
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DELTAGNN: GRAPH NEURAL NETWORK WITH IN-
FORMATION FLOW CONTROL

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) are popular machine learning models designed to
process graph-structured data through recursive neighborhood aggregations in the
message passing process. When applied to semi-supervised node classification,
the message-passing enables GNNs to understand short-range spatial interactions,
but also causes them to suffer from over-smoothing and over-squashing. These
challenges hinder model expressiveness and prevent the use of deeper models
to capture long-range node interactions (LRIs) within the graph. Popular solu-
tions for LRIs detection are either too expensive to process large graphs due to
high time complexity or fail to generalize across diverse graph structures. To ad-
dress these limitations, we propose a mechanism called information flow control,
which leverages a novel connectivity measure, called information flow score, to
address over-smoothing and over-squashing with linear computational overhead,
supported by theoretical evidence. Finally, to prove the efficacy of our methodol-
ogy we design DeltaGNN, the first scalable and generalizable approach for long-
range and short-range interaction detection. We benchmark our model across 10
real-world datasets, including graphs with varying sizes, topologies, densities,
and homophilic ratios, showing superior performance with limited computational
complexity.

1 INTRODUCTION

GNNs are machine learning models designed to process graph-structured data (Scarselli et al., 2008).
They have proven effective in various graph-based downstream tasks (Kipf & Welling, 2016; Wu
et al., 2019), especially in semi-supervised node representation learning (Hu et al., 2019). GNNs
also demonstrate broad applicability across several distinct domains, including chemistry (Gilmer
et al., 2020; Zitnik & Leskovec, 2017), and medical fields (Ahmedt-Aristizabal et al., 2021), such as
network neuroscience (Bessadok et al., 2015), and medical image segmentation for purposes such
as liver tumor and colon pathology classification (Yang et al., 2023).

The strength of GNN models lies in their ability to process graph-structured data and capture short-
range spatial node interactions through local neighborhood aggregations during message passing.
However, such local aggregation paradigm often struggles to capture dependencies between distant
nodes, particularly in certain graph densities and structures. For instance, when processing a strongly
clustered graph, a standard GNN model may fail to account for interactions between nodes in distant
clusters. These long-range interactions (LRIs) are crucial for node classification tasks, as they help
distinguish between different classes and improve classification accuracy. This limitation has been
widely studied, with theoretical findings pinpointing over-smoothing (Li et al., 2018) and over-
squashing (Alon & Yahav, 2020) as the root causes. These phenomena limit performance in many
applications and prevent the use of deep GNNs to effectively capture long-range dependencies.

To address these challenges, recent works have proposed enhanced GNN models by integrating
graph transformer-based modules, such as global attention mechanisms (Wu et al., 2021), or local-
global attention (Fei et al., 2023). Other works have proposed topological pre-processing tech-
niques, such as curvature-enhanced edge rewiring (Nguyen et al., 2023) and sequential local edge
rewiring (Barbero et al., 2023). Although these methods can marginally improve model perfor-
mance, they fail to provide a generalized and scalable approach that can effectively process large
graphs across various graph topologies. Specifically, attention-based approaches are constrained by

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

their quadratic time complexity and lack of topological awareness, which leads to computational
inefficiency. Rewiring algorithms, on the other hand, rely on expensive connectivity measures that
are often impractical for large and dense graphs. These methods are also embedding-agnostic and,
consequently, fail to directly address over-smoothing in certain graph structures. For these reasons,
developing a scalable and general method for learning long-range interactions (LRIs) would sig-
nificantly expand the applicability of GNNs in semi-supervised node classification tasks. Such a
method would be a key contribution to the field.

In this work, we formalize the concept of graph information flow and use it to define a novel con-
nectivity measure that analyzes the velocity and acceleration of node embedding updates during
message passing, offering insights into graph topology and homophily. We provide both theoretical
and empirical evidence to support this claim. Next, we propose a new graph rewiring paradigm,
information flow control, which mitigates both over-smoothing and over-squashing with minimal
additional time and memory complexity. Furthermore, we introduce a novel GNN architecture,
DeltaGNN, which implements information flow control to capture both long-range and short-range
interactions. We benchmark our model across a wide range of real-world datasets, including graphs
with varying sizes, topologies, densities, and homophilic ratios. Finally, we compare the results of
our approach with popular state-of-the-art methods to evaluate its generalizability and scalability.

Our contributions. (1) We introduce a novel connectivity measure, the information flow score,
which identifies graph bottlenecks and heterophilic node interactions, supported by both theoreti-
cal and empirical evidence of its efficacy. (2) We propose an information flow control mechanism
that leverages this measure to perform sequential edge-filtering with linear computational overhead,
which can be flexibly integrated into any GNN architecture. (3) We design a scalable and generaliz-
able framework, DeltaGNN, for detecting both short-range and long-range interactions, demonstrat-
ing the effectiveness of our theoretical findings.

2 PRELIMINARIES

A graph is usually denoted as G = (V, E), where V represents the node set and E the edge set.
The edge set can also be represented as an adjacency matrix, defined as A ∈ {0, 1}|V|×|V|, where
Aij ̸= 0 if and only if the edge (i, j) exists. The node feature matrix is defined as X ∈ R|V|×dV

for some feature dimensions dV . We denote Xt
u as the features of the node u at layer t, with the

convention X0 = X . Furthermore, each node u is associated with a class yu ∈ C, where C denotes
the set of classes. The goal, in node-classification tasks, is to learn Φ : V → C, the unique function
mapping each node to a specific class.

2.1 GRAPH NEURAL NETWORKS

Each layer of the GNN applies a transformation function and message-passing aggregation function
to each feature vector Xu and its neighborhood N (u). The general formulation of this operation
can be expressed as follows:

Xt+1
u = ϕ

 ⊕
v∈Ñ (u)

ψ(Xt
v)

 for 0 ≤ t ≤ T (1)

where ϕ and ψ are differentiable functions, ⊕ is an aggregation function (typically sum, mean, or
max), Ñ (u) = N (u) ∪ u the extended neighbourhood of u, and T is the number of layers of the
model.

2.2 OVER-SMOOTHING AND HOMOPHILY

Over-smoothing (Rusch et al., 2023) can be formalized as follows.

Definition 2.1 (Over-smoothing). Over-smoothing refers to the phenomenon where the representa-
tions of nodes become indistinguishable as the number of layers T increases, weakening the expres-
siveness of deep GNNs and limiting their applicability. In node classification tasks, over-smoothing

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

can hinder the ability of GNNs to distinguish between different classes, as their feature vectors
converge to a fixed value with increasing layers:∑

(u,v)∈E:Φ(u)̸=Φ(v)

||XT
u −XT

v || → 0 as T → ∞

Over-smoothing is accelerated by the presence of edges connecting distinct node classes (Chen
et al., 2020), these are called heterophilic edges. The tendency of a graph to lack heterophilic
connections is termed homophily. This property can be quantified computing the graph homophilic
ratio H ∈ [0, 1], which is the average of the homophilic ratios of its nodes.

Definition 2.2 (Homophilic Ratio of a Node). The homophilic ratio Hu ∈ [0, 1] of a node u is the
proportion of neighbours u′ ∈ N (u) such that u and u′ belong to the same class. The homophilic
ratio is defined as:

Hu =
|{v ∈ N (u) | Φ(v) = Φ(u)}|

|N (u)|

Over-smoothing can be mitigated by increasing graph homophily, for instance, by removing het-
erophilic edges.

2.3 OVER-SQUASHING AND CONNECTIVITY

Figure 1: Illustration of a graph with a
bottleneck.

Over-squashing (Alon & Yahav, 2020), on the other hand,
is the inhibition of the message-passing capabilities of the
graph caused by graph bottlenecks.

Definition 2.3 (Over-squashing). Over-squashing refers
to the exponential growth of a node’s receptive field, lead-
ing to the collapse of substantial information into a fixed-
sized feature vector due to graph bottlenecks (see Fig-
ure 1).

To alleviate over-squashing, it is necessary to improve the
connectivity of the graph. This can be achieved by re-
moving or relaxing graph bottlenecks that hinder connec-
tivity (Di Giovanni et al., 2023). Typically, these bottle-
necks can be identified by computing a connectivity mea-
sure, such as the Ollivier-Ricci curvature (Ollivier, 2009;
Sia et al., 2019) or a centrality measure. The term connectivity measure refers to any topological
or geometrical quantity that captures how easily different pairs of nodes can communicate through
message passing.

3 RELATED WORKS

Transformer-based self-attention. A common approach to overcome over-smoothing and over-
squashing and capture long-range node interactions is integrating a transformer-based components
into the GNN (Yun et al., 2019; Dwivedi & Bresson, 2020; Fei et al., 2023; Wu et al., 2021). Trans-
formers can aggregate information globally without being limited by the local neighborhood aggre-
gation paradigm, making them a very effective solution. However, they fail to propose a scalable
solution which can process large-scale graphs, which is arguably the scenario where long-range
interaction detection is of the utmost importance. Graph self-attention has a time complexity of
O(|V|2), where |V| refers to the number of nodes in the graph, this complexity is unsuitable for
large graphs. Moreover, classical transformers are inefficient at processing LRIs in graphs because
they are inherently topology-agnostic and consequently process all |V|2 possible interactions.

Topological graph rewiring. Many rewiring algorithms exploit graph curvature (Nguyen et al.,
2023) or other connectivity measures (Barbero et al., 2023; Black et al., 2023; Arnaiz-Rodrı́guez
et al., 2022; Karhadkar et al., 2022) to identify parts of the graph suffering from over-squashing and

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

over-smoothing, and alleviate these issues by adding or removing edges. These approaches have
two main limitations: first, they rely on expensive connectivity measures (e.g., Ollivier-Ricci cur-
vature, betweenness centrality); and second, they are embedding-agnostic, as they primarily base
rewiring decisions on the graph’s connectivity. However, over-smoothing is not a topological phe-
nomenon, and as observed by recent works (Yan et al., 2022), its effects can be mitigated by acting
on the graph’s heterophily. Therefore, improving connectivity alone is insufficient to prevent over-
smoothing (see Appendix A).

4 INFORMATION FLOW

4.1 GRAPH INFORMATION FLOW

We define Graph Information Flow (GIF) as the exchange of information between nodes during
the message-passing process. This can be quantified as the rate at which node embeddings are
aggregated across each layer of the GNN. To observe how GIF changes over time within our model,
we introduce two sequences that are useful for quantifying this variation. Let M be a smooth
manifold equipped with a distance function d :M ×M → R that defines the geometry of the space.
Additionally, assume the features embeddings X of the input graph lie on M .
Definition 4.1 (First Delta Embeddings). Let Mt

u = ψ(Xt−1
u ) be the transformed feature vector

of node u at layer t. We define the first delta embeddings at layer t as the distance between the
aggregated and transformed feature vectors.

