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Abstract
A crucial aspect of understanding the complex na-
ture of Deep Neural Networks (DNNs) is the abil-
ity to explain learned concepts within their latent
representations. While methods exist to connect
neurons to human-understandable textual descrip-
tions, evaluating the quality of these explanations
is challenging due to the lack of a unified quantita-
tive approach. We introduce COSY (Concept Syn-
thesis), a novel, architecture-agnostic framework
for evaluating textual explanations of latent neu-
rons. Given textual explanations, our proposed
framework uses a generative model conditioned
on textual input to create data points represent-
ing the explanations, comparing the neuron’s re-
sponse to these and control data points to estimate
explanation quality. We validate our framework
through meta-evaluation experiments and bench-
mark various concept-based textual explanation
methods for Computer Vision tasks, revealing sig-
nificant differences in quality. We provide an
open-source implementation on GitHub1.

1. Introduction
One of the key obstacles to the wider adoption of Machine
Learning is the inherent opacity of Deep Neural Networks
(DNNs)—we do not understand why these machines make
the predictions they do. To address this, the field of Explain-
able AI (XAI) (Samek & Müller, 2019; Xu et al., 2019)
has emerged, aiming to reveal DNN decision-making pro-
cesses in a human-understandable fashion, thereby improv-
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ing model transparency, fairness, interpretability, and safety.
XAI has expanded from explaining specific inputs using
saliency maps (Simonyan et al., 2014; Bach et al., 2015;
Selvaraju et al., 2017; Smilkov et al., 2017) to analyzing
the global behavior of models by examining the functional
purpose of neurons within DNNs (Bau et al., 2017; Mu &
Andreas, 2020; Hernandez et al., 2022; Kalibhat et al., 2023;
Oikarinen & Weng, 2023; Bykov et al., 2023b). A popular
approach is to label neurons with human-understandable
textual concepts based on the concepts they detect. These
methods have evolved from label-specific descriptions (Bau
et al., 2017) to more complex compositional (Mu & Andreas,
2020; Bykov et al., 2023b) and open-vocabulary explana-
tions (Hernandez et al., 2022; Oikarinen & Weng, 2023).
Previous work has shown that neurons can be affected by
biases (Goh et al., 2021), spurious correlations (Bykov et al.,
2023a), and backdoor attacks (Casper et al., 2023). There-
fore, validating neuron-labeling methods is crucial given
their potential impact. Despite their importance, the lack of
a universally accepted quantitative evaluation measure for
open-vocabulary neuron descriptions remains a significant
challenge, hindering comprehensive cross-comparisons.

With our work, we aim to bridge this gap by introducing
a novel quantitative evaluation framework named COSY,
for evaluating open-vocabulary explanations for neurons in
Computer Vision (CV) models (illustrated in Figure 1). We
summarize our contributions as below:

(C1) We provide the first general-purpose, quantitative eval-
uation framework COSY (Section 3) that enables the
evaluation of individual or a set of textual explanation
methods for CV models.

(C2) In a series of meta-evaluation experiments (Section 4),
we analyze the choice of generative models and
prompts for synthetic image generation, demonstrating
framework reliability.

(C3) We benchmark existing explanation methods (Sec-
tion 5) and extract novel insights, revealing substantial
variability in the quality of explanations. Generally,
textual explanations for lower layers are less accurate
compared to those for higher layers.
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Figure 1. A schematic illustration of the COSY evaluation framework for Neuron 80 in ResNet18’s avgpool layer. The current challenge
lies in the absence of dataset- and architecture-agnostic evaluation measures to benchmark textual explanations of neurons. To address
this, we propose COSY, a framework consisting of three steps: first, a generative model translates textual concepts into the visual domain,
creating synthetic images for each explanation using a text-to-image model. Then, inference is performed on synthetic images, along with
a control image dataset, to collect neuron activations. Finally, by comparing the activations on synthetic images with activations on the
control dataset, we can quantitatively assess the quality of the textual explanation and compare the results between different explanation
methods. The implementation details of this example can be found in Appendix A.2.

2. Related Work
Activation Maximization Activation Maximization is a
commonly used methodology to understand what a neuron
has learned to detect (Erhan et al., 2009). Such methods
work by identifying input signals that trigger the highest acti-
vation in a neuron. This can be achieved synthetically, where
an optimization process is employed to create the optimal in-
put that maximizes the neuron’s activation (Olah et al., 2017;
Nguyen et al., 2016; Fel et al., 2023), or naturally, by finding
such inputs within a data corpus (Borowski et al., 2020). Ac-
tivation Maximization has been employed for explaining la-
tent representations of models (Goh et al., 2021; Yoshimura
et al., 2021), including probabilistic models (Grinwald et al.,
2023), detection of backdoor attacks (Casper et al., 2023)
and spurious correlations (Bykov et al., 2023a). However,
one of the key limitations of this methodology lies in its
inability to scale; its scalability is limited due to its depen-
dency on users to manually audit maximization signals.

Automatic Neuron Interpretation One approach to un-
derstanding a neuron’s function involves linking neurons
with human-understandable concepts through textual de-
scriptions. Network Dissection (NetDissect) (Bau et al.,
2017) pioneered this by associating neurons with concepts
based on the Intersection over Union (IoU) of activation
maps and segmentation masks. Compositional Explanations
of Neurons (CompExp) (Mu & Andreas, 2020) enhanced
this with compositional concepts. MILAN (Hernandez et al.,

2022) expanded to open-vocabulary explanations, allowing
descriptions beyond predefined labels. INVERT (Bykov
et al., 2023b) used compositional labels and the Area Under
the Receiver Operating Characteristic Curve (AUC) for ex-
planations without segmentation masks. FALCON (Kalib-
hat et al., 2023) and CLIP-Dissect (Oikarinen & Weng,
2023) utilized CLIP models (Radford et al., 2021) for image-
text similarity. Each method defines its own optimization cri-
teria, lacking a unified consensus on what constitutes a good
explanation. For detailed descriptions of the methods and
their optimization objectives, please refer to Appendix A.1.

