
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

STRESS-TESTING OFFLINE REWARD-FREE REINFORCE-
MENT LEARNING: A CASE FOR PLANNING WITH
LATENT DYNAMICS MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) has enabled significant progress in controlling em-
bodied agents. While online RL can learn complex behaviors, it is usually costly
and limiting as it requires direct interactions between an agent and its environ-
ment. On the other hand, offline RL has promised to use pre-collected data to solve
tasks without any direct environment interaction. In particular, zero-shot and goal-
conditioned offline RL methods are even able to handle reward-free data. However,
how the properties of the offline dataset influence the performance of offline RL
for reward-free data remains unclear. In this work, we study how well offline RL
methods for reward-free data generalize using controlled offline datasets of varying
quality. We find that when given a large amount of high-quality data, model-free
approaches excel but that model-based planning achieves superior performance
when there is variability in the environment layouts, when solving the task requires
stitching suboptimal trajectories, or when the dataset is small. Given the scarcity of
high-quality, task-specific data and the abundance of suboptimal, task-agnostic tra-
jectories in real-world scenarios, our results suggest that planning with a dynamics
model is an appealing choice for zero-shot generalization from suboptimal data.

1 INTRODUCTION

How can we train agents to generalize to previously unseen tasks and environments? Although online
reinforcement learning (RL) enables learning to solve increasingly complex tasks—ranging from
Atari games (Mnih, 2013) to Go (Silver et al., 2016) to controlling real robots (OpenAI et al., 2018)—
it requires numerous environment interactions to do so. For example, OpenAI et al. (2018) used the
equivalent of 100 years of real-time hand manipulation experience to train a robot to reliably handle
a Rubik’s cube. To address this sample complexity problem, offline RL methods (Kostrikov et al.,
2021; Levine et al., 2020; Ernst et al., 2005) have been developed to learn behaviors from state–action
trajectories with corresponding reward annotations. Unfortunately, conventional offline RL limits
agents to one task, making it impossible to use a trained agent to solve another downstream task.
To address this shortcoming, recently proposed methods learn desired behaviors from reward-free
data (Park et al., 2024b; Touati & Ollivier, 2021; Kim et al., 2024; Park et al., 2024c). This reward-
free paradigm is particularly appealing as it allows agents to learn from suboptimal data and use
the learned policy to solve a variety of downstream tasks. For example, a system trained on a large
dataset of low-quality robotic interactions with cloths can generalize to new tasks, such as folding
laundry (Black et al., 2024).

Despite significant methodological advances, the question of how the quality of pre-training data
affects the performance of reward-free offline RL methods remains unanswered. Prior works most
commonly train methods on data collected either by an expert policy or using unsupervised RL (Fu
et al., 2020; Yarats et al., 2022) and typically do not explore more than three types of datasets per
task. In this work, we address this gap in the literature and study the strengths and weaknesses of the
offline RL methods for reward-free data. We conduct a wide range of carefully designed experiments
to determine how different learning paradigms handle data of varying quality, amount, and relevance.

Our contributions can be summarized as:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

10 20 30 40
Number of training maps

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s r

at
e

0.0 2.5 5.0 7.5
In-distribution Out-of-distribution

0.00

0.25

0.50

0.75

1.00

CRL GCBC GCIQL HILP HIQL PLDM

Figure 1: Left: Examples of training maze layouts in the offline data, and trajectories of different
agents navigating an unseen maze layout towards goal at test time. Right: Success rates of various
methods on held-out layouts, as a function of the number of training layouts, as well as success rates
of models trained on data from five layouts, evaluating on held-out layouts ranging from similar to
training layouts to out-of-distribution ones. See Figure 9 for more details.

• We propose two navigation environments with granular control over the data generation process,
and generate a total of 23 datasets of varying quality;

• We use these datasets to carefully investigate the behavior of existing offline RL methods for
reward-free data. We test their ability to learn from random trajectories, to stitch short trajectories,
to learn from small datasets, and to generalize to unseen environments and tasks;

• We demonstrate that learning a latent dynamics model and using it for planning is the most robust
to data quality and achieves the highest level of generalization to environment variations;

• We present a list of guidelines to help practitioners choose between methods depending on available
data and generalization requirements;

We release1 code to construct the environments along with the used data to enable further research
into the role of data quality in offline RL with reward-free data.

2 RELATED WORK

Offline RL aims to learn behaviors purely from offline data without online interactions. There, a
big challenge is preventing the policy from selecting trajectories that were not seen in the dataset.
CQL (Kumar et al., 2020) relies on model conservatism to prevent the learned policy from being
overly optimistic about trajectories not observed in the data. IQL (Kostrikov et al., 2021) introduces
an objective that avoids evaluating the Q-function on state-action pairs not seen in the data to prevent
value overestimation. MOPO (Yu et al., 2020) is a model-based approach to learning from offline
data, and uses model disagreement to constrain the policy. See (Levine et al., 2020) for a more in-
depth survey.

Reward-free offline RL proposes to learn from the offline data that does not contain rewards in a
task-agnostic way. The goal is to extract general behaviors from the offline data to solve a variety
of downstream tasks. One approach to this is to use goal-conditioned RL, with and sample goals
using a technique proposed in Hindsight Experience Replay (Andrychowicz et al., 2017). Park et al.
(2024b) show that this can be applied to learn a goal-conditioned policy using IQL, as well as to
learn a hierarchical value function. Hatch et al. (2022) proposes using a small set of observations
corresponding to the solved task to define the task and learn from reward-free data. Kim et al. (2024)
study how to transition from offline to online RL, and uses HILP (Park et al., 2024c) for unsupervised
pre-training, then fine-tunes it on online data. Yu et al. (2022); Hu et al. (2023) propose to use labeled
data to train a reward function, than label the reward-free trajectories.

Zero-shot methods go beyond just goal-reaching from offline data, and aim to solve any possible
task specified during test time. HILP (Park et al., 2024c) propose learning a distance-preserving
representation space such that the distance in that space is proportional to the number of steps between
two states, similar to Laplacian representations (Wu et al., 2018; Wang et al., 2021; 2022). Forward-
Backward representations (Touati & Ollivier, 2021; Touati et al., 2022) tackle this with an approach
akin to successor-features. Frans et al. (2024) propose to learn a transformer model to encode target
task’s state action sequences. Chen et al. (2023) propose to learn basis Q-functions, that implicitly
model dynamics and enable better generalization.

1To be released upon completion of the review process.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Generalizing to new
environments

Generalizing to new tasks

Trajectory stitching

HILP
HIQL, CRL,

GCIQL, GCBC PLDM

23 different datasets
of varying quality

Evaluations
of 6 desirable properties

6 various methods
for offline reward-

free data

Short trajectories

Random trajectories

Limited layout
coverage

Results

Latent dynamics model learning

Encoder

Dynamics

↑
similarity↑

feature
diversity

Encoder

Figure 2: Overview of our analysis. We test six methods for learning from offline reward-free
trajectories on 23 different datasets across two top-down navigation environments. We evaluate for six
generalization properties required to scale to large offline datasets of suboptimal trajectories. We find
that planning with a latent dynamics model (PLDM) demonstrates the highest level of generalization.
For a full comparison, see Table 1. Right: diagram of PLDM. Circles represent variables, rectangles
– loss components, half-ovals – trained models.

Training representations for RL. Another way to use large amounts of data to improve RL agents
is using self-supervised learning (SSL). CURL (Laskin et al., 2020) introduce an SSL objective in
addition to the standard RL objectives. Later works also explore using a separate pre-training stage
(Schwarzer et al., 2021; Zhang et al., 2022; Nair et al., 2022). Zhou et al. (2024) show that pre-trained
visual representations from DINO (Caron et al., 2021; Oquab et al., 2023) can be used to learn a word
model for planning.

