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Abstract

Multivariate time series (MTS) classification has attracted increasing attention
across various domains. Existing methods either decompose MTS into separate
univariate series, ignoring inter-variable dependencies, or jointly model all vari-
ables, which may lead to over-smoothing and loss of semantic structure. These
limitations become particularly pronounced when dealing with complex and hetero-
geneous variable types. To address these challenges, we propose SwinGroupNet
(SGN), which explores a novel perspective for constructing variable interaction
and temporal dependency. Specifically, SGN processes multi-scale time series
using (1) Variable Group Embedding (VGE), which partitions variables into groups
and performs independent group-wise embedding; (2) Multi-Scale Group Win-
dow Mixing (MGWM), which reconstructs variable interactions by modeling both
intra-group and inter-group dependencies while extracting multi-scale temporal
features; and (3) Periodic Window Shifting and Merging (PWSM), which exploits
inherent periodic patterns to enable hierarchical temporal interaction and feature
aggregation. Extensive experiments on diverse benchmark datasets from multiple
domains demonstrate that SGN consistently achieves state-of-the-art performance,
with an average improvement of 4.2% over existing methods. We release the source
code at https://github.com/colison/SGN.

1 Introduction

Multivariate time series (MTS) consist of multiple temporal variables, each representing distinct
dynamic patterns over time. MTS classification, which aims to analyze and model these temporal
signals jointly to extract meaningful patterns for decision-making, has demonstrated significant
importance across a wide range of application domains, including meteorology [1, 2], healthcare
[3, 4, 5], industrial monitoring [6, 7], and human activity recognition [8, 9]. In recent years, many
models have been developed specifically for temporal data analysis [10, 11, 12, 13, 14, 15, 16],
achieving impressive performance across diverse applications. Among these, Convolutional Neural
Networks (CNNs) have demonstrated continual development in the time series domain [17, 18, 19, 20]
due to their strong ability to extract local features along the temporal dimension and have been shown
to strike an effective balance between performance and computational efficiency [21].

In multivariate time series processing, in addition to modeling along the temporal dimension, cap-
turing the dependencies among variables is equally critical. However, the complex and intertwined
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dependencies among variables pose a significant challenge for effective modeling. Existing works
have mainly adopted two strategies for modeling variable relationships, namely independent modeling
and mixed modeling. Specifically, as shown in Figure 1(a), independent modeling-based methods
[22, 23] treat multivariate data as a collection of univariate series and process each variable separately,
thereby neglecting the inter-variable interdependencies. In contrast, as shown in Figure 1(b), mixed
modeling-based methods [24, 25] jointly model all variables by mixing them together. However,
when dealing with complex and heterogeneous variable types, this strategy blurs the semantic distinc-
tions between variables [26], leading to excessive smoothing and making it difficult for the model to
capture meaningful relationships [27].

Figure 1: Illustration for Variety Interaction. (a) Variety Independent. (b) Variety Dependent. (c) Our
Group Variety Interaction.

To address these challenges, in this paper, we introduce a novel perspective for modeling variable
dependencies by transforming global variable interactions into structured intra-group and inter-group
relationships. Specifically, we design the Variable Group Embedding (VGE) module, which partitions
variables into groups based on an assignment matrix derived from their intrinsic similarity and
performs independent group-wise embedding. As illustrated in Figure 1(c), the module employs
soft assignments during training to allow flexible learning, and switches to hard assignments during
inference to ensure stable group structures. This design is particularly effective when dealing with
heterogeneous multivariate time series, as it enhances the model’s capacity to capture diverse variable
characteristics and their interactions.

Moreover, we segment the input sequence into small periodic windows and propose the Multi-Scale
Group Window Mixing (MGWM) module, which reconstructs variable interactions by modeling both
intra-group and inter-group dependencies while extracting temporal features at multiple scales. To
further enhance the modeling of temporal dynamics, we introduce the Periodic Window Shifting
and Merging (PWSM) module, which leverages inherent periodic patterns to enable hierarchical
temporal interaction and feature aggregation. By integrating both variable and temporal perspectives,
we present the SwinGroupNet (SGN) architecture, which performs structured variable grouping
and interaction modeling in the variable dimension, and efficient multi-scale feature extraction in the
temporal dimension. Meanwhile, SGN effectively balances performance and computational efficiency
while capturing long-range dependencies and complex temporal patterns in multivariate time series.
Extensive experiments on diverse datasets from various domains demonstrate that SGN consistently
achieves state-of-the-art results. Our main contributions are summarized as follows:

• We propose a novel variable interaction strategy that transforms variable relationships into
intra-group and inter-group dependencies based on variable grouping, unveiling underlying
patterns and enhancing the interpretability of variable relationships.
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• Extensive experiments demonstrate that SGN consistently outperforms existing state-of-the-
art methods, with an average accuracy gain of 4.2% and achieves near-perfect performance
on several benchmarks, with accuracy approaching 100%.

• We exploit the inherent periodic characteristics of time series to enable hierarchical temporal
feature extraction, allowing CNN-based models to capture long-term dependencies while
maintaining high efficiency.

2 Related Work

2.1 Convolution in Time Series Analysis

In recent years, convolutional methods have seen increasing adoption in time series analysis. CNN-
based models typically focus on local patterns, with convolutional kernels adept at capturing localized
features from the input. To expand the receptive field and capture long-range temporal dependencies,
TCNs [28, 29] employ dilated convolutions. MICN [17] integrates both local and global features
through multi-scale extraction, enabling the modeling of complex temporal patterns. TimesNet
[18] transforms univariate time series into a two-dimensional format via periodic decomposition
and applies 2D convolutions to capture intra-period and inter-period patterns. ModernTCN [19]
further extends the receptive field by utilizing large convolutional kernels. TVNet [20] reshapes 1D
sequences into 3D representations to extract hierarchical information across temporal dimensions.
Despite these advancements, existing convolutional models often overlook the intricate dependencies
between local and global contexts as well as heterogeneous variable interactions. Therefore, there
remains considerable room for improvement in developing models that can comprehensively capture
the complexity of multivariate time series.

2.2 Variable Modeling Strategies in Multivariate Time Series

In multivariate time series analysis, variable modeling strategies aim to capture the dependencies
among multiple variables. Given the inherently complex inter-variable relationships in such data,
explicitly modeling these dependencies is crucial for learning comprehensive representations and
enhancing model performance. Existing approaches can be broadly categorized into two strategies.
Methods such as PatchTST [22], RLinear [16] treat each variable independently, enabling the model to
specialize per variable. In contrast, models like iTransformer [24], Crossformer [25] mix all variables
to learn cross-variable correlations, while CrossGNN [30] leverages graph structures to enhance
the representation and understanding of variable interactions. These approaches have collectively
advanced the field of multivariate time series analysis. Prior studies [31, 32, 33, 34] suggest that
variable-independent models often offer greater model capacity, whereas variable-mixing strategies
tend to exhibit improved robustness. However, striking a balance between these strategies remains
a challenge. Recent work [35, 36, 37, 38]has explored the utility of variable clustering, yet in the
time series domain, it remains unclear how best to translate variable-to-cluster relationships into
meaningful interactions and how clustering can be leveraged to enhance inter-variable modeling.
This remains an open and promising direction for further research.

