
Using Interpretation Methods for Model Enhancement

Zhuo Chen, Chengyue Jiang, Kewei Tu∗

School of Information Science and Technology, ShanghaiTech University
Shanghai Engineering Research Center of Intelligent Vision and Imaging

{chenzhuo,jiangchy,tukw}@shanghaitech.edu.cn

Abstract
In the age of neural natural language process-
ing, there are plenty of works trying to derive
interpretations of neural models. Intuitively,
when gold rationales exist during training, one
can additionally train the model to match its in-
terpretation with the rationales. However, this
intuitive idea has not been fully explored. In
this paper, we propose a framework of utilizing
interpretation methods and gold rationales to
enhance models. Our framework is very gen-
eral in the sense that it can incorporate various
interpretation methods. Previously proposed
gradient-based methods can be shown as an
instance of our framework. We also propose
two novel instances utilizing two other types of
interpretation methods, erasure/replace-based
and extractor-based methods, for model en-
hancement. We conduct comprehensive ex-
periments on a variety of tasks. Experimental
results show that our framework is effective
especially in low-resource settings in enhanc-
ing models with various interpretation meth-
ods, and our two newly-proposed methods out-
perform gradient-based methods in most set-
tings. Code is available at https://github.
com/Chord-Chen-30/UIMER.

1 Introduction

Deep neural networks have been extensively used
to solve Natural Language Processing (NLP) tasks
and reach state-of-the-art performance. Due to the
black-box nature of neural models, there are a lot
of studies on how to interpret model decisions by
giving attribution scores to input tokens, i.e., how
much tokens in an input contribute to the final pre-
diction. We can roughly group these interpreta-
tion methods into four categories, namely gradient-
based (Ross et al., 2017; Smilkov et al., 2017),
attention-based (Vashishth et al., 2019; Serrano and
Smith, 2019), erasure/replace-based (Prabhakaran
et al., 2019; Kim et al., 2020) and extractor-based
(De Cao et al., 2020; Chan et al., 2022) methods.

∗*Corresponding author.

Model Gold outputOutputInput
𝐿!"#$

Interpretations

Gold rationales

𝐿%&!

Gradient
-based

Attention
-based

Erasure
-based

Extractor
-based

Interpretation methods⋯

Figure 1: Our framework illustration utilizing interpre-
tation methods to enhance models. The dotted green
line indicates how the parameters of the model are opti-
mized.

Tokens add step to me to the 50 clásicos playlist

Attribution scores 0.7 0.3 0.1 0.1 0.1 0.3 0.0 0.1 0.6

Gold rationales 1 0 0 0 0 0 0 0 1

Figure 2: An example of attribution scores and gold
rationales.

In some scenarios, we have access to gold ratio-
nales (input tokens critical for predicting correct
outputs) during training, or have simple and fast ap-
proaches to obtaining gold rationales. In that case,
it is intuitively appealing to additionally train the
model such that its most attributed tokens match
gold rationales (see an example in Fig. 2). In other
words, when equipped with interpretation methods,
we can train the model on where to look at in the
input, in addition to the standard output-matching
objective. This can be seen as injecting external
knowledge embodied in rationales into the model
and is especially beneficial to low-resource sce-
narios with few training data. This intuitive idea,
however, has not been fully explored. There are
only a few previous studies based on the gradient-
based category of interpretation methods (Huang
et al., 2021; Ghaeini et al., 2019; Liu and Avci,
2019) and they neither compare the utilization of
different interpretation methods on model enhance-
ment nor experiment on a comprehensive range of

https://github.com/Chord-Chen-30/UIMER
https://github.com/Chord-Chen-30/UIMER

tasks.
In this paper, we first propose a frame-

work named UIMER that Utilizes Interpretation
Methods and gold Rationales to improve model
performance, as illustrated in Fig. 1. Specifically,
in addition to a task-specific loss, we add a new
loss that aligns interpretations derived from inter-
pretation methods with gold rationales. We also
discuss how the optimization of the task-specific
loss and the new loss should be coordinated. For
previous methods utilizing gradient-based interpre-
tation for model enhancement (Huang et al., 2021;
Ghaeini et al., 2019), we show that they can be seen
as instances of our framework.

We then propose two novel instances of our
framework based on erasure/replace-based and
extractor-based interpretation methods respectively.
Specifically, in the first instance, we utilize Input
Marginalization (Kim et al., 2020) as the interpre-
tation method in our framework, which computes
attribution scores by replacing tokens with a variety
of strategies and measuring the impact on outputs,
and we design a contrastive loss over the computed
attribution scores of rationales and non-rationales.
In the second instance, we utilize Rationale Ex-
tractor (De Cao et al., 2020) as the interpretation
method in our framework, which is a neural model
that is independent of the task model and trained
with its own loss. We again design a contrastive
loss over the attribution scores computed by the
extractor and in addition, design a new training
process that alternately optimizes the task model
(using the task-specific loss and our contrastive
loss) and the extractor (using its own loss).

In summary, our main contributions can be sum-
marized as follows: (1) We propose a framework
that can utilize various interpretation methods to
enhance models. (2) We utilize two novel types of
interpretation methods to enhance the model under
our framework. (3) We comprehensively evaluate
our framework on diversified tasks including classi-
fication, slot filling and natural language inference.
Experiments show that our framework is effective
in enhancing models with various interpretation
methods, especially in the low-resource setting.

2 Related Work

2.1 Interpretation Methods

Interpretation methods aim to decipher the black-
box of deep neural networks and have been well-
studied recently. Our framework aims to utilize

these various interpretation methods for model en-
hancement. In these interpretation methods, at-
tribution scores are calculated to indicate the im-
portance of input tokens. According to different
calculations of attribution scores, we can generally
group interpretation methods into the following
four categories.

Gradient-based methods Gradient-based inter-
pretation methods are quite popular and intuitive.
Li et al. (2016) calculates the absolute value of the
gradient w.r.t each input token and interprets it as
the sensitiveness of the final decision to the input.
Following that, Ghaeini et al. (2019) extends the
calculation of gradient to intermediate layers of
deep models. Sundararajan et al. (2017) proposes a
better method that calculates Integrated Gradients
as explanations of inputs.

Attention-based methods The attention mech-
anism calculates a distribution over input tokens,
and some previous works use the attention weights
as interpretations derived from the model (Wang
et al., 2016; Ghaeini et al., 2018). However, there
is no consensus as to whether attention is inter-
pretable. Jain and Wallace (2019) alters attention
weights and finds no significant impact on predic-
tions, while Vig and Belinkov (2019) finds that
attention aligns most strongly with dependency re-
lations in the middle layers of GPT-2 and thus is
interpretable.

Erasure/replace-based methods The general
idea is quite straightforward: erase or replace some
words in a sentence and see how the model’s pre-
diction changes. Li et al. (2016) proposes a method
to analyze and interpret decisions from a neural
model by observing the effects on the model of
erasing various parts of the representation, such as
input word-vector dimensions, intermediate hidden
units, or input words. Kim et al. (2020) gives a new
interpretation method without suffering from the
out-of-distribution (OOD) problem by replacing
words in inputs and it reaches better interpretability
compared with traditional erasure-based methods.

Extractor-based methods An extractor-based
method typically uses an extra model to extract
words that the task model pays attention to. De Cao
et al. (2020) introduces “Differentiable Masking”
which learns to mask out subsets of the inputs while
maintaining differentiability. This decision is made
with a simple model based on intermediate hid-

den layers and word embedding layers of a trained
model. Chen and Ji (2020) proposes the variational
word mask method to learn to restrict the infor-
mation of globally irrelevant or noisy word level
features flowing to subsequent network layers.