Investigating importance of offline data. ExORL (Yarats et al., 2022) show the importance of
data for offline RL, and demonstrated that data collected using unsupervised RL enables off-policy
RL algorithms to perform well in the offline setting; however, that study only compares using data
collected by unsupervised RL and by task-specific agents, without giving a more fine-grained analysis
on how different aspects of the data affect performance. Buckman et al. (2020) investigates the data
importance for offline RL with rewards. Recently proposed OGBench (Park et al., 2024a) introduces
multiple versions of offline data for a variety of goal-conditioned tasks; in contrast to that work, we
focus on top-down navigation environments and build 23 different datasets to perform a detailed
study of methods’ generalization, including to new tasks and environment layouts, as opposed to at
most only three dataset versions for one task in OGBench and its focus on the single layout, goal-
conditioned setting. Cobbe et al. (2018) investigate generalization in RL using variations in the
environment akin to what we did in Section 4.7, although that study is using the online setting with
rewards. Yang et al. (2023) also study generalization of offline GCRL, but focus on reaching out-of-
distribution goals. Ghugare et al. (2024) study stitching generalization.

3 THE LANDSCAPE OF REWARD-FREE OFFLINE RL

In this section, we formally introduce the setting of learning from state-action sequences without
reward annotations and overview available approaches. We also introduce a method we call Planning
with a Latent Dynamics Model (PLDM).

3.1 PROBLEM SETTING

We consider a Markov decision process (MDP) M = (S,A, µ, p, r), where S is the state space,
A is the action space, µ ∈ P(S) denotes the initial state distribution, p ∈ S × A → S denotes
the transition dynamics, and r ∈ S → R denotes the reward function. We work in the offline
setting, where we have access to a dataset of state-action sequences D which consists of transitions
(s0, a0, s1, . . . , aT−1, sT). We emphasize again that the offline dataset in our setting does not contain
any reward information. In our experiments, we also consider only deterministic transition dynamics.
The goal is, given D, to find a policy π ∈ S × Z → A, to maximize cumulative reward rz , where
Z is the space of possible task definitions. Our goal is to make the best use of the offline dataset
D to enable the agent to solve a variety of tasks in a given environment with potentially different
layouts. During evaluation, unless otherwise specified, the agent is tasked to reach a goal state sg , so
the reward is defined as rg(s) = I[s = sg], and Z is equivalent to S .

Common Solutions. In this work, we focus on methods that can learn to solve tasks from offline
data without rewards. We do not consider methods that augment reward-labeled dataset with reward

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: Road-map of our generalization stress-testing experiments. We test 4 offline goal-
conditioned methods - HIQL, GCIQL, CRL, GCBC; a zero-shot RL method HILP, and a learned latent
dynamics planning method PLDM. ★★★ denotes good performance in the specified experiment,
★★✩ denotes average performance, and ★✩✩ denotes poor performance. We see that HILP and
PLDM are the best-performing methods, with PLDM standing out as the only method that does not
completely fail in any of the settings.

Property (Experiment section) HILP HIQL GCIQL CRL GCBC PLDM
Transfer to new environments (4.7) ★✩✩ ★✩✩ ★✩✩ ★✩✩ ★✩✩ ★★★
Transfer to a new task (4.6) ★★✩ ★✩✩ ★✩✩ ★✩✩ ★✩✩ ★★★
Data efficiency (4.3) ★✩✩ ★★✩ ★★✩ ★★✩ ★★✩ ★★★
Best-case performance (4.2) ★★★ ★★★ ★★★ ★★★ ★★✩ ★★✩
Can learn from random trajectories (4.5) ★★★ ★✩✩ ★✩✩ ★✩✩ ★✩✩ ★★✩
Can stitch suboptimal trajectories (4.4) ★★★ ★✩✩ ★✩✩ ★✩✩ ★✩✩ ★★✩

Fail-proof in all settings ✗ ✗ ✗ ✗ ✗ ✓

free data, as we believe that fully reward-free approach is more general. In offline RL, methods for
learning without rewards fall into two broad categories: offline goal-conditioned RL and zero-shot RL
methods that model the underlying task as a latent variable. In this work, we consider both categories,
and select methods that we believe reflect the state of the art. We test all methods on goal-reaching,
and test the zero-shot methods transfer to new tasks. The methods we investigate are:
GCIQL (Park et al., 2024b) – goal-conditioned version of Implicit Q-Learning (Kostrikov et al.,
2021), a strong and widely-used method for offline RL.
HIQL (Park et al., 2024b) – a hierarchical GCRL method which trains two policies: one to place
generate subgoals, and another one to reach the subgoals. Notably, both policies use the same value
function.
HILP (Park et al., 2024c) – a method that learns state representations from the offline data such that
the distance in the learned representation space is proportional to the number of steps between two
states. A direction-conditioned policy is then learned to be able to move along any specified direction
in the latent space.
CRL (Eysenbach et al., 2022) – uses contrastive learning to learn compatibility between states and
possible reachable goals. The learned representation, which has been shown to be directly linked to
goal-conditioned Q-function, is then used to train a goal-conditioned policy.
GCBC (Lynch et al., 2020; Ghosh et al., 2019) – Goal-Conditioned Behavior Cloning. This is the
simplest baseline for goal-reaching.

3.2 PLANNING WITH A LATENT DYNAMICS MODEL

Although the methods outlined in Section 3.1 cover a wide range of paradigms, none of them use
the model-based approach, which achieves impressive performance in other settings (Deisenroth &
Rasmussen, 2011; Silver et al., 2017; 2016; Rafailov et al., 2021). An easy way to use state-action
sequences is to learn a dynamics model, making it a natural choice for our setting. For example, Nair
et al. (2020); Pertsch et al. (2020) propose model-based methods for goal-reaching, and use image
reconstruction objective. In this work, we choose to focus on just the dynamics learning objective,
with added representation learning objectives to prevent collapse, and avoid using reconstruction.
We introduce a model-based method named PLDM – Planning with a Latent Dynamics Model. We
learn latent dynamics using a reconstruction-free self-supervised learning (SSL) objective, making
this method a joint-embedding predictive architecture (JEPA) (LeCun, 2022). During evaluation,
we use planning to optimize the goal-reaching objective. We opt for an SSL approach that involves
predicting the latents as opposed to reconstructing the input observations (Hafner et al., 2018; 2019;
2020; 2023; Watter et al., 2015; Finn et al., 2016; Zhang et al., 2019; Banijamali et al., 2018) as
recent work showed that reconstruction leads to suboptimal features (Balestriero & LeCun, 2024;
Littwin et al., 2024), and that reconstruction-free representation learning can work well for control
and RL (Shu et al., 2020; Hansen et al., 2022). More concretely, given agent trajectory sequence
(s0, a0, s1, ..., aT−1, sT), we specify the PLDM world model as:

Encoder : ẑ0 = z0 = hθ(s0) Predictor : ẑt = fθ(ẑt−1, at−1)

Where ẑt is the predicted latent state and zt is the encoder output at time index t. The training
objective involves minimizing the distance between predicted and encoded latents summed over all
timesteps. Given latents Z ∈ RT×N×D, where T is the time dimension, N is the batch dimension,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Start Goal

Figure 3

Method Good-quality
data

No
door-passing
trajectories

CRL 0.893 ± 0.012 0.147 ± 0.070
GCBC 0.860 ± 0.045 0.084 ± 0.037
GCIQL 0.936 ± 0.009 0.220 ± 0.041
HILP 1.000 ± 0.000 1.000 ± 0.000
HIQL 0.964 ± 0.030 0.263 ± 0.138
PLDM 0.860 ± 0.028 0.568 ± 0.031

Table 2

Figure 3: The Two-Rooms environment. The environment consists of two rooms separated by a wall
with one door. The locations of the wall and the door remain fixed. The agent starts at a random
location and is tasked with reaching the goal at another randomly sampled location in the other room
within 200 steps. The evaluation episode is considered successful if the distance between the goal
and the agent is below 1.4 pixels, with the environment being 64× 64 pixels. Table 2: Performance
of tested methods on good-quality data and on data with no trajectories passing through the door.
Numbers are average success rates (±std) across 3 seeds. The dataset size is kept constant at 3M.

and D the feature dimension, the similarity objective between predictions and encodings is:

Lsim =

T∑
t=0

1

N

N∑
b=0

∥Ẑt,b − Zt,b∥22

To prevent representation collapse, we use a VICReg-inspired (Bardes et al., 2021) objective, as well
as inverse dynamics modeling (Lesort et al., 2018). We show a diagram of PLDM in Figure 2. For
more details, see Appendix E.1.1.