Prior Methods for Evaluation Significant effort has been
made towards evaluating local explanations (Agarwal et al.,
2022; Hedström et al., 2023; Hedström et al., 2023), but
there is limited focus on global methods, with no unified
benchmarking approach. INVERT and CLIP-Dissect eval-
uate accuracy by comparing generated neuron labels with
ground truth descriptions. However, this evaluation is lim-
ited to output neurons and fixed labels only. CLIP-Dissect
also measures explanation quality by computing cosine simi-
larity in a sentence embedding space. FALCON uses human
studies via Amazon Mechanical Turk for evaluation, and
MILAN uses BERTScores (Zhang et al., 2019) to com-
pare neuron labeling methods against human annotations.
While human studies are generally beneficial, the conven-
tional setup can be misleading and may not fully capture the
desired evaluation criteria. Typically, annotators describe
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images that activate a neuron, which is then compared to an
automatic explanation. However, this approach primarily
evaluates alignment with the most activating images rather
than the accuracy of the explanation in describing the neu-
ron’s function.

3. Method
Consider a Deep Neural Network (DNN) represented by
the function g : X → Z, where X ⊂ Rh×w×c denotes the
input image domain and Z ⊂ Rl represents the model’s
output domain. We can view the model as a composition
of two functions, F : X → Y, and L : Y → Z, such
that g = L ◦ F. Here Y ⊂ Rk×w∗×h∗

, where k ∈ N is
the number of neurons in the layer, and w∗, h∗ ∈ N repre-
sent the width and height of the feature map, respectively.
The function F, which we refer to as the feature extrac-
tor, can be chosen based on the layer of the model we
aim to inspect. This could be an existing layer within the
model or a concept bottleneck layer (Yuksekgonul et al.,
2022). We refer to the i-th neuron within the layer as
fi(x) = Fi(x) : X → Rw∗×h∗

. Within the scope of this
paper, we refer to explanation method as an operator E that
maps a neuron to the textual description s = E(fi) ∈ S,
where S is a set of potential textual explanations. The spe-
cific set of explanations depends on the implementation of
the particular method.

3.1. COSY: Evaluating Open-Vocabulary Explanations

A good textual explanation for a neuron should be a human-
understandable description of an input that activates the neu-
ron strongly. Modern methods often use open-vocabulary
explanations, complicating the quantitative collection of nat-
ural data that represents the explanation. To address this,
COSY uses generative models to create data points corre-
sponding to the textual explanation. The neuron’s response
to these synthetic images is compared to its activation on
control images representing random concepts, enabling a
quantitative evaluation of the alignment between the expla-
nation and the neuron.

Parameters of the proposed method include a control dataset
X0 = {x0

1, . . . ,x
0
n} ⊂ X , n ∈ N – containing natural im-

ages that represent the concepts the model was originally
trained on, a generative model pM , that is used for synthe-
sizing images, and a number of generated images m ∈ N.
The control dataset typically includes a balanced selection
of validation class images. Given a neuron f and expla-
nation s ∈ S, COSY evaluates the alignment between the
explanation and a neuron in 3 consecutive steps, which are
illustrated in Figure 1.

1. Generate Synthetic Data. The first step involves gen-
erating synthetic images for a given explanation s ∈ S,

which we use as a prompt to a generative model pM
to create a collection of synthetic images, denoted as
X1 = {x1

1, . . . ,x
1
m} ∼ pM (x | s). This collection

consists of m ∈ N images, where m is adjustable as a
parameter of the evaluation procedure.

2. Collect Neuron Activations. Given the control dataset
X0 and the set of generated synthetic images X1, we
collect activations as follows:

A0 = {σ(f(x0
1)), . . . , σ(f(x

0
n))} ∈ Rn,

A1 = {σ(f(x1
1)), . . . , σ(f(x

1
m))} ∈ Rm,

(1)

where σ is an aggregation function for multi-
dimensional neurons. Within the scope of our paper,
we use Average Pooling as aggregation function

σ(y) =
1

w∗h∗

∑
yi,j ,

i∈[1,w∗],j∈[1,h∗]

y ∈ Y ⊂ Rw∗×h∗
. (2)

3. Score Explanations. The final step of the proposed
method relies on the evaluation of the difference be-
tween neuron activations on the control dataset A0 and
neuron activations given the synthetic dataset A1. To
quantify this difference, we utilize a scoring function
Ψ : Rn ×Rm → R to measure the difference between
the distributions of activations.

In the context of our paper, we employ the following scoring
functions:

• Area Under the Receiver Operating Characteristic
(AUC)

AUC is a widely used non-parametric evaluation mea-
sure for assessing the performance of binary classifi-
cation. In our method, AUC measures the neuron’s
ability to distinguish between synthetic and control
data points

ΨAUC(A0,A1) =

∑
a∈A0

∑
b∈A1

1[a < b]

|A0| · |A1|
. (3)

• Mean Activation Difference (MAD)

MAD is a parametric measure that quantifies the dif-
ference between the mean activation of the neuron on
synthetic images and the mean activation on control
data points

ΨMAD(A0,A1) =
1
m

∑
b∈A1

b− 1
n

∑
a∈A0

a√
1

n−1

∑
a∈A0

(a− ā)2
, (4)

with mean control activation ā = 1
n

∑
a∈A0

a.
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These two chosen metrics complement each other. AUC,
being non-parametric and stable to outliers, evaluates the
classifier’s ability to rank synthetic images higher than con-
trol images (with scores ranging from 0 to 1, where 1 repre-
sents a perfect classifier and 0.5 is random). On the other
hand, MAD allows us to parametrically measure the extent
to which images corresponding to explanations maximize
neuron activation.

4. Meta-Evaluation Analysis
In this section, we assess the reliability of our COSY evalu-
ation framework through meta-evaluation.

4.1. Synthetic Image Reliability

We investigate the effectiveness of different generative mod-
els and prompts in producing visually similar images to
natural concepts. Using open-source text-to-image mod-
els, namely Stable Diffusion XL 1.0-base (SDXL) (Podell
et al., 2023) and Stable Cascade (SC) (Pernias et al., 2023),
we varied five different prompts for image generation and
measured the cosine similarity (CS) between synthetic and
natural images of the same concept. Figure 2 illustrates the
comparison across all generative models and prompts in
terms of CS. Refer to Appendix A.3 for further details on
the experimental setup. Our results indicate that SDXL, par-
ticularly with detailed prompts, achieves higher similarity
to natural images than SC. Prompt 5 yields the highest sim-
ilarity, thus we employed Prompt 5 with the SDXL model
for subsequent experiments.

