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ABSTRACT

Hypernymy relation is one of the fundamental relations for many natural language
processing and information extraction tasks. A key component of the performance
of any hypernymy-related task is word representation. Traditional word embed-
dings capture word similarity but fall short of representing more complex lexical-
semantic relationships between terms, such as hypernymy. To overcome this, re-
cent studies have proposed hypernymy-specific representations. In this study, we
conduct an evaluation of several types of word representations to determine the
most effective approach for modeling hypernymy relationships in Arabic. We
use an Arabic training corpus and several datasets to assess traditional embed-
ding, hypernymy-specific embedding, and contextual embedding across several
hypernymy-related tasks, including hypernymy detection. The results indicate
that different embeddings have different effects on the performance. Moreover,
the performance is affected by the selected datasets. This highlights that there is a
need for further research to develop more robust word representation and bench-
mark datasets.

1 INTRODUCTION

Hypernymy is a lexical semantics relation that occurs between two terms in which the meaning
of one is enclosed in the meaning of the other Na & Khoo| (2006). Hypernym is the more gen-
eral term, while hyponym is the more specific term; for example, in the sentence “cappuccino is
a type of coffee” cappuccino is the hyponym, and coffee is the hypernym. Terms that share the
same hypernym are called co-hyponyms |[Na & Khoo| (2006). Hypernymy relation plays a crucial
role in many Natural Language Processing (NLP) and Information Extraction (IE) applications,
such as query expansion, ontology building, and machine translation. Because of its importance,
several tasks in the literature are devoted to identifying hypernymy relations, some of which are:
hypernymy extraction, which extracts hyponyms and their hypernyms from a corpus, hypernymy
detection, which aims to distinguish hypernymy from other relations, hypernymy directionality
detection, which aims to identify the direction of the relation, i.e., whether the general term comes
first or second, hypernymy discovery, which aims to discover candidate hypernyms on a corpus for
a query hypernym and semantic relations classification which aim to classify semantic relations
including hypernymy. Word representation is a fundamental step in all NLP and IE tasks. Numer-
ous types of word representation exist, starting from basic sparse and dense representations such
as one-hot encoding and term matrix post-processed with singular value decomposition (SVD) to
complex representations such as neural embeddings and graph embeddings. Recently, the use of
neural word embeddings widespread across NLP tasks, and many tasks have adopted the use of tra-
ditional word embedding such as word2vec Mikolov et al.|(2013)), GloVe |Pennington et al.| (2014),
and FastText|Bojanowski et al.|(2017). General word embedding can model semantic similarity and
relatedness between terms. Word similarity encodes various lexico-semantic and topical relations
such as synonymy, antonymy, hypernymy, co-hyponymy, and meronymy |Weeds et al.|(2014). Some
studies have proposed hypernymy-specific representations to better model hypernymy-relation in
hypernymy-related tasks. In this study, we will show the effect of different types of representations
on hypernymy-related tasks, especially in Arabic. We have studied traditional word embedding,
hypernymy-specific word embedding, and contextual word embedding. Our hypothesis is that the
representation used will greatly impact performance in terms of the f1-score and Average Precision
(AP). We have evaluated the embeddings on hypernymy detection, hypernymy directionality, and
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semantic relation classification. Our results show that the effect of the used embedding is highly
dependent on the testing datasets and on the vocabulary of the used lexical constraints.