∆t
u = d(

⊕
v∈N (u)

Mt
v,M

t
u) for 1 ≤ t ≤ T

Where T ∈ N defines the number of layers of the architecture. This quantity can be interpreted as
the velocity at which the node embeddings are aggregated at layer t.
Definition 4.2 (Second Delta Embeddings). Similarly, let ∆t

u be the first delta embedding of a node
u ∈ V at time t ∈ [1, T ], where T ∈ N defines the number of layers of the architecture. Then, we
define the second delta embeddings as the first differences of the first delta embeddings over time.

(∆2)tu = d(∆t
u,∆

t−1
u ) for 2 ≤ t ≤ T and (∆2)1u = 0

This can be interpreted as the rate of change in the rate at which node embeddings are aggregated
within the model, analogous to acceleration in physical systems.

We now provide theoretical evidence showing how the sequences ∆t
u and (∆2)tu can offer insights

into the graph’s homophily and topology, respectively. Detailed proofs of the following lemmas can
be found in Appendices B and C.
Lemma 1. Let ∆t

u be the first delta embeddings of a node u and ∆u be the average over time of
the sequence. Assume ∆t

u converges to zero, M is compact and that there exists a unique function
ϕ : M → C which correctly assign all possible feature vectors to their associated labels. Then,
for any homophilic ratio H ∈ [0, 1], there exists a positive lower-bound ρ ∈ (0,+∞) such that any
node u ∈ V with feature vector Xu ∈M and ∆u > ρ will have Hu < H.
Lemma 2. Let c : V → R be a node connectivity measure, and let Vt[∆

2
u] denote the variance over

time of the second delta embeddings of a node u. Assume that there exists an upperbound µ such
that for any node u ∈ V , c(u) < µ if and only if the node u is adjacent to an edge bottleneck. Then,
any node u ∈ V for which c(u) < µ will exhibit a low value of the variance Vt[∆

2
u].

4.2 INFORMATION FLOW SCORE

While over-squashing is a topological phenomenon caused by graph bottlenecks, over-smoothing
is worsened due to the presence of heterophilic node interactions. Motivated by our ultimate goal
of mitigating these phenomena, and building on the results of Lemmas 1 and 2, we define a node
connectivity measure, called the information flow score (IFS), which is minimized for nodes near
bottlenecks with a low homophilic ratio (see Equation 2). Consequently, nodes with low values

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

of this measure are likely to correspond to regions where over-smoothing and over-squashing may
occur.

Su =
m ∗ Vt[∆

2
u] + 1

l ∗∆u + 1
(2)

Where (l and m) are two multipliers that adjust the weight of the mean and variance in the score,
respectively. A detailed analysis justifying our definition of the IFS, along with empirical evidence
supporting its properties, can be found in Appendix D.

Figure 2: Overview of a GNN Model with information flow control. The figure illustrates how the
information flow control mechanism integrates with a standard GNN to filter the graph and increase
the mean node score. Simultaneously, the GNN learns to disentangle the node features, ensuring
that the output embeddings can be easily classified using a readout layer. The novel components are
highlighted in violet. Notably, the mean node score of the processed graph is significantly higher
due to the effective edge filtering performed within the GNN layers.

4.3 INFORMATION FLOW CONTROL

Now, we present how to integrate the IFS into a generic GNN to prevent over-smoothing and over-
squashing. While common connectivity measures are typically calculated before transforming the
graph, our score is computed during the graph transformation learning. Therefore, standard ap-
proaches such as graph-rewiring algorithms are not well-suited for handling our measure. To ad-
dress this limitation, we designed a novel method called information flow control (IFC) (see Figure
2). We first introduce some notations and then define the novel components of the IFC. We de-
fine a topological edge-filtering operation as a function Θ(G,K(θ), c) returning a filtered graph G′,
where K(θ) ∈ [0, 1] is a θ-parameterized function defining the percentage of edges which has to

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

be removed and c ∈ R|V| are the nodes connectivity values used to choose which edges has to
be removed. The IFC is composed of a sequence of T flow-aware edge-filtering layers {Θt}t that
iteratively filter the graph G:

G = G0
Θ1−−→ G1

Θ2−−→ G2 . . .
ΘT−−→ GT

Each filtering operation is defined as Θt(Gt−1,K(t, θ),St), where St ∈ R|V| is the IFS of the graph
nodes calculated on the deltas up to layer t. These filtering layers are interwoven with standard GNN
layers {Ωt}t, which are responsible to aggregate and transform the node representations.

(A,X) = (A0,X0)
Ω1−−→ (A0,X1)

Θ1−−→ (A1,X1)
Ω2−−→ (A1,X2) . . .

ΘT−−→ (AT ,XT )

Where At denotes the adjacency matrix of G at layer t. The IFC also includes a component that
maximizes the mean node score by optimizing the parameter θ through hill ascent over a utility
function U . We set an initial value of zero for θ and perform a local hill ascent to find a local maxi-
mum. This approach is advantageous because the IFC is encouraged to preserve sparsity, increasing
the number of edges removed only if it leads to an increase in the utility function U (e.g., the mean
of the scores at the last layer). Follows a pseudo-code implementing the forward-pass of a GNN
with IFC module (additional technical details are included in Appendix E).

Algorithm 1 GNN with information flow control: forward-pass
1: Input: Node features X0, adjacency matrix A0, Previous utility value Uold

2: Output: Processed features XT , updated adjacency matrix AT

3: Initialize variable ∆0 = 0, score array S, θ = 0
4: for each layer t do
5: Compute transformed features Mt ▷ equation 1
6: Compute Xt by aggregating Mt ▷ equation 1
7: Compute ∆t ▷ equation 4.1
8: if not first layer then
9: Compute (∆2)t ▷ equation 4.2

10: else
11: Set (∆2)t = 0
12: end if
13: Update ∆t applying Welford’s Method on ∆t−1. ▷ equation 5
14: Update V[(∆2)t] applying Welford’s Method on V[(∆2)t−1]. ▷ equation 6
15: Compute scores St ▷ equation D
16: Update At removing K(t, θ) edges with low IFS from At−1

17: end for
18: Compute utility value Unew based on final scores ST (e.g. mean node score)
19: if Unew > Uold then
20: Update parameter θ with step size ∆θ (hill ascent step)
21: end if
22: return processed features XT , updated adjacency matrix AT , new utility value Unew

5 METHODOLOGY: DELTAGNN

In this section, we illustrate DeltaGNN and how it leverages the IFC to capture both short-range
and long-range node interactions. First, DeltaGNN processes the node embeddings and graph ad-
jacency matrix through a standard homophilic GNN with IFC. During the sequential filtering, the
model partitions the graph into homophilic clusters by removing bottlenecks and heterophilic edges.
Simultaneously, the homophilic aggregation learns short-range dependencies. However, this process
leads to the loss of long-range interactions, which we recover through an heterophilic graph conden-
sation. The long-range dependencies are then learned via a GNN heterophilic aggregation. Finally, a
readout layer processes the results from both GNN aggregations. An overview of the model pipeline
is illustrated in Figure 3.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 3: The DeltaGNN pipeline consists of: (a) a sequential transformation stage that pro-
cesses both homophilic and heterophilic edge interactions, performing homophily-based interaction-
decoupling and dual aggregation to learn short-term and long-term dependencies; and (b) a predic-
tion stage that concatenates the results from the first stage.

Sequential transformation stage. The sequential transformation stage includes a homophilic ag-
gregation with IFC, a heterophilic graph condensation, and a heterophilic aggregation. This stage
is designed to discriminate between homophilic and heterophilic node interactions, producing a
strongly homophilic graph and a strongly heterophilic graph, which are processed by independent
GNN modules. This concept of homophily-based interaction-decoupling is crucial to prevent over-
smoothing by avoiding using a standard GNN aggregation on heterophilic edges. During the ho-
mophilic aggregation (see Equation 1) the model capture short-range spatial interactions, while the
IFC removes most heterophilic edges within the graph, breaking it into homophilic connected com-
ponents (see Figure 3). We set U = ST and the step size ∆θ = η, where η denotes the learning rate
of the transformation function of the GNN module. At each GNN layer t, we remove the K(t, θ)
edges with the lowest scores, which are calculated using the Euclidean distance d(x,y) = ∥x−y∥.
This process reduces over-smoothing by increasing the homophily of the graph, and over-squashing,
by removing the graph bottlenecks. As a result, the output graph of this first step, which we define
Gho, will be highly homophilic and preserve most short-term node interactions. On the other hand,
most long-range interaction will be lost during the edge filtering. Next, we proceed with the het-
erophilic graph condensation, which aims at extracting the most relevant heterophilic interactions
within the homophilic clusters to re-introduce long-range dependencies. To achieve this, we select
the nodes with the highest scores, which are likely to have the most reliable representations, and
construct a distinct fully-connected graph with them. The resulting graph, defined as Ghe, will be
highly heterophilic since nodes with different labels are likely to be neighbours due to the cluster-
ing during the score-based edge filtering. This graph will preserve the majority of the LRIs while
resulting considerably smaller than the original graph. Next, we apply the heterophilic aggregation
on Ghe which is a simple variation of the standard update rule defined in equation 3.

Xt+1
u = ϕ

(⊕
v∈N (u) ψ(X

t
v), ψ

s(Xt
u)
)
, X1

u = ϕ
(
ψs(X0

u)
)
, for 0 ≤ t ≤ L− 1 (3)

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

where ψs is a differentiable function used to process node self-connections. Additionally, we do
not aggregate the node features in the first layer so that the model can process the original features.
Finally, we build a row vector of all layers’ node embedding outputs Xi

he and feed it into a linear
layer, similarly to what was done in Xu et al. (2018b) (see Equation 4). This ensures that the model
learns to distinguish between different node classes at many levels of smoothness.

Prediction stage. In this stage, we concatenate and process both modules’ outputs, Xout
ho and Xout

he ,
through a final linear layer to perform the prediction (see Equation 4).

Xout
he = ϕhe

W out
he


X1

he
X2

he
...

XT
he


 , Xout = ϕout

(
W out

[
Xout

ho
Xout

he

])
(4)

6 EXPERIMENTS

In this work, we evaluate DeltaGNN on 10 distinct datasets with varying homophilic ratios, densities,
sizes, and topologies. For all datasets, the hyper-parameter fine-tuning was done using a grid-search
on the validation set. We compare our DeltaGNN (implemented using GCN aggregations), with
state-of-the-art GNN architectures such as GCN (Kipf & Welling, 2016), GIN (Xu et al., 2018a),
GAT (Velickovic et al., 2017), rewiring algorithms (Topping et al., 2021), heterophily-based meth-
ods (Zhu et al., 2020; Pei et al., 2020), and graph-transformers (Shi et al., 2020; Chen et al., 2022).
Additional details on dataset details, training settings, and models can be found in the Appendix F.

• Cora, CiteSeer, and PubMed datasets. We evaluate our framework on three scientific
publications-citations datasets (McCallum et al., 2000; Yang et al., 2016) with high ho-
mophilic ratios (≥ 0.5). These datasets include one graph each and the task is node-level
multi-class classification across several fields of research.

• Cornell, Texas, and Wisconsin datasets. We also use three webpage network datasets (Pei
et al., 2020) with low homophilic ratios (≤ 0.5). These datasets include one graph each and
the task is node-level multi-class classification among several webpage categories.

