)
i =

1

1 + exp
(
ŷifst

(
W (τ), X̃i

)) ≥ 1

1 + exp(2)
≥ 1

9
, (20)

for any i ∈ [nst].

From Lemma A.3 and the event Est, for any s ∈ {±1} and r ∈ [m], we obtain

M
(τ+1)

s,r −M
(τ)

s,r =
η

mnst

∑
l∈[2]

 ∑
i∈C(l)

µs

g̃
(τ)
i −

∑
i∈F(l)

µs

g̃
(τ)
i

 ∥µ∥2 · 1
[〈

w(τ)
s,r ,µs

〉
> 0
]

≥ η

mnst

∑
l∈[2]

(
1

9

∣∣∣C(l)
µs

∣∣∣− ∣∣∣F (l)
µs

∣∣∣) ∥µ∥2 · 1
[〈

w(τ)
s,r ,µs

〉
> 0
]

≥ 2η

mnst

(
1− C−1

st

9
· nµ − C−1

st · nµ

)
∥µ∥2 · 1

[〈
w(τ)

s,r ,µs

〉
> 0
]

≥ η

5mnst
nµ ∥µ∥2 · 1

[〈
w(τ)

s,r ,µs

〉
> 0
]

=
η(2pe + pb)

20m
∥µ∥2 · 1

[〈
w(τ)

s,r ,µs

〉
> 0
]

≥ 0.

Hence, if r ∈ Ms, we have〈
w(τ+1)

s,r ,µs

〉
=
〈
w(0)

s,r ,µs

〉
+M

(τ+1)

s,r ≥
〈
w(0)

s,r ,µs

〉
+M

(τ)

s,r =
〈
w(τ)

s,r ,µs

〉
> 0

and if r /∈ Ms, we have M
(τ+1)

s,r = M
(τ)

s,r = 0.

In addition, we have
1

m

∑
r∈[m]

M
(τ+1)

s,r ≥ 1

m

∑
r∈[m]

M
(τ)

s,r +
η(2pe + pb)

20m
∥µ∥2 · 1

m

∑
r∈[m]

1

[〈
w(τ)

s,r ,µs

〉
> 0
]
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≥ 1

m

∑
r∈[m]

M
(τ)

s,r +
η(2pe + pb)

20m
∥µ∥2 · |Ms|

m

≥ 1

m

∑
r∈[m]

M
(τ)

s,r +
η(2pe + pb)

80m
∥µ∥2 ,

where the last inequality follows from (9).

Similarly, for any s ∈ {±1} and r ∈ As we obtain

N
(τ+1)

s,r −N
(τ)

s,r =
η

mnst

∑
l∈[2]

∑
i∈C(l)

νs

g̃
(τ)
i −

∑
i∈F(l)

νs

g̃
(τ)
i

 ∥ν∥2

≥ η

mnst

∑
l∈[2]

(
1

9

∣∣∣C(l)
νs

∣∣∣− ∣∣∣F (l)
νs

∣∣∣) ∥ν∥2

≥ 2η

mnst

(
1− C−1

st

9
· nν − C−1

st · nν

)
∥ν∥2

≥ η

5mnst
nν ∥ν∥2

=
ηpb
40m

∥ν∥2

≥ 0.

Hence, if r ∈ As, we have〈
w(τ+1)

s,r ,νs

〉
=
〈
w(0)

s,r ,νs

〉
+N

(τ+1)

s,r ≥
〈
w(0)

s,r ,νs

〉
+N

(τ)

s,r =
〈
w(τ)

s,r ,νs

〉
> 0.

In addition, we have

1

m

∑
r∈As

N
(τ+1)

s,r ≥ 1

m

∑
r∈As

N
(τ)

s,r +
ηpb
40

∥ν∥2 · |As|
m

≥ 1

m

∑
r∈As

N
(τ)

s,r +
ηpb
160m

∥ν∥2 .

We can obtain similar conclusions for Bs. Thus, we obtain the first five statements.