Goal-conditioned planning with PLDM. At test time, given the current observation s0, goal
observation sg , pretrained encoder hθ and predictor fθ, planning horizon H , our planning objective is:

ẑ0 = z0 = hθ(s0), ẑt = fθ(ẑt−1, at−1)

a∗ = argmin
a

Cost(a, s0, sg), Cost(a, s0, sg) =

H−1∑
t=0

∥hθ(sg)− fθ(ẑt, at)∥

Following the Model Predictive Control framework (Morari & Lee, 1999), our model re-plans at every
kth interaction with the environment. Unless stated otherwise, we use k = 1. In all our experiments
with PLDM, we use MPPI (Williams et al., 2015) for planning.

4 EVERY METHOD CAN EXCEL BUT FEW GENERALIZE

We conduct thorough experiments testing a range of offline GCRL and zero-shot methods we outlined
in Section 3.1 and Section 3.2. We test all methods on navigation tasks where the agent is a point
mass. We generate datasets of varying size and quality and test how a specific data type affects a
given method. We design our experiments to test the following properties of methods (see Table 1
for experiment overview): P1 sample efficiency, P2 ability to learn from random trajectories, P3
ability to stitch together suboptimal trajectories, P4 generalization to new environments variations,
P5 zero-shot generalization to a different task.

4.1 ENVIRONMENT

All our experiments are done with top-down navigation tasks with a point-mass agent. First, we
introduce a two-rooms navigation task. Each observation xt is a top-down view of the two-rooms
environment, xt ∈ R2×64×64, shown in Figure 3. The first channel in the image is the agent, the
second channel is the walls. Actions a ∈ R2 denote the displacement vector of the agent position
from one time step to the next one. The norm of the actions is restricted to be less than 2.45. The
goal is to reach another randomly sampled state within 200 environment steps. See Appendix C.2
for more details. This environment makes control of the data generation process very easy, enabling

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0.00 0.05 0.10 0.15
Fraction of non-random data

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s r

at
e

20 40 60 80
Sequence length

0.00

0.25

0.50

0.75

1.00

103 104 105 106

Dataset size

0.00

0.25

0.50

0.75

1.00

CRL GCBC GCIQL HILP HIQL PLDM

Figure 5: Testing the selected methods’ performance under different dataset constraints. Values
and shaded regions are means and standard deviations over 3 seeds, respectively. Left: tests the
importance of the dataset quality, we mix the fully random trajectories and better quality trajectories
(see Figure 6). As the amount of good quality data goes to 0, methods begin to fail, with PLDM
and HILP being the most robust ones. Center: measures methods’ performance when trained with
different sequence lengths. We find that many goal-conditioned methods fail when train trajectories
are short, which causes far-away goals to become out-of-distribution for the resulting policy. Right:
measures methods’ performance with datasets of varying sizes. We see that PLDM is the most sample
efficient, and manages to get almost 50% success rate even with a few thousand transitions.

us to conduct our experiments efficiently and thoroughly, while not being so trivial that any method
can solve it with even a little bit of data. Movement and navigation is a big part of virtually every
real-world robotic environment, making this a useful testbed for development.

Offline data. To generate offline data, we place the agent in a random location within the environment,
and execute a sequence of actions for T steps, where T denotes the episode length. The actions are
generated by first picking a random direction, then using Von Mises distribution with concentration 5
to sample action directions. The step size is uniform from 0 to 2.45. When sampling low-quality data,
we do not bias the action directions using Von Mises, and instead sample the direction completely
uniformly. Unless otherwise specified, the episodes’ length is T = 91, and the total number of
transitions in the data is 3 million.

4.2 WHAT IS THE BEST-CASE PERFORMANCE?

We test all the methods in a setting with a large amount of data, with good state coverage, and with
non-random trajectories. This should serve as top line performance in the perfect scenario. With 3
million transitions, corresponding to around 30 thousand trajectories, all methods reach their best-
case performance in this environment. We report the results in Table 2. On the goal-reaching task
in the two-rooms environment, all methods achieve impressive performance, with HIQL and HILP
nearing perfect 100% success rate. PLDM fails to achieve perfect performance here. We hypothesize
that because PLDM’s training objective is not to learn a policy but to learn dynamics, PLDM does
not make use of high-quality trajectories like other model-free methods.

Takeaway: model-free approaches perform better than the model-based approach when the data
is plentiful and high-quality.

4.3 WHAT METHOD IS THE MOST SAMPLE-EFFICIENT?

We investigate how different methods perform when the dataset size varies. While our ultimate goal is
to have a method that can make use of a large amount of suboptimal offline data, this experiment serves
to distinguish which methods can glean the most information from available data. We tried ranges of
dataset sizes all the way down to a few thousand transitions. In Figure 5 we see that the model-based
method PLDM outperforms model-free methods when the data is scarce. HILP is more data-hungry
than other model-free methods, although it achieves perfect performance with enough data. We
hypothesize that learning dynamics provides more learning signal to the model as opposed to learning
a goal-conditioned value function and policy, making the model-based approach perform better.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Takeaway: A model-based approach is better than model-free approaches when the data is
scarce.

4.4 WHAT METHODS CAN STITCH SUBOPTIMAL TRAJECTORIES?

Can we learn from short trajectories? In this experiment, we vary the episode length T when
generating the data. This experiment aims to test the methods’ ability to stitch together shorter
trajectories in order to get to the goal. In real-life scenarios, collecting long episodes may be much
more challenging than having a large set of shorter trajectories, especially when we scale to more
open-ended environments. Therefore, the ability to learn and generalize effectively from shorter
trajectories, even when the evaluation trajectory may be much longer, is essential. In our environment,
successfully navigating from the bottom left corner to the bottom right corner requires around 90
steps. This means that successful trajectories for the hardest start goal pairings are never observed in
a dataset with episodes of length 16. In order to successfully solve this task, the learning method has
to be able to stitch together multiple offline trajectories. We generate several datasets, with episode
length of 91, 64, 32, 16. We adjust the number of episodes to keep the total number of transitions
close to 3 million. The results are shown in Figure 5 (center). We see that when the episode length is
short, goal-conditioned methods fail. We hypothesize that because goal-conditioned methods sample
state and goal pairs from a trajectory to train their policies, far away goals become out of distribution
for the resulting policy. On the other hand, HILP performs well because instead of reaching goals,
it learns to follow directions in the latent space, which can be learned even from short trajectories.
Similarly, a model based method such as PLDM can learn an accurate model from short trajectories
and stitch together a plan during test time.

Can we learn from data with imperfect coverage? We artificially constrain trajectories to always
stay within one room within the episode, and never pass through the door. Without the constraint,
around 35% trajectories pass through the door. During evaluation, the agent still needs to go through
the door to reach the goal state. This also reflects possible constraints in real-life scenarios, as the
ability to stitch offline trajectories together is essential to efficiently learn from offline data. The
results are shown in Table 2. We see that HILP achieves perfect performance, while PLDM performs
worse but does not fail completely. Similarly to the experiment with short trajectories, the GCRL
methods fail. We hypothesize that the structure of the latent space allows HILP to stitch trajectories
easily, while PLDM retains some performance due to the learned dynamics. Model-free GCRL
methods fail because the goal in a different room from the current state is always out-of-distribution
for the policy trained on trajectories staying in one room.

