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Abstract
As diffusion models have become the tool of choice for image generation and as the quality of
the images continues to improve, the question of how ‘creativity’ originates in diffusion has be-
come increasingly important. The score matching perspective on diffusion has proven particularly
fruitful for understanding how and why diffusion models generate images that remain visually
plausible while differing significantly from their training images. In particular, as explained in
(Kamb & Ganguli, 2024) and others, e.g., (Ambrogioni, 2023), theory suggests that if our score
matching were optimal, we would only be able to recover training samples through our diffusion
process. However, as shown by Kamb & Ganguli, (2024), in diffusion models where the score is
parametrized by a simple CNN, the inductive biases of the CNN itself (translation equivariance
and locality) allow the model to generate samples that globally do not match any training sam-
ples, but are rather patch-wise ‘mosaics’. Despite the widespread use of UNet architectures with
self-attention as the score backbone in diffusion models, the theoretical role of attention in score
networks remains largely unexplored. In this work, we take a preliminary step in this direction to
extend this theory to the case of diffusion models whose score is parametrized by a CNN with a
final self-attention layer. We show that our theory suggests that self-attention will induce a globally
image-consistent arrangement of local features beyond the patch-level in generated samples, and
we verify this behavior empirically on a carefully crafted dataset.

1. Introduction
Diffusion models have become the premier tool for image generation in the last decade [9]. Their
capacity to generate visually plausible images that generalize beyond the training dataset makes
them extremely useful, but this capacity is not well understood [2]. Diffusion models operate by
performing a series of transformations that map the underlying distribution of images to a centered,
multivariate Gaussian and then learning the reverse process. One of the most fruitful approaches
for understanding creativity in diffusion models has been the score matching perspective, where
a relatively small neural network is trained to approximate the derivative of the log-likelihood of
the underlying image distribution [7]. However, a large body of work has demonstrated that if this
score-approximation is exact, a diffusion model can only return training samples: it is not creative
at all [4, 6]. Kamb and Ganguli in [4] offered an important first step in understanding why diffusion
models are able to generalize extremely well despite theory suggesting that well-trained diffusion
models should memorize [1]. In particular, they provide a complete theory for diffusion models
whose score approximator is a convolutional neural network (CNN). Because CNNs have two in-
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ductive biases, translational equivariance and locality, they solve analytically for a ‘score machine’
with those two inductive biases. They demonstrated that for CNN-backed diffusion models, their
theory “partially predicts the results” of pre-trained diffusion models [4]. In practice, however,
state-of-the-art diffusion models use a much more complex score estimator network. In particular,
most these models use a U-Net structure with self-attention blocks throughout [2, 10], though re-
cent papers have explored a fully transformer-based score network [8]. Both architectures violate
the local assumption strongly and the translational equivariance assumption weakly.

In this work, we propose a theory for CNNs with a single self-attention layer at the very end,
which provides a first step towards bridging the gap between the existing theory and state-of-the-art
models. In particular, we derive a simple theoretical example that suggests that self-attention may
play the role of enforcing global self-consistency in the other-wise local patch-mosaic construction
of Kamb and Ganguli [4]. Empirically, we then validate this intuition on a simple toy dataset,
showing that samples are far more globally self-consistent with attention than without. We propose
this as a first step towards understanding the role of attention in the creativity of diffusion models.

2. Equivariant Score Machine with Attention
To gain intuition for the form of the optimal score function with attention, we first will analyze a
model with full attention over all patches. Then, to provide a tractable closed form solution, we will
make the additional assumption that attention is ‘top-1’, and show that this intuition holds.

2.1. Simple CNN with Full Attention
We begin with the following notation, following [4]: let ϕ be an arbitrary image in the diffusion
process, and for each pixel location x ∈ Λ, we write ϕx for the pixel value of ϕ at location x. Let
Ωx ⊂ Λ be the set of pixels in the patch centered at x. Let Φ be an arbitrary patch. Let πt be the
distribution over (noisy) images at time t. The true score at x is st[ϕ](x) = ∇ϕx log πt(ϕ) .