• MedMNIST Organ-C and Organ-S datasets. The MedMNIST Organ-C and Organ-S
datasets (Yang et al., 2023) include abdominal CT scan images (28 × 28 pixels) of liver
tumors in coronal and sagittal views, respectively. The task for both is node-level multi-
class classification among 11 types of liver tumors. Each image-based dataset is converted
into a graph, with each node representing an image, and each node embedding being the
vectorization of the 28 by 28 pixel intensity, resulting in vectors of length 784. The graph
edges are derived from the cosine similarity of the node embeddings, similar to what as
done in Adnel & Rekik (2023). To reduce complexity, we sparsify these graphs using a
sparsity threshold and convert them into unweighted graphs. Additionally, we define two
degrees of density for each dataset, with up to ∼2.8 million edges.

6.1 GENERALIZABILITY BENCHMARK

In this section, we assess the efficacy of our models on six datasets with varying homophilic ratios.
As most GNNs rely on graph homophily, this experiment helps us gauge our model dependence on
this assumption and its generalizability across different domains. As shown in Table 1, DeltaGNN
outperforms all state-of-the-art methods across four out of six datasets, with an average accuracy
increase of 1.23%. When comparing the performance of different connectivity measures, we notice
that both topology-based and geometry-based connectivity measures fail to offer a generalizable so-
lution across different homophilic scenarios. On the other hand, DeltaGNN is the only approach
that consistently yields the best results, consolidating our claim that the IFS is a one-for-all con-
nectivity measure. Furthermore, while expensive measures such as betweenness centrality (BC),
closeness centrality (CC), and Ollivier-Ricci curvature (RC) encountered out-of-time (OOT) errors
on the PubMed dataset, our IFS, along with degree centrality (DC), eigenvector centrality (EC),
and Forman-Ricci curvature (FC), proved scalable enough to process all six datasets. When analyz-
ing the results obtained from datasets with low homophilic rates, such as Texas and Wisconsin, we

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

observe that the performance gap between DeltaGNN and rewiring approaches increases, demon-
strating the effectiveness of IFC in improving the homophilic rate of a graph through iterative edge
filtering. A more rigorous experiment on this observation is presented in the Appendix G, where we
compare the rate of change of the graph homophilic ratio during the edge filtering using different
connectivity measures.

Table 1: Accuracy ± std over 5 runs on six datasets with varying homophily.

Methods
CORA

H = 0.81
Citeseer
H = 0.74

PubMed
H = 0.80

Cornell
H = 0.30

Texas
H = 0.09

Wisconsin
H = 0.19

GCN (Kipf & Welling, 2016) 85.12±0.42 76.10±0.32 88.26±0.48 37.84±2.70 70.81±2.96 55.69±2.63
GCN + rewiring(DC) 85.32±0.49 76.36±0.38 88.24±0.40 41.08±1.21 70.81±3.52 56.47±1.64
GCN + rewiring(EC) 84.92±0.52 75.80±0.46 88.24±0.25 50.54±0.00 69.19±4.10 52.16±5.65
GCN + rewiring(BC) 84.82±0.71 75.42±0.62 OOT 37.30±4.44 65.94±5.27 54.90±2.78
GCN + rewiring(CC) 85.06±0.26 75.44±0.51 OOT 37.30±6.45 69.73±2.96 54.90±2.78
GCN + rewiring(FC) 85.12±0.45 75.48±0.60 87.94±0.33 50.54±0.00 67.57±5.06 52.55±3.22
GCN + rewiring(RC) 84.90±0.62 75.94±0.43 OOT 31.35±11.40 71.34±2.42 56.86±4.80
GCN + rewiring(IFS) 85.36±0.21 75.92±0.22 87.66±0.88 50.54±0.00 71.35±1.48 54.51±3.51

GIN (Xu et al., 2018a) 83.84±0.70 72.72±0.73 87.80±0.42 58.38±2.42 56.21±5.86 52.55±0.88
GIN + rewiring(DC) 83.76±0.43 72.84±0.59 87.94±0.64 48.11±7.50 60.54±4.52 53.33±2.15
GIN + rewiring(EC) 84.02±0.85 73.56±0.28 88.20±0.77 50.27±6.22 60.54±3.63 52.94±3.67
GIN + rewiring(BC) 83.66±0.79 73.02±0.58 OOT 55.67±4.10 58.38±4.10 55.29±3.51
GIN + rewiring(CC) 83.60±0.70 72.90±0.99 OOT 55.13±4.91 65.40±4.83 53.72±2.23
GIN + rewiring(FC) 83.16±0.93 73.50±0.84 87.30±0.37 56.22±5.54 58.92±4.83 49.80±2.97
GIN + rewiring(RC) 83.22±0.72 73.32±1.28 OOT 57.84±3.63 61.62±4.44 52.94±2.77
GIN + rewiring(IFS) 82.94±1.00 73.38±1.30 87.90±0.96 54.95±5.86 57.84±1.48 53.33±2.91

GAT (Velickovic et al., 2017) 85.42±0.95 78.08±0.26 85.48±0.58 38.38±4.83 64.32±2.26 51.37±1.64
GAT + rewiring(DC) 85.26±0.67 77.82±0.33 85.36±0.52 37.30±4.44 62.16±5.06 50.59±3.51
GAT + rewiring(EC) 85.30±0.87 77.54±0.31 85.34±0.57 38.92±4.52 60.00±5.20 50.59±1.64
GAT + rewiring(BC) 85.46±1.21 78.26±0.50 OOT 38.92±4.52 64.86±4.27 52.16±4.51
GAT + rewiring(CC) 85.50±0.72 78.10±0.59 OOT 37.30±4.83 63.78±3.08 52.16±2.23
GAT + rewiring(FC) 86.00±0.87 77.86±0.77 85.60±0.27 37.30±4.01 58.92±10.71 50.20±4.29
GAT + rewiring(RC) 85.28±0.57 78.64±0.36 OOT 35.13±3.31 62.70±6.73 51.76±1.07
GAT + rewiring(IFS) 85.80±0.40 78.06±0.78 85.02±0.58 35.13±4.27 57.84±11.40 47.84±4.07

MPL (LeCun et al., 2015) 70.32±2.68 68.64±1.98 86.46±0.35 71.62±5.57 77.83±5.24 82.15±6.93
SDRF (Topping et al., 2021) 86.40±2.10 72.58±0.20 OOT 57.54±0.34 70.35±0.60 61.55±0.86
H2GCN (Zhu et al., 2020) 83.48±2.29 75.16±1.48 88.86±0.45 75.40±4.09 79.73±3.25 77.57±4.11
GEOM-GCN (Pei et al., 2020) 84.10±1.12 76.28±2.06 88.13±0.67 54.05±3.87 67.57±5.35 68.63±4.92
UniMP (Shi et al., 2020) 84.18±1.39 75.00±1.59 88.56±0.32 66.48±12.5 73.51±8.44 79.60±5.41
NAGphormer (Chen et al., 2022) 85.77±1.35 73.69±1.48 87.87±0.33 56.22±8.08 63.51±6.53 62.55±6.22

DeltaGNN - control 84.56±0.57 79.40±0.77 89.64±0.73 75.13±1.21 67.57±2.70 74.12±1.64
DeltaGNN - control + DC 84.60±1.05 79.90±0.79 89.70±0.10 75.67±1.91 72.43±1.21 76.47±1.39
DeltaGNN - control + EC 84.14±0.63 79.36±0.59 89.68±0.47 72.97±3.31 73.51±1.21 74.90±3.22
DeltaGNN - control + BC 84.36±0.57 78.98±0.86 OOT 72.97±1.91 70.81±3.52 74.51±2.77
DeltaGNN - control + CC 84.54±0.93 79.46±0.75 OOT 74.05±1.48 70.81±2.26 75.29±2.97
DeltaGNN - control + FC 84.94±0.75 79.36±0.65 89.98±0.24 73.51±1.21 71.89±1.48 73.33±1.07
DeltaGNN - control + RC 84.96±0.50 79.34±0.59 OOT 74.05±1.48 72.43±1.91 76.08±0.88
DeltaGNN constant 86.38±0.18 79.15±0.43 89.73±0.31 70.27±4.10 74.05±3.08 79.21±1.75
DeltaGNN linear 87.29±0.52 79.42±0.78 89.60±0.45 75.27±3.31 72.97±3.82 80.00±0.88

Notes: Results better than their counterparts have a more intense shade of green. OOT indicates an
out-of-time error (compute time ≥ 30 mins).

6.2 SCALABILITY BENCHMARK

DeltaGNN exhibits the lowest epoch time in three out of five datasets, in some cases being up to
three times faster than its ablations (see Table 7). The introduction of IFC in DeltaGNN resulted in
a reduction of the average epoch time by 30.61% when compared to the worst-performing model
(see Table 2). However, DeltaGNN shows higher-than-average epoch time on the CiteSeer dataset
due to the large size of feature vectors. Additionally, thanks to IFC, DeltaGNN is the only LRI
architecture with no preprocessing overhead. In terms of memory consumption, DeltaGNN uses
approximately twice the memory of standard GCN models. This is due to its implementation, which
employs GCN aggregation layers along with dual homophilic and heterophilic aggregations, inher-
ently requiring more parameters. Nevertheless, GAT showed the highest memory footprint, being
the only model that failed to process both dense datasets. Graph-transformers and heterophily-based
methods proved to be at least as computationally expensive as GAT, failing to process the largest

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

graphs. For this reason, in this benchmark we only compare rewiring approaches. In Appendix D.1,
we provide an in-depth analysis of the time and memory complexity of our methodology.

Table 2: Computational resource comparison. The best connectivity measure with respect to epoch
time is used. The rate of change is calculated relative to the worst-performing variation.

Methods
CORA CiteSeer

∆ GPU Memory ∆ Epoch Time ∆ GPU Memory ∆ Epoch Time

GCN + filtering -69.99% -31.62% -63.49% -40.90%
GIN + filtering -25.58% -30.84% -30.72% -40.26%
GAT + filtering -55.10% 0% -54.11% 0%
DeltaGNN - control 0% -19.63% 0% -33.48%
DeltaGNN 0% -42.06% 0% -14.64%

Methods
PubMed Organ-S

∆ GPU Memory ∆ Epoch Time ∆ GPU Memory ∆ Epoch Time

GCN + filtering -65.68% -6.69% -70.65% -17.27%
GIN + filtering -52.53% -6.62% -60.28% -17.21%
GAT + filtering 0% -3.49% 0% -6.93%
DeltaGNN - control -16.48% 0% -30.78% 0%
DeltaGNN -16.48% -56.16% -29.47% -24.10%

Methods
Organ-S dense

∆ GPU Memory ∆ Epoch Time

GCN + filtering -57.63% -41.50%
GIN + filtering -44.19% -41.45%
GAT + filtering OOM OOM
DeltaGNN - control -3.20% 0%
DeltaGNN 0% -16.11%

Notes: Results that outperform their counterparts are shaded with a more intense green. OOM indicates an
out-of-memory error.