Takeaway: When solving the task requires ‘stitching’, HILP and the model-based approach are
better than model-free GCRL.

4.5 WHAT METHODS CAN LEARN FROM RANDOM TRAJECTORIES?

(a) (b)
Figure 6: Examples of trajectories used
in the two-rooms environment. (a)
shows a trajectory where each step’s di-
rection is sampled from Von Mises distri-
bution. (b) shows an example trajectory
where each step is fully random, making
the agent stay roughly in one place.

In this experiment, we evaluate how trajectory quality af-
fects agent performance. In practice, collecting random
trajectories is easy, but access to skilled demonstrations
cannot always be assumed. Therefore, developing an al-
gorithm that can learn from noisy or random trajectories
is critical for leveraging all available data. We gener-
ate a dataset of noisy trajectories, where at each step the
direction is sampled completely at random. This effec-
tively makes the agent move randomly, and throughout
the episode it mostly stays close to where it started. In
this dataset, the average maximum distance between any
two points in a trajectory is ∼ 10 (when the whole en-
vironment is 64 by 64), while when using Von Mises to
sample actions, it is ∼ 28. Example trajectories from
both types of action sampling are shown in Figure 6.
Again, we see that HILP and the model-based PLDM
perform better with noisy data, while the goal-conditioned RL methods struggle (Figure 5). Similarly

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

t=0 t=45 t=99

(a)

1.0 1.5
Max chaser step

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

Random
Zero
HILP
PLDM

(b)

0 50 100
Episode timestep

0

10

20

30

Av
g

di
st

an
ce

 to
 c

ha
se

r PLDM
Random
Zero
HILP

(c)
Figure 7: Testing zero-shot generalization to the chasing task. (a) Chase environment. The
controlled agent (in green) is tasked with avoiding the chaser agent (red). The chaser agent follows the
shortest path to the agent. The observations of the agent remain unchanged: we pass the chaser state
as the goal state. The agent has to avoid the specified state instead of reaching it. (b) Performance
of the tested methods on the chasing task across different chaser speeds, with faster chaser making
the task harder. We baseline against policies that always take zero actions (labeled as ‘Zero’) and
policies that always take random actions (labeled as ‘Random’). (c) Average distance between the
controlled agent and the chaser agent throughout the episode when chaser speed is 1.0.

to the experiment with shorter trajectories, we hypothesize that because trajectories on average do not
go far, the sampled state and goal pairs during training are close to each other, making faraway goals
out of distribution. On the other hand, PLDM uses the data only to learn the dynamics model, and
random trajectories are still suitable for the purpose. HILP uses the data to learn the latent space and
how to traverse it in various dimensions, and can also use the random trajectories effectively.

Takeaway: When the dataset quality is low, HILP and the model-based method perform better
than offline GCRL.

4.6 HOW WELL DO ZERO-SHOT METHODS GENERALIZE TO A NEW TASK?

In order to build a system that can learn from offline data effectively, we need a learning algorithm
that can generalize to different tasks. So far, we compared all the methods on goal-reaching tasks. In
this experiment, we test whether the selected methods are able to generalize to a different task in the
same environment. In this section, we compare the performances of PLDM and HILP on the task of
avoiding another agent that is ‘chasing’ the controlled agent. We evaluate models trained on optimal
data from the experiment in Section 4.2 without any additional training. In this task, the chasing agent
follows an expert policy that moves toward the agent along the shortest path. To vary the difficulty
of the task, we vary the speed of the chasing agent. The goal of the controlled agent is to avoid the
chasing agent. We note that the goal-conditioned methods can only reach specified goals, and by
definition are unable to avoid a given state. Therefore, we only test PLDM and HILP. At each step, the
agent is given the state of the chaser agent, and has to choose actions to avoid the chaser. To achieve
that, in PLDM we simply invert the sign of the planning objective, making planning maximize the
distance in representation space to the goal state. In HILP, we invert the skill direction. To compare
the two methods, we evaluate the success rate of the controlled agent avoiding the chaser agent. The
episode is considered successful if the agent manages to stay away from the chaser by at least 1.4
pixels for the whole episode lasting 100 steps. The results are shown in Figure 7b. To further analyze
the results, we also investigate average distance between the agents throughout the episode, and plot
the average, see Figure 7c. We see that PLDM performs better than HILP, and is able to evade the
chaser more efficiently, keeping a larger distance between the agents at the end of the episode.

Takeaway: planning with a latent dynamics model generalizes better to a new task compared to
HILP.

4.7 WHAT METHODS CAN GENERALIZE TO UNSEEN ENVIRONMENTS?

In this experiment we test the ability of the tested methods to generalize to new environments.
Generalization to new environment variations is a requirement for any truly general RL agent, as

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

it is impossible to collect data for every scenario. To test this, we introduce another navigation
environment featuring more complex dynamics and configurable layouts, see Figure 1 for an example.

Figure 8: Left: Plans generated by PLDM
at test time. Right: Actual agent trajectories
for the tested methods. PLDM is the only
method that reliably reaches the goal on
held-out mazes.

We utilize the Mujoco PointMaze environment
(Todorov et al., 2012) and generate various maze lay-
outs by randomly permuting wall locations. The data is
collected by initializing the agent at a random location
and sampling actions randomly at every step. The ob-
servation space contains the top down view of the maze
in RGB image format and the velocity of the agent,
while the action is the 2D acceleration vector. The goal
is to reach a randomly sampled goal state in the envi-
ronment. For more details about the environment, see
Appendix C.2. To study the generalization ability of
our agents, we vary the number (5, 10, 20, 40) of pre-
training maze layouts in the offline dataset and evaluate
the trained agents on a held-out set of unseen layouts.
Furthermore, for agents trained on 5 layouts, we ana-
lyze how their performance is affected by the degree to
which the test layouts differ from the training layouts
in distribution. We show the results in Figure 1, and more details in Figure 9. PLDM demonstrates
the best performance, generalizing to unseen environments, even when trained on as few as five maps,
while other methods fail. In particular, as the test layouts move out of distribution from train layouts,
all methods except PLDM suffer in performance as a consequence. To make sure all methods are
able to solve the task, we also evaluate the methods on a fixed layout, and see that all of them are able
to reach 100% success rate, see Table 5. Figure 8 and 9 show the plans inferred by PLDM at test
time, as well as the different agents’ trajectories.

Takeaway: The model-based approach enables better generalization to unseen environment
variations than model-free methods.

5 CONCLUSION

In this work, we conducted a comprehensive study of existing RL methods for learning from offline
data without rewards, aiming to identify the most promising approaches for leveraging large datasets
of suboptimal trajectories. Our findings highlight HILP and PLDM as the strongest candidates, with
PLDM demonstrating the highest robustness to variations in data quality. We aggregate our results in
Table 1. Overall, we draw 3 main conclusions:

• C1 The model-based approach exhibits robustness to data quality, superior data efficiency, and
the best generalization to new layouts and tasks;

• C2 Learning a well-structured latent-space (e.g. using HILP) enables trajectory stitching and
robustness to data quality, although it is more data-hungry than other methods;

• C3 Model-free GCRL methods are a great choice when the data is plentiful and good quality.

Moving forward. PLDM works well across different dataset settings, and is able to learn from
poor data and generalize to novel environments and tasks. Therefore, we believe that learning
latent dynamics models is a promising candidate for pre-training on large datasets of suboptimal
trajectories. Dynamics learning can also be extended to data without actions by modeling them as
a latent variable (Seo et al., 2022; Ye et al., 2022). We believe that other non-generative objectives
for latent representation learning (Oquab et al., 2023; Bardes et al., 2024) can be used to further
improve performance. Another promising direction of research is planning. Dynamics learning and
planning bring their own set of issues, including accumulating prediction errors (Lambert et al., 2022)
and increased computational complexity during inference. In our case, we used MPPI (Williams
et al., 2015) for planning with a learned dynamics model, which takes a considerable amount of
time, making evaluation with PLDM about 100 times slower compared to model-free methods (see
Appendix F for details). Further research into making planning more efficient by e.g. backpropagating
through the forward model is needed (Bharadhwaj et al., 2020). In domains where inference speed is
important, planning can be also used as the target to train a policy (Liu et al., 2022).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew, B., Tobin, J.,
Pieter Abbeel, O., and Zaremba, W. Hindsight experience replay. Advances in neural information
processing systems, 30, 2017.