2.2 Utilizing Interpretation Methods to
Enhance Models

Some previous work studies whether interpreta-
tion methods can be utilized to enhance models.
Du et al. (2019) is closely related to one of our
contributions (i.e., UIMER-IM in Sec. 3.2). How-
ever, their model suffers from the OOD problem
and does not consistently outperform baselines in
their experiments. Ghaeini et al. (2019) designs
a simple extra objective that encourages the gra-
dient of input to have a positive effect on ground
truth. They find it useful in event-extraction and
Cloze-Style question-answering tasks. To handle
Non-Important Rationales and exploit Potential Im-
portant Non-rationales, Huang et al. (2021) de-
signs their method following the idea that ratio-
nales should get more focus than non-rationales
and only part of the rationales should attain higher
focus. They focus on text classification tasks and
find that, despite the rationale annotations being
insufficient and indiscriminative, their method can
bring improvements. However, these previous stud-
ies neither compare the utilization of various in-
terpretation methods on model enhancement nor
conduct experiments on a comprehensive range of
tasks.

3 Method

We propose a framework UIMER that utilizes an
interpretation method to enhance models based on
gold rationales on training data.

Setup Consider a training example with input x
and gold output y. We also have access to gold
rationales g of input x indicating the subset of
tokens that are critical for predicting the correct
output y. The gold rationales g can be annotated by
humans or generated automatically from external
knowledge sources.

In our setup, g is encoded as a 0/1 vector with
gi = 1 indicating that xi is a gold rationale and
gi = 0 otherwise. Our method, however, can be
easily extended to handle g encoded with real num-
bers indicating the importance of a token.

Given a model tasked with predicting output y
from input x, an interpretation method produces

attribution scores a for input x. a can be defined
on different levels of granularity. In common cases,
ai and xi are one-to-one and ai is defined by a
measure calculated by the interpretation method
based on the model indicating the importance of
token xi for the model in producing its output. For
example, in gradient-based interpretation methods,
ai is usually some function of the gradient of xi
in the model. A higher magnitude of the gradient
implies higher importance of input xi.

Learning Objective Apart from the original task-
specific learning objective Ltask, our framework
introduces an extra learning objective Lint that em-
bodies the idea of aligning attribution scores a with
gold rationales g. The overall objective on one ex-
ample x takes the form of:

Lθ = Ltask(x, y) + αLint(a, g) (1)

where θ is the model parameter and α is a coeffi-
cient balancing the two objectives.

Warm-up Training Lint can be seen as measur-
ing whether the model pays attention to the gold ra-
tionale words in the input. We deem that compared
to teaching a randomly initialized model focusing
more on the task-specific rationale words, teaching
a model with task knowledge is more effective and
reasonable because it might be better at recogniz-
ing task-specific rationales with the help of task
knowledge rather than rote memorization. Thus,
instead of optimizing Lθ at the very beginning, our
framework requires the model to be well or at least
halfway trained before training on the objective
Lint, and during warm-up training, only the objec-
tive of the task is optimized. The empirical results
(in Sec. 4.2) also support our intuition and show
that warm-up training is effective.

In the following subsections, we introduce three
instances of our framework. The first utilizes
gradient-based interpretation methods and sub-
sumes a few previous studies as special cases. The
second and third are new methods proposed by us
utilizing erasure/replace-based and extractor-based
interpretation methods respectively.

3.1 Utilizing Gradient-Based Methods

As introduced in Sec. 2.2, some previous studies
utilize gradient-based (GB) interpretation methods
to enhance models. They can be seen as instances
of our framework, hence denoted as UIMER-GB.

In this type of methods, attribution score a is usu-
ally defined by a function f of the gradient of input
x:

a = f

(
∂J

∂x

)
(2)

where usually J refers to the training objective or
the task model’s output.

In general, Lint is defined as a constraint on the
gradients of gold rationales:

Lint(a, g) = D(a, g) (3)

where D is usually a distance function that calcu-
lates the error of how a approaches g.

In Ghaeini et al. (2019)’s work, f is a function
that takes the sum of the gradients of each input
embedding dimension and D is to take the sum of
the gradients of rationale words. In Huang et al.
(2021)’s work, f is the L1 norm that sums up the
absolute value of gradients over the input embed-
ding dimensions and D is designed in various ways
to give rationale words higher attribution scores.

3.2 Utilizing Erasure/Replace-Based Methods
We incorporate an erasure/replaced-based interpre-
tation method, “Input Marginalization” (IM) (Kim
et al., 2020), into our framework in this subsection
and name this instance UIMER-IM. We first de-
fine the attribution score produced by IM and then
define and introduce how to calculate Lint. Other
erasure/replace-based methods can be integrated
into our framework in a similar way.

3.2.1 Attribution Score by Input
Marginalization

Define pθ(y|x) as the probability of the gold output
that the model predicts. To calculate the attribution
score of token xi, a new set of sentences S needs
to be generated, with the size of S being a hyper-
parameter. Denote x′

u as a new sentence with xi
replaced by some other token u. Denote q(x′

u) as
the probability of replacing xi with u to obtain x′

u,
which can be determined by different strategies1:

1. BERT: Replace xi by [MASK] to obtain the
masked language model probability of u.

2. Prior: q(x′
u) = count(u)/N , where count(u)

is the number of times token u appears in
corpus and N is the corpus size.

1In our experiment, we also include a strategy “MASK”,
which means xi is simply replaced by the [MASK] token and
q(x′

[MASK]) = 1

3. Uniform: q(x′
u) = 1

|V | where |V | is the vo-
cabulary size.

We follow one of the strategies to sample set S
based on q(x′

u)
2, and define ai as:

ai = log2(odds(pθ(y|x)))− log2(odds(m)) (4)

where

m =
∑
x′
u∈S

q(x′
u)pθ(y|x′

u)

odds(p) = p/(1− p)

For inputs with only one gold rationale word,
computing and optimizing the attribution score is
easy. However, there might be more than one ratio-
nale in general and the calculation of the attribution
score of each rationale token becomes impractical
when the input length and the number of rationales
get larger. Therefore, we extend the token attri-
bution score defined in the original IM method to
multi-token attribution score which can be more
efficiently computed.

Formally, for input x with more than one ra-
tionale word, denote x′

R as a new sentence in
which all rationale words are replaced, and x′

N

as a new sentence in which the same number of
non-rationale words are replaced.3 The way to gen-
erate one x′

R is by replacing one rationale word at a
time using the strategies mentioned before. We de-
note the score of replacing x to x′

R as q(x′
R), and

q(x′
R) is calculated as the average of the replacing

probabilities of rationale words using a certain re-
placing strategy4. Similarly, x′

N is generated and
q(x′

N) can be defined. We repeat this generating
process and denote the set of generated x′

R(x′
N) as

SR(SN) with the size of SR(SN) being a hyper-
parameter. Then the attribution scores aR for the
entire set of rationales and aN for the same number

2When q(x′
u) is determined by BERT strategy, we fol-

low the method IM to construct S. Words with the highest
probabilities are selected rather than sampled to replace xi.

3The same number of non-rationales to be replaced are
chosen randomly from the input.

4Here we deviate from the calculation of Kim et al. (2020)
that multiplies the probabilities. If there are many rationale
words in a sentence and we take the product of probabilities,
the sentence with the most probable words replaced by BERT
will have a dominant probability compared with others, which
often degenerates the calculation of attribution score.

of non-rationales are defined as:

aR = log2(odds(pθ(y|x)))− log2(odds(mR))

aN = log2(odds(pθ(y|x)))− log2(odds(mN))

mR =
∑

x′
R∈SR

q(x′
R)pθ(y|x′

R)

mN =
∑

x′
N∈SN

q(x′
N)pθ(y|x′

N)

3.2.2 Definition of Lint in UIMER-IM

For a given input x and gold rationale g, with aR
and aN defined, we expect the attribution score
of rationale words to be higher than that of non-
rationale words. Thus, we design a contrastive
margin loss:

Lint(a, g) = max(aN − aR + ϵ, 0) (5)

where ϵ is a positive hyperparameter controlling the
margin. Here a is not defined w.r.t each token, and
it refers to the attribution score for multi-tokens.
Note that when calculating aN − aR, the term
log2(odds(pθ(y|x))) is canceled out and does not
need to be computed. We choose to use the margin
loss instead of simply maximizing aR and minimiz-
ing aN because in many cases non-rationale words
may still provide useful information and we do not
want to eliminate their influence on the model.