3 Method

As shown in Figure 2, we propose SwinGroupNet (SGN), a model for multivariate time series
classification that captures structured interactions among variable groups. Specifically, we design
a Variable Group Embedding (VGE) module that segments the input sequence into short periodic
windows and embeds variables into groups based on their similarity. Next, the Multi-Scale Group
Window Mixing (MGWM) module extracts features along both the temporal and variable dimensions.
Furthermore, the Periodic Window Shifting and Merging (PWSM) module exploits inherent periodic
patterns to enable hierarchical interaction and aggregation of temporal features. Finally, a projection
layer produces the classification output. The following sections provide detailed descriptions of each
component.
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Figure 2: An illustration of the SwinGroupNet architecture.

3.1 Variable Group Embedding

In this module, we first group the different variables of each sample and perform interactions within
and across groups to capture the relationships among variables. For heterogeneous multivariate
data, directly mixing all variables, including those with large differences, can cause over-smoothing
and confuse the semantic meanings between variables. On the other hand, modeling each variable
independently would neglect the dependencies among them. By clustering variables into groups, our
method strikes a balance between these two extremes: it preserves the distinct properties of each
variable while simultaneously mitigating interference among variables.

Specifically, for the input time series X ∈ RC×L, where L represents the time length and C denotes
the number of variables, the feature channels C are dynamically assigned to predefined groups G
using the Gumbel-Softmax allocation mechanism [39, 40]. Given a categorical distribution, to avoid
the collapse problem, instead of using randomly initialized unnormalized class logits, we compute the
Brownian Distance Covariance (BDC) [41] between all variables. The specific formula is as follows:

dCov(X1, X2) =

√√√√ 1

n2

n∑
i,j=1

A′
ijB

′
ij . (1)

Here, A′
ij and B′

ij denote the elements of the centered distance matrices for X1 and X2, respectively,
which are derived from the Euclidean distances between observations in X1 and X2. Given the
number of groups G, the similarity is then computed based on the BDC distance, and K-means
clustering is applied to obtain G class logits vectors Π = [π1, π2, . . . , πG], where each vector
πi ∈ RC . For more details, refer to Appendix A. And the Gumbel-Softmax sampling is defined as:

Mji =
exp ((log πij + ϵij)/τ)∑G

k=1 exp ((log πkj + ϵkj)/τ)
, j = 1, 2, . . . , C, i = 1, 2, . . . , G. (2)

Here, ϵ ∼ Gumbel(0, 1) denotes noise sampled from a standard Gumbel distribution, used to
enhance the exploration during assignment. The parameter τ > 0 is the temperature that controls
the smoothness of the resulting distribution. It is gradually annealed following an exponential decay
schedule during training.

The input tensor X is grouped according to the assignment matrix M ∈ RC×G, where Mji denotes
the soft assignment probability of variable j to group i. We use Softmax-based soft assignment
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during training and one-hot hard assignment during evaluation. To avoid inconsistent assignments
and unstable optimization, we introduce a variable similarity regularization term to guide the Gumbel-
based assignment towards more reasonable groupings. During the training process, the cosine
similarity Sij is dynamically computed with Variety Xi and Xj after normalizing the variables to
obtain the similarity matrix S ∈ RC×C , while incorporating the assignment matrix into the loss
function. The specific regularization loss formula is as follows:

Lsim =
∑
i,j

Sij · ∥Mi −Mj∥2. (3)

Therefore, the final loss is given by L = Ltask + βLsim and β is a regularization parameter for
balancing classification accuracy and cluster quality. Meanwhile, to facilitate effective intra-group
and inter-group interactions after variable grouping, we perform independent embeddings for each
variable group.

3.2 Multi-Scale Group Window Mixing

Small Periodic Window Partitioning. Specifically, periodic patterns in time series often rely on
information in the frequency domain. To capture this, we first apply the Fast Fourier Transform (FFT)
to the input data X and compute the mean of the amplitude spectrum [18].

A = Avg(Amp(FFT(X))). (4)

To achieve a better trade-off between performance and efficiency, instead of selecting the top-K
periods with the highest amplitudes, we choose the smallest period among the top-K candidates as
the cycle window.

P = min

{
L

fi

∣∣∣∣ fi ∈ argTopK(A), i = 1, 2, . . . ,K

}
. (5)

Each L
fi

corresponds to the i-th dominant frequency component. Given the selected period window
P , we divide the time series into N = ⌈L

P ⌉ segments, where zero-padding is applied at the end if L
is not divisible by P , obtain the output sequence as X ∈ RC×N×P . Considering the extensibility
of periodic patterns, we further incorporate multiple scales by merging additional period windows
corresponding to the remaining Top-K dominant frequencies. This approach allows us to extract
multi-scale periodic information and enhance computational efficiency.

Multi-Scale Group Window Extracting. Given a multivariate time series X ∈ RC×N×P , to better
extract temporal and variable features, We follow the design proposed by Liu [42, 43], adopting a
combination of depthwise convolution and pointwise convolution to separate temporal and variable
information. Along the temporal dimension, we apply multiple convolution kernels of different
receptive fields within each period window to perform multi-scale feature extraction like [18, 44, 45].
The extracted features from different scales are then aggregated through average pooling to enhance
the robustness of the output representations. The detailed formulation is given as follows:

Y =
1

K

K−1∑
i=0

C(ki)
g (X), ki = 2i+ 1, ∀i ∈ {0, 1, . . . ,K − 1}, (6)

where C(ki)
g (·) denotes a grouped convolution operation applied at a specific scale parameterized by

the kernel size ki. Across the variable dimension, we decouple the full variable interactions into
intra-group and inter-group interactions, effectively mitigating the oversmoothing issue commonly
observed in deep architectures. Specifically, we apply separate pointwise convolutions within each
group and across different groups, respectively, to jointly learn fine-grained dependencies among
variables within a group and higher-order relationships among different groups. The detailed structure
of the Multi Swin Window block is illustrated in Figure 2.
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3.3 Periodic Window Shifting and Merging

Periodic Window Shifting. Although the above procedure successfully extracts features from small
periodic windows, it lacks connections across different windows, which limits interactions across
periodic segments. Inspired by the Swin Transformer [46], we leverage the phase shift property of
periodic signals to enable efficient cross-window communication. Specifically, we first perform a
cyclic left shift of the input time series X by P/2 units, where P is the periodic window length. We
then redivide the shifted sequence into windows and extract the features accordingly. The process
can be formulated as follows:

Xshifted = T−P
2
(Reshape(X, (C,N · P ))) , (7)

where T−P
2

denotes a cyclic left shift operation by P/2 units. After feature extraction, we apply
a cyclic right shift to restore the original temporal order. This operation introduces cross-window
interactions while maintaining computational efficiency. By alternating between standard window
partitioning and shifted partitioning, the model captures both intra-window and inter-window depen-
dencies within the same periodic scale. Specifically, as shown in Figure 3, this approach effectively
enhances the model’s ability to capture complex temporal patterns.

Figure 3: Illustration of Periodic Window Shifting Block.