We embed each patch via g(ϕΩx) ∈ Rd where g is a convolutional embedding network, which can
be thought of as the first portion of our score-approximation network. Our learnable parameters are
in g. We then define the full score function estimator g̃[ϕ](x), which corresponds to a single layer
of attention on top of a CNN embedding.

g̃[ϕ](x) = g(ϕΩx) +
∑
y

αxy g(ϕΩy), where αxy =
exp
(
⟨g(ϕΩx), g(ϕΩy)⟩

)∑
y′ exp

(
⟨g(ϕΩx), g(ϕΩy′ )⟩

) , (1)

so that each location x ‘attends’ to all patches in the image, where the sum over y runs over all
other patch centers y ∈ Λ in the image ϕ. In particular, we apply the simplest kind of attention over
top of a convolutional neural network. The standard attention framework involves three learnable
projection matrices WQ,WK and WV that embeds our input set of tokens, X into queries Q, keys,

K, and values, V . Attention weights are then given by Attention(Q,K,V) = softmax
(
QKT
√
d

)
V . In

our case, we downgrade WQ, WK , and WV from learnable parameters into identity matrices, and
recover the form

Attention(Q,K,V) = softmax
(
XXT

√
d

)
V (2)
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which gives us exact the entry-wise formulation above, which says that αxy =
exp(xixj)∑n

k=1 exp(xi·xk)
. We

drop the scalar 1√
d

for simplicity here.
Adopting this functional form, the corresponding score matching loss becomes

L =
∑
x

Eϕ∼πt

∥∥g̃[ϕ](x) − st[ϕ](x)
∥∥2.

We mirror the derivation in [4] and write this expectation as an integral over πt and impose the
stationary condition w.r.t. g (since the attention layer has no parameters), yielding:

0 =
δL

δg(Φ)
=
∑
x

δ

δg(Φ)

∫
πt(ϕ)[||g̃[ϕ](x)− s[ϕ](x)||2]dϕ ∀Φ. (3)

See Appendix A for details on the derivation. Eventually we find that, setting µx :=
∑

z αxz(ϕ) g(ϕΩz):

0 = 2
∑
x

∫
πt[g(ϕx) +

∑
y

αxyg(ϕΩy)− s[ϕ](x)]T δ(ϕΩx − Φ) dϕ

+

∫
πt[g(ϕx) +

∑
y

αxyg(ϕΩy)− s[ϕ](x)]T
∑
y

αxy

(
I + (g(ϕΩx)− µx)δ(ϕΩy − Φ)

)
dϕ

(4)

Intuitively, the first term in our sum corresponds to a when the patch of interest Φ is the query, and
the second term corresponds to when the patch is the key or the value. In particular, the δ(ϕΩx −Φ)
term matches exactly the CNN-case, and so encourages g(ϕΩx) to match the true score of ϕΩx ,
if it were considered a purely local, de-contextualized patch. The second term corresponds to the
sum of gradients from every other patch ϕΩy that attended to x, which “encourages” g(ϕΩx) to
provide more information about the image at position y. If the weight αxy is large, then, we should
see that if there’s error when we evaluate at position x, our gradient should push us to change the
value of g(ϕΩy) so that it becomes even more useful in reconstructing the image at position x.
Thus, our score function is a weighted average of the CNN score function evaluated at that patch’s
location and the score function evaluated at every other patch that is informative about the patch
at position x. This will encourage “copy-and-paste” behavior of patches that often appear together
in a given image since the score will move the image in the direction of self-consistency because
of the second term. While the general functional-gradient expression offers strong intuition for
our empirical findings, deriving a closed-form solution in full generality proves intractable. We
therefore specialize to an informative, tractable case in the next section that partially matches our
experimental setup and provides more direct insight into the behavior of the score machine.