Balestriero, R. and LeCun, Y. Learning by reconstruction produces uninformative features for
perception. arXiv preprint arXiv:2402.11337, 2024.

Banijamali, E., Shu, R., Ghavamzadeh, M., Bui, H., and Ghodsi, A. Robust locally-linear controllable
embedding. (arXiv:1710.05373), February 2018. doi: 10.48550/arXiv.1710.05373. URL http:
//arxiv.org/abs/1710.05373. arXiv:1710.05373 [cs].

Bardes, A., Ponce, J., and LeCun, Y. Vicreg: Variance-invariance-covariance regularization for self-
supervised learning. arXiv preprint arXiv:2105.04906, 2021.

Bardes, A., Garrido, Q., Ponce, J., Chen, X., Rabbat, M., LeCun, Y., Assran, M., and Ballas,
N. Revisiting feature prediction for learning visual representations from video. arXiv preprint
arXiv:2404.08471, 2024.

Bharadhwaj, H., Xie, K., and Shkurti, F. Model-predictive control via cross-entropy and gradient-
based optimization. In Learning for Dynamics and Control, pp. 277–286. PMLR, 2020.

Black, K., Brown, N., Driess, D., Esmail, A., Equi, M., Finn, C., Fusai, N., Groom, L., Hausman, K.,
Ichter, B., et al. π0: A vision-language-action flow model for general robot control. arXiv preprint
arXiv:2410.24164, 2024.

Buckman, J., Gelada, C., and Bellemare, M. G. The importance of pessimism in fixed-dataset policy
optimization. arXiv preprint arXiv:2009.06799, 2020.

Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., and Joulin, A. Emerging
properties in self-supervised vision transformers. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 9650–9660, 2021.

Chen, B., Zhu, C., Agrawal, P., Zhang, K., and Gupta, A. Self-supervised reinforcement learning that
transfers using random features. (arXiv:2305.17250), May 2023. doi: 10.48550/arXiv.2305.17250.
URL http://arxiv.org/abs/2305.17250. arXiv:2305.17250 [cs].

Cho, K. On the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259, 2014.

Cobbe, K., Klimov, O., Hesse, C., Kim, T., and Schulman, J. Quantifying generalization in reinforce-
ment learning. arxiv preprint arxiv: 181202341. 2018.

Deisenroth, M. and Rasmussen, C. E. Pilco: A model-based and data-efficient approach to policy
search. In Proceedings of the 28th International Conference on machine learning (ICML-11), pp.
465–472, 2011.

Ernst, D., Geurts, P., and Wehenkel, L. Tree-based batch mode reinforcement learning. Journal of
Machine Learning Research, 6, 2005.

Eysenbach, B., Zhang, T., Levine, S., and Salakhutdinov, R. R. Contrastive learning as goal-
conditioned reinforcement learning. Advances in Neural Information Processing Systems, 35:
35603–35620, 2022.

Finn, C., Tan, X. Y., Duan, Y., Darrell, T., Levine, S., and Abbeel, P. Deep spatial autoencoders for
visuomotor learning. (arXiv:1509.06113), March 2016. doi: 10.48550/arXiv.1509.06113. URL
http://arxiv.org/abs/1509.06113. arXiv:1509.06113 [cs].

Frans, K., Park, S., Abbeel, P., and Levine, S. Unsupervised zero-shot reinforcement learning via
functional reward encodings. arXiv preprint arXiv:2402.17135, 2024.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine, S. D4rl: Datasets for deep data-driven
reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

10

http://arxiv.org/abs/1710.05373
http://arxiv.org/abs/1710.05373
http://arxiv.org/abs/2305.17250
http://arxiv.org/abs/1509.06113

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Ghosh, D., Gupta, A., Reddy, A., Fu, J., Devin, C., Eysenbach, B., and Levine, S. Learning to reach
goals via iterated supervised learning. arXiv preprint arXiv:1912.06088, 2019.

Ghugare, R., Geist, M., Berseth, G., and Eysenbach, B. Closing the gap between td learning and
supervised learning–a generalisation point of view. arXiv preprint arXiv:2401.11237, 2024.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D., Lee, H., and Davidson, J. Learning latent
423 dynamics for planning from pixels. arXiv preprint arXiv:1811.04551, 424, 2018.

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. Dream to control: Learning behaviors by latent
imagination. arXiv preprint arXiv:1912.01603, 2019.

Hafner, D., Lillicrap, T., Norouzi, M., and Ba, J. Mastering atari with discrete world models. arXiv
preprint arXiv:2010.02193, 2020.

Hafner, D., Pasukonis, J., Ba, J., and Lillicrap, T. Mastering diverse domains through world models.
arXiv preprint arXiv:2301.04104, 2023.

Hansen, N., Wang, X., and Su, H. Temporal difference learning for model predictive control. arXiv
preprint arXiv:2203.04955, 2022.

Hatch, K., Yu, T., Rafailov, R., and Finn, C. Example-based offline reinforcement learning without
rewards. Proceedings of Machine Learning Research vol, 144:1–17, 2022.

Hu, H., Yang, Y., Zhao, Q., and Zhang, C. The provable benefits of unsupervised data sharing for
offline reinforcement learning. arXiv preprint arXiv:2302.13493, 2023.

Kim, J., Park, S., and Levine, S. Unsupervised-to-online reinforcement learning. arXiv preprint
arXiv:2408.14785, 2024.

Kostrikov, I., Nair, A., and Levine, S. Offline reinforcement learning with implicit q-learning. arXiv
preprint arXiv:2110.06169, 2021.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Conservative q-learning for offline reinforcement
learning. In Advances in Neural Information Processing Systems, volume 33, pp. 1179–1191, 2020.
URL https://arxiv.org/abs/2006.04779.

Lambert, N., Pister, K., and Calandra, R. Investigating compounding prediction errors in learned
dynamics models. (arXiv:2203.09637), March 2022. doi: 10.48550/arXiv.2203.09637. URL
http://arxiv.org/abs/2203.09637. arXiv:2203.09637 [cs].

Laskin, M., Srinivas, A., and Abbeel, P. Curl: Contrastive unsupervised representations for reinforce-
ment learning. In International conference on machine learning, pp. 5639–5650. PMLR, 2020.

LeCun, Y. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27. Open
Review, 62(1):1–62, 2022.

Lesort, T., Dı́az-Rodrı́guez, N., Goudou, J.-F., and Filliat, D. State representation learning for control:
An overview. Neural Networks, 108:379–392, 2018.

Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline reinforcement learning: Tutorial, review, and
perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Littwin, E., Saremi, O., Advani, M., Thilak, V., Nakkiran, P., Huang, C., and Susskind, J. How jepa
avoids noisy features: The implicit bias of deep linear self distillation networks. arXiv preprint
arXiv:2407.03475, 2024.

Liu, I.-C. A., Uppal, S., Sukhatme, G. S., Lim, J. J., Englert, P., and Lee, Y. Distilling motion planner
augmented policies into visual control policies for robot manipulation. In Conference on Robot
Learning, pp. 641–650. PMLR, 2022.

Lynch, C., Khansari, M., Xiao, T., Kumar, V., Tompson, J., Levine, S., and Sermanet, P. Learning
latent plans from play. In Conference on robot learning, pp. 1113–1132. PMLR, 2020.