4.2. Sanity Check

To ensure our evaluation framework reliably differentiates
between random and non-random explanations, we com-
pared COSY scores for ground truth explanations with those
for randomly selected explanations. Using a set of 10 out-
put neurons, we found that true explanations consistently
achieved high scores while random explanations received
low scores, as shown in Table 1. This confirms the effec-
tiveness of our evaluation metric. Further details on the
experimental setup are provided in Appendix A.4, with an
experiment on whether models respond differently to syn-
thetic and natural images in Appendix A.5, and additional
robustness analyses discussed in Appendix A.7.

5. Evaluating Explanation Methods
Within the scope of this section, we conduct a thorough
cross-comparison of different methods for textual neuron ex-
planations. We evaluate models trained on various datasets
and analyze their performance on latent layers where ground
truth is unavailable.

Table 1. Comparison of true and random explanations on output
neurons with known ground truth labels. This table presents the
quality estimates for true explanations, derived from target class
labels, and random explanations, derived from randomly selected
synthetic image classes, across four models pre-trained on Ima-
geNet. Higher values are better. Our results consistently show high
scores for true explanations and low scores for random ones.

MODEL
AUC (STD) (↑) MAD (STD) (↑)

True Random True Random

RESNET18 0.94±0.20 0.48±0.17 5.84±2.31 -0.12±0.50
DENSENET161 0.95±0.17 0.47±0.21 6.63±2.42 -0.12±0.62
GOOGLENET 0.95±0.16 0.40±0.19 7.22±2.68 -0.29±0.48
VIT-B/16 0.97±0.11 0.54±0.23 12.13±4.79 0.05±0.57

Table 2. Benchmarking of explanation methods, explaining neu-
rons on the second to last layers for different models. Explanations
are generated with respect to a randomly selected set of 50 neurons
where both AUC and MAD are reported. Higher values indicate
better performance; bold numbers represent the highest scores.
Models marked with ∗ were pre-trained on ImageNet, while those
marked with † were pre-trained on Places365.

MODEL
(LAYER) METHOD AUC (STD) (↑) MAD (STD) (↑)

RESNET18∗

(AVGPOOL)

MILAN 0.61±0.23 0.69±1.35
INVERT 0.93±0.11 3.23±1.72
CLIP-DISSECT 0.93±0.11 3.85±1.88

VIT-B/16∗

(FEATURES)

MILAN 0.53±0.19 0.12±0.76
INVERT 0.89±0.17 1.67±0.82
CLIP-DISSECT 0.78±0.19 1.29±1.01

DENSENET161†

(FEATURES)

MILAN 0.56±0.28 0.44±1.30
INVERT 0.85±0.16 2.21±1.95
CLIP-DISSECT 0.82±0.21 2.52±2.33

RESNET50†

(AVGPOOL)

MILAN 0.65±0.28 1.11±1.67
INVERT 0.94±0.08 3.54±1.99
CLIP-DISSECT 0.92±0.11 3.73±2.39

5.1. Benchmarking Explanation Methods

In this section, we evaluated three recent textual expla-
nation methods, namely MILAN, INVERT, and CLIP-
Dissect. Our analysis involves four distinct models: two
pre-trained on the ImageNet dataset (Russakovsky et al.,
2015) (ResNet18 (He et al., 2016), ViT-B/16 (Doso-
vitskiy et al., 2020)) and two pre-trained on the Places365
dataset (Zhou et al., 2017) (DenseNet161 (Huang et al.,
2017), ResNet50 (He et al., 2016)). The ImageNet dataset
focuses on objects, whereas the Places365 dataset is de-
signed for scene recognition. Consequently, we customized
our prompts accordingly: Prompt 5 performs best for ob-
ject recognition, while for scene recognition, we found that
Prompt 4 is more effective. Therefore, Prompt 4 was utilized
in the Places365 experiment. For further implementation
details, refer to Appendix A.8, and for more information on
compute resources, see Appendix A.9.
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Figure 2. An overview of the impact of varying the prompt on the similarity between natural and synthetic images, using two text-to-image
models. Left: average Cosine similarity (CS) across all natural and synthetic images over all classes are reported. Higher CS values are
better, indicating greater similarity between the images. Right: an illustration of the visual differences produced by the SDXL and SC
models in response to diverse prompts for the explanation concept “submarine,” and natural images from the ImageNet validation dataset
(Russakovsky et al., 2015). Our results show that SDXL and SC generate similar images, with SDXL generally being more closely aligned
with natural images than SC.

Results of the evaluation are presented in Table 2. INVERT
generally achieves the highest AUC scores across most mod-
els and datasets, although CLIP-Dissect performs similarly
on the ResNet18 applied to ImageNet. CLIP-Dissect con-
sistently demonstrates good results across various models
and datasets. However, since INVERT optimizes AUC in
explanation generation, it may be biased towards AUC in
our evaluation, leading to higher scores. MILAN tends to
perform poorly, with an average AUC below 0.65 across
all tasks, indicating performance close to random guessing.
This is expected as MILAN often generates highly abstract
explanations such as “white areas” or “nothing,” which are
challenging for text-to-image models to accurately generate,
contributing to its low scores. While MAD scores suggest
that CLIP-Dissect outperforms INVERT for convolutional
neural networks on both datasets, INVERT concepts also
achieve consistently high scores in these cases. Otherwise,
we find similar outcomes for both metrics Ψ, with MILAN
achieving poor scores in all experimental settings.

5.2. Explanation Methods Struggle to Explain Lower
Layer Neurons

In addition to general benchmarking, we studied the qual-
ity of explanations for neurons in different layers of a
model. Lower-layer neurons typically encode lower-level
concepts (LeCun et al., 2015), making it interesting to see
if explanation methods can capture these. We examined
explanations across layers 1 to 4 and the output layer of an
ImageNet pre-trained ResNet18, including the FALCON
method. For more details on the implementation of FAL-

CON see Appendix A.1.4. For each layer, we randomly
selected 50 neurons for analysis.

Figure 3 presents the AUC results for all explanation meth-
ods across these layers, with MAD scores reported in Ap-
pendix A.10. Generally, we observed increasing scores for
later layers across all methods and metrics Ψ, suggesting
higher concept quality in later layers. MILAN and FAL-
CON achieved lower scores across various metrics, with
AUC scores of 0.5 indicating random guessing.