2.2. Simple CNN with Top-1 Attention
For simplicity, we assume that our attention is a “winner-take-all” regime, meaning that only the
most attended to patch contributes to the sum. In particular, we have∑

y

αxy g(ϕΩy) −→ g
(
ϕΩy∗(x)

)
, y∗(x) = argmax

y
⟨g(ϕΩx), g(ϕΩy)⟩. (5)

We also assume “patch-independence” under the distribution πt for all t, so that conditioning on
ϕΩx = Φ does not change the distribution of ϕΩy for y ̸= x and that our embedding g is mean-
centered over patches (ie, Eϕ∼πt

[
g(ϕΩx)

]
= 0 ∀x). We then substitute the top-1 attention form
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of Equation 5 into Equation 4. When we expand the the second term in Equation 4, we find that
since we’ve assumed that g is mean-centered and that we have approximate patch independence, the
second term goes away, leaving

0 =
∑
x

∫
πt(ϕ) 2

(
g̃[ϕ](x)− s[ϕ](x)

)⊤
δ(ϕΩx − Φ) dϕ

+
∑
x

∫
πt(ϕ) 2

(
g̃[ϕ](x)− s[ϕ](x)

)⊤
δ(ϕΩy∗(x) − Φ) dϕ.

(6)

Since there is a deterministic mapping between a given patch ϕΩx and its most attended patch
ϕΩy∗(x) , we see that the integrals with the delta peaks give closed form solutions:∫

g̃[ϕ](x)δ(ϕΩx − Φ)dϕ =

∫
g̃[ϕ](x)δ(ϕΩ∗

y(x)
− Φ)dϕ = g[Φ] + g[Φ∗] := g̃[Φ], (7)

where g[Φ∗] denotes the output of the model on the patch most attended to by Φ. Distributing the
deltas, integrating, and eventually dividing out by

[
πt(ϕΩx = Φ) + πt(ϕΩy∗(x) = Φ)

]
, we arrive at

the following solution for the optimal score function g̃[Φ]:

g̃[Φ] = ∇Φ(0) log
∑
x

[
πt(ϕΩx = Φ) + πt(ϕΩy∗(x) = Φ)

]
(8)

We refer readers to the appendix for the full derivation. If we then continue with the same procedure
as equations 36-40 of [4] we see that the optimal score function is the gradient of a mixture of Gaus-
sians centered at patches in the dataset combined with a mixture of Gaussians centered at the most
attended corresponding patches. Intuitively, this implies that during the diffusion reverse process,
each patch will be pulled towards its corresponding closest patch from the dataset, but also the corre-
sponding closest patch from the current image. This second term is exactly what we term global self-
consistency of the generated patches – they will tend to align with other patches in a current image.

3. Experiments
We validate our theory by showing that a simple attention-based diffusion model can learn and ef-
fectively reproduce such self-consistent structures in images while a CNN-based diffusion model
struggles. We evaluate the capacity to construct consistent images by measuring how often the sam-
ples generated by our diffusion model obey the rules of this dataset. First, we construct a dataset
to test this consistency property. Our dataset consists of 2048 4x4 RBG images in which each 2×2
block is filled with one of three possible color–color pairings (red/green vs. yellow/blue; red/yellow
vs. green/blue; red/blue vs. green/yellow). These parings are randomized across images but are
consistent within images. To construct our dataset, we randomly select one of three pattern types
for each image (two disjoint color pairings, for example, red and green, and blue and yellow). Then,
for each of the four quadrants in our image, we randomly select either a block of the first pairing
type or a block of the second pairing type. In particular, this means that to successfully generate
samples, our score must be sensitive to these consistent “key-value” pairings within images rather
than the potentially inconsistent pairings in the dataset as a whole.

We train four simple diffusion models on this dataset: a pure CNN-based model, a CNN-based
model with top-1 attention, a CNN-based model with attention with identity key and query ma-
trices, and a CNN + Attention model. We use a standard DDPM setup and implement our score
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network (or, equivalently, noise predictor) as a very simple 2 layer CNN with 2 convolutional lay-
ers, where the first convolutional layer is a 2x2 convolution with stride 2 and hidden dimension 32,
and our second is a transpose convolution also with a 2x2 kernel and stride length of 2. This kernel
and stride length help to encode the desired inductive biases and ensures that keys are encoded with
their associated values. Our CNN+Attention model has exactly the same CNN base but includes a
single-headed self-attention block with learnable Q, K, V matrices right before the final projection.
We train all models identically. Details on the training and more information about the two modified
attention models and their performance can be found in Appendix B.