For any s ∈ {±1}, we have

1

m

∑
r∈[m]

M
(τ+1)

s,r ≤ 1

m

∑
r∈[m]

M
(τ)

s,r +
η

mnst

(∣∣∣C(1)
µs

∣∣∣+ ∣∣∣C(2)
µs

∣∣∣) ∥µ∥2
≤ 1

m

∑
r∈[m]

M
(τ)

s,r +
2
(
1 + C−1

st

)
ηnµ

mnst
∥µ∥2

≤ 1

m

∑
r∈[m]

M
(τ)

s,r +
3η(2pe + pb)

4m
∥µ∥2 .

In addition, we have

1

m

∑
r∈As

N
(τ+1)

s,r ≤ 1

m

∑
r∈As

N
(τ)

s,r +
η

mnst

(∣∣∣C(1)
νs

∣∣∣+ ∣∣∣C(2)
νs

∣∣∣) ∥ν∥2
≤ 1

m

∑
r∈As

N
(τ)

s,r +
2
(
1 + C−1

st

)
ηnν

mnst
∥ν∥2

≤ 1

m

∑
r∈As

N
(τ)

s,r +
3ηpb
8m

∥ν∥2 .
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Similarly, we have

− 1

m

∑
r∈Bs

N
(τ+1)

s,r ≤ − 1

m

∑
r∈Bs

N
(τ)

s,r +
η

mnst

(∣∣∣C(1)
−νs

∣∣∣+ ∣∣∣C(2)
−νs

∣∣∣) ∥ν∥2
≤ − 1

m

∑
r∈Bs

N
(τ)

s,r +
2
(
1 + C−1

st

)
ηnν

mnst
∥ν∥2

≤ − 1

m

∑
r∈Bs

N
(τ)

s,r +
3pbη

8m
∥ν∥2 .

Using these, we have

∑
r∈[m]

M
(τ+1)

1,r =
∑
r∈[m]

M
(τ)

1,r +

 ∑
r∈[m]

M
(τ+1)

1,r −
∑
r∈[m]

M
(τ)

1,r


≥
∑
r∈[m]

M
(τ)

1,r +
η(2pe + pb)

80
∥µ∥2

≥
∑
r∈[m]

M
(τ)

1,r +
1

60

 ∑
r∈[m]

M
(τ+1)

−1,r −
∑
r∈[m]

M
(τ)

−1,r


≥ 1

60

∑
r∈[m]

M
(τ)

−1,r +
1

60

 ∑
r∈[m]

M
(τ+1)

−1,r −
∑
r∈[m]

M
(τ)

−1,r


=

1

60

∑
r∈[m]

M
(τ+1)

−1,r .

By using symmetric arguments, we can obtain
∑

r∈[m] M
(τ+1)

1,r ≤ 60
∑

r∈[m] M
(τ+1)

−1,r .

Similarly, for any s, s′ ∈ {±1}, we have

∑
r∈As

N
(τ+1)

s,r =
∑
r∈As

N
(τ)

s,r +

[∑
r∈As

N
(τ+1)

s,r −
∑
r∈As

N
(τ)

s,r

]

≤
∑
r∈As

N
(τ)

s,r +
3ηpb
8

∥ν∥2

≤
∑
r∈As

N
(τ)

s,r +
η(2pe + pb)

80
∥µ∥2

≤
∑
r∈[m]

M
(τ)

s′,r +

 ∑
r∈[m]

M
(τ+1)

s′,r −
∑
r∈[m]

M
(τ)

s′,r


=
∑
r∈[m]

M
(τ+1)

s′,r .

In addition, we have∑
r∈As

N
(τ+1)

s,r

=
∑
r∈As

N
(τ)

s,r +

[∑
r∈As

N
(τ+1)

s,r −
∑
r∈As

N
(τ)

s,r

]

≥
∑
r∈As

N
(τ)

s,r +
pbη

160
∥ν∥2
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=
∑
r∈As

N
(τ)

s,r +
pb ∥ν∥2

120(2pe + pb) ∥µ∥2
· 3η(2pe + pb) ∥µ∥2

4m

≥ pb ∥ν∥2

120(2pe + pb) ∥µ∥2
∑
r∈[m]

M
(τ)

s′,r +
pb ∥ν∥2

120(2pe + pb) ∥µ∥2
·

 ∑
r∈[m]

M
(τ+1)

s′,r −
∑
r∈[m]

M
(τ)

s′,r


=

pb ∥ν∥2

120(2pe + pb) ∥µ∥2
∑
r∈[m]

M
(τ+1)

s′,r .