Periodic Window Merging. Based on the extensibility of periodic patterns, we further merge adjacent
periodic windows to capture features over extended cycles. Specifically, two neighboring periodic
segments are combined to generate representations corresponding to 2P -length cycles. Notably, such
extended periods often correspond to dominant frequencies among the top-k spectral components. To
enhance computational efficiency, we employ an adaptive merging strategy based on the number of
detected periodic windows. When the number of periods exceeds four, we adopt an exponentially
decaying merging scheme, in which non-overlapping adjacent windows are progressively merged. In
contrast, when fewer than four periods are present, we switch to a linearly decaying merging strategy
that allows overlapping windows, thereby enabling more effective feature extraction from larger
periodic structures.

4 Experiments

Dataset. To evaluate the effectiveness of the proposed SwinGroupNet model, we conduct extensive
experiments on a diverse set of multivariate time series datasets. The detailed main dataset information
is provided in Table 1. Furthermore, to comprehensively assess the generalization ability of our
model, we additionally select 10 multivariate datasets from the UEA Time Series Classification
Archive, which was introduced by Bagnall [47]. For additional details on data characteristics and
preprocessing, please refer to Appendix B.

Baseline. We include 10 state-of-the-art time series methods as baselines to comprehensively evaluate
the performance of our proposed method. These methods include six Transformer-based models:
Reformer [48], iTransformer [24], Crossformer [25], FEDformer [14], PatchTST [22], Medformer
[49]; One MLP-based model: DLinear [15]; And three CNN-based models: MICN [17], TimesNet
[18], ModernTCN [19].

Implementation. In the main datasets, we adopt six evaluation metrics: Accuracy, Precision, Recall,
F1 Score, AUROC, and AUPRC. The training process is conducted using five different random seeds
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Table 1: Summary of the four benchmark datasets used in our experiments. The table lists the number
of samples, classes, channels, length, sampling rate and modality.

Datasets Samples Timestamps Channel Class Sampling Rate Modality FileSize
TDBRAIN 6,240 256 33 2 256 Hz EEG 571MB
PTB-XL 191,400 250 12 5 250 Hz ECG 4.28GB
FLAAP 13,123 100 6 10 100 Hz HAR 60MB
UCI-HAR 10,299 128 9 6 50 Hz HAR 91MB

(41–45) on fixed training, validation, and test splits to compute the mean and standard deviation
of the results. For the 10 multivariate datasets from the UEA Time Series Classification Archive,
we follow the standard preprocessing protocol established by Wu [18]. See Appendix C.1 for more
implementation details.

Table 2: Performance comparison on Main Datasets from different domains. Bold values represent
the best performance, and underlined values indicate the second-best scores.

Dataset Model Accuracy Precision Recall F1 Score AUROC AUPRC

TDBRAIN

Reformer 87.92± 2.01 88.64± 1.40 87.92± 2.01 87.85± 2.08 96.30± 0.54 96.40± 0.45
Crossformer 81.56± 2.19 81.97± 2.25 81.56± 2.19 81.50± 2.20 91.20± 1.78 91.51± 1.71
FEDformer 78.13± 1.98 78.52± 1.91 78.13± 1.98 78.04± 2.01 86.56± 1.86 86.48± 1.99
iTransformer 74.67± 1.06 74.71± 1.06 74.67± 1.06 74.65± 1.06 83.37± 1.14 83.73± 1.27
PatchTST 79.25± 3.79 79.60± 4.09 79.25± 3.79 79.20± 3.77 87.95± 4.96 86.36± 6.67
Medformer 89.62± 0.81 89.68± 0.78 89.62± 0.81 89.62± 0.81 96.41± 0.35 96.51± 0.33
Dlinear 54.73± 2.14 54.79± 2.48 54.73± 2.14 54.62± 2.13 55.83± 2.36 54.73± 1.98
Timesnet 95.08± 0.56 95.11± 0.58 95.08± 0.56 95.08± 0.56 98.92± 0.19 98.95± 0.19
MICN 90.92± 2.24 91.37± 1.82 90.92± 2.44 90.89± 2.46 97.58± 1.84 97.62± 1.93
ModernTCN 87.60± 2.03 88.10± 1.38 87.60± 2.03 87.54± 2.13 95.72± 0.87 95.87± 0.94
SGN (Ours) 99.90± 0.10 99.89± 0.11 99.90± 0.10 99.90± 0.10 100.00± 0.00 100.00± 0.00

PTB-XL

Reformer 71.72± 0.43 63.12± 1.02 59.20± 0.75 60.69± 0.18 88.80± 0.24 64.72± 0.47
Crossformer 73.30± 0.14 65.06± 0.35 61.23± 0.33 62.59± 0.14 90.02± 0.06 67.43± 0.22
FEDformer 57.20± 9.47 52.38± 6.09 49.04± 7.26 47.89± 8.44 82.13± 4.17 52.31± 7.03
iTransformer 69.28± 0.22 59.59± 0.45 54.62± 0.18 56.20± 0.19 86.71± 0.10 60.27± 0.21
PatchTST 73.23± 0.25 65.70± 0.64 60.82± 0.76 62.61± 0.34 89.74± 0.19 67.32± 0.22
Medformer 72.87± 0.23 64.14± 0.42 60.60± 0.46 62.02± 0.37 89.66± 0.13 66.39± 0.22
Dlinear 45.49± 0.03 20.25± 9.92 20.10± 0.09 12.78± 0.26 50.63± 0.12 20.75± 0.13
Timesnet 71.80± 0.53 62.73± 0.88 59.53± 0.99 60.72± 0.49 88.27± 0.65 63.53± 1.07
MICN 67.33± 0.36 56.98± 0.93 51.90± 0.81 53.29± 0.52 85.63± 0.29 57.70± 0.49
ModernTCN 72.85± 0.19 63.68± 0.43 60.20± 0.82 61.33± 0.64 89.54± 0.31 66.00± 0.46
SGN (Ours) 73.80± 0.34 65.88± 0.47 62.17± 0.61 63.43± 0.49 90.25± 0.17 67.76± 0.58

FLAAP

Reformer 70.88± 0.88 71.47± 0.77 70.22± 1.13 70.19± 1.02 95.27± 0.28 74.64± 1.24
Crossformer 76.33± 0.81 76.25± 0.93 76.15± 0.84 76.14± 0.88 96.93± 0.13 80.25± 0.69
FEDformer 68.30± 2.06 69.18± 0.96 67.60± 2.12 66.80± 2.96 94.15± 0.76 70.85± 3.12
iTransformer 75.83± 0.49 75.70± 0.65 75.82± 0.56 75.57± 0.53 96.70± 0.14 80.32± 0.64
PatchTST 56.23± 0.28 56.21± 0.69 55.45± 0.24 55.57± 0.35 88.92± 0.09 58.40± 0.28
Medformer 74.00± 2.37 74.53± 2.48 73.84± 2.61 73.57± 2.55 96.58± 0.60 78.91± 2.90
Dlinear 30.26± 1.46 27.46± 1.06 28.20± 0.99 25.71± 0.49 70.76± 0.49 26.70± 0.23
Timesnet 73.79± 0.94 73.55± 0.78 73.57± 0.92 72.82± 0.96 95.70± 0.12 77.30± 0.84
MICN 52.63± 0.59 51.74± 0.76 51.45± 0.50 50.84± 0.56 88.35± 0.32 48.81± 0.45
ModernTCN 71.66± 1.69 72.23± 1.45 71.55± 1.66 71.37± 1.46 95.04± 0.30 73.47± 1.99
SGN (Ours) 80.81± 0.41 80.68± 0.32 80.35± 0.50 80.35± 0.41 97.42± 0.10 85.73± 0.37