2 RELATED WORK

The input for most NLP models is a representation of a text. The complexity of these representa-
tions has varied over time, from frequency-based representations such as Term Frequency-Inverse
Document Frequency (TF-IDF)|Manning et al.[(2008) to contextual neural embedding such as Bidi-
rectional Encoder Representations from Transformers (BERT) |Devlin et al.| (2019). The input for
most hypernymy-related tasks’ models is a pair of words. Studies have adopted different types of
representation techniques; some have used basic frequency-based representations such as Pointwise
Mutual Information (PMI), Positive-PMI (PPMI), and Singular Value Decomposition (SVD) Weeds
et al.| (2014)); [Shwartz et al.| (2017); Roller et al.| (2018)); [Yu et al.| (2020). Others have used tradi-
tional word embedding, such as FastText Wang et al.| (2019a)); Sholikah et al.| (2022)); Jana et al.
(2022) and Skip-gram with negative sampling Rei et al.|(2018)); [Nguyen et al.[|(2017). GloVe [Pen-
nington et al.| (2014) is one of the earliest representations that create word embedding based on a
co-occurrence matrix of words on a specific corpus. In contrast, BERT ? is one of the popular con-
textual embeddings, which, unlike traditional word embedding, gives a different embedding for a
word based on its context. So the word bank will be given a different embedding if it appears in a
financial context, i.e., a national bank, or in a natural context, i.e., revier Bank. Recent studies have
proposed hypernymy-specific representations with the aim of modeling hypernymy relations effi-
ciently. Several types of embedding are proposed; some studies have proposed hypernymy-specific
neural word embedding |Glavas & Vulic|(2018)); |Yin & Roth| (2018); [Tan et al.| (2020), others have
proposed graph-based Wang et al.| (2018)); [Liu et al.|(2021) and geometric-based representations
Tifrea et al.| (2018)); Nickel & Kielal (2017); L1 et al.| (2018)); Wang et al.| (2019b)); [wamoto et al.
(2021). Poincare GloVe embedding is a type of geometric-based representation proposed by |Tifrea
et al.,[2018| It represents words in the cartesian product of hyperbolic spaces, which is mapped to
Gaussian embedding. The distance between the two word embeddings is the Fisher distance be-
tween their probability distribution function. The embeddings are learned using a generalized Glove
method. It differs from the original Glove embedding |Pennington et al.| (2014), which is based
on Euclidian space; the learning is adapted to hyperbolic space by editing the loss function. The
embedding is evaluated on word similarity, analogy, and hypernymy detection. for hypernymy de-
tection, it was trained on Levy and Goldberg corpus [Levy et al.[(2015) extracted from Wikipedia.
They have compared the Poincare Glove embeddings with Vanilla Glove embeddings. They have
found that Poincare Glove embedding outperforms Vanilla Glove embedding and that the initializa-
tion values benefit both embeddings. Moreover, the model trained using 50x2 dimensions Poincare
balls outperforms others on the hypernymy detection task. |Nickel & Kielal |2017| have proposed
a hyperbolic embedding based on a Poincare ball to represent hierarchical data. They have com-
puted the embedding based on Riemannian optimization. The embedding is initialized randomly
and trained on WordNet transitive closure; It was evaluated on taxonomy embeddings, link predic-
tion tasks, and graded lexical entailment, which measures the degree of hypernymy relation between
two terms [Vuli€ et al.| (2017). The result shows that it outperforms state-of-the-art embedding on
lexical entailment.

A type of hypernymy-specific representation is the post-processed representations, which take pre-
trained embedding as input and modify it to better represent hypernymy or other semantic relations
by using semantic relations examples extracted from semantic resources such as wordnet|Miller et al.
(1990). One of the post-processing techniques is retrofitting. |Vuli¢ & Mrksi¢| 2017 have proposed
a retrofitting representation for lexical entailment called Lexical Entailment Attract-Repel (LEAR).
Their retrofitting technique combines symmetric and asymmetric objectives. The symmetric ob-
jectives attract synonyms words vectors norm beside each other and repel antonyms words vectors
norm far from each other. The asymmetric objectives attract the vector norm of lexical entailment
words beside each other and enforce a hierarchal order for vector norms. Thus, the hypernym will
have larger vector norms than hyponyms. They have used Skip-gram with negative sampling, Fas-
text, Context2Vec, and Glove embedding as input to LEAR. WordNet is the source of hypernymy,
antonomy, and synonymy constraints used for training. LEAR was evaluated on hypernymy de-
tection, hypernymy directionality, hypernymy detection, and directionality, and on graded lexical
entailment. LEAR Embedding is able to outperform state-of-the-art models on all of these tasks.
Nevertheless, it is limited by the availability of linguistics constraints.
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Glavas & Vulic| 2019|have proposed a Generalized Lexical ENtailment embedding model (GLEN)
that learns a generalized lexical entailment function from lexical constraints, i.e., hypernymy, syn-
onymy, and antonymy. The model can be applied to words with no known lexical constraint and
generate proper embedding for them. It was evaluated on graded lexical entailment and cross-
lingual hypernymy detection. The embedding model combines the benefits of retrofitting model and
joint objectives models. They have created three learning objectives utilizing asymmetric Euclidian
norms, symmetric cosine functions, and a regularization function to keep the useful information in
the embedding space for each linguistic constraint type, lexical entailment, synonym, and antonym.
In testing, they have combined the asymmetric and the symmetric functions to predict lexical en-
tailment and graded lexical entailment. They have used pre-trained FastText embedding to learn the
generalized lexical entailment function. The semantic constraints are collected from WordNet and
Roget Thesaurus. They have compared the GLEN to the LEAR model for graded lexical entailment.
They have found that GLEN is powerful on graded lexical entailment when fewer constraints are
known, and it underperforms LEAR when more constraints are known. Moreover, there is a trade-
off between generalizing for unseen constraints and the performance for seen constraints. GLEN
is not limited by the availability of lexical constraints, and it could be helpful when a lot of unseen
words are available. In our study, we will evaluate traditional word embedding and contextual word
embedding against hypernymy-specific embedding. We will evaluate the effectiveness of GloVe,
LEAR, GLEN, Poincare GloVe, Poincare embedding, and BERT in specific.