Now, we prove the last statement. For any r ∈ [m], if M (τ)
s,r ≤ −αst, then we have

〈
w

(τ)
s,r ,µ−s

〉
< 0.

Hence,
∣∣∣M (τ+1)

s,r

∣∣∣ = ∣∣∣M (τ)
s,r

∣∣∣ ≤ αst + βst by Lemma A.3. Otherwise, M (τ)
s,r > −αst implies that

mnst

η∥µ∥2
(
M (τ+1)

s,r −M (τ)
s,r

)

= −
∑
l∈[2]

 ∑
j∈C(l)

µ−s

g̃
(τ)
j −

∑
j∈F(l)

µ−s

g̃
(τ)
j

 · 1
[〈

w(τ)
s,r ,µ−s

〉
> 0
]

≤ −
∑
l∈[2]

(
1

9

∣∣∣C(l)
µ−s

∣∣∣− ∣∣∣F (l)
µ−s

∣∣∣) · 1
[〈

w(τ)
s,r ,µ−s

〉
> 0
]

≤ 0,

where the first inequality follows from (20) and the last inequality follows from the event Est. Thus,
M (τ+1)

s,r ≤ M (τ)
s,r ≤ αst + βst. In addition, we have

mnst

η∥µ∥2
(
M (τ+1)

s,r −M (τ)
s,r

)

= −
∑
l∈[2]

 ∑
j∈C(l)

µ−s

g̃
(τ)
j −

∑
j∈F(l)

µ−s

g̃
(τ)
j

 · 1
[〈

w(τ)
s,r ,µ−s

〉
> 0
]

≥ −
∑
l∈[2]

∣∣∣C(l)
µs

∣∣∣ · 1 [〈w(τ)
s,r ,µ−s

〉
> 0
]

≥ −2nst.

Therefore, we have

M (τ+1)
s,r ≥ M (τ)

s,r − 2η∥µ∥2

m
≥ −αst −

2η∥µ∥2

m
≥ −αst − βst,

where the last inequality follows from (10).

From Lemma A.3, for any r ∈ [m],∣∣∣N (τ+1)
s,r −N (τ)

s,r

∣∣∣ ≤ 2η ∥ν∥2

m
≤ αst.

Therefore, it suffices to show that N (τ+1)
s,r ≤ N (τ)

s,r when N (τ)
s,r > αst and N (τ+1)

s,r ≥ N (τ)
s,r when

N (τ)
s,r < −αst. If N (τ)

s,r > αst, then we have〈
w(τ)

s,r ,ν−s

〉
=
〈
w(0)

s,r ,ν−s

〉
+N (τ)

s,r > 0.

Hence, we have
mnst

η∥ν∥2
(
N (τ+1)

s,r −N (τ)
s,r

)
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= −
∑
l∈[2]

 ∑
j∈C(l)

ν−s

g̃
(τ)
j −

∑
j∈F(l)

ν−s

g̃
(τ)
j


≤ −

∑
l∈[2]

(
1

9

∣∣∣C(l)
ν−s

∣∣∣− ∣∣∣F (l)
ν−s

∣∣∣)

≤ −2

((
1− C−1

st

)
9

· nν − C−1
st · nν

)
≤ 0,

where the first inequality follows from (20) and the last inequality follows from the event Est. Using
a similar argument, we can also show that N (τ+1)

s,r ≥ N (τ)
s,r when N (τ)

s,r < −αst and we have desired
conclusion.

Next, we characterize the early-phase learning dynamics of easy signals.