UCI-HAR

Reformer 90.00± 0.63 90.10± 0.71 90.14± 0.75 89.92± 0.63 98.97± 0.08 95.86± 0.29
Crossformer 90.66± 1.02 90.83± 0.98 90.69± 1.02 90.68± 1.04 99.14± 0.15 96.08± 0.61
FEDformer 86.90± 3.46 88.57± 0.99 87.58± 3.15 87.71± 2.24 97.66± 1.08 92.87± 1.64
iTransformer 93.47± 0.15 93.59± 0.23 93.49± 0.14 93.46± 0.16 99.53± 0.02 97.91± 0.01
PatchTST 86.83± 0.68 87.59± 0.68 87.15± 0.78 87.17± 0.77 98.43± 0.12 93.57± 0.50
Medformer 90.17± 0.52 90.36± 0.66 90.30± 0.68 90.27± 0.66 99.10± 0.07 95.84± 0.75
Dlinear 61.28± 1.26 60.89± 1.34 59.37± 1.36 58.83± 1.00 84.70± 0.35 59.29± 0.41
Timesnet 92.71± 0.50 92.78± 0.46 92.86± 0.53 92.75± 0.51 99.25± 0.04 96.87± 0.24
MICN 86.23± 0.73 86.72± 0.66 86.26± 0.73 86.22± 0.73 98.63± 0.15 92.94± 1.19
ModernTCN 92.75± 2.03 92.96± 2.31 92.88± 2.16 92.80± 2.18 99.35± 0.19 96.98± 0.91
SGN (Ours) 95.62± 0.72 95.79± 0.69 95.61± 0.72 95.64± 0.70 99.77± 0.08 98.96± 0.39

4.1 Result of Main Datasets

Setups. In our main experimental setup, the training, validation, and testing sets are partitioned either
by subject or according to a fixed ratio, depending on the dataset characteristics. Samples from each
subject are assigned to the respective sets following a fixed allocation ratio. Importantly, samples
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from the same subject are restricted to a single subset to avoid any data leakage. This design ensures
the independence and objectivity of model training and evaluation.

Results. As shown in Table 2, SGN consistently outperforms ten strong baseline models across four
benchmark datasets of different types, achieving the best performance on all evaluation metrics. On
average, in terms of accuracy, our method surpasses the second-best approach 4.2%. Specifically,
SGN yields significant improvements on TDBRAIN, FLAPP, and UCI-HAR, outperforming the
second-best models by 4.8%, 4.5%, and 2.2%, highlighting the advantage of modeling variable
dependencies through variable grouping. Notably, on the TDBRAIN dataset, SGN achieves an
impressive approaching 100% accuracy. However, the performance gain on the PTB-XL dataset is
relatively marginal. This can be attributed to the inherent variable similarity structure: TDBRAIN
exhibits clear boundaries among variable clusters, enabling effective group-based modeling, while
PTB-XL presents high similarity across variables with blurred boundaries, causing most variables to
be grouped together. As a result, group interactions degenerate into a conventional mixed-variable
approach. The variable similarity visualizations for each dataset are provided in Appendix B.6.

Dataset / Model W.+MUSE M.-FCN TapNet ShapeNet TodyNet SVPT ShapeFormer MPTSNet SGN (Ours)

ArticularyWordRecognition 99.0 97.3 98.7 98.7 98.7 99.3 99.0 97.7 99.0
AtrialFibrillation 33.3 26.7 33.3 40.0 46.7 40.0 53.3 53.3 66.7
BasicMotions 100.0 95.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Cricket 100.0 91.7 95.8 98.6 100.0 100.0 94.4 94.4 100.0
DuckDuckGeese 57.5 67.5 57.5 72.5 58.0 70.0 64.0 68.0 64.0
Epilepsy 100.0 76.1 97.1 98.7 97.1 98.6 98.6 97.1 97.8
EthanolConcentration 13.3 37.3 32.3 31.2 35.0 33.1 41.1 43.3 44.5
ERing 43.0 13.3 13.3 13.3 91.5 93.7 87.4 94.4 95.9
FaceDetection 54.5 54.5 55.6 60.2 62.7 51.2 65.8 69.8 70.3
FingerMovements 49.0 58.0 53.0 58.9 67.6 60.0 55.0 64.0 64.0
HandMovementDirection 36.5 36.5 37.8 33.8 64.9 39.2 41.9 63.5 75.7
Handwriting 60.5 28.6 35.7 45.1 43.6 43.3 30.2 34.4 50.4
Heartbeat 72.7 66.3 75.1 75.6 75.6 79.0 81.5 75.6 77.1
Libras 87.8 85.6 85.0 85.6 85.0 88.3 95.5 87.2 83.9
LSST 59.0 37.3 56.8 59.0 61.5 66.6 63.8 60.4 63.7
MotorImagery 50.0 51.0 59.0 61.0 64.0 65.0 N/A 65.0 65.0
NATOPS 87.0 88.9 93.9 88.3 97.2 90.6 96.1 94.4 98.3
PenDigits 94.8 97.8 98.0 97.7 98.7 98.3 99.1 98.9 99.1
PEMS-SF N/A 69.9 75.1 75.1 78.0 86.7 N/A 94.2 88.4
PhonemeSpectra 19.0 11.0 17.5 29.8 30.9 17.6 29.3 14.4 23.1
RacketSports 93.4 80.3 86.8 88.2 80.3 84.2 88.8 87.5 93.4
SelfRegulationSCP1 71.0 87.4 65.2 78.2 89.8 88.4 91.8 92.8 93.9
SelfRegulationSCP2 46.0 47.2 55.0 57.8 55.0 60.0 56.1 57.2 60.6
StandWalkJump 33.3 6.7 40.0 53.3 46.7 46.7 66.7 53.3 53.3
UWaveGestureLibrary 91.6 89.1 89.4 90.6 85.0 94.1 90.0 88.1 92.2

Average Rank 6.04 7.60 6.68 5.14 4.64 3.94 3.70 4.20 2.56
Number of Top-1 6 0 1 2 4 5 5 3 14
Wins 17 23 23 19 20 15 13 15 -
Draws 4 0 1 2 3 3 4 4 -
Loses 3 2 1 4 2 7 6 3 -

Table 3: Performance comparison with the recent advanced MTSC-dedicated models on 25 UEA
datasets. In the table, ’N/A’ indicates that the results for the corresponding method could not be
obtained due to memory or computational limitations

4.2 Result of UEA Multivariate Datasets

Setups. We selected multivariate time series datasets from the UEA Multivariate Time Series
Classification Archive. All datasets have been preprocessed and standardized using established
preprocessing techniques. To ensure a comprehensive comparison, we incorporated several state-
of-the-art baseline methods into our evaluation framework like LSTNet [50], LightTS [51], Rocket
[52], LSSL [53], Flowformer [54], MTSMixer [55], TVNet [20], TimeMixer++ [56] on the UEA-10
datasets. Meanwhile, we incorporated WEASEL+MUSE [57], MLSTM-FCN [58], TapNet [59],
ShapeNet [60], TodyNet [61], SVPT [62], ShapeFormer [63] and MPTSNet [64] on the UEA-25
datasets, under the same experimental settings.