3.3 Utilizing Extractor-Based Methods
In this section, we incorporate “DiffMask” (DM)
(De Cao et al., 2020), an extractor-based interpre-
tation method into our framework and name this
instance UIMER-DM. Other extractor-based inter-
pretation methods can be integrated into UIMER
in a similar way.

3.3.1 Attribution Score by the Extractor
In DM, the attribution scores a are produced by a
simple extractor model Extϕ parameterized by ϕ.

a = Extϕ(Enc(x)) (6)

where Enc(x) refers to the encoding of input x
produced by an encoder model, and a is composed
of real numbers in the range of 0 to 1. Here a
is defined one-to-one w.r.t. each token in x. The
extractor needs to be trained by its own objective
LDM
ϕ composed of 2 parts:

1. A term to encourage masking the input (or
hidden states) as much as possible.

2. A term to constrain the changes of task
model’s prediction after feeding the masked
input (or hidden states).

3.3.2 Definition of Lint in UIMER-DM

With attribution scores defined in DM, we define a
contrastive loss Lint as follows:

Lint(a, g) =
∑
i:gi=1

min

 ai
max
j:gj=0

aj
− 1, 0

2

(7)
Intuitively, we encourage the attribution score of
rationale words to be higher than the attribution
score of non-rationale words. The loss will be zero
as long as the maximum attribution score of non-
rationale words is lower than the attribution score
of any rationale word.

3.3.3 Training in UIMER-DM

When training UIMER-DM, there are two objec-
tives and two sets of parameters, Lθ (Eq. 1) for
model parameter θ and LDM

ϕ for extractor parame-
ter ϕ. Intuitively, the two sets of parameters should
not be optimized simultaneously. That is because
our framework requires an accurate interpretation
model (i.e., the extractor here). If the extractor is
trained at the same time with the model, then since
the model keeps changing, there is no guarantee
that the extractor could keep pace with the model,
and hence its interpretation of the model may not
match the latest model, breaking the requirement
of our framework.

We adopt the following training schedule to cir-
cumvent the problem. First, we follow the warm-
up strategy and train the model. After that, we
alternate between two steps: (1) optimizing the
extractor parameters ϕ w.r.t. LDM

ϕ with the model
parameters θ frozen; (2) optimizing the model pa-
rameters θ w.r.t. Lθ with the extractor parameters
ϕ frozen. The number of rounds that we alternately
optimize ϕ and θ and the number of epochs in each
round are hyperparameters.

4 Experiment

4.1 Experimental Settings
Datasets To evaluate our framework, we exper-
iment with all the methods introduced in the pre-
vious section on three tasks: Intent Classification
(IC), Slot Filling (SF) and Natural Language In-
ference (NLI). The three tasks take the forms of
single sentence classification, sequence labeling

Task Dataset Source of Rationales Rationales

IC SNIPS Human annotation add step to me to the 50 clásicos playlist

SF SNIPS Regular Expression rate the current essay 2 out of 6

NLI e-SNLI Given in the dataset
Premise: children smiling and waving at camera
Hypothesis: the kids are frowning

Table 1: Examples of rationales on the three tasks in our experiments.

and sentence pair classification respectively. For
Intent Classification and Slot Filling, we adopt the
SNIPS (Coucke et al., 2018) dataset. For Natural
Language Inference, we adopt the e-SNLI (Cam-
buru et al., 2018) dataset. SNPIS is widely used
in NLU research (Jiang et al., 2021a; Chen et al.,
2019). It is collected from SNIPS personal voice
assistant. There are 13084, 700 and 700 samples
in the training, development and test sets respec-
tively, and there are 72 slot labels and 7 intent types.
e-SNLI is a large dataset extended from the Stan-
ford Natural Language Inference Dataset (Bowman
et al., 2015) to include human-annotated natural
language explanations of the entailment relations.
There are 549367, 9842, and 9824 samples in the
training, development and test sets respectively.

Rationales We give examples of rationales and
show how they are obtained in Table 1. For the
Intent Classification task, we ask one annotator to
construct a set of keywords for each intent type
based on the training set. This only takes less than
15 minutes. For the Slot Filling task, we use 28
regular expressions with simple patterns which ref-
erence Jiang et al. (2021b)5 to match the sentences
in the SNIPS dataset and regard matched tokens as
rationales. The job takes less than 30 minutes (less
than 1 minute each on average). The complete ra-
tionale sets for Intent Classification and Slot Filling
task are shown in App. 8.1. For e-SNLI, we use the
explanations provided by Camburu et al. (2018).

Baselines For Intent Classification task, we
choose BERT-base-uncased6 + Softmax as our base
model7. For Slot Filling, we choose BERT-base-
uncased + CRF as our base model. For Natural
Language Inference, we prepare the data into the
form “[CLS] premise [SEP] hypothesis [SEP]”,
feed it into BERT-base-uncased, and apply a linear
layer to the hidden state of the [CLS] token to score
the entailment. These base models are natural base-

5These regular expressions are designed to extract slots.
6https://huggingface.co/bert-base-uncased
7We implement it based on JointBERT

lines. We also regard the two previously-proposed
gradient-based methods introduced in Sec. 3.1 as
stronger baselines.

Training Settings We mainly focus on low-
resource settings with limited training examples,
which is when external resources such as rationales
can be most beneficial. With less training data,
there is an increasing return of utilizing rationales.
For Slot Filling and Intent Classification, we com-
pare our methods and baselines on 1-shot, 3-shot,
10-shot, 30-shot and 100% of training data. For
Slot Filling, n-shot means that we sample train-
ing examples such that each slot label appears at
least n times in the sampled examples. For Natural
Language Inference, we compare our framework
and baselines with 100 and 500 training samples
from e-SNLI. Hyperparameters are tuned on the
development set and we report the average result of
4 random seeds on the test set. Detailed data about
hyperparameters is shown in App. 8.3.

4.2 Main Results

We present the main results in all the settings in
Table 2. First, from the Mean column, we see
that gradient-based methods (UIMER-GB Ghaeini
et al. (2019); Huang et al. (2021)) reach better per-
formance than the base model, and all variants of
our proposed UIMER-IM and UIMER-DM meth-
ods outperform both UIMER-GB and base models.

For UIMER-IM, its variants achieve the best
performance in eight of the twelve settings and
the second best in the rest of settings, suggesting
its general applicability. The “+Uniform” variant
of UIMER-IM can be seen to clearly outperform
the other variants in the 1/3-shot settings on In-
tent Classification and we analyze the potential
reason behind this in App. 8.2. UIMER-IM with
the “BERT (warm.)” variant brings a 14.86% gain
for the NLI 100-example setting.

For UIMER-DM, it achieves the best perfor-
mance in the 1/3-shot settings and is competitive in
the 10-shot setting on Slot Filling, which indicates

https://huggingface.co/bert-base-uncased
https://github.com/monologg/JointBERT

Model
IC (Acc.) SF (F1) NLI (Acc.) Mean

1 3 10 30 full 1 3 10 30 full 100 500 -

BaseModel 65.71 79.18 91.00 93.79 97.64 38.14 50.97 67.05 81.70 95.22 54.03 62.84 73.11

O
ur

Fr
am

ew
or

k

UIMER-GB Ghaeini et al. (2019) 65.71 79.14 91.82 94.18 97.92 37.77 51.69 67.57 82.16 95.99 67.13 69.77 75.07

UIMER-GB

Huang et al. (2021)

+ Base 67.04 83.04 91.43 94.57 98.21 39.02 50.66 67.11 80.20 95.25 66.15 68.57 75.10
+ Gate 67.14 82.01 91.39 94.07 98.07 37.84 51.63 67.34 80.89 95.50 66.06 68.31 75.02
+ Order 65.28 81.82 90.82 94.36 98.11 38.18 50.99 67.55 81.08 95.39 68.44 68.57 75.05
+ (Gate+Order) 67.71 80.25 92.11 94.39 98.39 38.86 51.73 67.76 80.55 95.77 65.10 65.84 74.87