Both qualitatively and quantitatively our attention-based model demonstrated increased consistency
within images and higher quality image generation overall, as shown in Figure 1 and Table 1. It is
clear that the CNN+Attention samples are both more visually consistent with the training samples
and reproduce blocks of the correct size and colors, showing that attention is capturing the consis-
tency of “key-value” pairs of a particular image. For each of our models (CNN and CNN+Attention)
we generated 10k samples in 100 different runs. Over these 1 million samples generated by our
attention-based model, 64.03% were consistent. We say that an image is “consistent” if its mapping
has key-value pairs that remain constant throughout the image. For example, if one quadrant of the
image contains a green-yellow pair, then if green appears as a key in any other quadrant it must be
followed by yellow. We require this for each paring that appears in the image. In practice, for a
given generated image, we map each pixel to its nearest color. Then, we split the split the map of
labels into four quadrants and checked whether those mappings were one of the permissible sets.
Finally, we computed a robust baseline “consistency percentage” by checking the consistency of
10k images generated by sampling four color pairs (with replacement), randomly assigning them to
the four quadrants. We took the average percent consistent across 100 trials.

These consistency results match what our theory suggests: the second term in Equation 4 encourages
the reconstruction of these key-value pairs that appear within a single image (self-consistency). In
the CNN results, it is clear that while the model is reproducing features that appear across the
dataset, including the quadrant layout, and some color pairing, it is unable to accurately construct
these image-specific patterns without any non-local mechanism. This helps to explain some of the
challenges that [4] faced when using their equivariant, local score machine to replicate the results
of UNet, self-attention-based diffusion.

4. Discussion
The above theory offers a promising new step towards a more theoretically grounded understanding
of how creativity emerges in diffusion models beyond the simple, purely convolutional case. Our
empirical results on a purpose-built relational dataset support the theory: the CNN+Attention model
generates significantly more self-consistent samples than its CNN-only counterpart. These findings
suggest that even a single attention block can bridge the gap between local patch mosaics and full
image consistency. While our theory here has been restricted to the very simple CNN+attention
case, we hope to extend the theory in future work to a Unet + self-attention framework and replicate
our results on larger datasets of natural images.
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Figure 1: Dataset and generated images.

Model Consistency

Random Baseline 5.38%
CNN 10.88%
CNN + Attention 64.03%

Table 1: Self-consistency of generated samples.
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Appendix A. Derivations

A.1. General Attention Derivation
Here, we’ll derive the self-consistency constraint for a simple attention mechanism mentioned in
Section 2.1. We’ll recall the notation used in [4]

1. ϕ is an arbitrary image in the diffusion process

2. x is a pixel location and Λ is the set of pixel locations in a given image.

3. Ωx is the neighborhood of pixels centered at x

4. ϕΩx is the patch of the image ϕ centered at x.

5. πt is the underlying probability distribution of images at time t

6. st[ϕ](x) is the true score at time t evaluated at position x in the image ϕ.

The original score matching loss function given in the paper [4] is given by

L =
∑
x

Eϕ∼πt

[
||f(ϕΩx)− st[ϕ](x)

∥∥2]. (9)

We want to modify this so that we actually have f(ϕΩx) as an attention based update rather than just
looking at one neighborhood of the image. First, we embed each patch using g, a convolutional em-
bedding network, which can be thought of as the first portion of our score-approximation network.
It is the only portion of our architecture with learnable parameters.

1. Let zx denote the embedding of the patch ϕΩx in Rd, where zx = g(ϕΩx)

2. Let (zy)y∈Λ be the collection of flattened patches of the image ϕ that we’re currently looking
at.

Differing from [4], in this work, instead of a purely local estimator g(ϕΩx), we define:

g̃[ϕ](x) = zx +
∑
y

αxy zy αxy =
exp
(
⟨zx, zy⟩

)∑
y′ exp

(
⟨zx, zy′⟩

)
Now we define our new model, which we’ll call g̃.

g̃(ϕ)(x) = zx +
∑
y

softmaxy(⟨zx, zy⟩) (10)

where ⟨zx, zy⟩ denotes the dot product of our vector embeddings. We write αxy = softmaxy(⟨zx, zy⟩).
The y subscript says that we’re normalizing over the y indexes so that for a fixed x, the sum of the
αxy is 1. Intuitively, a big value αxy says that the position x should pay a lot of attention to the
position y.