Results of UEA-10. As illustrated in Figure 4, we present the average classification accuracy
across ten UEA datasets. It can be observed that SGN surpasses the current best-performing model,
TimeMixer++, and consistently outperforms other categories of models. Notably, MLP-based models
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exhibit subpar performance on classification tasks, which can be attributed to their lack of explicit
modeling of dependencies among variables. In contrast, CNN-based models perform better due to
their strong local feature extraction capabilities and ability to capture variable interactions. Complete
results are provided in Appendix C.3.

Results of UEA-25. Our proposed SGN model consistently demonstrates superior performance
across the 25 UEA multivariate time series classification datasets compared with eight state-of-the-art
baseline models, as shown in Table 3. It achieves the best average rank of 2.56, the highest number of
first-place results (14 datasets), and an overall best win–loss record against all competitors. Notably,
SGN outperforms all other models in more than half of the datasets, while maintaining competitive
performance in the remaining ones. Furthermore, it exhibits strong generalization ability across
diverse domains, including human activity recognition, healthcare, and speech recognition tasks.

4.3 Ablation Studies

Figure 4: UEA Classification Result of UEA-10 datasets.

Ablation on Variable Grouping. To
evaluate the effectiveness of our pro-
posed variable grouping strategy, we
conduct ablation studies on the main
datasets by removing specific compo-
nents (w/o). The results, as shown in Ta-
ble 4, demonstrate that performing both
intra-group and inter-group interactions
outperforms the strategy of directly mix-
ing all variables. This confirms the ne-
cessity and effectiveness of our struc-
tured variable interaction design. Fur-
thermore, we observe that inter-group
interaction yields better performance
than intra-group interaction alone, indi-
cating that the model benefits more from
capturing diverse dependencies across
groups than from modeling redundant
information among similar variables.

Table 4: Ablation Study on Variable Grouping Module across Main Datasets.
Dataset TDBrain PTB-XL FLAAP UCI-HAR

Metric Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

Variable Group Embedding & Group Interaction 99.90 99.90 73.80 63.43 80.81 80.35 95.62 95.64
w/o Variable Grouping Embedding 92.16 91.64 73.05 62.46 76.85 76.36 93.58 93.58
w/o Group-intra Interaction 99.81 99.81 72.19 61.02 73.82 73.63 91.62 91.69
w/o Group-inter Interaction 99.83 99.83 71.70 60.66 70.60 70.21 88.20 88.15

Ablation on Periodic Window Shifting and Merging. This module is designed to validate the
effectiveness of extracting features using small periodic windows by leveraging periodic properties.
We conduct experiments on the main datasets used in the previous sections, and the detailed results are
presented in Table 5. As observed, the impact of periodic fusion is particularly significant, confirming
its ability to effectively capture global patterns through multi-period aggregation. Additional ablation
studies on hyperparameter sensitivity and efficiency analysis are provided in Appendix D and
Appendix E, respectively.

Table 5: Ablation Study on Periodic Window Module across Main Datasets.
Dataset TDBrain PTB-XL FLAAP UCI-HAR

Metric Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

Periodic Window Shifting & Merging 99.90 99.90 73.80 63.43 80.81 80.35 95.62 95.64
w/o Periodic Window Shifting 99.79 99.79 73.32 62.50 78.05 77.66 87.05 87.22
w/o Periodic Window Merging 99.58 99.58 72.81 62.31 69.68 68.77 77.79 77.83
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4.4 Model Analysis.

Analysis of Variable Clustering. As illustrated in Figure 5(a), the initial similarity matrix of
variables in the TDBRAIN dataset computed using the BDC distance reveals distinct block structures.
These structures indicate inherent similarity among subsets of variables even before model training.
Figure 5(b) presents the Pearson correlation matrix computed from the model outputs under the
best-performing setting without variable grouping. The results reveal highly diverse and complex
relationships among variables, indicating that dependencies exist but are not explicitly structured.

Figure 5: Visualization of TDBRAIN Variety mixing
and Variety Grouping matrices.

In contrast, Figure 5(c) shows the transformed
correlation structure under the variable group-
ing strategy, where correlations are aggregated
at both intra-group and inter-group levels. Af-
ter training, the intra-group correlations are
significantly stronger, suggesting tight depen-
dency within groups, while inter-group cor-
relations are considerably weaker, indicating
minimal redundancy across groups. These re-
sults demonstrate that variety grouping not
only alleviates complex inter-variable depen-
dencies and potential redundancies, but also
enhances interpretability and performance in
modeling multivariate relationships.

Analysis of Periodic Shifting and Merging.
Figure 6 shows the temporal correlation across
SGN layers on the UCI-HAR dataset using
learned periodic windows. As observed, in the
first layer, the temporal dependencies are pri-
marily concentrated around local neighboring
time points.

Figure 6: Visualization of time correlation under UCI-
HAR dataset.

In contrast, in the last layer, each time point
exhibits high correlation with almost all
points within the periodic window, demon-
strating that SGN effectively integrates hier-
archical periodic information. This enables
the model to extend the local feature extrac-
tion strength of convolutional networks to
a global temporal context, enhancing its ca-
pacity for comprehensive temporal under-
standing. Additional visualization results of
other main datasets and experimental anal-
yses are provided in Appendix F for further
reference.

5 Conclusion

In this paper, we propose SwinGroupNet, a novel and effective framework for multivariate time
series (MTS) classification. By leveraging the Variable Group Embedding strategy, we convert
variable-level interactions into structured group-based representations. The Multi-Scale Group
Window Mixing mechanism further enhances interaction modeling by capturing both intra-group
and inter-group dependencies, while simultaneously extracting multi-scale temporal features to
enrich temporal representations. Furthermore, the Periodic Window Shifting and Merging approach
integrates hierarchical periodic information, enabling the model to better capture dynamic temporal
patterns. SGN achieves state-of-the-art performance across diverse datasets spanning multiple
domains. Limitations and potential directions for future research are discussed in Appendix G.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Clearly state the contribution in the introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Appendix G.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Section 4 and Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We include a github link in the Abstract providing source codes with full
implementation details for our methods. All datasets used for evaluation are publicly
available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Appendix C
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We run experiments over five random seeds and report the average value with
the standard deviation. See Table 2
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendix C.1
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors follow the NeurIPS Code of Ethics during the conduct of this
research.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Appendix G
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: this paper poses no such risks.
Guidelines:
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Cited the original paper that produced the dataset used in this work.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not publish new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This paper does not use LLMs in the core method development.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Variety Assign Logits

Previous studies commonly adopt the Pearson correlation coefficient to measure dependencies
between variables, which is effective for capturing linear relationships. The Pearson correlation
between two variables x,y ∈ Rn is defined as:

ρ(x,y) =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2 ·
√∑n

i=1(yi − ȳ)2
, (8)

where x̄ and ȳ denote the sample means of x and y, respectively. While this approach performs well
under linear assumptions, it fails to capture complex nonlinear dependencies—an issue particularly
prominent in multivariate time series, where variable interactions can be intricate and highly nonlinear.