UIMER-IM

+ MASK 69.85 83.17 91.18 93.86 98.00 38.68 52.47 69.27 81.67 95.83 63.36 70.04 75.61
+ BERT 70.61 83.93 91.78 94.61 97.86 39.28 51.96 69.22 81.85 95.77 62.08 69.03 75.67
+ Prior 73.71 83.93 91.00 93.96 97.89 38.07 51.69 68.31 81.97 95.28 66.56 70.32 76.06
+ Uniform 73.32 86.04 91.64 94.00 98.04 39.31 51.37 69.02 81.69 95.49 64.34 69.19 76.12

UIMER-IM

+ MASK (warm.) 70.82 82.96 92.43 94.04 98.25 38.60 51.55 67.93 82.25 94.89 68.79 69.95 76.04
+ BERT (warm.) 70.93 82.71 92.00 94.32 97.82 39.53 52.83 68.81 82.58 95.74 68.89 69.18 76.28
+ Prior (warm.) 73.82 83.11 91.93 94.07 97.82 38.24 51.68 68.26 82.66 95.82 68.25 71.82 76.46
+ Uniform (warm) 75.79 86.29 91.67 94.32 98.11 38.71 52.18 68.21 82.17 95.39 67.58 69.79 76.68

UIMER-DM
One-pass 66.75 84.42 91.53 93.78 97.96 39.86 52.87 67.28 81.90 95.22 63.03 66.91 75.13
Multi-round 70.21 85.86 91.92 94.00 97.96 41.32 53.10 69.26 82.00 95.54 65.44 67.60 76.18

Table 2: Evaluation of our framework on three tasks. Underlines mark the results of our UIMER-IM/DM that
outperform the base model and UIMER-GB methods. Boldface marks the best results among all the methods. The
Mean column gives the average of each row.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

Epoch

No warm-up

Warm-up

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

Epoch

𝐿
𝑖𝑛
𝑡

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

Epoch

𝐿
𝑖𝑛
𝑡

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11

Epoch

𝐿
𝑖𝑛
𝑡

𝐿
𝑖𝑛
𝑡

Figure 3: The curves of Lint with and without warm-up
training on 1-shot Intent Classification over 4 random
seeds.

that an extra extractor might be more capable of
locating rationales than other interpretation meth-
ods for structured prediction problems. Applying
multi-round training to UIMER-DM can be seen
to clearly improve the performance in almost all
the settings of all three tasks. We conduct an abla-
tion study on the effect of multi-round training of
UIMER-DM in Sec. 5.2.

From the results, it is also evident that in general,
the performance gap between any instance method
of our framework and the base model becomes
larger with less data, implying the usefulness of
rationales when training data cannot provide suffi-
cient training signals for model enhancement.

5 Analysis

5.1 Warm-up Training
We conduct an ablation study on the effect of warm-
up training of our method UIMER-IM in the 1-

69.63

67.05

70.01 70.01
70.72

71.77
71.31

67.28 67.19

68.21

69.26 69.03

66

67

68

69

70

71

72

One-Pass 3 20 50 70

F1
 sc

or
e

Rounds

BaseModel Dev
BaseModel Test
UIMER-Dm Dev
UIMER-Dm Test

Figure 4: Ablation study of multi-round training on 10-
shot Slot Filling.

shot setting of the Intent Classification task. In
particular, we inspect the value of objective Lint

during training with and without warm-up training,
as shown in Fig. 3. It can be seen that with warm-
up training, the Lint objective starts with a lower
value and converges to zero faster, verifying the
benefit of warm-up training.

5.2 Multi-Round Training

In our method UIMER-DM, we propose an asyn-
chronous training process that trains the model and
the extractor asynchronously for multiple rounds.
We conduct a study on the effectiveness of the
multi-round training process on 10-shot Slot Fill-
ing and the results are shown in Fig. 4. We observe
that by iteratively and alternately training the ex-
tractor and the model, performances on both the
development and the test sets show an upward trend
with more rounds. Note that we use fewer training
epochs (around 10 for the extractor and 20 for the

add karusellen to jazz brasileiro Prediction

BaseModel +IM aR : 1.787 < aN : 2.355 é PlayMusic
UIMER-IM aR : 6.098 > aN : 0.544 Ë AddToPlaylist

what are the movie schedules Prediction

BaseModel +IM aR : 1.808 < aN : 2.172 é SearchCreativeWork
UIMER-IM aR : 2.424 > aN : 1.465 Ë SearchScreeningEven

rate the current chronic five stars Prediction

BaseModel +DM 0.99 0.99 0.99 0.72 0.99 0.95 é SearchCreativeWork
UIMER-DM 0.00 0.00 0.00 0.00 0.00 0.99 Ë RateBook

play the newest music by evil jared hasselhoff Prediction

BaseModel +DM 0.99 0.99 0.99 0.99 0.99 0.00 0.99 0.99 Ë PlayMusic
UIMER-DM 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ë PlayMusic

Table 3: A case study that analyzes the task performance and quality of interpretations of the base model and
our methods UIMER-IM&DM. “BaseModel +IM/DM Attr.”: The attribution scores produced by base model and
IM/DM interpretation method. UIMER-IM/DM: The attribution scores produced by our framework.

model) in each round of multi-round training than
one-pass training. 3-round training does not outper-
form one-pass training simply because it has few
total training epochs.

5.3 Case Study

To show that our framework is able to both enhance
the model in task performance and give better in-
terpretations, we conduct a case study on 1-shot
Intent Classification setting. From the first two ex-
amples in Table 3, we can see that the base model
can neither predict the correct intent label of the
sentence nor produce good interpretations (the attri-
bution scores of non-rationales are higher than the
scores of rationales); in comparison, our UIMER-
IM fixes both problems. In the last two examples,
we show that UIMER-DM succeeds in lowering
the attribution scores of irrelevant parts in the input
and producing high scores for some or all of the
rationales. It can also be seen that the extractor
trained on the base model in 1-shot settings views
most of the inputs as being important, while the ex-
tractor in UIMER-DM is much more parsimonious
and precise.

5.4 Relation Between Attribution Score and
Performance

In this section, we study how the model performs
on the test set when it succeeds or fails to give
rationale words higher attribution scores. We con-
duct experiments on 1-shot Intent Classification
and calculate the accuracy while giving rationale
words higher or lower attribution scores than non-

Acc.
aR > aN

Acc.
aR ≤ aN

%
aR > aN

Acc.

BaseModel +IM 68.86 37.86 81.57 65.71
UIMER-IM 77.99 36.59 85.33 75.79

BaseModel +DM 72.44 52.44 58.57 65.71
UIMER-DM 75.75 16.52 81.28 70.21

Table 4: Performances when the model gives higher
attribution scores to rationale words or not.

rationales, as shown in the first and second columns
in Table 4. For methods with the DM interpretation
method, aR is calculated by averaging the attribu-
tion scores for all rationale words in x and aN is
calculated by averaging the attribution scores for
all non-rationale words. We can see that when our
UIMER-IM/DM method correctly recognizes ra-
tionale words, it reaches higher accuracy than the
base model, which suggests that helping models
pay more attention to rationales can additionally
improve the task performance.

6 Conclusion

Though many interpretation methods are studied
for deep neural models, only sporadic works uti-
lize them to enhance models. In this paper, we
propose a framework that can utilize various in-
terpretation methods to enhance models. We also
propose two novel instances utilizing two other
types of interpretation methods for model enhance-
ment. In addition, we discuss how the optimization
of the task-specific loss and the new loss should

be coordinated. Comprehensive experiments are
conducted on a variety of tasks including Intent
Classification, Slot Filling and Natural Language
Inference. Experiments show that our framework
is effective in enhancing models with various inter-
pretation methods especially in the low-resource
setting, and our two newly-proposed methods out-
perform gradient-based methods in most settings.
For future work, we plan to extend our framework
to utilize more forms of rationales and additional
interpretation methods.