Thus, our loss function becomes

L =
∑
x

Eϕ∼πt [||zx +
∑
y

(softmaxy(zx, zy)zy − s[ϕ](x)||2] (11)
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Rewriting this in terms of our function g, we have

L =
∑
x

Eϕ∼πt [||g(ϕΩx) +
∑
y

(softmaxy(g(ϕΩx), g(ϕΩy))g(ϕΩy)− s[ϕ](x)||2] (12)

Now we need to take the functional derivative of this. First we’ll rewrite the expectation as an
integral and then

L =
∑
x

∫
[||g(ϕΩx) +

∑
y

(softmaxy(g(ϕΩx), g(ϕΩy))g(ϕΩy)− s[ϕ](x)||2]πt(ϕ)dϕ (13)

Now we find the function g which minimizes this loss. In particular, we’ll assert

δL
δg(Φ)

= 0 for each possible patch Φ (14)

Now we need to take this derivative.

0 =
∑
x

δ

δg(Φ)

∫
πt(ϕ)[||g(ϕΩx) +

∑
y

(softmaxy(g(ϕΩx), g(ϕΩy))g(ϕΩy)− s[ϕ](x)||2]dϕ (15)

We can differentiate under the integral sign since the bounds don’t depend on what we’re taking
the derivative with respect to, so

0 =
∑
x

∫
πt(ϕ)

δ

δg(Φ)

(
[||g(ϕΩx) +

∑
y

(softmaxy(g(ϕΩx), g(ϕΩy))g(ϕΩy)− s[ϕ](x)||2]

)
dϕ

(16)
Now we’ll apply the vector-calculus chain rule to see that we get

0 =
∑
x

∫
πt(ϕ) 2 ·

(
g(ϕΩx) +

∑
y

(
softmaxy

(
g(ϕΩx), g(ϕΩy)

)
g(ϕΩy)

)
− s[ϕ](x)

)T
δ

δg(Φ)

(
g(ϕΩx) +

∑
y

(
softmaxy

(
g(ϕΩx), g(ϕΩy)

)
g(ϕΩy)

))
dϕ

(17)

Now we need to finish the computation of the derivative of the derivative of self-attention com-
ponent.

Now we’ll find

δ

δg(Φ)

[
g(ϕΩx) +

∑
y

softmaxy
(
g(ϕΩx), g(ϕΩy)

)
g(ϕΩy)

]
(18)

=
δ

δg(Φ)
g(ϕΩx) +

∑
y

δ

δg(Φ)

[
softmaxy

(
g(ϕΩx), g(ϕΩy)

)
· g(ϕΩy)

]
(19)

9
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= δ(ϕΩx − Φ) +
∑
y

δ

δg(Φ)

e⟨g(ϕΩx ),g(ϕΩy )⟩∑
y′ e

⟨g(ϕΩx ),g(ϕΩy′
)⟩ · g(ϕΩy) (20)

where the first term is the Dirac delta function since the derivative is only non-zero on the patch of
interest.
Now we need to use the product rule.

= δ(ϕΩx−Φ)+
∑
y

 δ

δg(Φ)

 e⟨g(ϕΩx ),g(ϕΩy )⟩∑
y′ e

⟨g(ϕΩx ),g(ϕΩy′
)⟩

 · g(ϕΩy) +

 e⟨g(ϕΩx ),g(ϕΩy )⟩∑
y′ e

⟨g(ϕΩx ),g(ϕΩy′
)⟩

 · δ

δg(Φ)
g(ϕΩy)


(21)

From above, we know that the δ
δg(Φ)g(ϕΩy) should just turn into a Dirac delta.

= δ(ϕΩx−Φ)+
∑
y

 δ

δg(Φ)

 e⟨g(ϕΩx ),g(ϕΩy )⟩∑
y′ e

⟨g(ϕΩx ),g(ϕΩy′
)⟩

 · g(ϕΩy) +

 e⟨g(ϕΩx ),g(ϕΩy )⟩∑
y′ e

⟨g(ϕΩx ),g(ϕΩy′
)⟩

 · δ(ϕΩy − Φ)


(22)

Now all that remains is to use the chain rule on the first term. We’re now looking just at this
term here where we need to take the derivative of the attention value with respect to g(Φ). This
attention value is a scalar and we’re taking the derivative with respect to a vector. We’ll denote the
attention αxy

δαxy

δg(Φ)
= ∇g(ϕΩx )

αxy ·
δg(ϕΩx)

δg(Φ)
+∇g(ϕΩy )

αxy ·
δg(ϕΩy)

δg(Φ)
(23)

Notice that the second term in both of these turn into Dirac delta functions.