To address this limitation, we adopt the Brownian Distance Covariance (BDC) as an alternative.
Unlike Pearson correlation, BDC is a nonparametric statistical measure that can detect both linear
and nonlinear dependencies without assuming any specific distribution. It provides a more general
and powerful tool for modeling complex interactions in multivariate time series.The empirical BDC
between x and y is defined as:

Rn(x,y) =
Vn(x,y)√

Vn(x,x) · Vn(y,y)
. (9)

Here, Vn(x,y) quantifies the strength of dependence between x and y, with a value of zero implying
statistical independence. This quantity is computed based on the following formulation:

V2
n(x,y) =

1

n2

n∑
i=1

n∑
j=1

AijBij , (10)

where Aij and Bij are double-centered distance matrices derived from x and y, respectively. Then
double-centered using the following formula:

Aij = ∥xi − xj∥ −
1

n

n∑
j′=1

∥xi − xj′∥ −
1

n

n∑
i′=1

∥xi′ − xj∥+
1

n2

n∑
i′=1

n∑
j′=1

∥xi′ − xj′∥, (11)

where ∥ · ∥ denotes the Euclidean norm. The same procedure applies to matrix B to obtain the
centered version Bij . Finally, the normalized BDC value lies within the interval [0, 1], where
1 indicates perfect dependence and 0 indicates independence. Importantly, the BDC measure is
strictly zero if and only if the variables are independent in the population. Therefore, it serves as a
robust and comprehensive dependency metric, particularly valuable for analyzing complex, nonlinear
relationships in multivariate time series.

After computing the Brownian Distance Covariance (BDC) matrix, we apply the K-means clustering
algorithm on the rows of the BDC matrix to construct a pre-assignment matrix. Each row corresponds
to a variable’s dependency pattern across all other variables. Let R ∈ [0, 1]C×C denote the BDC
correlation matrix among C variables. We treat each row Ri: ∈ RC as a feature vector representing
variable i, and perform K-means clustering [65] to partition the d variables into G clusters:

π = KMeans(R, G), (12)

where π ∈ {1, . . . , G}C is the cluster assignment vector. Based on these assignments, we construct
a pre-assignment matrix P ∈ {0, 1}C×G, where each row indicates the cluster membership of the
corresponding variable using one-hot encoding. This pre-assignment matrix serves as an initial
grouping prior for subsequent model components, such as channel interaction modules or hierarchical
aggregation mechanisms.
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B Datasets

B.1 TDBRAIN Dataset

The TDBrain dataset, referenced in [66], is a large-scale EEG time series dataset containing recordings
from 1,274 subjects using 33 channels. Each subject participated in two trials: one with eyes open
and another with eyes closed. The dataset includes a total of 60 diagnostic labels, allowing for
multi-label classification as each subject may be associated with multiple conditions. In this paper,
we utilize a subset of the dataset comprising 25 subjects diagnosed with Parkinson’s disease and
25 healthy controls, all under the eyes-closed condition. Each eyes-closed trial is segmented into
non-overlapping 1-second windows, each containing 256 time points. Segments shorter than 1 second
are discarded. This preprocessing results in a total of 6,240 samples. Each sample is tagged with a
subject ID to indicate its origin.

B.2 PTB-XL Dataset

The PTB-XL dataset [67] is a large-scale public ECG time series dataset collected from 18,869
subjects, each with 12-channel recordings and annotated with one or more of five labels, including
four heart disease categories and one healthy control. Since each subject may have multiple trials, we
remove subjects whose diagnoses vary across trials to ensure label consistency, resulting in 17,596
subjects retained. Each trial is a 10-second ECG segment, available in both 100 Hz and 500 Hz
sampling rates. In our study, we use the 500 Hz version, downsampled to 250 Hz and normalized
using a standard scaler. We then segment each trial into non-overlapping 1-second samples (250
time steps per sample), discarding any segment shorter than 1 second. This preprocessing yields a
total of 191,400 samples. For model training, we adopt a subject-independent split, allocating 60%,
20% and 20% of subjects (and their corresponding samples) to the training, validation, and test sets,
respectively.

B.3 FLAAP Dataset

The FLAAP dataset [68] is a human activity recognition (HAR) dataset collected using smartphone-
based inertial sensors, specifically accelerometers and gyroscopes placed at the waist of subjects.
It records ten distinct daily activities performed by eight subjects, with data continuously captured
between February 1st and May 31st, 2022, at a sampling rate of 100 Hz. Unlike many existing HAR
datasets that focus primarily on activity classification, FLAAP emphasizes discovering associated
patterns within activities, aiming to better reflect the structure of Activities of Daily Living (ADL).
Each activity is segmented into fixed-length windows, producing a total of 13,123 samples with 6
sensor channels and 100 time steps per sample. In our experiments, the dataset is divided into 60%
for training, 20% for validation, and 20% for testing. The dataset serves as a valuable benchmark for
studying representation learning, pre-processing effects, domain transfer, and activity association
mining in multivariate time series.

B.4 UCI-HAR Dataset

The UCI-HAR dataset [69] is a widely used benchmark for human activity recognition (HAR),
collected using smartphone-based inertial sensors. It contains recordings from 30 subjects performing
six different daily activities (walking, walking upstairs, walking downstairs, sitting, standing, and
lying) while carrying a smartphone equipped with a tri-axial accelerometer and gyroscope. Data were
collected at a sampling rate of 50 Hz and then preprocessed by applying noise filters and segmenting
the continuous signal into fixed-length windows of 2.56 seconds (128 time steps) with a 50% overlap.
Each segment is labeled with the corresponding activity. In our study, we use the processed version
with 9 selected channels and 128 timestamps per sample, resulting in a total of 10,299 labeled samples.
The dataset is split into training and test sets based on a certain ratio.

B.5 UEA Classification Dataset

The UEA dataset [47] is a comprehensive collection of multivariate time series samples spanning a
wide range of application domains, primarily designed for classification tasks. It includes diverse
recognition scenarios such as facial, gesture, and action recognition, as well as audio classification.
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Beyond these, it serves practical purposes in areas like industrial monitoring, health surveillance,
and medical diagnostics, with particular attention to cardiac data analysis. Typically, the dataset is
structured into 10 distinct classes. Table 6 provides detailed classification statistics, highlighting the
dataset’s versatility and broad applicability across multiple domains.

Table 6: Datasets and mapping details of UEA dataset.
Dataset Sample Numbers (train, test) Variable Number Series Length
EthanolConcentration (261, 263) 3 1751
FaceDetection (5890, 3524) 144 62
Handwriting (150, 850) 3 152
Heartbeat (204, 205) 61 405
JapaneseVowels (270, 370) 12 29
PEMS - SF (267, 173) 963 144
SelfRegulationSCP1 (268, 293) 6 896
SelfRegulationSCP2 (200, 180) 7 1152
SpokenArabicDigits (6599, 2199) 13 93
UWaveGestureLibrary (120, 320) 3 315

B.6 Datasets BDC Similarity Visualization

Figure 7 displays the similarity matrices computed using Brownian Distance Covariance (BDC)
across different datasets. The x-axis and y-axis represent the variable (channel) indices.