7 Limitations

It can be inferred from the result that the two newly
introduced methods do not give the best perfor-
mance in rich-resource settings. We prospect that
method UIMER-IM plays a role in incorporating
the information of rationales by introducing more
similar inputs to the model when the training data
is scarce. However, when training data is sufficient
enough for the task, the effect of this way to supply
information on rationales is reduced. For method
UIMER-DM, it also does not perform the best in
rich-resource settings. We attribute the ordinary
performance of UIMER-DM to that with rich data,
most knowledge can be implicitly learned by the
model, and injecting gold rationale doesn’t help.

Acknowledgement

This work was supported by the National Natural
Science Foundation of China (61976139).

References
Samuel R Bowman, Gabor Angeli, Christopher Potts,

and Christopher D Manning. 2015. A large annotated
corpus for learning natural language inference. In
EMNLP.

Oana-Maria Camburu, Tim Rocktäschel, Thomas
Lukasiewicz, and Phil Blunsom. 2018. e-snli: Natu-
ral language inference with natural language expla-
nations. Advances in Neural Information Processing
Systems, 31.

Aaron Chan, Maziar Sanjabi, Lambert Mathias, Liang
Tan, Shaoliang Nie, Xiaochang Peng, Xiang Ren,
and Hamed Firooz. 2022. Unirex: A unified learning
framework for language model rationale extraction.
In International Conference on Machine Learning,
pages 2867–2889. PMLR.

Hanjie Chen and Yangfeng Ji. 2020. Learning varia-
tional word masks to improve the interpretability of
neural text classifiers. In Proceedings of the 2020

Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 4236–4251.

Qian Chen, Zhu Zhuo, and Wen Wang. 2019. Bert
for joint intent classification and slot filling. arXiv
preprint arXiv:1902.10909.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calta-
girone, Thibaut Lavril, et al. 2018. Snips voice plat-
form: an embedded spoken language understanding
system for private-by-design voice interfaces. arXiv
preprint arXiv:1805.10190.

Nicola De Cao, Michael Sejr Schlichtkrull, Wilker Aziz,
and Ivan Titov. 2020. How do decisions emerge
across layers in neural models? interpretation with
differentiable masking. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 3243–3255.

Mengnan Du, Ninghao Liu, Fan Yang, and Xia Hu.
2019. Learning credible deep neural networks with
rationale regularization. In 2019 IEEE International
Conference on Data Mining (ICDM), pages 150–159.
IEEE.

Reza Ghaeini, Xiaoli Fern, Hamed Shahbazi, and Prasad
Tadepalli. 2019. Saliency learning: Teaching the
model where to pay attention. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 4016–4025.

Reza Ghaeini, Xiaoli Fern, and Prasad Tadepalli. 2018.
Interpreting recurrent and attention-based neural
models: a case study on natural language inference.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4952–4957.

Quzhe Huang, Shengqi Zhu, Yansong Feng, and
Dongyan Zhao. 2021. Exploring distantly-labeled
rationales in neural network models. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 5571–5582.

Sarthak Jain and Byron C Wallace. 2019. Attention is
not explanation. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 3543–3556.

Chengyue Jiang, Zijian Jin, and Kewei Tu. 2021a. Neu-
ralizing regular expressions for slot filling. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 9481–
9498.

Chengyue Jiang, Zijian Jin, and Kewei Tu. 2021b. Neu-
ralizing regular expressions for slot filling. In Con-
ference on Empirical Methods in Natural Language
Processing.

Siwon Kim, Jihun Yi, Eunji Kim, and Sungroh Yoon.
2020. Interpretation of nlp models through input
marginalization. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 3154–3167.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016. Un-
derstanding neural networks through representation
erasure. arXiv preprint arXiv:1612.08220.

Frederick Liu and Besim Avci. 2019. Incorporating
priors with feature attribution on text classification.
In Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 6274–
6283.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Vinodkumar Prabhakaran, Ben Hutchinson, and Mar-
garet Mitchell. 2019. Perturbation sensitivity analy-
sis to detect unintended model biases. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5740–5745.

Andrew Slavin Ross, Michael C Hughes, and Finale
Doshi-Velez. 2017. Right for the right reasons: Train-
ing differentiable models by constraining their expla-
nations. arXiv preprint arXiv:1703.03717.

Sofia Serrano and Noah A Smith. 2019. Is attention
interpretable? In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 2931–2951.

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda
Viégas, and Martin Wattenberg. 2017. Smoothgrad:
removing noise by adding noise. arXiv preprint
arXiv:1706.03825.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Interna-
tional conference on machine learning, pages 3319–
3328. PMLR.

Shikhar Vashishth, Shyam Upadhyay, Gaurav Singh
Tomar, and Manaal Faruqui. 2019. Attention in-
terpretability across nlp tasks. arXiv preprint
arXiv:1909.11218.

Jesse Vig and Yonatan Belinkov. 2019. Analyzing
the structure of attention in a transformer language
model. In Proceedings of the 2019 ACL Workshop
BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 63–76.

Original sentence
Rate my current book 1 out of 6

Replace the rationale by BERT
Rating my current book 1 out of 6
Give my current book 1 out of 6
Rate my current book 1 out of 6

Replace the rationale randomly
Arrest my current book 1 out of 6
Operate my current book 1 out of 6
Sell my current book 1 out of 6

Intent
RateBook😀

🙂

☹

RateBook

RateBook

Figure 5: The underline marks a rationale. Replace the
rationale by BERT v.s. randomly.

Yequan Wang, Minlie Huang, Xiaoyan Zhu, and
Li Zhao. 2016. Attention-based lstm for aspect-level
sentiment classification. In Proceedings of the 2016
conference on empirical methods in natural language
processing, pages 606–615.

8 Appendix

8.1 Patterns to match rationales

In our experiments, we adopt simple patterns to
match rationales. For Intent Classification, a dic-
tionary is constructed, as shown in Table 5 (upper),
mapping intent labels to rationales, and for Slot
Filling, a group of Regular Expressions, as shown
in Table 5 (below), is used to extract rationales.
Both tasks are derived from SNIPS dataset that
contains 13084 examples, and obtaining both the
dictionary and the Regular Expressions is simple
and fast. Please note that though the table below
seems a little complex, the gray parts are just the
syntax of Regular Expressions. Only the black
parts contain rational information.

8.2 Why is “+Uniform” Good

In experimenting with Sec. 3.2, we found that re-
placing rationales/non-rationales randomly, i.e. the
“Uniform” strategy often produces a better result
even than the “BERT” strategy, despite the fact
that compared to replacing tokens randomly, a pre-
trained BERT can apparently produce more fluent
sentences. Here we give an example in Intent Clas-
sification task that possibly explains the cause of
this fact in Fig. 5.

As stated in Sec. 3.2, we aim to minimize Lint

defined in Eq. 5 in which we want to lower the
latter term in aR, and it is a weighted sum of the
predictions of these sentences generated by BERT
on the ground truth intent. However, we see that
BERT pretty much keeps the original meaning of

the sentence in this example. Thus lowering the
latter term in aR seems to be a contradiction to the
origin task. In contrast, if we look at the sentences
generated by replacing the rationale randomly they
contain much less information about the ground
truth intent, and minimizing Lint seems to be more
reasonable.

8.3 Hyperparameters
For Intent Classification and Slot filling task, the
learning rate Lθ is tuned among {8e-5, 1e-4, 2e-4,
4e-4} in 1/3/10/30-shot settings and {1e-5, 2e-5}
in full training data setting. For Natural Language
Inference task, the learning rate of Lθ is tuned
among {8e-5, 1e-4, 3e-4}. In all three tasks, α
is tuned in the range [0.001, 20]. ϵ is tuned in
the range [0.01, 10]. We use AdamW optimizer
(Loshchilov and Hutter, 2018) and “linear schedule
with warmup” scheduler. Detailed hyperparameters
are shown in Table 6-8.

8.4 Result with std.
We show the result with unbiased estimation of
standard deviation in Table 9 in all few-shot set-
tings.