7 CONCLUSION

In this work, we introduced the concepts of information flow score (IFS) and information flow con-
trol (IFC), novel approaches for mitigating the effects of over-smoothing and over-squashing during
message passing in semi-supervised node classification tasks. To demonstrate the effectiveness of
our methodology, we developed DeltaGNN, the first GNN architecture to incorporate IFC for detect-
ing both short-range and long-range node interactions. We provided rigorous theoretical evidence
and extensive experimentation to support our claims. Our empirical results show that our methodol-
ogy outperforms popular state-of-the-art methods. As a future direction, we plan to explore alterna-
tive implementations of DeltaGNN with different aggregation paradigms and non-GNN components
and examine the applicability of our approach to graph-level and edge-level learning tasks.

8 REPRODUCIBILITY STATEMENT

Our implementation of the proposed methods and the scripts to reproduce the experiments are pub-
licly available at https://anonymous.4open.science/r/DeltaGNN-DA28/. The experimental settings,
including dataset details, preprocessing techniques, evaluation models, hyperparameter values, fine-
tuning techniques, and hardware and software configurations, are provided in Appendix F. Addi-
tional details on the implementation can be found in Appendix E.

REFERENCES

Christopher Adnel and Islem Rekik. Affordable graph neural network framework using topological
graph contraction. In Workshop on Medical Image Learning with Limited and Noisy Data, pp.
35–46. Springer, 2023.

10

https://anonymous.4open.science/r/DeltaGNN-DA28/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

David Ahmedt-Aristizabal, Mohammad Ali Armin, Simon Denman, Clinton Fookes, and Lars Pe-
tersson. Graph-based deep learning for medical diagnosis and analysis: Past, present and future.
Sensors, 21(14):4758, jul 2021. doi: 10.3390/s21144758. URL https://doi.org/10.
3390%2Fs21144758.

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
arXiv preprint arXiv:2006.05205, 2020.

Adrián Arnaiz-Rodrı́guez, Ahmed Begga, Francisco Escolano, and Nuria Oliver. Diffwire: Inductive
graph rewiring via the lov\’asz bound. arXiv preprint arXiv:2206.07369, 2022.

Federico Barbero, Ameya Velingker, Amin Saberi, Michael Bronstein, and Francesco Di Giovanni.
Locality-aware graph-rewiring in gnns. arXiv preprint arXiv:2310.01668, 2023.

Alaa Bessadok, Mohamed Ali Mahjoub, and Islem Rekik. Graph neural networks in network neu-
roscience, 1 2015.

Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding oversquashing in
gnns through the lens of effective resistance. In International Conference on Machine Learning,
pp. 2528–2547. PMLR, 2023.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-
smoothing problem for graph neural networks from the topological view. In Proceedings of the
AAAI conference on artificial intelligence, volume 34, pp. 3438–3445, 2020.

Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. Nagphormer: A tokenized graph transformer
for node classification in large graphs. arXiv preprint arXiv:2206.04910, 2022.

Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and Michael M
Bronstein. On over-squashing in message passing neural networks: The impact of width, depth,
and topology. In International Conference on Machine Learning, pp. 7865–7885. PMLR, 2023.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
arXiv preprint arXiv:2012.09699, 2020.

Andrey A Efanov, Sergey A Ivliev, and Alexey G Shagraev. Welford’s algorithm for weighted
statistics. In 2021 3rd International Youth Conference on Radio Electronics, Electrical and Power
Engineering (REEPE), pp. 1–5. IEEE, 2021.

Zhengshun Fei, Junhao Guo, Haibo Gong, Lubin Ye, Eric Attahi, and Bingqiang Huang. A gnn
architecture with local and global-attention feature for image classification. IEEE Access, 2023.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Message
passing neural networks, 2020.

Heinz Hopf and Willi Rinow. Ueber den begriff der vollständigen differentialgeometrischen fläche.
Commentarii Mathematici Helvetici, 3(1):209–225, 1931.

Fenyu Hu, Yanqiao Zhu, Shu Wu, Liang Wang, and Tieniu Tan. Hierarchical graph convolutional
networks for semi-supervised node classification. arXiv preprint arXiv:1902.06667, 2019.

Kedar Karhadkar, Pradeep Kr Banerjee, and Guido Montúfar. Fosr: First-order spectral rewiring for
addressing oversquashing in gnns. arXiv preprint arXiv:2210.11790, 2022.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. Sep 09, 2016. doi: 10.48550/ARXIV.1609.02907. URL https://arxiv.org/abs/
1609.02907.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

11

https://doi.org/10.3390%2Fs21144758
https://doi.org/10.3390%2Fs21144758
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Haitao Mao, Zhikai Chen, Wei Jin, Haoyu Han, Yao Ma, Tong Zhao, Neil Shah, and Jiliang Tang.
Demystifying structural disparity in graph neural networks: Can one size fit all? Advances in
neural information processing systems, 36, 2024.

Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating the
construction of internet portals with machine learning. Information Retrieval, 3:127–163, 2000.

Khang Nguyen, Nong Minh Hieu, Vinh Duc Nguyen, Nhat Ho, Stanley Osher, and Tan Minh
Nguyen. Revisiting over-smoothing and over-squashing using ollivier-ricci curvature. In In-
ternational Conference on Machine Learning, pp. 25956–25979. PMLR, 2023.

Yann Ollivier. Ricci curvature of markov chains on metric spaces. Journal of Functional Analysis,
256(3):810–864, 2009.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. arXiv preprint arXiv:2002.05287, 2020.

T Konstantin Rusch, Michael M Bronstein, and Siddhartha Mishra. A survey on oversmoothing in
graph neural networks. arXiv preprint arXiv:2303.10993, 2023.

Paul Rusnock and Angus Kerr-Lawson. Bolzano and uniform continuity. Historia Math-
ematica, 32(3):303–311, 2005. ISSN 0315-0860. doi: https://doi.org/10.1016/j.hm.
2004.11.003. URL https://www.sciencedirect.com/science/article/pii/
S0315086004000849.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked label
prediction: Unified message passing model for semi-supervised classification. arXiv preprint
arXiv:2009.03509, 2020.

Jayson Sia, Edmond Jonckheere, and Paul Bogdan. Ollivier-ricci curvature-based method to com-
munity detection in complex networks. Scientific reports, 9(1):9800, 2019.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. arXiv preprint
arXiv:2111.14522, 2021.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Ben-
gio, et al. Graph attention networks. stat, 1050(20):10–48550, 2017.

Sebastian Wandelt, Xing Shi, and Xiaoqian Sun. Complex network metrics: Can deep learning keep
up with tailor-made reference algorithms? IEEE Access, 8:68114–68123, 2020.

Zhanghao Wu, Paras Jain, Matthew Wright, Azalia Mirhoseini, Joseph E Gonzalez, and Ion Stoica.
Representing long-range context for graph neural networks with global attention. Advances in
Neural Information Processing Systems, 34:13266–13279, 2021.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
comprehensive survey on graph neural networks. CoRR, abs/1901.00596, 2019. URL http:
//arxiv.org/abs/1901.00596.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018a.

12

https://www.sciencedirect.com/science/article/pii/S0315086004000849
https://www.sciencedirect.com/science/article/pii/S0315086004000849
http://arxiv.org/abs/1901.00596
http://arxiv.org/abs/1901.00596


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
conference on machine learning, pp. 5453–5462. PMLR, 2018b.

Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra. Two sides of the
same coin: Heterophily and oversmoothing in graph convolutional neural networks. In 2022
IEEE International Conference on Data Mining (ICDM), pp. 1287–1292. IEEE, 2022.

Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister, and
Bingbing Ni. Medmnist v2-a large-scale lightweight benchmark for 2d and 3d biomedical image
classification. Scientific Data, 10(1):41, 2023.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, pp. 40–48. PMLR, 2016.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph trans-
former networks. Advances in neural information processing systems, 32, 2019.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. Advances in
neural information processing systems, 33:7793–7804, 2020.

Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer tissue
networks. CoRR, abs/1707.04638, 2017. URL http://arxiv.org/abs/1707.04638.

13

http://arxiv.org/abs/1707.04638


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A GRAPH-REWIRING ALGORITHMS ON OVER-SMOOTHING

In this section, we demonstrate why common graph-rewiring algorithms fail to address over-
smoothing in certain graph structures. Typically, these algorithms utilize a connectivity measure
to detect dense areas within the graph, sparsifying them to slow down over-smoothing, while relax-
ing bottlenecks by adding new edges to reduce over-squashing. We independently illustrate these
two rewiring strategies on a small graph in Figure 4.

Figure 4: Comparison of graph-rewiring techniques for alleviating over-smoothing and over-
squashing. Distinct node colors represent different node classes.

In general, reducing the number of edges in a graph slows the convergence of node representations
during message-passing. Popular rewiring algorithms exploit this fact and aim to sparsify dense
areas of the graph, which are the first to experience smoothing during neighborhood aggregation.
This approach merely slows down the aggregation process in the GNN, postponing the onset of
over-smoothing while also decelerating the node representation learning. To directly mitigate over-
smoothing, feature aggregation between nodes of different classes must be prevented by removing
heterophilic edges. However, relaxing bottlenecks by adding new edges can significantly decrease
the homophilic ratio of the graph and exacerbate over-smoothing (see Figure 4). This explains why
many rewiring algorithms either fail to address or even worsen the performance of the underlying
models.

While common rewiring algorithms rely on connectivity measures (e.g., centrality or curvature-
based measures) that consider only the graph topology, ignoring node embeddings and thus graph
homophily, our method leverages the rate of change in node embeddings to detect heterophilic edges
and successfully prevent over-smoothing.

B PROOF OF LEMMA 1

To prove Lemma 1, we first introduce two Theorems.

Theorem B.1. Hopf–Rinow Theorem (Hopf & Rinow, 1931):
Let (M ,d) be a connected Riemannian manifold with a distance function d defining the geometry of
the space. The following conditions are equivalent:

1. (M ,d) is geodesically complete, i.e., every geodesic can be extended indefinitely.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

2. (M ,d) is a complete metric space with respect to the distance function induced by the
Riemannian metric d.

3. Any closed and bounded subset of M is compact.

4. For any two points p, q in M , there exists a minimizing geodesic between p and q.

Theorem B.2. Extreme Value Theorem (Rusnock & Kerr-Lawson, 2005):
Let f : [a, b] → R be a continuous function defined on a closed interval [a, b]. Then, f attains both
a maximum and a minimum value on [a, b]; that is, there exist points xmin, xmax ∈ [a, b] such that:

f(xmin) ≤ f(x) ≤ f(xmax) for all x ∈ [a, b].

Lemma 1. Let ∆t
u be the first delta embeddings of a node u and ∆u be the average over time of

the sequence. Assume ∆t
u converges to zero, M is compact and that there exists a unique function

ϕ : M → C which correctly assign all possible feature vectors to their associated labels. Then,
for any homophilic ratio H ∈ [0, 1], there exists a positive lower-bound ρ ∈ (0,+∞) such that any
node u ∈ V with feature vector Xu ∈M and ∆u > ρ will have Hu < H.