Figure 3. A comparison of how different explanation methods vary
in their quality, as measured by AUC, across different layers in
ResNet18. INVERT and CLIP-Dissect similarly high AUC
scores across all layers, while MILAN, and FALCON scores are
comparably low. Generally, all methods perform increasingly
worse on lower layers.
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Figure 4. A qualitative example, of neuron explanations across 4 neurons. The first four panels include the textual explanation across
INVERT, FALCON, CLIP-Dissect, and MILAN alongside three corresponding generated images. The respective AUC and MAD scores
are reported below each panel. The last panel shows the activation distributions across 50 generated images for each method and the
distribution of the control data.

5.3. What are Good Explanations?

In our approach, we propose that testing visual represen-
tations of textual explanations on neurons can provide in-
sights into what constitutes good explanations. Building
on this premise, CLIP-Dissect and INVERT consistently
performed well, as evidenced by qualitative examples in
Figure 4, where their explanations share visually similar
concepts (neurons 155 and 459) or even identical concepts
(neuron 221) while both achieving high AUC and MAD
scores. However, INVERT’s functionality is restricted to in-
put data labels, unlike CLIP-Dissect, which offers a broader
selection of concepts, albeit with reduced interpretability
due to its reliance on a black-box model.

There are instances, such as neuron 260 in Figure 4, where
all explanations vary significantly, with FALCON and MI-
LAN often providing nearly random explanations, as in-
dicated by their activation distributions overlapping with
the control dataset. This observation aligns with our over-
all findings: both the AUC and MAD scores consistently
indicate the low performance of FALCON and MILAN
explanations in COSY evaluation. Neurons 459 and 155
further demonstrate the gap between consistently higher and
lower-performing explanation methods.

6. Conclusion
In this work, we propose the first automatic evaluation
framework for concept-based textual explanations of neu-
rons. Unlike existing ad-hoc evaluation methods, we can
now quantitatively compare different concept-based textual
explanation methods against each other with COSY and
test, whether the given explanation describes the neuron
accurately. Our meta-evaluation reveals that INVERT and
CLIP-Dissect excel in providing high-quality concepts for
the last layers, while MILAN and FALCON often offer
lower-quality explanations.

Our method faces limitations with the generative model, par-
ticularly in including certain concepts and generating highly
abstract ones like “white objects.” However, these chal-
lenges with abstract concepts also highlight the descriptive
quality of the provided explanations. Explanations should
be inherently understandable to humans. Addressing these
issues may involve analyzing pre-training datasets and em-
ploying more specialized models. In future work, we plan
to incorporate additional metrics for explanation quality and
extend the framework to domains like NLP and healthcare,
focusing on evaluating recent autointerpretable methods
given by large language models (LLMs) (Kroeger et al.,
2023; Bills et al., 2023) and examining high-impact areas
such as healthcare datasets.
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A. Appendix
A.1. Concept-based Textual Explanation Methods

Concept-based textual explanation methods aim to provide insights into human-understandable concepts learned by DNNs,
enabling a deeper understanding of their decision-making mechanisms. These methods provide textual descriptions for
neurons in CV models. This creates a connection between the abstract representation of a concept by the neural network and
a human interpretation. In general, a concept can be any abstraction, such as a color, an object, or even an idea (Molnar,
2022). Concept-based textual descriptions of a neuron fi can originate from various spaces depending on their generation
process.

As defined in Section 3, we refer to explanation method as an operator E that maps a neuron to the textual description
s = E(fi) ∈ S, where S is a set of potential textual explanations. The specific set of explanations depends on the
implementation of the particular method. We define the following subsets of textual descriptions s ∈ S:

• C represents the space of individual concepts,

• L represents the space of logical combinations of concepts,

• N represents the space of open-ended natural language concept descriptions.

These textual descriptions serve as explanations for fi generated by explanation methods.

Examples for such explanation methods are MILAN (Hernandez et al., 2022), FALCON (Kalibhat et al., 2023), CLIP-Dissect
(Oikarinen & Weng, 2023), and INVERT (Bykov et al., 2023b). Figure 5 shows the general principle of how E works. In
Table 3 we outline the origin of textual descriptions and their corresponding set memberships for each E .

A.1.1. NETDISSECT

Network Dissection (NetDissect) (Bau et al., 2017) is a method designed to explain individual neurons of DNNs, particularly
convolutional neural networks (CNNs) within the domain of CV. This approach systematically analyzes the network’s
learned concepts by aligning individual neurons with given semantic concepts. To perform this analysis, annotated datasets
with segmentation masks are required, where these masks label each pixel in an image with its corresponding object or
attribute identity. The Broadly and Densely Labeled Dataset (Broden) (Bau et al., 2017) combines a set of densely labeled
image datasets that represent both low-level concepts, such as colors, and higher-level concepts, such as objects. It provides

E = MILAN, 
FALCON, INVERT, 
CLIP-Dissect etc.

Concept s
“purple flowers”

Neuron

Explanation 
Method  E

Figure 5. Concept-based Textuaĺ Explanation Methods. A neuron fi is selected, and a concept-based textual explanation method E is
applied to generate a textual description s explaining fi.
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Table 3. Set Membership and Origin of Descriptions. Generated textual descriptions s have varying set membership and origin across all E .
These descriptions can originate from distinct spaces: individual concepts C, logical combinations of concepts L, and open-ended natural
language concept descriptions N . A labeled dataset refers to a collection of images paired with individual concept labels. Generated
captions are produced by image-to-text models, such as Show-Attend-Tell (Xu et al., 2015). An image caption dataset consists of
image-caption pairs. A concept set consists of textual concept labels.

METHOD SET ORIGIN

NETDISSECT C LABELED DATASET
COMPEXP L LABELED DATASET
MILAN N GENERATED CAPTION
FALCON N IMAGE CAPTION DATASET
CLIP-DISSECT C CONCEPT SET
INVERT L LABELED DATASET

a comprehensive set of ground truth examples for a broad range of visual concepts such as objects, scenes, object parts,
textures, and materials in a variety of contexts.