Figure 7: BDC Similarity Visualization of Main and UEA Datasets.
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C Experiments Details

C.1 Main Datasets Implement Details

Implementation Details. All methods are implemented within a unified framework to ensure fair
comparison. Specifically, we re-implement each approach using a consistent training strategy. We
compare our model against a variety of state-of-the-art time series models, including six Transformer-
based models, one MLP-based model, and three CNN-based models as baselines. For baseline
implementations, we adopt the official code and follow the recommended best configurations. The
learning rate is fixed at 0.0001, and the Adam [70] optimizer is employed for all experiments. The
batch sizes are set according to the dataset: {32, 256, 32, 32} for TDBrain, PTB-XL, UCI-HAR,
and FLAAP, respectively. In the data preprocessing stage, we adopt the processing pipeline from
Wang[49] to ensure consistency and comparability across datasets. All models are trained for 100
epochs using five different random seeds (41 to 45), and we report the average results along with the
standard deviations. To prevent overfitting, we adopt an early stopping strategy based on the F1 score
on the validation set. All experiments are conducted using four NVIDIA RTX 4090 GPUs (24GB
memory) with the PyTorch framework [71].

SwinGroupNet (Our Method). We perform clustering on multivariate time series based on the
similarity matrix derived from BDC, generating an initial assignment matrix (see Appendix A for
details). Different similarity thresholds result in different numbers of groups. We then apply Gumbel-
Softmax sampling to obtain a differentiable assignment matrix, followed by independent embedding
for each group. In our proposed Multi-Swin Periodic Window, multi-scale feature extraction is
conducted on the input, and information from different layers is fused to produce the final output.
The learning rate is set to 0.001, and an early stopping strategy is adopted. The experimental
configurations on the main datasets, including the number of variable groups, the regularization
parameter β, embedding dimension, model depth, number of kernels in depthwise convolution, period
window size, and channel expansion ratio, are summarized in Table 7.

Table 7: Experiment configuration of SGN.
Dataset # Groups #β # Embedding Dim # Layers # Kernels # Period Window #Channel Ratio

TDBRAIN 4 0.1 32 5 7 26 2
PTB-XL 4 0.1 64 5 7 25 2
UCI-HAR 6 0.1 64 4 7 32 2
FLAAP 5 0.1 64 2 7 50 2

C.2 Baselines Details

To evaluate the effectiveness of our proposed method, we selected a set of strong baseline models
that cover a wide range of architectural paradigms. Specifically, for the main benchmark datasets,
we include convolution-based models such as MICN [17], ModernTCN [19], and TimesNet [18];
Transformer-based models including iTransformer [24], Reformer [48], FedFormer [14], Crossformer
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[25], PatchTST [22], and MedFormer [49]; and MLP-based models like DLinear [15]. These models
have demonstrated strong capabilities in temporal modeling and provide a solid foundation for
comparative analysis. To further validate our method, we also conducted experiments on the UEA
datasets by including additional baselines such as CNN-based models (TVNet [20], TimeMixer++
[56], Rocket [52]), RNN-based models (LSTNet [50], LSSL [53]), and MLP-based models (LightTS
[50], MTS-Mixer [55]).

C.3 Full result of UEA Datasets

Implementation Details. Our method is trained using the cross-entropy loss, with classification
accuracy (%) adopted as the evaluation metric. The model is initialized with a learning rate of 10−2,
and an early stopping strategy is applied to prevent overfitting. The symbol “*” in Transformer-based
models indicates the specific model name (e.g., *former may refer to Informer, Crossformer, etc.).
Detailed results are presented in Table 8. As shown in the table, MLP-based models exhibit relatively
poor performance. In contrast, CNN-based models demonstrate superior results by effectively
extracting local features and incorporating various strategies to capture global patterns.

Table 8: Performance comparison of various models on different datasets with accuracy metrics for
classification.

Datasets / Models RNN-based Convolution-based MLP-based Transformer-based SGN
LSTNet LSSL Rocket TimesNet ModernTCN TVnet Timemixer++ DLinear LightTS MTS-Mixer In. PatchTST Cross. Flow. FED. (Ours)

2018 2022 2020 2023 2023 2025 2025 2024 2022 2023 2023 2022 2023 2022 2022

EthanolConcentration 39.9 31.1 45.2 35.7 36.3 35.6 39.9 36.2 29.7 33.8 31.6 32.8 38.0 33.8 31.2 44.5
FaceDetection 65.7 66.7 64.7 66.0 68.0 71.2 71.8 68.0 67.5 70.2 67.0 68.7 66.1 67.6 66.0 70.3
Handwriting 25.8 24.6 58.8 32.1 27.0 32.7 26.5 26.1 27.1 33.8 32.8 29.8 30.1 33.8 28.0 50.4
Heartbeat 77.1 72.2 75.6 75.4 77.1 78.1 79.1 76.1 73.6 76.6 80.5 76.2 77.6 77.6 73.7 77.1
JapaneseVowels 98.1 98.4 96.2 98.4 98.2 98.9 97.9 96.2 96.2 94.3 98.9 97.9 99.1 98.9 98.4 98.9
PEMS-SF 86.7 86.1 75.1 89.6 89.0 91.1 91.0 88.7 87.3 90.1 81.5 89.2 90.2 86.0 80.9 88.4
SelfRegulationSCP1 84.0 90.8 90.8 91.8 91.4 93.7 93.1 90.7 92.0 95.2 90.1 92.1 92.5 92.5 88.7 93.9
SelfRegulationSCP2 52.8 52.2 53.3 54.7 56.3 60.5 65.6 50.5 51.1 55.6 53.3 56.1 56.0 56.1 54.4 60.6
SpokenArabicDigits 100.0 100.0 71.2 99.0 99.1 99.4 99.8 81.4 100.0 99.5 100.0 99.1 99.6 98.8 100 99.7
UWaveGestureLibrary 87.8 85.9 94.4 88.3 86.7 86.6 88.2 82.1 80.3 82.3 85.6 85.8 85.6 86.6 85.3 92.2

Average Accuracy 71.8 70.9 72.5 73.6 74.2 74.6 75.3 67.5 70.4 70.9 72.1 72.5 73.2 73.0 70.7 77.6

D Hyperparamter Sensitivity

In this section, we conduct a sensitivity analysis on four key hyperparameters in the SGNet model to
evaluate its robustness. Specifically, we investigate the effects of (1) the number of variable groups, (2)
the number of convolution kernels, (3) the selection of periodic window sizes, and (4) the embedding
dimension within each group. We present a detailed evaluation of how these hyperparameters impact
model performance. The corresponding experimental results are summarized below.

Group Numbers of Varieties. Figure 8 presents the ablation study on variable grouping. According
to the number of variables in each dataset, we partition them into {1, 2, 3, 4, 5, 6} groups. Here,
a group number of 1 indicates that no grouping strategy is applied and all variables are treated
jointly. We observe that as the number of groups increases, performance metrics such as accuracy
initially decrease and then gradually improve. Notably, the TDBRAIN dataset exhibits a significant
performance gain when variable grouping is employed, highlighting the effectiveness of our method
in capturing complex inter-variable relationships.