Proof. To prove the lemma, we first show that there exists ρ, which is a valid positive lower-bound
for every ∆t

u for some node u. Then, we deduce that ρ is also a valid lower bound for ∆u.

For any node u ∈ V within the graph, with feature vector Xt
u ∈ M , homophilic ratio Hu, and

neighbourhood N (u) = {n1, n2, ..., nk} of degree k, we define S as the family of all feature as-
signments s : N (u) → M mapping each neighboring node of u to a feature vector in M such that
the following constraint is respected:

Hu =
|{m ∈ s(v) : v ∈ N (u)) | Φ(m) = Φ(Xt

u)}|
k

Here, the constraint ensures that the feature assignment respects the given homophily ratio Hu.
Thanks to the existence of Φ we know that the cardinality of S is at least one, since we can always
define S ∋ s̃(ni) = Xt

ni
∀ i ∈ [1, k] where Xt

ni
are columns of the feature matrix Xt associated

to the neighbouring nodes ni. In this case, the constraint will reduce to the definition of homophilic
ratio of u. Now, we proceed defining ∆t

u with respect to a feature assignment s ∈ S as ∆̃t
u(s) :=

d(
⊕

v∈N (u) s(v),M
t
u) for which it holds that ∆̃t

u(s̃) = ∆t
u. Since our manifold M is compact,

the Hopf–Rinow Theorem B.1 ensures that the distance metric d is continuous, which also implies
that our ∆̃t

u(s) is continuously defined for any feature assignment. By the Extreme Value Theorem
B.2 and the fact that set S is non-trivial, ∆̃t

u(s) must attain its maximum real value for some feature
assignment s ∈ S. As a result, for any node u with a certain homophilic ratio Hu we can define
the real positive constant U(Hu)u := sups∈S ∆̃t

u(s) as the maximum value that the first delta
embeddings at time t can take for any possible feature assignment.

Now, for any homophilic ratio H ∈ [0, 1] we can choose a ρ > suph∈[H,1] U(hu)u such that any
node u with ∆t

u > ρ will have Hu < H. This last implication can be verified assuming, for the sake
of contradiction, that the node u may have ∆t

u > ρ and Hu ≥ H, and observing that this leads to
the following contradiction:

ρ < ∆t
u = ∆̃t

u(s̃) ≤ sup
s∈S

∆̃t
u(s) = U(Hu)u ≤ sup

h∈[H,1]

U(hu)u < ρ

Since this relation holds true for any t, we can deduce:

∆t
u > ρ→

∑
i∈[1,T ]

∆i
u > Tρ→ ∆u > ρ

where the penultimate inequality holds if and only if the series is convergent, completing the proof.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

In practice, this generalization over the mean helps reduce noise that may affect the first layers. The
value of ρ depends on the maximum distance between the subspaces of M associated with the node
classes. In some domains, lower thresholds can be obtained, allowing for better distinction between
nodes with different homophilic ratios. Finally, since the node classes are hidden from the model,
we cannot directly compute the threshold ρ. However, it is sufficient to know that, since ρ exists, the
nodes with the highest values of ∆ will likely have the lowest homophilic rates.

C PROOF OF LEMMA 2

Lemma 2. Let c : V → R be a node connectivity measure, and let Vt[∆
2
u] denote the variance over

time of the second delta embeddings of a node u. Assume that there exists an upperbound µ such
that for any node u ∈ V , c(u) < µ if and only if the node u is adjacent to an edge bottleneck. Then,
any node u ∈ V for which c(u) < µ will exhibit a low value of the variance Vt[∆

2
u].

Proof. We provide an informal proof of the lemma. Recently, Nguyen et al. (2023) demonstrated
that nodes adjacent to bottlenecked edges are less affected by over-smoothing, while nodes located
in dense areas of the graph experience faster convergence of their vector embeddings. To prove the
lemma, we extend these results by observing that Vt[∆

2
u] can be used to classify a node u into one

of these two categories.

This observation follows from the definition of over-squashing. Building on the results of Nguyen
et al. (2023), we can formalize the correlation between over-squashing and connectivity as follows:
for a pair of nodes u and v with feature vectors Xt

u and Xt
v , respectively, where cu < µ < cv

(with cu and cv representing their respective connectivity), and assuming both nodes are equidistant
from their neighborhood (implying the same amount of information is aggregated at time t = 1), we
have ∆t

v ∈ o(∆t
u) (in the little-o notation). In other words, node v experiences faster convergence

compared to node u, as nodes near bottlenecks tend to have constrained communication paths in
the graph and are consequently less likely to experience significant fluctuations in their embedding
values. Now, we can distinguish the two cases: v will converge faster, leading to high values of
(∆2

v)
t for small values of t and low values later in time. On the other hand, for node u, the values

of (∆2
u)

t will vary more slowly over time due to its slower convergence. This intuitive observation
implies that Vt[∆

2
v] must necessarily be greater than Vt[∆

2
u].

This concludes the proof, as we have shown that a node with a low connectivity measure (or, equiv-
alently, a bottlenecked node) exhibits a relatively low variance of the second delta embeddings com-
pared to other nodes in the graph.

We would like to discuss one more point: What happens when we compare nodes belonging to very
different neighborhoods? When our assumption of the same distance w.r.t. the neighborhoods is
not respected, considerable additional noise is introduced into the process, and the convergence of
the sequence ∆u

v will also depend on other factors, such as node homophily or feature separability.
In these cases, it is evident that our approach will fail to be a deterministic solution for detecting
graph bottlenecks, and the accuracy will depend on the amount of noise introduced by these external
factors.

D INFORMATION FLOW SCORE: DETAILED ANALYSIS

We now explain the rationale behind the definition of the information flow score:

Su =
m ∗ Vt[∆

2
u] + 1

l ∗∆u + 1

We remind that our primary goal is to enhance the message-passing mechanism in our model to
better capture long-range interactions by alleviating both over-smoothing and over-squashing. To
achieve this, we need a connectivity measure capable of detecting bottlenecks and heterophilic
edges, which should be removed to mitigate these phenomena. From Lemma 1, we know that a

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

high value of ∆ is likely associated with a low homophilic ratio, and from Lemma 2, a low Vt[∆
2]

indicates proximity to an edge bottleneck. Consequently, the score is defined as a fraction involving
these two terms. Since, in some applications, we may prioritize detecting bottlenecks over het-
erophilic edges (or vice versa), we introduce two multipliers, l and m, to adjust the weights of the
mean and variance in the final score. In our case, we aim to detect both with equal priority, so we
set m = 1 and l = 1. To ensure the score remains well-defined, regardless of the delta values, and
to prevent it from exploding when the deltas are close to zero, we add 1 to both the numerator and
denominator. An additional advantage of adding 1 is that isolated nodes will receive a score of one,
which is relatively low. As a result, training the model to rewire the graph while maximizing the
overall score will encourage the model to remove edges while still preserving sparsity. To reduce
the impact of noise affecting the initial delta values, both the variance and mean are computed using
an exponential moving average, which assigns greater weight to more recent data points.

D.1 COMPLEXITY OF INFORMATION FLOW SCORE

The major advantage of using the IFS lies in its synergy with GNNs. Since all GNNs process the
input graph through message-passing, it is possible to calculate the score with almost no additional
computational cost, as the score for any node has constant time complexity. The additional overhead
for computing the score is O(|V|dVT ), depending on the distance function used. Typically, we
have T ≪ dV ≪ |V|, which results in an average time complexity of O(|V|). To the best of our
knowledge, this offers the lowest time complexity among all major connectivity measures proposed
in the literature (see Table 3).

The memory complexity of the IFS is also linear with respect to the number of nodes, O(|V|), since
both the variance and mean can be computed iteratively using Welford’s method (Efanov et al.,
2021), without the need to store all previous delta values.

Topological Measures

Connectivity Measure Time Complexity
Degree Centrality (DC) O(|E|)

Eigenvector Centrality (EC) O(|V|+ |E|)
Betweenness Centrality (BC) O(|V||E|)

Closeness Centrality (CC) O(|V||E|)

Geometrical Measures Ollivier-Ricci Curvature (OC) O(|V||E|)
Forman-Ricci Curvature (FC) O(|E|)

Embeddings-Based Measures Information Flow Score (IFS) O(|V|)

Table 3: Time complexity of common connectivity measures (Wandelt et al., 2020; Sia et al., 2019)
and our novel information flow score.

D.2 EDGE-FILTERING USING INFORMATION FLOW SCORE

We now illustrate how our edge-filtering based on the information flow score can improve the ho-
mophily and connectivity of the graph, resulting in an increase in the mean node score. We exper-
iment with a small graph containing fourteen nodes belonging to three distinct classes, including
bottlenecked and heterophilic edges. As shown in Figure 5, these edges can be easily detected us-
ing the IFS values. We then remove the edges adjacent to the nodes with the lowest scores. The
filtered graph, as illustrated in Figure 6, demonstrates higher homophily, fewer bottlenecks, and
consequently, a higher mean node score.

E INFORMATION FLOW CONTROL: TECHNICAL DETAILS

Now, we provide additional technical details regarding the implementation of a generic GNN model
with information flow control, introducing Welford’s method for efficiently calculating the mean and
variance of a sequence of variables.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 5: Illustrations of first delta embeddings, second delta embeddings, and information flow
score on a small graph with bottlenecks and heterophilic edges. We set m = 1 and l = 1 to detect
heterophilic bottlenecks, using the Euclidean distance as the distance metric d. The samples used
to generate the graph are medical images from the MedMNIST Organ-C dataset. As observed from
the plots, nodes 4, 9, and 14 can be easily distinguished as they have very low scores.

Figure 6: Filtered graph with updated information flow score. After removing bottleneck edges
and heterophilic node interactions, the mean node score increased significantly, demonstrating the
effectiveness of the edge filtering.

E.1 WELFORD’S METHOD FOR CALCULATING AVERAGE AND VARIANCE

Given a sequence of numbers x1, x2, . . . , xn, Welford’s method calculates the mean µn and variance
σ2
n. The mean after n elements can be updated incrementally by:

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

µn = µn−1 +
xn − µn−1

n
(5)

where µn is the mean after the first (n) elements. The variance after n elements can be updated
using the following formula:

σ2
n = σ2

n−1 +
(xn − µn−1)× (xn − µn)− σ2

n−1

n
(6)

where σ2
n is the variance after the first n elements.

F EXPERIMENTAL DETAILS: DATASETS, MODELS, AND ADDITIONAL
RESULTS

In this work, we evaluated DeltaGNN on 10 distinct datasets. All dataset details are summarized
in Table 4. This section describes the models used in this benchmark, as well as the hardware and
software configurations employed to run the experiments.