A concept s ∈ C ⊂ S is defined as a visual concept in NetDissect and is provided by the pixel-level annotated Broden
dataset. Given a CNN and the Broden dataset as input, NetDissect explains a neural representation fi by searching for the
highest similarity between concept image segmentation masks and neuron activation masks. Concept image segmentation
masks are provided by the Broden dataset Bs(xxx) ∈ {0, 1}H×W , where a value of 1 signifies the pixel-level presence of
s, and 0 denotes its absence. Neuron activation masks are obtained by thresholding the continuous neuron activations of
fi into binary masks A(xxx) ∈ {0, 1}H×W . Then the similarity δIoU between image segmentation masks and binary neuron
masks can be evaluated using the Intersection over Union score (IoU) for an individual neuron within a layer:

δIoU(fi, s) =

∑
xxx∈XXX 1 (Bs(xxx) ∩A(xxx))∑
xxx∈XXX 1 (Bs(xxx) ∪A(xxx))

. (5)

The NetDissect method is optimized to identify the concept that yields the highest IoU score between binary masks and
image segmentation masks. This can be formalized as:

ENetDissect(fi) = argmax
s∈C⊂S

δIoU (fi, s) . (6)

NetDissect is constrained to segmentation datasets, relying on pixel-level annotated images with segmentation masks.
Moreover, its labeling capabilities are confined to concepts provided within a labeled dataset. Furthermore, only individual
concepts can be associated with each neuron.

A.1.2. COMPEXP

To overcome the limitation of explaining neurons with only a single concept, the Compositional Explanations of Neurons
(CompExp) method was later introduced (Mu & Andreas, 2020), enabling the labeling of neurons with compositional
concepts. The method obtains its explanations by merging individual concepts into logical formulas using composition
operators AND, OR, and NOT. The formula length L ∈ N is defined beforehand. The initial stage of explanation generation
is similar to NetDissect, a set of images is taken as input, and convolutional neuron activations are converted into binary
masks. The explanations are constructed through a beam search algorithm (Cormen et al., 2022), beginning with individual
concepts and gradually building them into more complex logical formulas. Throughout the beam search stages, the existing
formulas in the beam are combined with new concepts. These new formulas are measured by the IoU. The maximization of
the IoU score is desired to get a high explanation quality.

The approach for obtaining δIoU is the same as in Equation 5. In contrast to NetDissect, the explanations can be a combination
of concepts, where s ∈ L ⊂ S . The procedure of finding the best neuron description can be formalized as:

ECompExp(fi) = argmax
s∈L⊂S

δIoU (fi, s) . (7)
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Similar to NetDissect, CompExp requires datasets containing segmentation masks and is primarily applicable to convolutional
neurons.

A.1.3. MILAN

MILAN (Hernandez et al., 2022) is a method that aims to describe neural representations within a DNN through open-
ended natural language descriptions. First, a dataset of fine-grained human descriptions of image regions (Milannotations)
is collected. These descriptions can be defined as concepts that are open-ended natural language descriptions, where
s ∈ N ⊂ S. Given a DNN and input images xxx ∈XXX , neuron masks M(xxx) ∈ RH×W×C are collected of highly activated
image regions for fi.

Two distributions are then derived: the probability p(s|M(xxx)) that a human would describe an image region with s, and the
probability p(s) that a human would use the description s for any neuron. The probability p(s|M(xxx)) is approximated with
the Show-Attend-Tell (Xu et al., 2015) image-to-text model trained on the Milannotations dataset. Additionally, p(s) is
approximated with a two-layer LSTM language model (Hochreiter & Schmidhuber, 1997) trained on the Milannotations
dataset.

These distributions are then utilized to find a description that has high pointwise mutual information with M(xxx). A
hyperparameter λ ∈ R adjusts the significance of p(s) during the computation of pointwise mutual information (PMI)
between descriptions s and M(xxx) sets, where the similarity δWPMI is weighted PMI (WPMI). The objective for WPMI is
given by:

δWPMI(s) = log p (s|M(xxx))− λ log p(s). (8)

MILAN aims to optimize high pointwise mutual information between s and M(xxx) to find the best description for fi:

EMILAN(fi) = argmax
s∈N⊂S

δWPMI (fi, s) . (9)

The requirement of collecting the curated labeled dataset, Milannotations, limits MILAN’s capabilities when applied to
tasks beyond this specific dataset. Additionally, another drawback is the requirement for model training.

A.1.4. FALCON

The FALCON (Kalibhat et al., 2023) explainability method has a similar approach to MILAN. Initially, it gathers the most
highly activating images corresponding to a neural representation. GradCam (Selvaraju et al., 2017) is subsequently applied
to identify highlighted features in these images, which are then cropped to focus on these regions. These cropped images,
along with large captioning dataset LAION-400m (Schuhmann et al., 2021) with concepts s ∈ N ⊂ S, are input to CLIP
(Contrastive Language-Image Pre-training) (Radford et al., 2021), which computes the image-text similarity between the
text embeddings of captions and the input cropped images. The top 5 captions are then extracted. Conversely, the least
activating images are collected, and concepts are extracted and removed from the top-scoring concepts, ultimately yielding
the explanation of the neural representation.

The similarity δCLIPScore is obtained by calculating the CLIP confidence matrix, which is essentially a cosine similarity
matrix. The aim is to find the maximum image-text similarity score between image embeddings and their closest text
embeddings from a large captioning dataset:

EFALCON(fi) = argmax
s∈N⊂S

δCLIPScore (fi, s) . (10)

This restriction significantly narrows down the range of models suitable for analysis, setting it apart considerably from other
explanation methods.

FALCON Implementation In its original implementation, FALCON restricts the set of “explainable neurons” based on
specific parameters. These include the parameter α ∈ N, which determines the set of highly activating images for a given
feature by requiring α > 10. Additionally, it employs a threshold γ ∈ R for CLIP cosine similarity, with a set value of
γ > 0.8.
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These parameter settings significantly restrict the number of explainable neurons, resulting to fewer than 50 explainable
neurons. This constraint prevents the necessary randomization for comparison with other methods. To address this, we set
α = 0 and γ = 0. However, for FALCON-original, we retain the original settings of α and γ and calculate Ψ across all
“explainable neurons.” In our experiments on ResNet18, FALCON can only be applied to layers 2 to 4.

A.1.5. CLIP-DISSECT

CLIP-Dissect (Oikarinen & Weng, 2023) is an explanation method that describes neurons in vision DNNs with open-ended
concepts, eliminating the need for labeled data or human examples. This method integrates CLIP (Radford et al., 2021),
which efficiently learns deep visual representations from natural language supervision. It utilizes both the image encoder
and text encoder components of a CLIP model to compute the text embedding for each concept s ∈ C ⊂ S from a concept
dataset and the image embeddings for the probing images in the dataset, subsequently calculating a concept-activation
matrix.