Figure 8: Analysis of hyperparameter sensitivity concerning the group numbers on main datasets.
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Embedding Dimensions and Number of kernels. Table 9 and Table 10 present the performance
of our model under different embedding dimensions Dm ∈ {16, 32, 64, 128, 256} and convolution
kernel sizes nk ∈ {3, 5, 7, 9, 11}, respectively. Note that the effective receptive field of each
convolutional layer is 2nk + 1. We evaluate these configurations on the main datasets.

As shown in Table 9, the TDBRAIN dataset exhibits minimal sensitivity to changes in embedding
dimension, with accuracy consistently remaining above 99%. In contrast, for the other three datasets,
accuracy gradually improves as the embedding dimension increases from 16 to 64. However, further
increasing the dimension beyond 64 leads to a noticeable performance drop, particularly from 128 to
256. Therefore, considering both performance and computational efficiency, embedding dimensions
of 32 or 64 are identified as optimal choices. And the Table 10 shows that as the number of convolution
kernels increases, leading to a larger effective receptive field, the classification accuracy improves
gradually. This indicates that the model is capable of extracting temporal features effectively even
with smaller kernels, demonstrating its strong robustness and reduced reliance on extensive kernel
coverage.

Table 9: Analysis of hyperparameter sensitivity concerning the dataembedding on main datasets.
Dataset TDBrain PTB-XL FLAAP UCI-HAR

Metric Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

Dm = 16 99.75 99.75 73.58 62.56 78.28 77.87 94.96 94.53
Dm = 32 99.90 99.90 73.65 62.92 79.64 79.25 94.62 94.67
Dm = 64 99.56 99.56 73.80 63.43 80.81 80.35 95.62 95.64
Dm = 128 99.46 99.46 73.56 62.67 79.66 79.40 93.52 93.56
Dm = 256 99.54 99.54 73.54 62.43 78.34 77.98 87.86 88.06

Table 10: Analysis of hyperparameter sensitivity concerning the kernel numbers on main datasets.
Dataset TDBrain PTB-XL FLAAP UCI-HAR

Metric Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

nk = 3 99.84 99.84 73.08 62.44 80.05 79.45 94.10 94.08
nk = 5 99.86 99.86 73.57 62.51 80.31 79.83 94.64 94.69
nk = 7 99.90 99.90 73.80 63.43 80.81 80.35 95.62 95.64
nk = 9 99.76 99.76 73.35 62.51 80.58 80.25 95.38 95.42
nk = 11 99.39 99.39 73.49 62.73 80.29 79.86 94.38 94.45

Periodic Window Sizes. To evaluate the effectiveness of periodic window selection, we analyze
the frequency-domain representations of each main dataset and select the top-5 frequencies with the
highest amplitudes (excluding the full sequence length) as candidate periods. The corresponding
periodic windows for each dataset are as follows: TDBRAIN (26, 128, 29, 32), FLAAP (50, 34,
25, 20), UCI-HAR (64, 32, 26, 19), and PTB-XL (84, 125, 63, 36). We then compare the model
performance under these different periodic settings. As shown in Table 11, the model achieves slightly
better performance under the first two period values, though the differences across configurations
remain relatively small. This demonstrates the robustness of our model and validates the effectiveness
of the proposed periodic mechanism for extracting multi-scale temporal information.

Table 11: Analysis of hyperparameter sensitivity concerning periodic window sizes on main datasets.
Dataset TDBrain PTB-XL FLAAP UCI-HAR

Metric Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

periodic_window = No.1 99.90 99.90 73.34 62.54 80.81 80.35 93.88 93.95
periodic_window = No.2 99.69 99.69 73.56 63.65 79.08 78.66 95.62 95.64
periodic_window = No.3 99.58 99.58 72.91 61.59 79.24 78.77 93.95 93.97
periodic_window = No.4 99.79 99.79 73.09 62.48 77.45 76.94 94.50 94.49
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E Efficiency Analysis

We conduct a comprehensive comparison between SGN and several representative models, including
Reformer [48], Crossformer [25], FEDformer [14], iTransformer [24], PatchTST [22], MICN [17],
ModernTCN [19], and TimesNet [18], from the perspectives of classification performance, training
speed, and memory usage. As illustrated in Figure 9, SGN achieves a well-balanced trade-off between
accuracy, training time, and memory consumption on the TDBRAIN and FLAAP datasets. These
results highlight the efficiency and effectiveness of our proposed method in handling multivariate
time series data under resource-constrained settings.

Figure 9: Model efficiency comparison under TDBRAIN and FLAAP Datesets.

F Additional Visualization Results

In Figure 10, we visualize the temporal correlations across different layers of the model on various
datasets. It is evident that in the lower layers, temporal dependencies are mostly confined to nearby
timestamps. However, with the integration of the PWSM module, which progressively merges
low-level features from short-period windows into high-level representations of long-period windows,
the temporal correlations in the upper layers extend across the entire window. This demonstrates
the effectiveness of our multi-level periodic fusion mechanism in capturing comprehensive global
temporal patterns.

Figure 10: The temporal correlation on TDBRAIN, FLAAP and PTB-XL Datasets.
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G Discussion

In this paper, we propose the SGN architecture, which introduces a novel perspective for modeling
variable relationships by transforming them into intra-group and inter-group interactions through
variable grouping. Additionally, we leverage the periodic nature of time series to perform hierarchical
and multi-scale temporal feature extraction. Our method achieves state-of-the-art performance across
multiple datasets from various domains, demonstrating its generalizability and effectiveness. Despite
its strong empirical results and contributions to time series modeling, SGN still has certain limitations
and leaves room for further exploration.

Limitation. While SGN demonstrates strong performance improvements and achieves outstanding
results on several datasets, its applicability to other time series tasks such as forecasting and imputation
remains to be further explored. Moreover, the use of intrinsic similarity to generate the assignment
matrix introduces additional computational overhead. This preprocessing step, although beneficial
for modeling accuracy, may hinder deployment in real-time scenarios, and thus requires further
optimization and acceleration.

Future Work. Future research can gradually extend SGN to other domains, such as industrial
monitoring and healthcare, where multivariate time series play a crucial role. In addition, exploring
alternative strategies for generating the assignment matrix, potentially guided by domain knowledge,
could improve the flexibility and interpretability of variable grouping. Furthermore, enhancing the
design of periodic windows, including the integration of multiple window candidates or adaptive
selection mechanisms, may further boost the model’s effectiveness and generalization across diverse
datasets.

Broader Impacts. The proposed SGN model holds promising potential for positive societal impact.
By enhancing the accuracy and efficiency of multivariate time series classification, SGN can benefit a
wide range of critical applications. For instance, in the healthcare domain, it can help detect diseases
early by analyzing patient ECG signals, leading to timely interventions and improved outcomes. In
meteorology, SGN can assist in making informed decisions based on complex environmental data,
ultimately contributing to risk reduction and public safety. These capabilities demonstrate the model’s
value in supporting well-being and societal resilience across multiple sectors.
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