F.1 EVALUATION MODELS

For GCN (Kipf & Welling, 2016), GIN (Xu et al., 2018a), and GAT (Velickovic et al., 2017), we
include seven variations that incorporate an edge-rewiring module, which filters edges based on a
specific connectivity measure. Specifically, it removes a fixed number of edges from dense areas
of the graph to alleviate over-smoothing and removes bottlenecks to prevent over-squashing. We
experiment with the following measures: degree centrality (DC), eigenvector centrality (EC), be-
tweenness centrality (BC), closeness centrality (CC), Forman-Ricci curvature (FC), Ollivier-Ricci
curvature (RC), and the information flow score (IFS). We also propose two variations of DeltaGNN
implementing different functions K(t, θ); a constant function K = θ, and a linear function:

K =

(
θ

T − 1

)
· (t− 1)

where T denotes the number of layers in the architecture. This last equation describes a line passing
through the points (t = 1,K = 0) and (t = T,K = θ). Using this function, we ensure that fewer
edges are removed in the initial layers and increasingly more are removed in the later ones since
K is increasing. This is a desirable property of K, as we expect the quality of the IFS to improve
with an increasing number of aggregations. Additionally, we include an ablation of DeltaGNN
without the IFC mechanism, where edge-filtering is done before homophilic aggregation rather than
in parallel (resulting in higher time complexity). We also include seven versions of this model, each
implementing different connectivity measures.

The hyperparameters used for each model are detailed in Table 5 for reproducibility. To ensure a
fair comparison, the number of layers and hidden channels are kept constant across models, with
reductions made only in cases of out-of-memory errors. This ensures a balanced comparison of
the computational resources used by each method. Fine-tuning has been conducted using a grid-
search methodology on the validation set for the following parameters and values: learning rate
(0.0001, 0.0005, 0.001, 0.005), edges to remove (values are dataset-specific), maximum number of
communities (5, 10, 20, 50, 100, 500), number of layers (3 to 6), and hidden dimensions (100, 256,
512, 1024, 2048).

F.2 EXPERIMENT CONFIGURATIONS

This section describes the hardware and software configurations used to run the experiments. Our
experiments were conducted on a consumer-grade workstation with the following specifications:
Intel Core i7-10700 2.90GHz CPU, dual-channel 16GB DDR4 memory clocked at 3200 MHz, and
an Nvidia GeForce GTX 1050 Ti GPU with 4GB GDDR5 video memory. The system ran on a
Linux-based operating system (Ubuntu 22.04.4 LTS) with NVIDIA driver version 535.183.01 and

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Ta
bl

e
4:

D
at

as
et

de
ta

ils
of

al
ld

at
as

et
s.

#
of

G
ra

ph
s

#
of

N
od

es
#

of
E

dg
es

#
of

Fe
at

ur
es

#
of

L
ab

el
s

Ta
sk

L
ev

el
Ta

sk
Ty

pe
Tr

ai
ni

ng
Ty

pe
Tr

ai
ni

ng
Se

tS
iz

e
V

al
id

at
io

n
Se

tS
iz

e
Te

st
Se

tS
iz

e

Pl
an

et
oi

d
(Y

an
g

et
al

.,
20

16
)

C
or

a
H

=
0.
81

1
27

08
52

78
14

33
7

N
od

e
M

ul
ti-

cl
as

s
In

du
ct

iv
e

12
08

50
0

10
00

C
ite

Se
er

H
=

0.
74

1
33

27
45

52
37

03
6

N
od

e
M

ul
ti-

cl
as

s
In

du
ct

iv
e

18
21

7
50

0
10

00
Pu

bM
ed

H
=

0.
80

1
19

71
7

44
32

4
50

0
3

N
od

e
M

ul
ti-

cl
as

s
In

du
ct

iv
e

18
27

50
0

10
00

W
eb

K
B

(P
ei

et
al

.,
20

20
)

C
or

ne
ll
H

=
0.
30

1
18

3
29

5
17

03
5

N
od

e
M

ul
ti-

cl
as

s
In

du
ct

iv
e

87
59

37
Te

xa
s
H

=
0.
09

1
18

3
30

9
17

03
5

N
od

e
M

ul
ti-

cl
as

s
In

du
ct

iv
e

87
59

37
W

is
co

ns
in

H
=

0.
19

1
25

1
49

9
17

03
5

N
od

e
M

ul
ti-

cl
as

s
In

du
ct

iv
e

12
0

80
51

M
ed

M
N

IS
T

(Y
an

g
et

al
.,

20
23

)
O

rg
an

-S
1

25
22

1
12

76
04

6
78

4
11

N
od

e
M

ul
ti-

cl
as

s
In

du
ct

iv
e

13
94

0
24

52
88

29
O

rg
an

-S
(d

en
se

)
1

25
22

1
24

94
75

0
78

4
11

N
od

e
M

ul
ti-

cl
as

s
In

du
ct

iv
e

13
94

0
24

52
88

29
O

rg
an

-C
1

23
66

0
12

41
62

2
78

4
11

N
od

e
M

ul
ti-

cl
as

s
In

du
ct

iv
e

13
00

0
23

92
82

68
O

rg
an

-C
(d

en
se

)
1

23
66

0
28

09
20

4
78

4
11

N
od

e
M

ul
ti-

cl
as

s
In

du
ct

iv
e

13
00

0
23

92
82

68

Ta
bl

e
5:

H
yp

er
pa

ra
m

et
er

co
nfi

gu
ra

tio
ns

of
al

ld
at

as
et

s.

#
of

L
ay

er
s

H
id

de
n

C
ha

nn
el

s
()

th
er

s)

H
id

de
n

C
ha

nn
el

s
(G

A
T

)

H
id

de
n

C
ha

nn
el

s
(D

el
ta

G
N

N
)

D
ro

po
ut

s

#
R

em
ov

ed
E

dg
es

(E
dg

e-
Fi

lte
r)

#
M

ax
C

om
m

un
iti

es
L

ea
rn

in
g

R
at

e
O

pt
im

iz
er

Pl
an

et
oi

d
(Y

an
g

et
al

.,
20

16
)

C
or

a
H

=
0.
81

3
20

48
20

48
20

48
0.

5
40

/3
0

20
0.

00
05

A
D

A
M

C
ite

Se
er

H
=

0.
74

3
20

48
20

48
20

48
0.

5
40

/3
0

20
0.

00
05

A
D

A
M

Pu
bM

ed
H

=
0.
80

3
10

24
25

6
10

24
0.

5
40

0/
20

0
10

0.
00

05
A

D
A

M

W
eb

K
B

(P
ei

et
al

.,
20

20
)

C
or

ne
ll
H

=
0.
30

3
20

48
20

48
20

48
0.

5
10

/5
20

0.
00

05
A

D
A

M
Te

xa
s
H

=
0.
09

3
20

48
20

48
20

48
0.

5
10

/5
20

0.
00

05
A

D
A

M
W

is
co

ns
in

H
=

0.
19

3
20

48
20

48
20

48
0.

5
10

/5
20

0.
00

05
A

D
A

M

M
ed

M
N

IS
T

(Y
an

g
et

al
.,

20
23

)
O

rg
an

-S
3

10
24

25
6

10
24

0.
5

10
00

/5
00

0
50

0
0.

00
05

A
D

A
M

O
rg

an
-S

(d
en

se
)

3
10

24
25

6
10

24
0.

5
30

00
/1

50
00

50
0

0.
00

05
A

D
A

M
O

rg
an

-C
3

20
48

20
48

20
48

0.
5

10
00

/5
00

0
50

0
0.

00
05

A
D

A
M

O
rg

an
-C

(d
en

se
)

3
20

48
20

48
20

48
0.

5
30

00
/1

50
00

50
0

0.
00

05
A

D
A

M

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 7: Validation accuracy (red) and specificity (blue) convergence during training epochs for
DeltaGNN linear on three datasets with varying homophilic ratios. The dashed line indicates the
observed convergence point.

CUDA toolkit version 12.2. Our implementation uses Python 3.10.12, PyTorch 2.2.0 (Paszke et al.,
2017) (with CUDA 11.8), and Torch Geometric 2.5.1 (Fey & Lenssen, 2019). The results presented
are based on 95% confidence intervals over 5 runs, and all datasets were trained inductively. The
training pipeline includes an early stopping mechanism with a patience counter to prevent overfit-
ting.

F.3 ADDITIONAL EXPERIMENTS: SIZE-VARYING AND DENSITY-VARYING GRAPHS

When processing large and dense graphs, we observe a significant performance improvement with
DeltaGNN compared to GAT (Velickovic et al., 2017), GIN (Xu et al., 2018a), and GCN (Kipf &
Welling, 2016). DeltaGNN consistently delivered the best results across all four datasets. Addi-
tionally, while GAT encountered out-of-memory errors, and most connectivity measures resulted in
out-of-time errors when processing the two dense datasets, our proposed models implementing the
IFS measure successfully completed all benchmarks and achieved the best average performance.
Overall, DeltaGNN performed well on the MedMNIST (Yang et al., 2023) datasets, with an average
accuracy increase of +0.92%. Graph-transformers and heterophily-based methods proved to be at
least as computationally expensive as GAT, also failing to process the largest graphs. For this reason,
and due to hardware limitations, we only compare rewiring approaches and standard GNN baselines
in this benchmark (see Table 6).

G CONNECTIVITY MEASURE COMPARISON

In this section, we directly compare the efficacy of different connectivity measures during topo-
logical edge-filtering and heterophilic graph condensation. Figure 8 and Table 8 illustrate how the
density distribution of the node homophilic rate changes throughout these two stages using various
connectivity measures on the CORA dataset. Following the example of recent works (Mao et al.,
2024), we define the homophilic ratio to account for both feature similarity and label similarity
to more accurately depict the performance disparity between different methods. Let e be an edge
connecting the nodes u and v with feature vectors Xu and Xv , respectively. Let Φ be a function
mapping each feature vector to its associated label, and δ a function returning 1 if the two inputs
coincide and 0 otherwise. Then the homophilic rate of e is defined as:

He = 0.5 · Xu ·Xv

∥Xu∥∥Xv∥
+ 0.5 · δ(Φ(Xu),Φ(Xv))

where the left term denotes the cosine similarity of the two feature representations.

During topological edge-filtering, the IFS shows the best result, with an increase in the graph ho-
mophilic rate of 8.65%. This demonstrates that our novel connectivity measure is highly effective
at reducing over-smoothing and increasing the graph homophily. In contrast, all other embedding-
agnostic measures showed significantly worse results, proving that our approach of leveraging the
rate of change of the embeddings throughout the message-passing successfully improves the topo-
logical edge-filtering. When analyzing the rate of change in the homophilic rate during heterophilic

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Ta
bl

e
6:

Pr
ed

ic
tio

n
re

su
lt

co
m

pa
ri

so
n

of
va

ri
ou

s
m

et
ho

ds
on

fo
ur

da
ta

se
ts

w
ith

va
ry

in
g

de
ns

ity
.

M
et

ho
ds

O
rg

an
-S

O
rg

an
-S

(d
en

se
)

O
rg

an
-C

O
rg

an
-C

(d
en

se
)

A
cc

ur
ac

y
Sp

ec
ifi

ci
ty

A
cc

ur
ac

y
Sp

ec
ifi

ci
ty

A
cc

ur
ac

y
Sp

ec
ifi

ci
ty

A
cc

ur
ac

y
Sp

ec
ifi

ci
ty

G
C

N
(K

ip
f&

W
el

lin
g,

20
16

)
59

.2
5±

0.
40

95
.9

2±
0.