The activations of a target neuron fi are then computed across all images in the probing dataset XXX . However, as this process
is designed for scalar neural representations, these activations are summarized by a function that calculates the mean of the
activation map over spatial dimensions. The concept corresponding to the target neuron is determined by identifying the
most similar concept s based on its activation vector. The most highly activated images are denoted as XXXs ⊂XXX .

SoftWPMI is a generalization of WPMI where the probability p (xxx ∈XXXs) denotes the chance an image xxx belongs to the
example set XXXs. Standard WPMI corresponds to cases where p(xxx ∈XXXs) is either 0 or 1 for all xxx ∈XXX , while SoftWPMI
relaxes this binary setting to real values between 0 and 1. The function can be formalized as:

δSoftPMI(s) = logE [p (s|XXXs)]− λ log p(s). (11)

The similarity function δSoftWPMI aims to identify the highest pointwise mutual information between the most highly activated
images XXXs and a concept s. This optimization search is expressed as:

ECLIP-Dissect(fi) = argmax
s∈C⊂S

δSoftWPMI (fi, s) . (12)

A drawback of CLIP-Dissect lies in its interpretability; descriptions are generated by the CLIP model, which itself is
challenging to interpret.

A.1.6. INVERT

Labeling Neural Representations with Inverse Recognition (INVERT) (Bykov et al., 2023b) shares the capability of
constructing complex explanations like CompExp (Mu & Andreas, 2020) but with the added advantage of not relying on
segmentation masks and only needing labeled data. The method obtains its explanations by merging individual concepts
into logical formulas using composition operators AND, OR, and NOT. It also exhibits greater versatility in handling
various neuron types and is computationally less demanding compared to previous methods such as NetDissect (Bau
et al., 2017) and CompExp (Mu & Andreas, 2020). Additionally, INVERT introduces a transparent metric for assessing
the alignment between representations and their associated explanations. The non-parametric Area Under the Receiver
Operating Characteristic (AUC) measure evaluates the relationship between representations and concepts based on the
representation’s ability to distinguish the presence from the absence of a concept, with statistical significance. The probing
dataset with the concept present is labeled as XXX1, while the dataset without the concept is labeled as XXX0.

The goal of INVERT is to identify the concept s ∈ L ⊂ S that maximizes δAUC with the neural representation fi. Here, s
can be a combination of concepts. The optimization process resembles that of CompExp, employing beam search (Cormen
et al., 2022) to find the optimal compositional concept. The top-performing concepts are iteratively selected until the
predefined compositional length L ∈ N is reached.

The similarity measure δAUC is defined as:

δAUC(fi) =

∑
xxx0∈XXX0

∑
xxx1∈XXX1

1[fi(xxx0) < fi(xxx1)]

|XXX0| · |XXX1|
. (13)
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Table 4. Comparison of characteristics of concept-based textual explanation methods. The columns (from left to right) represent the
explanation method used, its textual output type (fixed-label, compositional, or open-vocabulary), the type of neuron targeted for
analysis (convolutional, scalar, or predetermined), the target metric the method optimizes (IoU, WPMI, AUC, etc.), whether the method
relies on auxiliary black-box models for finding or generating explanations (img2txt, CLIP), and whether the explanation method is
architecture-agnostic, meaning it can be applied to any CV model.

METHOD EXPLANATION NEURON TYPE TARGET BLACK-BOX DEPENDENCY ARCHITECTURE-AGNOSTIC

NETDISSECT (BAU ET AL., 2017) FIXED-LABEL CONV. IOU — ✓
COMPEXP (MU & ANDREAS, 2020) COMPOSITIONAL CONV. IOU — ✓
MILAN (HERNANDEZ ET AL., 2022) OPEN-VOCABULARY CONV. WPMI IMG2TXT MODEL ✓
INVERT (BYKOV ET AL., 2023B) COMPOSITIONAL SCALAR AUC — ✓
CLIP-DISSECT (OIKARINEN & WENG, 2023) OPEN-VOCABULARY SCALAR SOFTWPMI CLIP ✓
FALCON (KALIBHAT ET AL., 2023) OPEN-VOCABULARY PREDETERMINED AVG. CLIP SCORE CLIP —

The objective of INVERT is to maximize the similarity δAUC between a concept s and the neural representation fi, which
can be described as:

EINVERT(fi) = argmax
s∈L⊂S

δAUC (fi, s) . (14)

INVERT is constrained by the requirement of a labeled dataset and is computationally more expensive compared to
CLIP-Dissect.

A.1.7. COMPARISON OF CHARACTERISTICS OF CONCEPT-BASED TEXTUAL EXPLANATION METHODS

Table 4 illustrates an overview of the different characteristics of concept-based textual explanation methods.

A.2. Schematic Illustration of COSY Implementation Details

In the example shown in Figure 1, we used the default settings of the explanation methods to generate explanations for
neuron 80 in the avgpool layer of ResNet18. For CLIP-Dissect, we used the 20,000 most common English words as the
concept dataset and the ImageNet validation dataset (Russakovsky et al., 2015) as the probing dataset . We employed Stable
Diffusion XL 1.0-base (SDXL) (Podell et al., 2023) as the text-to-image model, using the prompt “realistic photo of a close
up of [concept]” to generate concept images, with [concept] being replaced by the textual explanation from the
methods. We generated 50 images per concept for 50 randomly chosen neurons from the avgpool layer of ResNet18. For
evaluation, we also used the ImageNet validation dataset as the control dataset.

A.3. Prompt and Text-to-Image Model Comparison

One of the key features of COSY is its reliance on generative models to translate textual explanations of neurons into the
visual domain. Thus, it is essential that the generated images reliably resemble the textual concepts. In the following section,
we present an experiment where we varied several parameters of the generation procedure and evaluated the visual similarity
between generated images and synthetic ones, focusing on concepts for which we have a collection of natural images.