Mnih, V. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

11

https://arxiv.org/abs/2006.04779
http://arxiv.org/abs/2203.09637

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Morari, M. and Lee, J. H. Model predictive control: past, present and future. Computers & chemical
engineering, 23(4-5):667–682, 1999.

Nair, S., Savarese, S., and Finn, C. Goal-aware prediction: Learning to model what matters. In
International Conference on Machine Learning, pp. 7207–7219. PMLR, 2020.

Nair, S., Rajeswaran, A., Kumar, V., Finn, C., and Gupta, A. R3m: A universal visual representation
for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.

OpenAI, M. A., Baker, B., Chociej, M., Józefowicz, R., McGrew, B., Pachocki, J. W., Pachocki,
J., Petron, A., Plappert, M., Powell, G., et al. Learning dexterous in-hand manipulation. corr
abs/1808.00177 (2018). arXiv preprint arXiv:1808.00177, 2018.

Oquab, M., Darcet, T., Moutakanni, T., Vo, H., Szafraniec, M., Khalidov, V., Fernandez, P., Haziza,
D., Massa, F., El-Nouby, A., et al. Dinov2: Learning robust visual features without supervision.
arXiv preprint arXiv:2304.07193, 2023.

Park, S., Frans, K., Eysenbach, B., and Levine, S. Ogbench: Benchmarking offline goal-conditioned
rl. arXiv preprint arXiv:2410.20092, 2024a.

Park, S., Ghosh, D., Eysenbach, B., and Levine, S. Hiql: Offline goal-conditioned rl with latent states
as actions. Advances in Neural Information Processing Systems, 36, 2024b.

Park, S., Kreiman, T., and Levine, S. Foundation policies with hilbert representations. arXiv preprint
arXiv:2402.15567, 2024c.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., et al. Pytorch: An imperative style, high-performance deep learning library.
Advances in neural information processing systems, 32, 2019.

Pertsch, K., Rybkin, O., Ebert, F., Zhou, S., Jayaraman, D., Finn, C., and Levine, S. Long-horizon
visual planning with goal-conditioned hierarchical predictors. Advances in Neural Information
Processing Systems, 33:17321–17333, 2020.

Rafailov, R., Yu, T., Rajeswaran, A., and Finn, C. Offline reinforcement learning from images with
latent space models. In Learning for dynamics and control, pp. 1154–1168. PMLR, 2021.

Schwarzer, M., Rajkumar, N., Noukhovitch, M., Anand, A., Charlin, L., Hjelm, R. D., Bachman, P.,
and Courville, A. C. Pretraining representations for data-efficient reinforcement learning. Advances
in Neural Information Processing Systems, 34:12686–12699, 2021.

Seo, Y., Lee, K., James, S. L., and Abbeel, P. Reinforcement learning with action-free pre-training
from videos. In International Conference on Machine Learning, pp. 19561–19579. PMLR, 2022.

Shu, R., Nguyen, T., Chow, Y., Pham, T., Than, K., Ghavamzadeh, M., Ermon, S., and Bui, H. H.
Predictive coding for locally-linear control. (arXiv:2003.01086), March 2020. doi: 10.48550/
arXiv.2003.01086. URL http://arxiv.org/abs/2003.01086. arXiv:2003.01086 [cs].

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J.,
Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. Mastering the game of go with deep neural
networks and tree search. nature, 529(7587):484–489, 2016.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker,
L., Lai, M., Bolton, A., et al. Mastering the game of go without human knowledge. nature, 550
(7676):354–359, 2017.

Sobal, V., SV, J., Jalagam, S., Carion, N., Cho, K., and LeCun, Y. Joint embedding predictive
architectures focus on slow features. arXiv preprint arXiv:2211.10831, 2022.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics engine for model-based control. In IROS, pp.
5026–5033. IEEE, 2012. ISBN 978-1-4673-1737-5. URL http://dblp.uni-trier.de/
db/conf/iros/iros2012.html#TodorovET12.

Touati, A. and Ollivier, Y. Learning one representation to optimize all rewards. Advances in Neural
Information Processing Systems, 34:13–23, 2021.

12

http://arxiv.org/abs/2003.01086
http://dblp.uni-trier.de/db/conf/iros/iros2012.html#TodorovET12
http://dblp.uni-trier.de/db/conf/iros/iros2012.html#TodorovET12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Touati, A., Rapin, J., and Ollivier, Y. Does zero-shot reinforcement learning exist? arXiv preprint
arXiv:2209.14935, 2022.

Wang, K., Zhou, K., Zhang, Q., Shao, J., Hooi, B., and Feng, J. Towards better laplacian representation
in reinforcement learning with generalized graph drawing. In International Conference on Machine
Learning, pp. 11003–11012. PMLR, 2021.

Wang, K., Zhou, K., Feng, J., Hooi, B., and Wang, X. Reachability-aware laplacian representation in
reinforcement learning. arXiv preprint arXiv:2210.13153, 2022.

Watter, M., Springenberg, J. T., Boedecker, J., and Riedmiller, M. Embed to control: A locally
linear latent dynamics model for control from raw images. (arXiv:1506.07365), November
2015. doi: 10.48550/arXiv.1506.07365. URL http://arxiv.org/abs/1506.07365.
arXiv:1506.07365 [cs].

Williams, G., Aldrich, A., and Theodorou, E. Model predictive path integral control using covariance
variable importance sampling. arXiv preprint arXiv:1509.01149, 2015.

Wu, Y., Tucker, G., and Nachum, O. The laplacian in rl: Learning representations with efficient
approximations. arXiv preprint arXiv:1810.04586, 2018.

Yang, R., Yong, L., Ma, X., Hu, H., Zhang, C., and Zhang, T. What is essential for unseen goal
generalization of offline goal-conditioned rl? In International Conference on Machine Learning,
pp. 39543–39571. PMLR, 2023.

Yarats, D., Brandfonbrener, D., Liu, H., Laskin, M., Abbeel, P., Lazaric, A., and Pinto, L. Don’t
change the algorithm, change the data: Exploratory data for offline reinforcement learning. arXiv
preprint arXiv:2201.13425, 2022.

Ye, W., Zhang, Y., Abbeel, P., and Gao, Y. Become a proficient player with limited data through
watching pure videos. In The Eleventh International Conference on Learning Representations,
2022.

Yu, T., Thomas, G., Yu, L., Ma, T. X., Ermon, S., Zou, J., and Finn, C. Mopo: Model-based offline
policy optimization. Advances in Neural Information Processing Systems, 33:14129–14142, 2020.
URL https://arxiv.org/abs/2005.13239.

Yu, T., Kumar, A., Chebotar, Y., Hausman, K., Finn, C., and Levine, S. How to leverage unlabeled
data in offline reinforcement learning. In International Conference on Machine Learning, pp.
25611–25635. PMLR, 2022.

Zhang, M., Vikram, S., Smith, L., Abbeel, P., Johnson, M. J., and Levine, S. Solar: Deep structured
representations for model-based reinforcement learning. (arXiv:1808.09105), June 2019. doi: 10.
48550/arXiv.1808.09105. URL http://arxiv.org/abs/1808.09105. arXiv:1808.09105
[cs].

Zhang, W., GX-Chen, A., Sobal, V., LeCun, Y., and Carion, N. Light-weight probing of unsupervised
representations for reinforcement learning. arXiv preprint arXiv:2208.12345, 2022.

Zhou, G., Pan, H., LeCun, Y., and Pinto, L. Dino-wm: World models on pre-trained visual features
enable zero-shot planning. arXiv preprint arXiv:2411.04983, 2024.

13

http://arxiv.org/abs/1506.07365
https://arxiv.org/abs/2005.13239
http://arxiv.org/abs/1808.09105

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A IMPACT STATEMENT

This paper presents work whose goal is to advance the field of Machine Learning and Reinforcement
Learning. There are many potential societal consequences of our work, none which we feel must be
specifically highlighted here.

B LIMITATIONS.