04
57

.8
0±

0.
41

95
.7

8±
0.

04
77

.2
5±

0.
29

97
.7

2±
0.

03
74

.6
5±

0.
62

97
.4

6±
0.

06
G

C
N

+
re

w
ir

in
g(

D
C

)
59

.0
2±

0.
20

95
.9

0±
0.

02
58

.2
5±

0.
42

95
.8

2±
0.

04
76

.7
9±

0.
29

97
.6

8±
0.

03
74

.9
2±

0.
19

97
.4

9±
0.

02
G

C
N

+
re

w
ir

in
g(

E
C

)
58

.9
6±

0.
44

95
.9

0±
0.

04
57

.9
4±

0.
43

95
.7

9±
0.

04
77

.2
4±

0.
25

97
.7

2±
0.

02
75

.1
7±

0.
31

97
.5

1±
0.

03
G

C
N

+
re

w
ir

in
g(

B
C

)
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
G

C
N

+
re

w
ir

in
g(

C
C

)
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
G

C
N

+
re

w
ir

in
g(

F
C

)
59

.4
8±

0.
31

95
.9

5±
0.

03
O

O
T

O
O

T
77

.1
0±

0.
21

97
.7

1±
0.

02
O

O
T

O
O

T
G

C
N

+
re

w
ir

in
g(

R
C

)
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
G

C
N

+
re

w
ir

in
g(

IF
S)

59
.1

1±
0.

50
95

.9
1±

0.
05

57
.4

6±
0.

44
95

.7
5±

0.
04

76
.7

4±
0.

15
97

.6
7±

0.
01

73
.8

0±
0.

32
97

.3
8±

0.
03

G
IN

(X
u

et
al

.,
20

18
a)

61
.1

2±
0.

48
96

.1
1±

0.
05

61
.4

7±
0.

58
96

.1
5±

0.
06

77
.4

4±
0.

55
97

.7
4±

0.
05

77
.6

8±
2.

20
97

.7
7±

0.
22

G
IN

+
re

w
ir

in
g(

D
C

)
61

.8
5±

1.
30

96
.1

8±
0.

13
62

.3
1±

0.
29

96
.2

3±
0.

03
77

.3
1±

2.
03

97
.7

3±
0.

20
78

.4
8±

0.
59

97
.8

5±
0.

06
G

IN
+

re
w

ir
in

g(
E

C
)

61
.1

2±
0.

23
96

.1
1±

0.
02

61
.9

0±
0.

67
96

.1
8±

0.
07

78
.1

0±
0.

54
97

.8
1±

0.
05

78
.0

6±
0.

67
97

.8
0±

0.
07

G
IN

+
re

w
ir

in
g(

B
C

)
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
G

IN
+

re
w

ir
in

g(
C

C
)

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

G
IN

+
re

w
ir

in
g(

F
C

)
61

.6
0±

1.
23

96
.1

6±
0.

12
O

O
T

O
O

T
78

.9
4±

0.
91

97
.8

9±
0.

09
O

O
T

O
O

T
G

IN
+

re
w

ir
in

g(
R

C
)

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

G
IN

+
re

w
ir

in
g(

IF
S)

61
.5

2±
0.

34
96

.1
5±

0.
03

62
.2

1±
0.

71
96

.2
2±

0.
07

78
.2

2±
1.

21
97

.8
2±

0.
12

77
.5

2±
0.

91
97

.7
5±

0.
09

G
A

T
(V

el
ic

ko
vi

c
et

al
.,

20
17

)
52

.5
7±

0.
18

95
.2

5±
0.

02
O

O
M

O
O

M
69

.2
7±

0.
63

96
.9

3±
0.

06
O

O
M

O
O

M
G

A
T

+
re

w
ir

in
g(

D
C

)
53

.2
4±

0.
26

95
.3

2±
0.

03
O

O
M

O
O

M
69

.3
8±

1.
09

96
.9

4±
0.

11
O

O
M

O
O

M
G

A
T

+
re

w
ir

in
g(

E
C

)
53

.0
3±

1.
32

95
.3

0±
0.

13
O

O
M

O
O

M
69

.8
4±

0.
05

96
.9

8±
0.

00
O

O
M

O
O

M
G

A
T

+
re

w
ir

in
g(

B
C

)
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
G

A
T

+
re

w
ir

in
g(

C
C

)
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
G

A
T

+
re

w
ir

in
g(

F
C

)
53

.3
9±

0.
16

95
.3

4±
0.

02
O

O
T

O
O

T
68

.8
8±

0.
86

96
.8

9±
0.

09
O

O
T

O
O

T
G

A
T

+
re

w
ir

in
g(

R
C

)
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
G

A
T

+
re

w
ir

in
g(

IF
S)

51
.4

9±
1.

24
95

.1
5±

0.
12

O
O

M
O

O
M

68
.5

2±
2.

12
96

.8
5±

0.
21

O
O

M
O

O
M

D
el

ta
G

N
N

-c
on

tr
ol

62
.6

2±
0.

08
96

.2
6±

0.
01

62
.3

4±
0.

43
96

.2
3±

0.
04

81
.4

4±
0.

16
98

.1
4±

0.
01

80
.5

3±
0.

68
98

.0
5±

0.
07

D
el

ta
G

N
N

-c
on

tr
ol

+
D

C
62

.6
3±

0.
28

96
.2

6±
0.

03
63

.1
0±

0.
26

96
.3

1±
0.

03
80

.5
9±

1.
00

98
.0

6±
0.

10
80

.5
5±

1.
00

98
.0

5±
0.

10
D

el
ta

G
N

N
-c

on
tr

ol
+

E
C

62
.9

0±
0.

40
96

.2
9±

0.
04

62
.8

7±
0.

10
96

.2
8±

0.
01

79
.7

0±
1.

35
97

.9
7±

0.
13

79
.2

0±
0.

84
97

.9
1±

0.
08

D
el

ta
G

N
N

-c
on

tr
ol

+
B

C
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
D

el
ta

G
N

N
-c

on
tr

ol
+

C
C

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

D
el

ta
G

N
N

-c
on

tr
ol

+
F

C
62

.6
9±

0.
13

96
.2

7±
0.

01
O

O
T

O
O

T
80

.5
9±

1.
10

98
.0

6±
0.

11
O

O
T

O
O

T
D

el
ta

G
N

N
-c

on
tr

ol
+

R
C

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

D
el

ta
G

N
N

co
ns

ta
nt

62
.6

9±
0.

76
96

.2
7±

0.
08

62
.5

4±
0.

46
96

.2
5±

0.
05

79
.7

1±
0.

30
97

.9
7±

0.
03

79
.1

3±
0.

24
97

.9
1±

0.
02

D
el

ta
G

N
N

lin
ea

r
62

.0
9±

0.
37

96
.2

1±
0.

04
62

.0
4±

0.
23

96
.2

0±
0.

02
79

.2
3±

0.
33

97
.9

1±
0.

03
79

.2
6±

0.
27

97
.9

2±
0.

03

N
ot

es
:R

es
ul

ts
ar

e
bo

ld
ed

if
th

ey
ar

e
th

e
be

st
va

ri
at

io
n

fo
ra

ce
rt

ai
n

m
od

el
.G

re
en

-s
ha

de
d

ce
lls

hi
gh

lig
ht

th
e

be
st

th
re

e
re

su
lts

ov
er

al
l.

R
es

ul
ts

be
tte

rt
ha

n
th

ei
rc

ou
nt

er
pa

rt
s

ha
ve

a
m

or
e

in
te

ns
e

sh
ad

e
of

gr
ee

n.
O

O
T

in
di

ca
te

s
an

ou
t-

of
-t

im
e

er
ro

rw
hi

ch
is

ge
ne

ra
te

d
w

he
n

th
e

co
m

pu
ta

tio
n

of
th

e
co

nn
ec

tiv
ity

m
ea

su
re

ov
er

ru
ns

30
m

in
ut

es
.O

O
M

in
di

ca
te

s
an

ou
t-

of
-m

em
or

y
er

ro
r.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Ta
bl

e
7:

C
om

pa
ri

so
n

of
co

m
pu

ta
tio

na
lr

es
ou

rc
es

on
da

ta
se

ts
of

in
cr

ea
si

ng
si

ze
an

d
de

ns
ity

.
M

et
ho

ds
C

O
R

A
C

ite
Se

er
Pu

bM
ed

O
rg

an
-S

O
rg

an
-S

(d
en

se
)

G
PU

M
em

or
y

Pr
ep

ro
c.

Ti
m

e
E

po
ch

Ti
m

e
G

PU
M

em
or

y
Pr

ep
ro

c.
Ti

m
e

E
po

ch
Ti

m
e

G
PU

M
em

or
y

Pr
ep

ro
c.

Ti
m

e
E

po
ch

Ti
m

e
G

PU
M

em
or

y
Pr

ep
ro

c.
Ti

m
e

E
po

ch
Ti

m
e

G
PU

M
em

or
y

Pr
ep

ro
c.

Ti
m

e
E

po
ch

Ti
m

e

G
C

N
(K

ip
f&

W
el

lin
g,

20
16

)
16

1.
81

0.
00

0.
00

14
26

7.
60

0.
00

0.
00

14
77

9.
53

0.
00

0.
00

15
64

1.
31

0.
00

0.
00

16
65

5.
54

0.
00

0.
00

17
G

C
N

+
re

w
ir

in
g(

D
C

)
16

1.
81

12
.7

53
6

0.
04

39
26

7.
60

16
.0

51
6

0.
05

49
77

9.
53

12
3.

08
87

0.
82

21
64

1.
31

16
3.

77
71

0.
82

05
65

5.
54

16
7.

41
63

0.
83

88
G

C
N

+
re

w
ir

in
g(

E
C

)
16

1.
81

12
.7

96
6

0.
04

40
26

7.
60

16
.0

76
2

0.
00

14
77

9.
53

12
8.

66
35

0.
85

92
64

1.
31

16
5.

36
87

0.
82

84
65

5.
54

16
8.

40
02

0.
84

37
G

C
N

+
re

w
ir

in
g(

B
C

)
16

1.
81

36
.6

76
3

0.
12

36
26

7.
60

38
.3

57
1

0.
13

26
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

G
C

N
+

re
w

ir
in

g(
C

C
)

16
1.

81
16

.5
31

6
0.

05
65

26
7.

60
18

.8
50

0
0.

06
42

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
G

C
N

+
re

w
ir

in
g(

F
C

)
16

1.
81

13
.2

86
2

0.
04

57
26

7.
60

16
.0

84
1

0.
05

50
77

9.
53

12
3.

01
87

0.
82

16
64

1.
31

54
4.

11
53

2.
72

22
O

O
T

O
O

T
O

O
T

G
C

N
+

re
w

ir
in

g(
R

C
)

16
1.

81
14

.2
08

9
0.

04
88

26
7.

60
16

.7
69

6
0.