For our analysis, we used only open-source and freely available text-to-image models, namely Stable Diffusion XL 1.0-base
(SDXL) (Podell et al., 2023) and Stable Cascade (SC) (Pernias et al., 2023). We also varied the prompts for image generation.
To measure the similarity between synthetic images and natural images corresponding to the same concept, we employed
cosine similarity (CS) in the CLIP embedding space with the CLIP-ViT-B/32 model (Radford et al., 2021). We select a
set of 10 random concepts from the 1,000 classes in the ImageNet validation dataset (Russakovsky et al., 2015). For each
[concept] we use 5 different prompts and employ them with SDXL and SC models, generating 50 images per concept.
We then measure the CS between image pairs of the same class.

A.4. Sanity Check Setup

Experimental setup for comparing true and random explanations on output neurons with known ground truth labels involved
employing four different models pre-trained on ImageNet: ResNet18 (He et al., 2016), DenseNet161 (Huang et al.,
2017), GoogleNet (Szegedy et al., 2015), and ViT-B/16 (Dosovitskiy et al., 2020). For each model, we randomly
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Table 5. Comparison of true and random explanations on output neurons with known ground truth labels. This table presents the quality
estimates for true explanations, derived from target class labels, and random explanations, derived from randomly selected synthetic
image classes (excluding the target class), across four models pre-trained on ImageNet. Higher values are better. Our results consistently
show high scores for true explanations and low scores for random ones.

MODEL
AUC (↑) MAD (↑)

True Random True Random

RESNET18 0.94±0.20 0.54±0.23 5.93±2.35 0.17±1.90
DENSENET161 0.95±0.17 0.60±0.23 6.81±2.50 0.56±1.56
GOOGLENET 0.95±0.16 0.41±0.24 7.44±2.77 -0.31±0.90
VIT-B/16 0.97±0.11 0.59±0.23 13.51±5.56 0.17±0.48

Figure 6. An overview of analyses performed to study the similarity between natural and synthetic images. From left to right: (1) an
overview of MAD scores between synthetic and natural image activations of the output neuron’s ground truth classes for each model
studied in this work, (2) activations collected for neuron 504 in ResNet18 for the class “coffee mug,” showcasing the difference between
the natural and synthetic distributions and (3) examples of natural versus synthetic images. In both analyses, we observe a substantial
overlap in the activations of synthetic and natural images, suggesting that the models respond similarly to both types of images.

selected 10 output classes and generated 50 images per class using class descriptions. We then passed both true and randomly
generated explanation images through the models, alongside the ImageNet validation dataset (Russakovsky et al., 2015) as a
control dataset. We collected activations of the output neurons corresponding to each class. Next, we compared the COSY
scores of the ground truth explanations, indicated by the neuron labels, with those of randomly selected explanations. In
addition to the results presented in Table 1, we also performed the same experiment excluding the ground truth images from
the control dataset; these results are shown in Table 5.

A.5. Do Models Respond Differently to Synthetic and Natural Images?

Given the visual similarity between natural and synthetic images of the same concepts, we investigate whether CV models
respond differently to these groups and if the activation differences indicate adversarial behavior. Following the experimental
setup in Appendix A.4, we selected 10 output neurons for each model. We passed both synthetic and natural images through
the models and collected the activations of the output neurons corresponding to each class.

Figure 6 (left) illustrates the distributions of the MAD between synthetic and natural images for the same class across the
10 classes. Generally, we observe that the activation of synthetic images is slightly higher than that of natural images of
the same class. However, this difference is small, given the 0 value lies within 1 standard deviation. We also illustrated
(Figure 6, right) the activations of neuron 504 in the ResNet18 output layer, corresponding to the “coffee mug” class. The
results indicate a strong overlap in the neural response to both synthetic and natural images. While synthetic images activate
the neuron slightly more, this does not constitute an artifactual behavior or affect our framework, which we demonstrate in
the following experiment.
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Table 6. Intraclass Image Similarity. This table illustrates the impact of varying parameters within our COSY framework. We evaluate
5 different prompts as input to 2 different text-to-image models. A random selection of 10 ImageNet classes is made, with each class
name used as input to the prompt, denoted as [concept], resulting in 50 images generated per prompt using a text-to-image model.
We compute the average intraclass similarity across all classes. Higher CS and lower ED values indicate greater similarity between the
images. In intraclass image similarity, neither excessively high nor excessively low scores are desirable.

PROMPT TEXT-TO-IMAGE CS (↑) ED (↓)

1. “A [CONCEPT]” SDXL 0.83±0.07 5.85±1.41
SC 0.92±0.03 4.03±1.00

2. “A PAINTING OF [CONCEPT]” SDXL 0.87±0.05 4.94±1.13
SC 0.92±0.03 3.95±0.88

3. “PHOTO OF [CONCEPT]” SDXL 0.81±0.07 6.13±1.36
SC 0.90±0.04 4.46±1.05

4. “REALISTIC PHOTO OF [CONCEPT]” SDXL 0.86±0.06 5.41±1.34
SC 0.93±0.03 3.79±0.85

5. “REALISTIC PHOTO OF A CLOSE UP OF [CONCEPT]” SDXL 0.88±0.05 5.09±1.29
SC 0.93±0.03 3.95±0.92

A.6. Intraclass Image Similarity

In addition to comparing natural and synthetic images as in Section 4.1, we also analyze the intraclass distance to compare
the similarity among synthetic images. Intraclass distance refers to the degree of diversity or dissimilarity observed within a
set of images of the same class. It quantifies how much the individual images deviate from the average or central tendency
of the image set. In this context, intraclass distance is desirable, reflecting how visual concepts can appear in natural images.
Higher similarity scores indicate greater divergence from natural occurrences of concepts.

Cosine similarity (CS) and “Euclidean distance” (ED) are commonly used metrics for measuring image similarity because
they capture different aspects of similarity and complement each other. We compute the average CS and ED for each class
and determine the overall class average. Table 6 provides a detailed overview of the results quantifying the similarity within
synthetic images using CS and ED. When evaluating these results, it is important to note that high scores do not necessarily
indicate optimal outcomes, as they suggest nearly identical images, which may lack intraclass distance. Conversely, very
low scores imply significant differences among images, which might not capture the essence of the concept adequately.
Ideally, we aim for somewhat similar yet slightly varied images representing the same class. The results show that the Stable
Cascade (SC) model consistently achieves higher scores across all prompts compared to the Stable Diffusion XL 1.0-base
(SDXL) model. Notably, it obtains the highest score for the two most elaborate prompts (4, 5). This indicates that the SC
model tends to offer less intraclass distance in visually representing concepts.