3 METHODOLOGY

The goal of our study is to evaluate the effectiveness of three types of representations on hypernym-
related tasks. Furthermore, we aim to test if hypernymy-specific embedding is better at modeling
hypernymy relation in the context of hypernymy-related tasks. The selected hypernymy-related
tasks are hypernymy detection, hypernymy directionality detection, and semantic relation classifica-
tion. To conduct the evaluation experiments, we have selected GloVe embedding as the traditional
embedding baseline and BERT as the contextual embedding. For hypernymy-specific embedding,
we have selected two retrofitted embeddings, LEAR and GLEN, and two geometrical-based embed-
dings, Poincare for hierarchical data and Poincare Glove. We have trained the embeddings on the
AraBERT corpus |Antoun et al., We have used several datasets to train and test all these models.
To mitigate external effects on the performance, we have tried to control most of the models’ hy-
perparameters and the experimental setups. In the following subsections, we highlight the details
of embedding training corpus, datasets, classification models, experimental setup, and hypernymy-
related tasks.

3.1 CORPUS AND DATASETS

AraBERT corpus: We have trained all word embedding on the corpus used to train an Arabic
version of BERT called AraBERT |Antoun et al.l AraBERT is trained Arabic text extracted from the
Arabic Wikipedia, The 1.5B words Arabic Corpus El-Khair (2016)), unshuffled and filtered OSCAR
corpus |'| The OSIAN Corpus |Zeroual et al.| (2019), and Assafir news articles || The data size is
77GB, and the vocabulary is 12+ million. Training word embedding imposes multiple challenges;
the demand for resources is very high, and the training needs large-size RAM, free disk space, and
very efficient GPU. Moreover, the code of some of the embeddings is capable only of handling
fewer words and takes more training time. Therefore, we have used half of the AraBERT corpus for
training embeddings except for AraBERT embedding, which was pre-trained on the full corpus. To
create AraBERT half corpus, we randomly selected 2006 files having 9+ million vocab and 38GB
data size.

Arabic Semantic Relation Dataset (ASRD): We have created our in-house dataset for Arabic se-
mantic relationships. The used version of the dataset contains one-word examples for hypernym,
hyponym, has_instance, is_instance, entailment, synonym, meronym, holonym, attribute, antonym,
cause, similar, and verb_group. The number of examples in ASRD(one) is 958341; the dataset
statistics are presented on table[I] The dataset is extracted from multiple Arabic semantic resources;

"https://oscar-project.org/
*https://assafirarabi.com/en/
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The Arabic wordneﬂ Elkateb et al.| (2006); | Abouenour et al.| (2013), Open multilingual wordne
Bond & Foster| (2013), RADIF dictionary for antonyms and synonyms E], The Arabic Ontolog
Jarrar| (2021), and The Qurann ontology |Hakkoum & Raghay|(2016). The dataset is split into 60%,
20%, and 20% for training, validation, and testing sets, respectively. ARSD datasets will be publicly
available.

Relation Number of examples
hyponym 368599
hypernym 365344
synonym 188225
verb_groups 16272
entailments 7734
antonym 27
causes 5022
has_instance 1447
is_instance 1447
part_meronyms 1583
part_holonyms 1575
attributes 474
similar 326
also_sees 266
Total 958341

Table 1: ASRD(one) Statistics

3.1.1 REPRESENTATIONS TRAINING

All the selected representations are trained on half of the AraBERT corpus mentioned above except
Poincare, which is trained on ASRD hypernymy pairs, and BERT, which is pre-trained on the full
AraBERT corpus. Following we will describe the training process of each embedding.