Lemma D.4. Under Condition 3.5 and the event Est, there exists the smallest iteration Tes ∈[
0, 200m

η(2pe+pb)∥µ∥2

]
such that

max

 1

m

∑
r∈[m]

M
(Tes)

1,r ,
1

m

∑
r∈[m]

M
(Tes)

−1,r

 ≥ 1

2
.

Proof of Lemma D.4. Suppose there is no such iteration. We fix an arbitrary s ∈ {±1}. Note that
from Condition 3.5, 100m

η(2pe+pb)∥µ∥2 ≤ mnst

ησ2
pd log T∗ . Thus, we can apply Lemma D.3 and for any

t ∈
[
0, 100m

η(2pe+pb)∥µ∥2

]
, we have

1

m

∑
r∈[m]

M
(t)

s,r ≥ 1

m

∑
r∈[m]

M
(t−1)

s,r +
η(2pe + pb)

80m
∥µ∥2

...

≥ 1

m

∑
r∈[m]

M
(0)

s,r +
η(2pe + pb)

80m
∥µ∥2 t

=
η(2pe + pb)

80
∥µ∥2 t.

By choosing t = 40m
η(2pe+pb)∥µ∥2 ∈

[
0, 100m

η(2pe+pb)∥µ∥2

]
, we obtain contradiction. Therefore, there

exists an iteration t ∈
[
0, 100m

η(2pe+pb)∥µ∥2

]
such that

max

 1

m

∑
r∈[m]

M
(t)

1,r,
1

m

∑
r∈[m]

M
(t)

−1,r

 ≥ 1

2
.

We then define Tes as the smallest such iteration.

We will show that iteration Tes obtained from Lemma D.4 is our desired stopping time. By sequentially
applying Lemma D.3, for any s ∈ {±1}, we have M

(Tes)

s,r ≥ 0 for all r ∈ [m], N
(Tes)

s,r ≥ 0 if r ∈ As,

and N
(Tes)

s,r ≤ 0 if r ∈ Bs. Furthermore, we have

1

m

∑
r∈[m]

M
(Tes)

s,r ≥ 1

120
,

1

m

∑
r∈As

N
(Tes)

s,r ,− 1

m

∑
r∈Bs

N
(Tes)

s,r ≥ pb ∥ν∥2

240(2pe + pb) ∥µ∥2
(21)
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and for any r ∈ [m], we have ∣∣∣M (Tes)
s,r

∣∣∣ , ∣∣∣N (Tes)
s,r

∣∣∣ ≤ αst + βst. (22)

Combining the upper bound on Tes and Lemma D.2 leads to the following bound: for any s ∈
{±1}, r ∈ [m], and i ∈ [nst],∣∣∣ρ(Tes)

s,r,i

∣∣∣ , ∣∣∣〈w(Tes)
s,r , ξ̃i

〉∣∣∣ ≤ αst +
3ησ2

pd

mnst
· 100m

η(2pe + pb) ∥µ∥2
≤

400σ2
pd

(2pe + pb)nst ∥µ∥2
, (23)

where the last inequality follows from (6).

D.2 Train Error

In this subsection, we prove the first conclusion conditioned on the event Est. For any i ∈ [nst], we
have

ỹifst

(
W (Tes), X̃i

)
=

1

m

∑
l∈[2]

∑
r∈[m]

ϕ
(〈

w
(Tes)
ỹi,r

, ṽ
(l)
i

〉)
− 1

m

∑
l∈[2]

∑
r∈[m]

ϕ
(〈

w
(Tes)
−ỹi,r

, ṽ
(l)
i

〉)
+

1

m

∑
r∈[m]

ϕ
(〈

w
(Tes)
ỹi,r

, ξ̃i

〉)
− 1

m

∑
r∈[m]

ϕ
(〈

w
(Tes)
−ỹi,r

, ξ̃i

〉)
≥ 1

m

∑
l∈[2]

∑
r∈[m]

ϕ
(〈

w
(Tes)
ỹi,r

, ṽ
(l)
i

〉)
− 2 · (αst + αst + βst)−

400σ2
pd

(2pe + pb)nst ∥µ∥2

≥ 2

m
min

∑
r∈[m]