Task Intent Label (keys) Rationales (values)

IC

AddToPlaylist [add, playlist, album, list]
BookRestaurant [book, restaurant, reservation, reservations]
GetWeather [weather, forecast, warm, freezing, hot, cold]
PlayMusic [play, music, song, hear]
RateBook [rate, give, star, stars, points, rating, book]
SearchCreativeWork [find, show, called]
SearchScreeningEvent [movie, movies, find, theatres, cinema, cinemas, film, films, show]

Task Regular Expressions

SF

.*(?P<rationale>find|looking for|show|download|get) (?P<rationale1>me) (?P<rationale2>a|the).*(called).*

.*(?P<none>[0-5]|zero|one|two|three|four|five) (?P<rationale>points|stars).*

.*(?P<rationale>a rating of) (?P<none>[0-5]|zero|one|two|three|four|five).*

.*(?P<rationale>rate|give) .*(?P<rationale1>out of).*

.*(?P<none>[0-5]|zero|one|two|three|four|five) (?P<rationale>out of) (?P<none1>6|six).*

.*(this|current)? (?P<rationale>book|novel|movie schedule|movie schedules|album|movie schedules|
movie times|essay|textbook|tv show|saga|trailer|photograph|picture|television show|game|painting|
tv series|soundtrack|song|movie|saga|series|chronicle).*

.*(?P<rationale>add) .*(?P<rationale1>to).*

.*(?P<rationale>add|put) .*(?P<rationale1>to my) (?P<rationale2>playlist)?.*

.*(?P<rationale>play playlist).*

.*(?P<rationale>my) .*(?P<rationale1>playlist).*

.*(?P<rationale>song|album|track|tune|artist|soundtrack) (?P<rationale1>by)?.*

.*(?P<rationale>weather|sunny|forecasted|forecast) .*(?P<rationale1>in).*

.*(?P<rationale>what is the weather).*

.*(?P<rationale>weather|weather forecast).*

.*(?P<rationale>book) (?P<none>a).*

.*(?P<rationale>restaurant|bar|brasserie|pub|taverna|food truck|cafeteria).*

.*(?P<rationale>nearest|closest|nearby|close by|in the neighborhood|in the area).*

.*(?P<rationale>table|seats|reservation|restaurant|spot) .*(?P<rationale1>for) .*(?P<rationale2>people)?.*

.*(?P<rationale>movie house|cinema|movie theatre).*

.*(?P<rationale>when is|what time is|find me|where is|is|see|watch).* (?P<rationale1>playing|showing).*

.*(?P<rationale>netflix|itunes|groove shark|google music|deezer|spotify|zvooq|youtube|lastfm|
pandora|slacker|iheart|vimeo|last fm).*

.*(?P<rationale>animated movies|films|film).*

.*(?P<rationale>twenties|fourties|eighties|thirties|sixties|fifties|seventies|nineties|1958|2011|2003|2016)

.*(?P<rationale>for|at) (?P<rationale1>entertainment|theatres|corporation|cinemas).*

.*(?P<rationale>highly rated|best|popular|top-rated|top).*

.*(?P<rationale>colder|chilly|warm|hot|freezing|hotter|cold|warmer).*

.*(?P<rationale>blizzard|rain|cloudy|windy|hail|snowstorm|stormy).*

.*(?P<rationale>\bhere|current position|current location|current place|current spot).*

Table 5: The upper Table refers to the dictionary we construct to match rationales for each intent type for Intent
Classification task. The bottom one refers to Regular Expressions to match rationales for the Slot Filling task.
Tokens following <rationale*> tag are annotated rationales.

Setting Method seed lr lr_extractor bz max epochs alpha epsilon
warup epochs/
#multi-rounds

early stop GPU

1-shot

UIMER-IM +MASK 55:1988:12333:42 0.0002 - 24 70 4 1 - 7

Tesla V100-SXM2-32GB

UIMER-IM +BERT 55:1988:12333:42 0.0004 - 24 70 4 0.5 - 7
UIMER-IM +Prior 55:1988:12333:42 0.0004 - 24 70 1 0.5 - 7
UIMER-IM +Uniform 55:1988:12333:42 0.0002 - 24 70 0.6 1 - 7
UIMER-IM +MASK (warm.) 55:1988:12333:42 0.0004 - 24 70 1 0.5 3 7
UIMER-IM +BERT (warm.) 55:1988:12333:42 0.0002 - 24 70 4 0.05 2 7
UIMER-IM +Prior (warm.) 55:1988:12333:42 0.0004 - 24 70 4 0.5 2 7
UIMER-IM +Uniform (warm.) 55:1988:12333:42 0.0004 - 24 70 4 0.5 1 7
UIMER-DM One-pass 55:1988:12333:42 0.0002 0.0005 24 70 0.8 - - 7
UIMER-DM Multi-round 55:1988:12333:42 0.0002 0.001 24 1 0.8 - 50 7

3-shot

UIMER-IM +MASK 55:1988:12333:42 0.0004 - 24 70 0.6 0.5 - 7

Tesla V100-SXM2-32GB

UIMER-IM +BERT 55:1988:12333:42 0.0004 - 24 70 0.6 0.5 - 7
UIMER-IM +Prior 55:1988:12333:42 0.0002 - 24 70 1 0.01 - 7
UIMER-IM +Uniform 55:1988:12333:42 0.0004 - 24 70 4 0.5 - 7
UIMER-IM +MASK (warm.) 55:1988:12333:42 0.0002 - 24 70 4 0.01 5 7
UIMER-IM +BERT (warm.) 55:1988:12333:42 0.0004 - 24 70 1 0.05 5 7
UIMER-IM +Prior (warm.) 55:1988:12333:42 0.0002 - 24 70 1 1 5 7
UIMER-IM +Uniform (warm.) 55:1988:12333:42 0.0002 - 24 70 1 0.5 5 7
UIMER-DM One-pass 55:1988:12333:42 0.0004 0.001 24 70 0.5 - - 7
UIMER-DM Multi-round 55:1988:12333:42 0.0002 0.0005 24 50 0.8 - 50 7

10-shot

UIMER-IM +MASK 55:1988:12333:42 0.0002 - 24 70 0.1 0.5 - 7

Tesla V100-SXM2-32GB

UIMER-IM +BERT 55:1988:12333:42 0.0001 - 24 70 0.1 0.1 - 7
UIMER-IM +Prior 55:1988:12333:42 0.0002 - 24 70 0.5 0.1 - 7
UIMER-IM +Uniform 55:1988:12333:42 0.0001 - 24 70 4 0.5 - 7
UIMER-IM +MASK (warm.) 55:1988:12333:42 0.0002 - 24 70 0.1 0.1 5 7
UIMER-IM +BERT (warm.) 55:1988:12333:42 0.0002 - 24 70 4 0.01 5 7
UIMER-IM +Prior (warm.) 55:1988:12333:42 0.0002 - 24 70 4 0.01 10 7
UIMER-IM +Uniform (warm.) 55:1988:12333:42 0.0002 - 24 70 10 0.01 task trained* 7
UIMER-DM One-pass 55:1988:12333:42 0.0004 0.001 24 70 0.5 - - 7
UIMER-DM Multi-round 55:1988:12333:42 0.0004 0.001 24 1 0.5 - 50 7