δαxy

δg(Φ)
= ∇g(ϕΩx )

αxyδ(ϕΩx − Φ) +∇g(ϕΩy )
αxyδ(ϕΩy − Φ) (24)

Now, for the derivative of the attention itself, recall that αxy = e
⟨g(ϕΩx

),g(ϕΩy
)⟩∑

y′ e
⟨g(ϕΩx

),g(ϕΩy′
)⟩

Then we can compute

∇g(ϕΩx )
αxy = ∇g(ϕΩx )

e⟨g(ϕΩx ),g(ϕΩy )⟩∑
y′ e

⟨g(ϕΩx ),g(ϕΩy′
)⟩ = αxy

g(ϕΩy)−
∑
y′

αxy′g(ϕΩy′ )

 (25)

This is a standard attention derivative, so putting it all together we have

10
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0 =
∑
x

∫
πt(ϕ) 2

(
g(ϕΩx) +

∑
y

αxy(ϕ) g(ϕΩy) − s[ϕ](x)
)T

[
δ
(
ϕΩx − Φ

)︸ ︷︷ ︸
derivative wrt

g(ϕΩx )

+
∑
y

(
αxy(ϕ)

[
g(ϕΩy) −

∑
y′

αxy′(ϕ) g(ϕΩy′ )
]
δ
(
ϕΩx − Φ

)
︸ ︷︷ ︸

chain rule wrt
g(ϕΩx ) in αxy

+ αxy(ϕ)
[
g(ϕΩx) −

∑
y′

αxy′(ϕ) g(ϕΩy′ )
]
δ
(
ϕΩy − Φ

)
︸ ︷︷ ︸

chain rule wrt
g(ϕΩy ) in αxy

+ αxy(ϕ) δ
(
ϕΩy − Φ

)︸ ︷︷ ︸
derivative wrt
g(ϕΩy ) itself

)]
dϕ

(26)

We can simplify this. We claim that∑
y

(
αxy(ϕ)

[
g(ϕΩy) −

∑
y′

αxy′(ϕ) g(ϕΩy′ )
]
δ
(
ϕΩx − Φ

)
︸ ︷︷ ︸

chain rule wrt
g(ϕΩx ) in αxy

)
= 0

Since setting µx =
∑

y′ αxy′(ϕ) g(ϕΩy′ ) and recalling that
∑

y αxy = 1, these terms cancel. Finally,
we recover the form

0 =
∑
x

∫
πt

[
g(ϕx) +

∑
y

αxyg(ϕΩy)− s[ϕ](x)

]T
δ(ϕΩx − Φ) dϕ

+

∫
πt

[
g(ϕx) +

∑
y

αxyg(ϕΩy)− s[ϕ](x)

]T ∑
y

αxy

(
I + (g(ϕΩx)− µx)δ(ϕΩy − Φ)

)
dϕ

(27)

A.2. Top 1 Attention Derivation
We begin with the same setup as above, where we assume that our attention is a “winner-take-all”
regime, meaning that only the most attended to patch contributes to the sum. In particular, we have∑

y

αxy g(ϕΩy) −→ g
(
ϕΩy∗(x)

)
, y∗(x) = argmax

y
⟨g(ϕΩx), g(ϕΩy)⟩.

We also assume “patch-independence” under the distribution πt for all t, so that conditioning on
ϕΩx = Φ does not change the distribution of ϕΩy for y ̸= x and that our embedding g is mean-
centered over patches (ie, Eϕ∼πt

[
g(ϕΩx)

]
= 0 ∀x). We then substitute the top-1 attention form

where
∑

y αxy g(ϕΩy) = g
(
ϕΩy∗(x)

)
into Equation 4. When we expand the the second term in

11
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Equation 4, we find that since we’ve assumed that g is mean-centered and that we have approximate
patch independence, the second term goes away, leaving

0 =
∑
x

∫
πt(ϕ) 2

(
g̃[ϕ](x)− s[ϕ](x)

)⊤
δ(ϕΩx − Φ) dϕ

+
∑
x

∫
πt(ϕ) 2

(
g̃[ϕ](x)− s[ϕ](x)

)⊤
δ(ϕΩy∗(x) − Φ) dϕ.