M
(Tes)

ỹi,r ,
∑
r∈[m]

N
(Tes)

ỹi,r ,−
∑

r∈Bỹi

N
(Tes)

ỹi,r

− 2(2αst + βst)−
400σ2

pd

(2pe + pb)nst ∥µ∥2

≥ pb ∥ν∥2

120(2pe + pb) ∥µ∥2
− 2(αst + βst)−

400σ2
pd

(2pe + pb)nst ∥µ∥2

> 0,

where the first inequality follows from (22) and (23), the third inequality follows from (21), and the
last inequality follows from (6) and Condition 3.5. □

D.3 Test Error

In this subsection, we characterize the test error of the strong model. All arguments in this subsection
are under the event Est. Define v(1), v(2), and ξ as the signal vectors and the noise vector in the test
data (X, y), respectively.

We define a function h : S → R as h(z) := 1
m

∑
r∈[m] σ

(〈
w

(Tes)
−y,r , z

〉)
for any z ∈ S. It plays a

crucial role when we prove the upper bounds on test error. We have

E[h(ξ)] =
1

m
Ez1,...,zm

 ∑
r∈[m]

σ(zr)

 =
1

2m
Ez1,...,zm

 ∑
r∈[m]

|zr|

 =
σp√
2πm

∑
r∈[m]

∥∥∥ΠSw
(Tes)
−y,r

∥∥∥ ,
where zr ∼ N

(
0, σ2

p

∥∥∥ΠSw
(Tes)
−y,r

∥∥∥2) for each r ∈ [m]. Also, for any z1, z2 ∈ S, we have

|h(z1)− h(z2)| ≤
1

m

∑
r∈[m]

∣∣∣σ (〈w(Tes)
−y,r , z1

〉)
− σ

(〈
w

(Tes)
−y,r , z2

〉)∣∣∣
≤ 1

m

∑
r∈[m]

∣∣∣〈w(Tes)
−y,r , z1

〉
−
〈
w

(Tes)
−y,r , z2

〉∣∣∣
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=
1

m

∑
r∈[m]

∣∣∣〈ΠSw
(Tes)
−y,r , z1

〉
−
〈
ΠSw

(Tes)
−y,r , z2

〉∣∣∣
≤ 1

m

∑
r∈[m]

∥∥∥ΠSw
(Tes)
−y,r

∥∥∥ ∥z1 − z2∥ .

Hence, h is 1
m

∑
r∈[m]

∥∥∥ΠSw
(Tes)
−y,r

∥∥∥-Lipschitz.

The following lemma characterizes
∥∥∥ΠSw

(Tes)
−y,r

∥∥∥’s which is related to key properties of h.

Lemma D.5. For any s ∈ {±1}, it holds that∑
r∈[m]

∥∥∥ΠSw
(Tes)
s,r

∥∥∥ ≤ 900mσpd
1
2

(2pe + pb)n
1
2 ∥µ∥2

.

Proof of Lemma D.5. From Lemma A.3 and triangular inequality, we have

∥∥∥ΠSw
(Tes)
s,r

∥∥∥ ≤
∥∥∥ΠSw

(0)
s,r

∥∥∥+
∥∥∥∥∥∥
∑

i∈[nst]

ρ
(Tes)
s,r,i ξ̃i∥ξ̃i∥

−2

∥∥∥∥∥∥ ≤
√
2σ0d

1
2 +

∥∥∥∥∥∥
∑

i∈[nst]

ρ
(Tes)
s,r,i ξ̃i∥ξ̃i∥

−2

∥∥∥∥∥∥ .
We have∥∥∥∥∥∥

∑
i∈[nst]

ρ
(Tes)
s,r,i ξ̃i∥ξ̃i∥

−2

∥∥∥∥∥∥
2

=
∑

i∈[nst]

(
ρ
(Tes)
s,r,i

)2
∥ξ̃i∥−2 +

∑
i,j∈[nst]

i ̸=j

ρ
(Tes)
s,r,i ρ

(Tes)
s,r,j ⟨ξ̃i, ξ̃j⟩∥ξ̃i∥

−2∥ξ̃j∥−2

≤
∑

i∈[nst]