30-shot

UIMER-IM +MASK 55:1988:12333:42 0.0001 - 24 50 1 0.01 - 7

NVIDIA TITAN V

UIMER-IM +BERT 55:1988:12333:42 0.0001 - 24 50 0.6 0.01 - 7
UIMER-IM +Prior 55:1988:12333:42 0.0001 - 24 50 0.08 0.05 - 7
UIMER-IM +Uniform 55:1988:12333:42 0.0001 - 24 50 0.6 0.01 - 7
UIMER-IM +MASK (warm.) 55:1988:12333:42 0.0001 - 24 50 0.6 0.5 2 7
UIMER-IM +BERT (warm.) 55:1988:12333:42 0.0001 - 24 50 0.08 0.05 1 7
UIMER-IM +Prior (warm.) 55:1988:12333:42 0.0001 - 24 50 1 0.01 4 7
UIMER-IM +Uniform (warm.) 55:1988:12333:42 0.0001 - 24 50 0.08 0.05 2 7
UIMER-DM One-pass 55:1988:12333:42 0.0002 0.00001 24 25 0.1 - - 7
UIMER-DM Multi-round 55:1988:12333:42 0.0002 0.00001 24 25 0.1 - 15 7

full-resource

UIMER-IM +MASK 55 0.00001 - 24 30 0.1 0.5 - 5

NVIDIA TITAN V

UIMER-IM +BERT 55 0.00001 - 24 30 0.01 0.05 - 5
UIMER-IM +Prior 55 0.00001 - 24 30 0.1 0.5 - 5
UIMER-IM +Uniform 55 0.00001 - 24 30 0.001 0.05 - 5
UIMER-IM +MASK (warm.) 55 0.00001 - 24 30 0.001 0.5 1 5
UIMER-IM +BERT (warm.) 55 0.00001 - 24 30 0.1 0.5 5 5
UIMER-IM +Prior (warm.) 55 0.00001 - 24 30 0.001 0.5 1 5
UIMER-IM +Uniform (warm.) 55 0.00001 - 24 30 0.0001 0.05 5 5
UIMER-DM One-pass 55 0.00001 0.001 24 30 0.1 - - 5
UIMER-DM Multi-round 55 0.00001 0.001 24 30 0.1 - 30 5

Table 6: Hyperparameters for task Intent Classification. task trained*: The origin task is firstly well trained, then
objective 1 is optimized.

Setting Method seed lr lr_extractor bz max epochs alpha epsilon
warup epochs/
#multi-rounds

early stop GPU

1-shot

UIMER-IM +MASK 55:1988:12333:42 0.0002 - 24 70 0.2 0.5 - 7

NVIDIA TITAN V

UIMER-IM +BERT 55:1988:12333:42 0.0002 - 24 70 1 1 - 7
UIMER-IM +Prior 55:1988:12333:42 0.0002 - 24 70 0.6 1 - 7
UIMER-IM +Uniform 55:1988:12333:42 0.0002 - 24 70 0.6 0.5 - 7
UIMER-IM +MASK (warm.) 55:1988:12333:42 0.0002 - 24 70 0.08 0.5 5 7
UIMER-IM +BERT (warm.) 55:1988:12333:42 0.0002 - 24 70 0.6 0.01 5 7
UIMER-IM +Prior (warm.) 55:1988:12333:42 0.0002 - 24 70 1 0.5 5 7
UIMER-IM +Uniform (warm.) 55:1988:12333:42 0.0002 - 24 70 1 0.05 5 7
UIMER-DM One-pass 55:1988:12333:42 0.0002 0.001 24 70 0.5 - - 7
UIMER-DM Multi-round 55:1988:12333:42 0.0002 0.001 24 70 0.5 - 10 7

3-shot

UIMER-IM +MASK 55:1988:12333:42 0.0001 - 24 70 1 4 - 7

NVIDIA TITAN V

UIMER-IM +BERT 55:1988:12333:42 0.0001 - 24 70 0.08 0.1 - 7
UIMER-IM +Prior 55:1988:12333:42 0.0001 - 24 70 0.1 2 - 7
UIMER-IM +Uniform 55:1988:12333:42 0.0001 - 24 70 1 4 - 7
UIMER-IM +MASK (warm.) 55:1988:12333:42 0.0001 - 24 70 0.005 2 3 7
UIMER-IM +BERT (warm.) 55:1988:12333:42 0.0001 - 24 70 1 2 task trained* 7
UIMER-IM +Prior (warm.) 55:1988:12333:42 0.0001 - 24 70 0.08 4 1 7
UIMER-IM +Uniform (warm.) 55:1988:12333:42 0.0001 - 24 70 1 4 1 7
UIMER-DM One-pass 55:1988:12333:42 0.0001 0.003 24 70 0.1 - - 7
UIMER-DM Multi-round 55:1988:12333:42 0.0001 0.003 24 70 2 - 3 3

10-shot

UIMER-IM +MASK 55:1988:12333:42 0.001 - 24 70 4 4 - 7

NVIDIA TITAN V

UIMER-IM +BERT 55:1988:12333:42 0.001 - 24 70 0.01 2 - 7
UIMER-IM +Prior 55:1988:12333:42 0.001 - 24 70 0.6 4 - 7
UIMER-IM +Uniform 55:1988:12333:42 0.001 - 24 70 4 4 - 7
UIMER-IM +MASK (warm.) 55:1988:12333:42 0.001 - 24 70 4 4 2 7
UIMER-IM +BERT (warm.) 55:1988:12333:42 0.001 - 24 70 0.01 4 1 7
UIMER-IM +Prior (warm.) 55:1988:12333:42 0.001 - 24 70 4 2 2 7
UIMER-IM +Uniform (warm.) 55:1988:12333:42 0.001 - 24 70 6 2 1 7
UIMER-DM One-pass 55:1988:12333:42 0.00001 0.0001 24 70 1 - - 7
UIMER-DM Multi-round 55:1988:12333:42 0.00001 0.0001 24 10 1 - 10 7

30-shot

UIMER-IM +MASK 55:1988:12333:42 0.0001 - 24 70 0.5 0.01 - 10

NVIDIA TITAN V

UIMER-IM +BERT 55:1988:12333:42 0.0001 - 24 50 1 0.5 - 10
UIMER-IM +Prior 55:1988:12333:42 0.0001 - 24 50 0.6 0.01 - 10
UIMER-IM +Uniform 55:1988:12333:42 0.0001 - 24 50 1 0.5 - 10
UIMER-IM +MASK (warm.) 55:1988:12333:42 0.0001 - 24 50 10 0.05 1 10
UIMER-IM +BERT (warm.) 55:1988:12333:42 0.00008 - 24 50 0.001 0.05 4 10
UIMER-IM +Prior (warm.) 55:1988:12333:42 0.00008 - 24 50 0.001 0.05 2 10
UIMER-IM +Uniform (warm.) 55:1988:12333:42 0.00008 - 24 50 1 0.05 1 10
UIMER-DM One-pass 55:1988:12333:42 0.0001 0.0001 24 20 0.08 - - 10
UIMER-DM Multi-round 55:1988:12333:42 0.0001 0.0001 24 10 0.08 - 20 10

full-resource

UIMER-IM +MASK 55 0.00001 - 24 20 0.1 1 - 5

NVIDIA TITAN V

UIMER-IM +BERT 55 0.00001 - 24 20 0.01 1 - 5
UIMER-IM +Prior 55 0.00001 - 24 20 0.1 1 - 5
UIMER-IM +Uniform 55 0.00001 - 24 20 0.0001 1 - 5
UIMER-IM +MASK (warm.) 55 0.00001 - 24 20 0.1 1 3 5
UIMER-IM +BERT (warm.) 55 0.00001 - 24 20 0.0001 1 1 5
UIMER-IM +Prior (warm.) 55 0.00001 - 24 20 0.1 1 1 5
UIMER-IM +Uniform (warm.) 55 0.00001 - 24 20 0.0001 1 3 5
UIMER-DM One-pass 55 0.00001 0.001 24 20 20 - - 5
UIMER-DM Multi-round 55 0.00001 0.001 24 20 20 - 50 5

Table 7: Hyperparameters for task Slot Filling. task trained*: The origin task is firstly well trained, then objective 1
is optimized.