(28)

Since there is a deterministic mapping between a given patch ϕΩx and its most attended patch
ϕΩy∗(x) , we see that the integrals with the delta peaks give closed form solutions:∫

g̃[ϕ](x)δ(ϕΩx − Φ)dϕ =

∫
g̃[ϕ](x)δ(ϕΩ∗

y(x)
− Φ)dϕ = g[Φ] + g[Φ∗] := g̃[Φ], (29)

where g[Φ∗] denotes the output of the model on the patch most attended to by Φ.
Thus, distributing the deltas, integrating over these terms, and moving them to the other side:

g̃(Φ)
∑
x

πt(ϕΩx = Φ) + g̃(Φ)
∑
x

πt(ϕΩy∗(x) = Φ) =

∑
x

∫
πt(ϕ)s[ϕ](x)δ(ϕΩx − Φ) dϕ+

∑
x

∫
πt(ϕ)s[ϕ](x)δ(ϕΩy∗(x) − Φ) dϕ

(30)

By the linearity of the integrals and sums we get:

g̃(Φ)
∑
x

[
πt(ϕΩx = Φ) + πt(ϕΩy∗(x) = Φ)

]
=
∑
x

∫
πt(ϕ)s[ϕ](x)

[
δ(ϕΩx − Φ) + δ(ϕΩy∗(x) − Φ)

]
dϕ

=
∑
x

∫
∇ϕ(x)πt(ϕ)

[
δ(ϕΩx − Φ) + δ(ϕΩy∗(x) − Φ)

]
dϕ

=
∑
x

∇Φ(0)

[
πt(ϕΩx = Φ) + πt(ϕΩy∗(x) = Φ)

]
(31)

Dividing by
[
πt(ϕΩx = Φ) + πt(ϕΩy∗(x) = Φ)

]
, yields

g̃(Φ) = ∇Φ(0) log
∑
x

[
πt(ϕΩx = Φ) + πt(ϕΩy∗(x) = Φ)

]
(32)
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Appendix B. Additional Results and Training Details
We also trained a simple CNN with a top-1 attention layer on the end to better match our theory
and a simple CNN with attention given by the simple identity matrix query and key matrices. Both
of these models had a standard DDPM setup and we implemented our score network (or, equiva-
lently noise predictor) as a very simple 2 layer CNN with 2 convolutional layers, where the first
convolutional layer is a 2x2 convolution with stride 2 and hidden dimension 32, and our second
is a transpose convolution also with a 2x2 kernel and stride length of 2. The top-1 attention layer
used Gumbel Softmax since argmax (which would be the natural way to implement top-1 attention
isn’t differentiable [3]. Because of this, training was more difficult, so we trained this model for
10, 000 epochs. Other than that, the training was the same as the two models mentioned above. We
used a batch size of 64 over 5000 epochs, AdamW with learning rate 10−3 and weight decay 10−5

under a OneCycleLR schedule. Additionally, we maintain an exponential moving average (EMA)
of the model parameters with decay 0.9999, updating it after each optimizer step. During sample
generation, we use the EMA weights to improve stability [5]. We also used a linear noise schedule
and weight the MSE loss by 1− αcumulative product[t], as is standard.

We found that both the CNN+Top1 Attention and CNN+Identity Attention both outperformed the
CNN only architecture, but failed to achieve the same quantitative and qualitative results as the full
attention model. In particular, Gumbel-Softmax-implemented Top-1 attrition resulted in 21.64%
consistency across 100 trials, while the identity attention model resulted in 25.44% consistency
across 100 trials.
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Appendix C. Additional Samples
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Figure 2: More Samples from CNN+Attention
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Figure 3: More Samples from CNN+ Top 1 Attention
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Figure 4: More Samples from Identity Attention
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Figure 5: More Samples from CNN
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