(
ρ
(Tes)
s,r,i

)2
∥ξ̃i∥−2 +

∑
i,j∈[nst]

i ̸=j

∣∣∣ρ(Tes)
s,r,i ρ

(Tes)
s,r,j

∣∣∣ ∣∣∣⟨ξ̃i, ξ̃j⟩∣∣∣ ∥ξ̃i∥−2∥ξ̃j∥−2

≤
∑

i∈[nst]

(
ρ
(Tes)
s,r,i

)2
∥ξ̃i∥−2 +

1

2

∑
i,j∈[nst]

i ̸=j

((
ρ
(Tes)
s,r,i

)2
+
(
ρ
(Tes)
s,r,j

)2) ∣∣∣⟨ξ̃i, ξ̃j⟩∣∣∣ ∥ξ̃i∥−2∥ξ̃j∥−2

≤ (1 + βst)
∑

i∈[nst]

(
ρ
(Tes)
s,r,i

)2
∥ξ̃i∥−2

≤

(
800σpd

1
2

(2pe + pb)n
1
2
st ∥µ∥

2

)2

where the third inequality follows from (8) and the fourth inequality follows from (23) and (8).
Therefore, we have∑

r∈[m]

∥∥∥ΠSw
(Tes)
s,r

∥∥∥ ≤
√
2mσ0d

1
2 +

800mσpd
1
2

(2pe + pb)n
1
2
st ∥µ∥

2
≤ 900mσpd

1
2

(2pe + pb)n
1
2
st ∥µ∥

2
,

where the last inequality follows from (C3).

By Theorem 5.2.2 in Vershynin (2018), for any z > 0, it holds that

P[h(ξ)− E[h(ξ)] ≥ z] ≤ exp

(
− cz2

σ2
p ∥h∥

2
Lip

)
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where c is a universal constant and ∥·∥Lip denotes the best Lipschitz constant. Combining with
Lemma C.4, we have

P[h(ξ)− E[h(ξ)] ≥ z] ≤ exp

(
−c(2pe + pb)

2 ∥µ∥4

9002σ4
pd

z2

)
. (24)

Now, we characterize the test error. First, we consider the case (X, y) ∈ Se ∪ Sb. We have

yfst

(
W (Tes),X

)
= Fy

(
W (Tes)

y ,X
)
− F−y

(
W

(Tes)
−y ,X

)
=

1

m

∑
l∈[2]

∑
r∈[m]

σ
(〈

w(Tes)
y,r ,v(l)

〉)
+

1

m

∑
r∈[m]

σ
(〈

w(Tes)
y,r , ξ

〉)
− 1

m

∑
l∈[2]

∑
r∈[m]

σ
(〈

w
(Tes)
−y,r ,v

(l)
〉)

− 1

m

∑
r∈[m]

σ
(〈

w
(Tes)
−y,r , ξ

〉)
≥ 1

m

∑
r∈[m]

σ
(〈

w(Tes)
y,r , ξ

〉)
− 1

m

∑
r∈[m]

σ
(〈

w
(Tes)
−y,r , ξ

〉)
+

1

m

∑
r∈[m]

M
(Tes)

y,r − 4αst

≥ − 1

m

∑
r∈[m]

σ
(〈

w
(Tes)
−y,r , ξ

〉)
+

1

120
− 4αst

≥ −h(ξ) +
1

200
,

where the first inequality follows from (7) and (22). From (24) and Lemma D.5, we have

P
[
yfst

(
W (Tes),X

)
< 0

∣∣∣ (X, y) ∈ Se ∪ Sb

]
≤ P

[
h(ξ) >

1

200

]
= P

[
h(ξ)− E[h(ξ)] >

1

200
− E[h(ξ)]

]
≤ P

[
h(ξ)− E[h(ξ)] >

1

200
− 900σpd

1
2

(2pe + pb)n
1
2
st ∥µ∥

2

]

≤ P
[
h(ξ)− E[h(ξ)] >

1

250

]
≤ exp

(
−nst(2pe + pb)

2 ∥µ∥4

C5σ4
pd

)
,

with some constant C5 > 0.