05
73

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
G

C
N

+
re

w
ir

in
g(

IF
S)

16
1.

81
13

.5
47

7
0.

04
65

26
7.

60
17

.3
90

2
0.

05
94

77
9.

53
13

7.
06

03
0.

91
52

64
1.

31
18

6.
46

37
0.

93
39

65
5.

54
18

8.
17

41
0.

94
26

G
IN

(X
u

et
al

.,
20

18
a)

40
1.

25
0.

00
0.

00
19

50
7.

72
0.

00
0.

00
20

10
78

.4
7

0.
00

0.
00

21
86

7.
77

0.
00

0.
00

22
87

6.
75

0.
00

0.
00

24
G

IN
+

re
w

ir
in

g(
D

C
)

40
1.

25
12

.7
53

6
0.

04
44

50
7.

72
16

.0
51

6
0.

05
55

10
78

.4
7

12
3.

08
87

0.
82

27
86

7.
77

16
3.

77
71

0.
82

11
87

6.
75

16
7.

41
63

0.
83

95
G

IN
+

re
w

ir
in

g(
E

C
)

40
1.

25
12

.7
96

6
0.

04
45

50
7.

72
16

.0
76

2
0.

00
20

10
78

.4
7

12
8.

66
35

0.
85

98
86

7.
77

16
5.

36
87

0.
82

90
87

6.
75

16
8.

40
02

0.
84

44
G

IN
+

re
w

ir
in

g(
B

C
)

40
1.

25
36

.6
76

3
0.

12
41

50
7.

72
38

.3
57

1
0.

13
32

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
G

IN
+

re
w

ir
in

g(
C

C
)

40
1.

25
16

.5
31

6
0.

05
70

50
7.

72
18

.8
50

0
0.

06
48

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
G

IN
+

re
w

ir
in

g(
F

C
)

40
1.

25
13

.2
86

2
0.

04
62

50
7.

72
16

.0
84

1
0.

05
56

10
78

.4
7

12
3.

01
87

0.
82

22
86

7.
77

54
4.

11
53

2.
72

28
O

O
T

O
O

T
O

O
T

G
IN

+
re

w
ir

in
g(

R
C

)
40

1.
25

14
.2

08
9

0.
04

93
50

7.
72

16
.7

69
6

0.
05

79
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

G
IN

+
re

w
ir

in
g(

IF
S)

40
1.

25
13

.5
47

7
0.

04
70

50
7.

72
17

.3
90

2
0.

06
00

10
78

.4
7

13
7.

06
03

0.
91

58
86

7.
77

18
6.

46
37

0.
93

45
87

6.
75

18
8.

17
41

0.
94

32

G
A

T
(V

el
ic

ko
vi

c
et

al
.,

20
17

)
24

2.
09

0.
00

0.
02

17
33

6.
31

0.
00

0.
03

94
22

71
.7

1
0.

00
0.

02
97

21
84

.7
8

0.
00

0.
10

42
O

O
M

O
O

M
O

O
M

G
A

T
+

re
w

ir
in

g(
D

C
)

24
2.

09
12

.7
53

6
0.

06
42

33
6.

31
16

.0
51

6
0.

09
29

22
71

.7
1

12
3.

08
87

0.
85

03
21

84
.7

8
16

3.
77

71
0.

92
31

O
O

M
O

O
M

O
O

M
G

A
T

+
re

w
ir

in
g(

E
C

)
24

2.
09

12
.7

96
6

0.
06

43
33

6.
31

16
.0

76
2

0.
09

30
22

71
.7

1
12

8.
66

35
0.

88
74

21
84

.7
8

16
5.

36
87

0.
93

10
O

O
M

O
O

M
O

O
M

G
A

T
+

re
w

ir
in

g(
B

C
)

24
2.

09
36

.6
76

3
0.

14
39

33
6.

31
38

.3
57

1
0.

17
06

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
G

A
T

+
re

w
ir

in
g(

C
C

)
24

2.
09

16
.5

31
6

0.
07

68
33

6.
31

18
.8

50
0

0.
10

22
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

G
A

T
+

re
w

ir
in

g(
F

C
)

24
2.

09
13

.2
86

2
0.

06
60

33
6.

31
16

.0
84

1
0.

09
30

22
71

.7
1

12
3.

01
87

0.
84

98
21

84
.7

8
54

4.
11

53
2.

82
48

O
O

T
O

O
T

O
O

T
G

A
T

+
re

w
ir

in
g(

R
C

)
24

2.
09

14
.2

08
9

0.
06

91
33

6.
31

16
.7

69
6

0.
09

53
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

G
A

T
+

re
w

ir
in

g(
IF

S)
24

2.
09

13
.5

47
7

0.
06

68
33

6.
31

17
.3

90
2

0.
09

74
22

71
.7

1
13

7.
06

03
0.

94
34

21
84

.7
8

18
6.

46
37

1.
03

65
O

O
M

O
O

M
O

O
M

D
el

ta
G

N
N

-c
on

tr
ol

53
9.

10
15

.4
63

2
0.

05
40

73
2.

90
18

.3
54

9
0.

06
39

18
91

.5
5

14
2.

33
62

0.
95

18
15

12
.3

4
21

3.
61

47
1.

07
11

15
20

.6
1

24
5.

97
96

1.
64

3
D

el
ta

G
N

N
-c

on
tr

ol
+

D
C

53
9.

10
14

.4
93

4
0.

05
08

73
2.

90
18

.3
61

1
0.

06
39

18
91

.5
5

13
1.

63
59

0.
88

05
15

12
.3

4
18

8.
67

04
0.

94
63

15
20

.6
1

21
4.

60
11

1.
43

38
D

el
ta

G
N

N
-c

on
tr

ol
+

E
C

53
9.

10
14

.7
36

7
0.

05
16

73
2.

90
17

.7
27

3
0.

06
18

18
91

.5
5

13
1.

90
83

0.
88

23
15

12
.3

4
19

7.
76

88
0.

99
18

15
20

.6
1

22
6.

29
49

1.
51

17
D

el
ta

G
N

N
-c

on
tr

ol
+

B
C

53
9.

10
38

.9
38

4
0.

13
23

73
2.

90
41

.0
20

6
0.

13
94

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
D

el
ta

G
N

N
-c

on
tr

ol
+

C
C

53
9.

10
18

.5
49

8
0.

06
43

73
2.

90
20

.8
08

9
0.

07
20

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
D

el
ta

G
N

N
-c

on
tr

ol
+

F
C

53
9.

10
15

.1
68

7
0.

05
31

73
2.

90
18

.0
00

4
0.

06
27

18
91

.5
5

13
5.

62
64

0.
90

71
15

12
.3

4
55

5.
88

35
2.

78
24

O
O

T
O

O
T

O
O

T
D

el
ta

G
N

N
-c

on
tr

ol
+

R
C

53
9.

10
15

.4
13

1
0.

05
39

73
2.

90
18

.4
73

1
0.

06
43

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
O

O
T

O
O

T
D

el
ta

G
N

N
co

ns
ta

nt
53

9.
14

0.
00

0.
03

72
73

2.
87

0.
00

0.
07

93
18

97
.2

6
0.

00
0.

38
60

15
40

.9
5

0.
00

0.
75

28
15

70
.8

7
0.

00
1.

20
28

D
el

ta
G

N
N

lin
ea

r
53

9.
14

0.
00

0.
03

72
73

2.
87

0.
00

0.
07

93
18

97
.2

6
0.

00
0.

38
60

15
40

.9
5

0.
00

0.
75

28
15

70
.8

7
0.

00
1.

20
28

N
ot

es
:R

es
ul

ts
ar

e
bo

ld
ed

if
th

ey
ar

e
th

e
be

st
re

su
lt

fo
ra

ce
rt

ai
n

da
ta

se
t.

O
O

T
in

di
ca

te
an

ou
t-

of
-t

im
e

er
ro

rw
hi

ch
is

ge
ne

ra
te

d
w

he
n

th
e

co
m

pu
ta

tio
n

of
th

e
co

nn
ec

tiv
ity

m
ea

su
re

ov
er

ru
ns

30
m

in
ut

es
.O

O
M

in
di

ca
te

s
an

ou
t-

of
-m

em
or

y
er

ro
r.

T
he

G
PU

m
em

or
y

is
in

M
B

,t
he

ep
oc

h
an

d
pr

ep
ro

ce
ss

in
g

tim
es

ar
e

in
se

co
nd

s.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

graph condensation, we observe that the IFS yields the lowest variation. The highest rate of change
is observed with the Ollivier-Ricci curvature, as illustrated in Figure 8 by the substantial decrease
in the number of heterophilic nodes with a homophilic rate close to 0.1 during curvature-based edge
filtering. Nevertheless, we can also observe that the performance of betweenness and closeness cen-
trality during heterophilic edge condensation differs substantially. Given their theoretical similarity,
this suggests that the role of the connectivity measure in heterophilic graph condensation might
be marginal. Therefore, further experiments are needed to determine whether this disparity could
impact the model performance.

Table 8: Variations in the homophilic rate during topological edge-filtering and heterophilic graph
condensation using different connectivity measures. Results are bolded if they represent the best
performance overall. Results that are better than their counterparts are shaded in progressively
darker green.

Methods
CORA

Original
Graph

Homophilic
Filtered
Graph

∆
Homophilic

Rate

Heterophilic
Condensed

Graph

∆
Homophilic

Rate

Degree Centrality 0.6676 0.7115 +6.72% 0.981 -85.28%
Eigenvector Centrality 0.6676 0.6937 +4.05% 0.1122 -83.17%
Betweenness Centrality 0.6676 0.7057 +5.85% 0.905 -86.42%
Closeness Centrality 0.6676 0.7043 +5.64% 0.1244 -81.34%
Forman-Ricci Curvature 0.6676 0.7094 +6.40% 0.955 -85.67%
Ollivier-Ricci Curvature 0.6676 0.7112 +6.67% 0.767 -88.49%
Information Flow Score 0.6676 0.7244 +8.65% 0.1560 -76.60%

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 8: Homophilic ratio density distribution shifts during topological edge-filtering and het-
erophilic graph condensation using seven distinct connectivity measures. The dashed lines indicate
the mean density for each corresponding measure and density.

25


	Introduction
	Preliminaries
	Graph Neural Networks
	Over-smoothing and Homophily
	Over-squashing and Connectivity

	Related Works
	Information Flow
	Graph Information Flow
	Information Flow Score
	Information Flow Control

	Methodology: DeltaGNN
	Experiments
	Generalizability Benchmark
	Scalability Benchmark

	Conclusion
	Reproducibility Statement
	Graph-Rewiring Algorithms on Over-smoothing
	Proof of Lemma 1
	Proof of Lemma 2
	Information Flow Score: Detailed Analysis
	Complexity of Information Flow Score
	Edge-Filtering using Information Flow Score

	Information Flow Control: Technical Details
	Welford's Method for Calculating Average and Variance

	Experimental Details: Datasets, Models, and Additional Results
	Evaluation Models
	Experiment Configurations
	Additional Experiments: size-varying and density-varying graphs

	Connectivity Measure Comparison