* GLOVE: We have trained GloVe on half of the AraBERT corpus after preprocessing it and
combining it on one file in which each line is a document. First, the corpus is preprocessed
using AraBERT preprocessorto remove emojis, HTML markup, diacritics, letters elonga-
tion, and repetition and to replace Uniform Resource Locators (URLs), emails, and Hindi
numerals. Furthermore, punctuation and English letters are removed. Finally, numbers are
replaced with a special token. We have used the original GloVe codeﬂ to train our version
with the setup mentioned in table 2]

GloVe Settings Value
Embedding dimensions 100
Iterations 100
Window size 15
Minimum count 5
Number of thread 48
Maximum memory 110 GB
Machine Machine 2

Table 2: GloVe Settings

3http://globalwordnet.org/resources/arabic-wordnet/
*https://omwn.org/lomw1.html
Shttps://github.com/mdanok/arabicLTcontributing
Shttps://ontology.birzeit.edu/
"https://github.com/aub-mind/arabert
8https://github.com/stanfordnlp/GloVe/



Under review as a conference paper at ICLR 2025

* LEAR: LEAR is retrofitting-based embedding that takes pre-trained embeddings as input
and modifies the embedding according to lexical-semantic relations constraints to better
represent the relation. We have trained LEAR by using GloVe embedding mentioned above
and lexical-semantic constraints extracted from ASRD. LEAR needs synonyms and hyper-
nyms for its Attract objective and antonym for its repel objective. we have used 11979
antonyms, 368489 hypernyms, and 196054 synonyms with keeping duplicated examples.
We have used the official python implementation of LEARE] with slight modifications to
adapt it to our data and the newer version of Python. We have trained 100 dimensions
embedding and tried 5, 20, and 100 iterations; see table[3|for LEAR training settings.

LEAR Settings Value
Embedding dimensions 100
Iterations 5, 20, 100
Pre-trained input GloVe 100d
Machine Machine 2

Table 3: LEAR Settings

* GLEN: GLEN takes a pre-trained embedding and lexical-semantic constraints as inputs
and generates a generalized modified embedding for all vocabulary, even the one with no
constraints. We have used GloVe embedding mentioned above and lexical-semantic con-
straints extracted from ASRD. For training, we have used 362684 hypernyms, 186587 syn-
onyms, and 27 antonyms. Meanwhile, for development, we have used 678 hypernyms and
349 synonyms. We have used the official implementation of GLEN []E]With 100 dimensions
and the default hyperparameters except for the number of iterations to stop training if there
is no improvement on the development set (Table [).

GLEN Settings Value
Embedding dimensions 100
Stop after iteration 200
MLP layers 5
Pre-trained input GloVe 100d
Machine Machine 1

Table 4: GLEN Settings

* Poincare GloVe: Poincare GloVe used a modified GloVe objective to generate new word
embedding. It does not necessarily use pre-trained word embedding or lexical-semantic
constraints; rather, we have used the co-occurrence calculation file generated by our GloVe
training as a basis for its calculation. We have trained two versions of Poincare GloVe,
100D Poincare GloVe using all vocabulary and cosh? as the distance function trained using
100D Poincare ball, and 50 x 2D Poincare GloVe that uses the most frequent 539642 words
of the vocabulary and x? distance function and trained in the cartesian product of 50 2D
Poincare balls. Tabel5|shows Poincare training set-up.

100D Poincare GloVe Value 50x2D Poincare GloVe | Value
Embedding dimensions 100 Embedding dimensions 50x2
Iterations 50 Iterations 23
Optimization RadaGrad Optimization Mix RadaGrad
Learning rate 0.01 Learning rate 0.05

Machine Machine 1 | Machine Machine 1

Table 5: 100D and 50x2D Poincare GloVe settings

“https://github.com/nmrksic/LEAR

https://github.com/codogogo/glen
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* Poincare Embedding: The Poincare embedding is trained using lexical-semantic con-
straints with a tree-like structure. In our training, we use 366791 constraints extracted from
ASRD for hypernym and has_instance examples. The number of negative examples is set
to 5. The resulting embedding is 50 dimensions. We have used Gensim implementation of
Poincare embeddin,

* BERT: BERT is a contextual embedding pre-trained on a corpus. In our evaluation, we
do not retrain BERT; for each term, we have extracted features of the final layer output
from pre-trained AraBERT V2. Before that, we prepared the input terms, converted them
to tokens, converted tokens to IDs, and created a token tensor and segment tensor. Table E]
shows AraBERT features extraction settings.