Setting Method seed lr lr_extractor bz max epochs alpha epsilon
warup epochs/
#multi-rounds

early stop GPU

100

UIMER-IM +MASK 55:1988:12333:42 0.0003 - 32 50 1 1 - 8

NVIDIA A40

UIMER-IM +BERT 55:1988:12333:42 0.0003 - 32 50 0.1 0.01 - 8
UIMER-IM +Prior 55:1988:12333:42 0.0003 - 32 50 0.001 0.01 - 8
UIMER-IM +Uniform 55:1988:12333:42 0.0003 - 32 50 0.1 0.1 - 8
UIMER-IM +MASK (warm.) 55:1988:12333:42 0.0003 - 32 50 1 0.01 0.1* 8
UIMER-IM +BERT (warm.) 55:1988:12333:42 0.0003 - 32 50 0.01 0.1 0.1 8
UIMER-IM +Prior (warm.) 55:1988:12333:42 0.0003 - 32 50 0.1 0.01 0.1 8
UIMER-IM +Uniform (warm.) 55:1988:12333:42 0.0003 - 32 50 0.001 0.01 0.1 8
UIMER-DM One-pass 55:1988:12333:42 0.0003 0.001 24 30 0.01 - - 8
UIMER-DM Multi-round 55:1988:12333:42 0.0003 0.001 24 30 0.01 - 10 8

500

UIMER-IM +MASK 55:1988:12333:42 0.001 - 16 50 10 0.01 - 5

NVIDIA TITAN Xp

UIMER-IM +BERT 55:1988:12333:42 0.00008 - 16 50 1 0.01 - 5
UIMER-IM +Prior 55:1988:12333:42 0.0001 - 8 50 0.01 0.1 - 5
UIMER-IM +Uniform 55:1988:12333:42 0.0001 - 16 50 1 1 - 5
UIMER-IM +MASK (warm.) 55:1988:12333:42 0.00008 - 8 50 10 0.01 1 30
UIMER-IM +BERT (warm.) 55:1988:12333:42 0.0001 - 16 50 0.1 1 1 30
UIMER-IM +Prior (warm.) 55:1988:12333:42 0.00008 - 8 50 1 0.01 1 30
UIMER-IM +Uniform (warm.) 55:1988:12333:42 0.00008 - 8 50 1 1 1 30
UIMER-DM One-pass 55:1988:12333:42 0.00008 0.001 16 30 0.01 - - 8
UIMER-DM Multi-round 55:1988:12333:42 0.00008 0.001 16 30 0.01 - 3 8

Table 8: Hyperparameters for task NLI. 0.1*: 10% of the whole mini-batches are used to do warm-up training.

M
od

el
IC

SF
N

L
I

1
3

10
30

1
3

10
30

10
0

50
0

m
ea

n
st

d
m

ea
n

st
d

m
ea

n
st

d
m

ea
n

st
d

m
ea

n
st

d
m

ea
n

st
d

m
ea

n
st

d
m

ea
n

st
d

m
ea

n
st

d
m

ea
n

st
d

B
as

el
in

e
65

.7
1

7.
30

79
.1

8
6.

17
91

.0
0

1.
40

93
.7

9
0.

62
38

.1
4

1.
92

50
.9

7
1.

23
67

.0
5

0.
58

81
.7

0
0.

12
54

.0
3

13
.6

6
62

.8
4

7.
38

OurFramework

U
IM

E
R

-G
B

G
ha

ei
ni

et
al

.(
20

19
)

65
.7

1
7.

30
79

.1
4

6.
12

91
.8

2
0.

18
94

.1
8

1.
30

37
.7

7
1.

22
51

.6
9

0.
77

67
.5

7
0.

47
82

.1
6

0.
57

67
.1

3
0.

86
69

.7
7

2.
51

U
IM

E
R

-G
B

H
ua

ng
et

al
.(

20
21

)

+
ba

se
67

.0
4

9.
11

83
.0

4
4.

83
91

.4
3

1.
14

94
.5

7
0.

20
39

.0
2

1.
57

50
.6

6
0.

98
67

.1
1

1.
22

80
.2

0
2.

64
66

.1
5

1.
37

68
.5

7
2.

76
+

ga
te

67
.1

4
5.

19
82

.0
1

3.
19

91
.3

9
0.

05
94

.0
7

1.
02

37
.8

4
1.

77
51

.6
3

1.
76

67
.3

4
0.

53
80

.8
9

2.
24

66
.0

6
1.

13
68

.3
1

4.
22

+
or

de
r

65
.2

8
4.

71
81

.8
2

4.
35

90
.8

2
1.

21
94

.3
6

1.
38

38
.1

8
1.

64
50

.9
9

1.
46

67
.5

5
0.

68
81

.0
8

1.
25

68
.4

4
3.

50
68

.5
7

2.
76

+
(g

at
e+

or
de

r)
67

.7
1

6.
24

80
.2

5
5.

57
92

.1
1

1.
46

94
.3

9
1.

07
38

.8
6

1.
83

51
.7

3
1.

89
67

.7
6

0.
76

80
.5

5
1.

30
65

.1
0

7.
62

65
.8

4
4.

22

U
IM

E
R

-I
m

+
M

A
SK

69
.8

5
4.

24
83

.1
7

5.
32

91
.1

8
0.

50
93

.8
6

1.
32

38
.6

8
2.

73
52

.4
7

1.
52

69
.2

7
1.

21
81

.6
7

1.
90

63
.3

6
1.

19
70

.0
4

5.
22

+
B

E
R

T
70

.6
1

2.
52

83
.9

3
3.

69
91

.7
8

1.
16

94
.6

1
0.

64
39

.2
8

1.
80

51
.9

6
1.

18
69

.2
2

1.
92

81
.8

5
1.

02
62

.0
8

6.
04

69
.0

3
4.

70
+

Pr
io

r
73

.7
1

4.
75

83
.9

3
5.

68
91

.0
0

0.
63

93
.9

6
0.

43
38

.0
7

1.
21

51
.6

9
0.

88
68

.3
1

0.
71

81
.9

7
1.

87
66

.5
6

2.
58

70
.3

2
2.

99
+

U
ni

fo
rm

73
.3

2
4.

02
86

.0
4

2.
16

91
.6

4
1.

48
94

.0
0

0.
60

39
.3

1
2.

14
51

.3
7

1.
82

69
.0

2
0.

89
81

.6
9

1.
91

64
.3

4
7.

87
69

.1
9

2.
20

U
IM

E
R

-I
m

+
M

A
SK

(w
ar

m
.)

70
.8

2
2.

40
82

.9
6

5.
11

92
.4

3
1.

59
94

.0
4

0.
54

38
.6

0
2.

23
51

.5
5

1.
35

67
.9

3
0.

90
82

.2
5

1.
38

68
.7

9
2.

44
69

.9
5

0.
78

+
B

E
R

T
(w

ar
m

.)
70

.9
3

5.
56

82
.7

1
4.

07
92

.0
0

1.
64

94
.3

2
0.

11
39

.5
3

1.
73

52
.8

3
1.

18
68

.8
1

1.
85

82
.5

8
0.

96
68

.8
9

0.
88

69
.1

8
1.

51
+

Pr
io

r(
w

ar
m

.)
73

.8
2

5.
97

83
.1

1
2.

19
91

.9
3

1.
08

94
.0

7
0.

74
38

.2
4

2.
27

51
.6

8
1.

03
68

.2
6

1.
38

82
.6

6
1.

32
68

.2
5

3.
35

71
.8

2
3.

57
+

U
ni

fo
rm

(w
ar

m
)

75
.7

9
4.

94
86

.2
9

1.
51

91
.6

7
1.

21
94

.3
2

0.
80

38
.7

1
2.

11
52

.1
8

0.
71

68
.2

1
0.

46
82

.1
7

1.
54

67
.5

8
1.

77
69

.7
9

1.
30

U
IM

E
R

-D
m

O
ne

-p
as

s
66

.7
5

7.
54

84
.4

2
5.

42
91

.5
3

0.
58

93
.7

8
0.

62
39

.8
6

1.
53

52
.8

7
2.

25
67

.2
8

0.
71

81
.9

0
1.

40
63

.0
3

4.
92

66
.9

1
4.

77
M

ul
ti-

ro
un

d
70

.2
1

8.
57

85
.8

6
4.

40
91

.9
2

0.
92

94
.0

0
0.

60
41

.3
2

1.
17

53
.1

0
0.

81
69

.2
6

0.
53

82
.0

0
1.

54
65

.4
4

2.
94

67
.6

0
8.

59

Ta
bl

e
9:

R
es

ul
tw

ith
st

d.
on

al
lf

ew
-s

ho
ts

et
tin

gs
.