A.7. Model Stability

In this experiment, our goal is to evaluate the stability of the image generation method employed, aiming to ensure consistent
results within our COSY framework. We achieve this by varying the seed of the image generator and observing the impact
on image generation. We anticipate consistent image representations across different model initializations, thus ensuring the
stability of our framework.

For our analysis, we utilize ResNet18 and focus on its output neurons, as the ground-truth labels associated with these
neurons are known. We randomly select six classes s from the ImageNet validation dataset (Russakovsky et al., 2015)
and examine the corresponding fi class output neurons using COSY. Here, we exclude the s class from A0 and let A1

represent the s class. To ensure robustness, we initialize the text-to-image model across a random set of 10 seeds. Our
analysis involves calculating the first (mean) and second moment (STD) using ΨAUC, as well as evaluating the intraclass
image similarity (refer to Section A.6) within each synthetic ground truth class.

The results for our experiment, as shown in Table 7, demonstrate remarkably high AUC scores, indicating near-perfect
detection of synthetic ground truth classes across all image model initializations. Furthermore, the standard deviation is
exceptionally low, suggesting consistent image generation regardless of the chosen seed. The intraclass similarity values
indicate a certain degree of distance in the generated images, indicating high similarity yet distinctiveness. This intraclass
distance is desirable, ensuring that the images are not identical but share common characteristics.
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Table 7. Model Stability. A comparison of various model initializations across 10 random seeds using SDXL.

CONCEPT AUC (↑) CS (↑) ED (↓)

BULBUL 0.9996±0.0002 0.91±0.03 3.99±0.66
CHINA CABINET 0.9999±0.0001 0.89±0.04 5.00±0.90
LEATHERBACK TURTLE 0.9994±0.0001 0.91±0.04 4.65±0.87
BEER BOTTLE 0.9919±0.0038 0.80±0.08 6.79±1.41
HALF TRACK 0.9998±0.0000 0.88±0.04 5.12±0.91
HARD DISC 1.0000±0.0001 0.90±0.05 4.64±1.17

OVERALL MEAN 0.9984±0.0007 0.88±0.02 5.03±0.26

These findings underscore the reliability and consistency of our image generation pipeline within our COSY framework.
The high stability of text-to-image generation across different seeds and the diversity of image similarity contribute to the
robustness of our approach.

A.8. Benchmarking Implementation

For generating explanations with the explanation methods, we use a subset of 50,000 images from the training dataset on
which the models were trained. For evaluation with COSY, we use the corresponding validation datasets the models were
pre-trained on as the control dataset. Additionally, for CLIP-Dissect, we define concept labels by combining the 20,000
most common English words with the corresponding dataset labels. For INVERT we set the compositional length of the
explanation as L = 1, where L ∈ N.

A.9. Compute Resources

For running the task of image generation for COSY we use distributed inference across multiple GPUs with PyTorch
Distributed, enabling image generation with multiple prompts in parallel. We run our script on three Tesla V100S-PCIE-
32GB GPUs in an internal cluster. Generating 50 images for 3 prompts in parallel takes approximately 12 minutes.

A.10. Additional Results for Method Comparison across ResNet18 Layers

In addition to the AUC results for various methods across different ResNet18 layers, as discussed in Section 5.2, we
also report the MAD scores. This provides a more comprehensive evaluation of each method’s performance. As shown in
Figure 7, the MAD scores resemble the AUC results but are higher in the upper layers.

Figure 7. A comparison of explanation methods in ResNet18 shows that INVERT and CLIP-Dissect maintain high MAD scores across
all layers, while MILAN, and FALCON have lower scores. Overall, performance declines in the lower layers for all methods.
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Given that the original implementation of FALCON only provides results for their defined “explainable neurons” (see
Appendix A.1.4), we included additional results comparing all methods based on this subset of neurons. Specifically, there
are 7 explainable neurons in layer 2, 5 in layer 3, and 15 in layer 4. Figure 8 presents these results.

Figure 8. A comparison of explanation methods in ResNet18 shows that INVERT and CLIP-Dissect maintain high MAD scores across
all layers, while MILAN, and FALCON have lower scores. Overall, performance declines in the lower layers for all methods.

A.11. Concept Broadness

While COSY focuses on measuring the explanation quality, another open question is how broad or abstract are the concepts
provided as textual explanations. This question of how specific or general an individual neuron is described by the
explanation, might be relevant to different XAI applications. For example, research fields where the user aims to deploy the
same network for multiple tasks with varying image domains. In this case, describing a neuron’s more general concept such
as “a round object” might be more informative than a more (domain-)specific concept such as “a tennis ball” for the network
assessment. In an effort to provide insight on the broadness of concepts, we assessed whether the similarity between images
generated based on the same concept changes for more general to more specific concepts.

In our experiment, we define the broadness of a concept based on the number of hypernyms in the WordNet hierarchy (Miller,
1995). The more specific a concept the larger the number of hypernyms. We choose two ImageNet classes (“ladybug,”
“pug”) and generate 50 images for each concept as well as each hypernym of both concepts (with the most general concept
being “entity”). Then, we measure the cosine similarity of all images generated based on the same concept. The box plot
of the cosine similarity across both concepts and all hypernyms, in Figure 9 indicates that we do not find a correlation.
Thus, we hypothesize that the chosen temperature of the diffusion model has a stronger effect on image similarity than the
broadness of the prompt used for image generation.

A.12. Synthetic Image Examples with Different Prompts and Text-to-Image Models

Figure 10 showcases additional examples of synthetically generated images using both SDXL and SC across various prompts,
highlighting the diversity and accuracy of concept representation.
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Figure 9. The figure demonstrates the independence of the concept broadness measured by the number of hypernyms as defined in
WordNet (Miller, 1995) to the inter-image similarity of corresponding generated images.
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Figure 10. Example images for “coffee mug” generated by the text-to-image models SDXL and SC across various prompts. (1) and (3)
present examples of synthetic images with relatively low intraclass similarity and relatively high natural-to-synthetic similarity scores. (2)
shows examples of synthetic images with the lowest similarity to natural images. (4) illustrates examples of synthetic images with the
highest similarity to other synthetic images within the same class. (5) showcases examples of synthetic images with the highest similarity
to natural images. (6) displays examples of natural images from the ImageNet validation dataset (Russakovsky et al., 2015) belonging to
the class “coffee mug.”
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