All our experiments were conducted in simple navigation environments, and it is unclear if these
findings will translate to more complex environments, e.g. physical robots data. However, we argue
that the conceptual understanding of the effects of data quality on the investigated methods will hold,
as even in the relatively simple setting, we see many recent methods break down in surprising ways.

C ENVIRONMENTS AND DATASETS

C.1 TWO-ROOMS ENVIRONMENT

We build our own top-down navigation environment. It is implemented in PyTorch (Paszke et al.,
2019), and supports GPU acceleration. The environment does not model momentum, i.e. the agent
does not have velocity, and is moved by the specified action vector at each step. When the action
takes the agent through a wall, the agent is moved to the intersection point between the action vector
and the wall. We generate the specified datasets and save them to disk for our experiments. The
datasets generation takes under 30 minutes.

C.2 DIVERSE POINTMAZE

Here, we build upon the Mujoco PointMaze environment (Todorov et al., 2012), which contains a
point mass agent with a 4D state vector (global x, global y, vx, vy), where v is the agent velocity. To
allow our models to perceive the different maze layouts, we use as model input a top down view of
the maze rendered as (64, 64, 3) RGB image tensor instead of relying on (global x, global) directly.

Mujoco PointMaze allows for customization of the maze layout via a grid structure, where a grid
cell can either be a wall or space. We opt for a 4 × 4 grid (excluding outer wall). Maze layouts
are generated randomly. Only the following constraints are enforced: 1) all the space cells are
interconnected, 2) percentage of space cells range from 50% to 75%.

We set action repeat to 4 for our version of the environment.

C.2.1 DATASET GENERATION

We produce four training datasets with the following parameters:

Transitions # layouts # episodes
per layout

episode
length

1000000 5 2000 100
1000000 10 1000 100
1000000 20 500 100
1000000 40 250 100

Table 3: Details for Diverse PointMaze datasets

Each episode is collected by setting the (global x, global) at a random location in the maze, and
agent velocity (vx, vy) by randomly sampling a 2D vector with ∥v∥ ≤ 5, given that vx and vy are
clipped within range of [−5, 5] in the environment.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

C.2.2 EVALUATION

All the test layouts during evaluation are disjoint from the training layouts. For each layout, trials are
created by randomly sampling a start and goal position guaranteed to be at least 3 cells away on the
maze. The same set of layouts and trials are used to evaluate all agents for a given experimental setting.

We evaluate agents in two scenarios: 1) How agents perform on test layouts when trained on various
number of train layouts; 2) Given a constant number of training layouts, how agents perform on test
maps with varying degrees of distribution shift from the training layouts.

For scenario 1), we evaluate the agents on 40 randomly generated test layouts, 1 trial per layout.

For scenario 2), we randomly generate test layouts and partition them into groups of 5, where all the
layouts in each group have the same degree of distribution shift from train layout as defined by metric
Dmin defined as the following:

Given train layouts {L1
train, L

2
train, ...L

N
train}, test layout Ltest, and let d(L1, L2) represents the edit

distance between two layouts L1 and L2’s binary grid representation. We quantify the distribution
shift of Ltest as Dmin = mini∈{1,2,...,N} d(Ltest, L

(i)
train).

In this second scenario we evaluate 5 trials per layout, thus a total of 5× 5 = 25 per group.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

D VISUALIZATION OF PLANS AND TRAJECTORIES FOR DIVERSE POINTMAZE

Training
Layouts

In
distribution

Out-of-
distribution

PLDN Plan PLDN CRL GCBC GCIQL HIQL HILP

Figure 9: Top: The training layouts used in the 5 layout setting. Middle: Trajectories of different
agents navigating an unseen maze layout towards goal at test time. As the layouts become increasingly
out-of-distribution, only PLDN consistently succeeds. Layouts can be represented as a 4x4 array, with
each value being either a wall or empty space. The distribution shift is quantified by the minimum
edit distance between a given test layout and the closest training layout. The top row corresponds
to an in-distribution layout with a minimum edit distance of 0, and with each subsequent row, the
minimum edit distance increases by 1 incrementally.

E MODELS

For CRL, GCBC, GCIQL, and HIQL we use the implementations from the repository2 of OGBench
(Park et al., 2024a). Likewise, for HILP we use the official implementation3 from its authors.

2https://github.com/seohongpark/ogbench
3https://github.com/seohongpark/HILP

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

For the Diverse PointMaze environment, to keep things consistent with our implementation of PLDM
(E.1.3), instead of using frame stacking, we append the agent velocity directly to the encoder output.

E.1 PLDM

E.1.1 OBJECTIVE FOR COLLAPSE PREVENTION

To prevent collapse, we introduce a VICReg-based (Bardes et al., 2021) objective. We modify it to
apply variance objective across the time dimension to encourage features to capture information that
changes, as opposed to information that stays fixed (Sobal et al., 2022). The objective to prevent
collapse is defined as follows:

Lvar =
1

TD

T∑
t=0

D∑
j=0

max(0, γ −
√
Var(Zt,:,j) + ϵ)

Ltime−var =
1

ND

N∑
b=0

D∑
j=0

max(0, γ −
√
Var(Z:,b,j) + ϵ)

C(Zt) =
1

N − 1
(Zt − Z̄t)

⊤(Zt − Z̄t), Z̄ =
1

N

N∑
b=1

Zt,b

Lcov =
1

T

T∑
t=0

1

D

∑
i̸=j

[C(Zt)]
2
i,j

LIDM =

T∑
t=0

1

N

N∑
b=0

∥at,b −MLP(Z(t,b), Z(t+1,b))∥22

We also apply a tunable objective to enforce the temporal smoothness of learned representations:

Ltime−sim =

T−1∑
t=0

1

N

N∑
b=0

∥Zt,b − Zt+1,b∥22

The combined objective is a weighted sum of above:

LJEPA = Lsim + αLvar + βLcov + λLtime−var + δLtime−sim + ωLIDM

E.1.2 MODEL DETAILS FOR TWO-ROOMS

We use the same Impala Small Encoder used by the other methods from OGBench (Park et al., 2024a).
For predictor, we use the a 2-layer Gated recurrent unit (Cho, 2014) with 512 hidden dimensions; the
predictor input at timestep t is a 2D displacement vector representing agent action at timestep t; while
the initial hidden state is hθ(s0), or the encoded state at timestep 0. A single layer normalization layer
is applied to the encoder and predictor outputs across all timesteps. Parameter counts are the following:

total params: 2218672
encoder params: 1426096
predictor params: 793600

E.1.3 MODEL DETAILS FOR DIVERSE POINTMAZE ENVIRONMENT

For the Diverse PointMaze environment, we use convolutional networks for both the encoder and
predictor. To fully capture the agent’s state at timestep t, we first encode the top down view of
the maze to get a spatial representation of the environment hθ : R3×64×64 → R16×26×26, zenv =
hθ(s

env). We incorporate the agent velocity by first transforming it into planes Expander2D :
R2 → R2×26×26, svp = Expander2D(sv), where each slice svp[i] is filled with sv[i]. Then, we
concatenate the expanded velocity tensor with spatial representation along the channel dimension to
get our overall representation: z = concat(svp, zenv,dim = 0) ∈ R18×26×26.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

For the predictor input, we concatenate the state st ∈ R18×26×26 with the expanded action
Expander2D(at) ∈ R2×26×26 along the channel dimension. The predictor output has the same di-
mension as the representation: ẑ ∈ R18×26×26. Both the encodings and predictions are flattened for
computing the VicReg and IDM objectives.

We set the planning-frequency (Section 3.2) in MPPI to k = 4 for this environment.