Using a similar argument, we can prove the upper bound on the test error for the case (X, y) ∈ Sh.
In this case, we have

yfst

(
W (Tes),X

)
= Fy

(
W (Tes)

y ,X
)
− F−y

(
W

(Tes)
−y ,X

)
=

1

m

∑
l∈[2]

∑
r∈[m]

σ
(〈

w(Tes)
y,r ,v(l)

〉)
+

1

m

∑
r∈[m]

σ
(〈

w(Tes)
y,r , ξ

〉)
− 1

m

∑
l∈[2]

∑
r∈[m]

σ
(〈

w
(Tes)
−y,r ,v

(l)
〉)

− 1

m

∑
r∈[m]

σ
(〈

w
(Tes)
−y,r , ξ

〉)
≥ 1

m

∑
r∈[m]

σ
(〈

w(Tes)
y,r , ξ

〉)
− 1

m

∑
r∈[m]

σ
(〈

w
(Tes)
−y,r , ξ

〉)

+
2

m
min

∑
r∈Ay

N
(Tes)

y,r ,−
∑
r∈By

N
(Tes)

y,r

− 2(αst + βst)
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≥ − 1

m

∑
r∈[m]

σ
(〈

w
(Tes)
−y,r , ξ

〉)
+

2

m
min

∑
r∈Ay

N
(Tes)

y,r ,−
∑
r∈By

N
(Tes)

y,r

− 2(αst + βst)

≥ −h(ξ) +
pb ∥ν∥2

120(2pe + pb) ∥µ∥2
− 2(αst + βst)

≥ −h(ξ) +
pb ∥ν∥2

200(2pe + pb) ∥µ∥2

where the first inequality follows from (7) and (22), the third inequality follows from (21), and the
last inequality follows from (6) and Condition 3.5.

From (24) and Lemma D.5, we have

P
[
yfst

(
W (Tes),X

)
< 0

∣∣∣ (X, y) ∈ Sh

]
≤ P

[
h(ξ) >

pb ∥ν∥2

200(2pe + pb) ∥µ∥2

]

= P

[
h(ξ)− E[h(ξ)] >

pb ∥ν∥2

200(2pe + pb) ∥µ∥2
− E[h(ξ)]

]

≤ P

[
h(ξ)− E[h(ξ)] >

pb ∥ν∥2

200(2pe + pb) ∥µ∥2
− 900σpd

1
2

(2pe + pb)n
1
2
st ∥µ∥

2

]

≤ P

[
h(ξ)− E[h(ξ)] >

pb ∥ν∥2

250(2pe + pb) ∥µ∥2

]

≤ exp

(
−nstp

2
b ∥ν∥

4

C5σ4
pd

)
,

with some constant C5 > 0.
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summary of our theoretical findings.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitations of our theoretical results in Section 3 and Sec-
tion 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We provide the list of regularity conditions in Section 2 and conditions for the
two regimes we investigated in Section 3. In addition, we provide complete proof of our
theoretical findings in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide details for our main experimental results in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We do not provide code in supplemental material. However, our results in
synthetic data and MNIST data can be easily reproduced since we opened all details.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all details for our main experimental results in Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Our work is mainly theoretical, and the numerical experiments are designed to
illustrate our theoretical analyses and aid reader comprehension. Therefore, we do not report
measures of statistical significance for these illustrative results. Given the theoretical nature
of our primary contributions, this omission does not detract from the paper’s core findings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide computer resource information in Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper does not violate the NeurIPS Code of Ethics in terms of data privacy,
potential for misuse, or other ethical issues.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work is primarily theoretical.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper focuses on theoretical analysis.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: Our experiments use synthetic data in our problem setting and MNIST, and
therefore do not rely on existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our work does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This research does not involve any human subjects or crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This research does not involve any human subjects. Thus, IRB approval is not
applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We used LLMs only for writing and editing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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