The full model architecture is summarized using PyTorch-like notations.

total params: 53666
encoder params: 33296
predictor params: 20370

PLDM(
(backbone): MeNet6(

(layers): Sequential(
(0): Conv2d(3, 16, kernel_size=(5, 5), stride=(1, 1))
(1): GroupNorm(4, 16, eps=1e-05, affine=True)
(2): ReLU()
(3): Conv2d(16, 32, kernel_size=(5, 5), stride=(2, 2))
(4): GroupNorm(8, 32, eps=1e-05, affine=True)
(5): ReLU()
(6): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1))
(7): GroupNorm(8, 32, eps=1e-05, affine=True)
(8): ReLU()
(9): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding

=(1, 1))
(10): GroupNorm(8, 32, eps=1e-05, affine=True)
(11): ReLU()
(12): Conv2d(32, 16, kernel_size=(1, 1), stride=(1, 1))

)
(propio_encoder): Expander2D()

)
(predictor): ConvPredictor(

(layers): Sequential(
(0): Conv2d(20, 32, kernel_size=(3, 3), stride=(1, 1), padding

=(1, 1))
(1): GroupNorm(4, 32, eps=1e-05, affine=True)
(2): ReLU()
(3): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding

=(1, 1))
(4): GroupNorm(4, 32, eps=1e-05, affine=True)
(5): ReLU()
(6): Conv2d(32, 18, kernel_size=(3, 3), stride=(1, 1), padding

=(1, 1))
)
(action_encoder): Expander2D()

)
)

F ANALYZING PLANNING TIME OF PLDM

In order to estimate how computationally expensive it is to run planning with a latent dynamics model,
we evaluate PLDM and GCIQL on 25 episodes in the two-rooms environment. Each episode is 200
steps. We record the average time per episode and the standard deviation. We do not run HILP, GCBC,
or CRL because the resulting policy architecture is the same, making the evaluation time identical to
that of GCIQL. HIQL takes more time due to the hierarchy of policies. The results are shown below:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 4: Time of evaluation on one episode in two-rooms environment. PLDM is about 100 times
slower than model-free methods. Time is calculated by running on 25 episodes.

Method Time per episode (seconds)
PLDM 13.44 ± 0.11
GCIQL 0.12 ± 0.03
HIQL 0.16 ± 0.03

G RESULTS FOR SINGLE MAZE SETTING

Table 5: Results averaged over 3 seeds ± std

Method Sucess rate)
PLDM 0.990 ± 0.001
CRL 0.980 ± 0.001

GCBC 0.970 ± 0.024
GCIQL 1.000 ± 0.000
HIQL 1.000 ± 0.000
HILP 1.000 ± 0.000

H HYPERPARAMETERS

H.1 CRL, GCBC, GCIQL, HIQL, HILP

Unless listed below, all hyperparameters remain consistent with default values from OGBench and
HILP repositories. 2,3

H.1.1 TWO-ROOMS

For all methods, we used the learning rate of 3e-4. The rest of the hyperparameters were kept default.

Table 6: HILP hyperparameters

Hyperparam Value
Expectile 0.7

Skill expectile 0.7

Table 7: HIQL hyperparameters

Hyperparam Value
High-level AWR alpha 3.0
Low-level AWR alpha 3.0

Expectile 0.7

Table 8: GCIQL hyperparameters

Hyperparam Value
Actor-loss DDPG-BC

BC coefficient 0.3
Expectile 0.7

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

H.1.2 DIVERSE POINTMAZE

Table 9: Dataset specific hyperparameters of CRL, GCBC, GCIQL, HIQL, HILP for the Diverse
PointMaze environment. For HILP, we set the same value for expectile and skill expectile.

Dataset CRL GCBC GCIQL HIQL HILP

LR LR LR Expectile LR Expectile LR Expectile

map layouts = 5 0.0003 0.0003 0.0002 0.8 0.0001 0.7 0.0001 0.9
map layouts = 10 0.0003 0.0001 0.0001 0.9 0.0001 0.7 0.0001 0.9
map layouts = 20 0.0003 0.0001 0.0001 0.6 0.0003 0.7 0.0001 0.9
map layouts = 40 0.0003 0.0001 0.0003 0.9 0.0001 0.9 0.0001 0.9

H.2 PLDM

H.2.1 TWO-ROOMS

The best case setting is sequence length = 91, dataset size = 3M, non-random % = 100, wall crossing
% ≈ 35. For our experiments we vary each of the above parameters individually.Table 10: Dataset-agnostic hyperparameters

Hyperparameter Value
Batch Size 64
Optimizer Adam
Scheduler Cosine

MPPI noise σ 5
MPPI # samples 500

MPPI λ 0.005

For the dataset specific hyperparameters, we tune the following parameters from Appendix E.1.1:

Table 11: Dataset specific hyperparameters

Dataset LR α β λ δ ω

Sequence length = 91 0.0007 4.0 6.9 0.25 0.75 1.0
Sequence length = 65 0.0003 5.0 6.9 0.25 0.75 1.0
Sequence length = 33 0.0007 5.0 6.9 0.25 0.75 1.0
Sequence length = 17 0.0028 3.0 6.9 0.25 0.75 1.0

Dataset size = 634 0.0030 2.2 13.0 0.19 0.50 2.0
Dataset size = 1269 0.0010 2.2 13.0 0.19 0.50 2.0
Dataset size = 5078 0.0010 2.2 13.0 0.19 0.50 2.0
Dataset size = 20312 0.0030 2.2 13.0 0.19 0.50 2.0
Dataset size = 81250 0.0010 2.2 13.0 0.19 0.50 2.0
Dataset size = 325k 0.0010 4.0 6.9 0.25 0.75 1.0
Dataset size = 1500k 0.0010 4.0 6.9 0.25 0.75 1.0

Non-random % = 0.001 0.0007 5.5 9.7 0.42 0.38 1.4
Non-random % = 0.01 0.0007 3.9 6.5 0.27 0.19 0.6
Non-random % = 0.02 0.0007 3.9 6.5 0.31 0.72 0.5
Non-random % = 0.04 0.0007 3.9 6.9 0.25 0.75 1.0
Non-random % = 0.08 0.0007 3.9 6.5 0.31 0.24 1.5
Non-random % = 0.16 0.0007 3.0 6.5 0.40 0.27 1.4

Wall crossing % = 0 0.0007 4.0 6.9 0.25 0.75 1.0

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

H.2.2 DIVERSE POINTMAZE

Table 12: Dataset-agnostic hyperparameters

Hyperparameter Value
Epochs 5

Batch Size 128
Optimizer Adam
Scheduler Cosine

MPPI noise σ 5
MPPI # samples 500

MPPI λ 0.0025

Table 13: Dataset specific hyperparameters

Dataset LR α β λ δ ω

map layouts = 5 0.04 35.0 12.0 3.0 0.1 5.4
map layouts = 5 0.04 35.0 12.0 3.0 0.1 5.4
map layouts = 20 0.05 54.5 15.5 2.7 0.1 5.2
map layouts = 40 0.05 54.5 15.5 2.7 0.1 5.2

21

	Introduction
	Related Work
	The Landscape of Reward-Free Offline RL
	Problem Setting
	Planning with a Latent Dynamics Model

	Every Method Can Excel but Few Generalize
	Environment
	What is the Best-Case Performance?
	What Method is the Most Sample-Efficient?
	What Methods Can Stitch Suboptimal Trajectories?
	What Methods Can Learn From Random Trajectories?
	How Well Do Zero-Shot Methods Generalize to a New Task?
	What Methods Can Generalize to Unseen Environments?

	Conclusion
	Impact Statement
	Limitations.
	Environments and Datasets
	Two-Rooms Environment
	Diverse PointMaze
	Dataset Generation
	Evaluation

	Visualization of Plans and Trajectories for Diverse PointMaze
	Models
	PLDM
	Objective for collapse prevention
	Model Details for Two-Rooms
	Model Details for Diverse PointMaze Environment

	Analyzing planning time of PLDM
	Results for Single Maze Setting
	Hyperparameters
	CRL, GCBC, GCIQL, HIQL, HILP
	Two-Rooms
	Diverse PointMaze

	PLDM
	Two-Rooms
	Diverse PointMaze