AraBERT Settings Value

Model aubmindlab/bert-base-arabertv(2
Tokenizer aubmindlab/bert-base-arabertv02
Features pooler_output

Embedding dimensions 768

Table 6: AraBERT Extraction Settings

3.1.2 CLASSIFICATION MODELS AND TASKS

To Assess the effectiveness of the chosen representations in modeling hypernymy relations, we
have used the resulting embeddings from each model as input to three hypernymy-related tasks:
hypernymy detection, hypernymy directionality, and semantic relation classification. The goal of
our evaluation was not to achieve the highest performance but rather to fairly evaluate representation
models by keeping experiment variables consistent among different experiments. Thus, for each
task, we have used a simple feed-forward neural classification model with an embedding layer, one
hidden layer, and an output layer. The tasks differed in the number of output targets and dataset sizes
based on the type of relations involved in the task. We have trained a model for each embedding
on each task. For evaluating the classification models, we test the trained model on several datasets,
including the test set of ASRD. Following, we will describe each classification model.

* Hypernymy detection: The detection model will classify input examples as hypernymy
or not, leading to two classes in the output layer. The complete ASRD datasets are used to
train, tune, and evaluate the model. ASRD positive examples are hypernyms, entailment,
and has_instance; other relations are considered negative examples.

* Hypernymy directionality detection: The directionality detection model determines the
direction of the relation by classifying examples into two categories: hypernymy or hy-
ponymy. For this task, Only hypernyms, has_instance, hyponyms, and is_instance from
ASRD are used .

* Semantic relation classification: The SRC model will classify a number of lexical-
semantic relations, including hypernymy. For this task, we have trained two models for
each embedding, each with a different set of relations. The first considers hypernymy,
meronomy, synonymy, antonymy, and attribute. While the second considers hypernymy,
synonymy, and autonomy.

3.1.3 EVALUATION DATASETS

We utilized lexical-semantic constraints extracted from the ASRD to train both the embedding mod-
els and the classification models. This suggests that a shared vocabulary might influence the perfor-
mance of the embeddings. To mitigate this effect, we have used eight datasets other than ASRD with
varying characteristics. Specifically, we have selected eight English benchmark datasets containing
hypernymy relationﬁ and translated them into Arabic using Google TranslateEl Additionally, We

"https://radimrehurek.com/gensims.8.3 /models /poincare.html
Phttps://github.com/ahug/HypEval/tree/master/data
Bhttps://translate.google.com
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have filtered the terms in these datasets to include only single-word entries that were present in the
training corpus. Here we briefly describe these datasets.

* BLESS [Baroni & Lenci| (2011): It contains 200 single-word living and non-living con-
cepts linked with five relations to more than 26,000 relata with different part-of-speech tags.
The presented relations are coordination (i.e., co-hyponymy), hypernymy, meronymy, con-
cept attribute, related event, and random.

* BIBLESS Kiela et al.| (2015): Contains a relabeled version of Weeds dataset. The hyper-
nymy pairs are labeled with 1, hyponymy pairs with -1, and other pairs with 0.

 ENTAILMENT Baroni et al.[(2012): It is a dataset dedicated to entailment among multi-
word expressions and single words.

* EVALution [Santus et al.| (2015): It is a large dataset extracted from WordNet and Con-
ceptNet and filtered using automatic techniques and human judgments

* Lenci/Benotto|Lenci & Benotto|(2012): a BLESS subset dataset which extract hypernymy
and hyponymy from BLESS

* Weeds Weeds et al. (2014) This version of WBless contains 2929 hypernym and co-
hypoynym examples.

* Root9 [Santus et al. (2016): It is a dataset created by extracting random pairs of hy-
pernymy, co-hyponymy, and random words in different part-of-speech from EVALution,
Lenci/Benotto, and BLESS.

3.1.4 EXPERMINTAL SET-UP

In the previous section, we highlight the setup of representation training. In this section, we describe
the setup of the neural classification models, the training settings, and the computing machine. For
the neural classification models of hypernymy-related tasks, we have concatenated the embeddings
of both input terms, leading to an input layer with a size equal to 2xembedding dimensions. We use
cross-entropy loss, Stochastic Gradient Descent (SGD) optimizer, 150 dimensions hidden layer, and
ReLU activation function on the output layer. We have trained each model for 50 epochs except for
models that use BERT representation and tested only on ASRD for hypernymy detection task due
to time and computing power limitations. The Hypernymy Detection model with BERT is trained
for 43 epochs. Unless otherwise mentioned, each of the embeddings is trained with the authors’
default setting. Due to time and computing power limitations, the 50x2D Poincare embedding is
trained with 23 epochs instead of 50. In order to evaluate the effect of the selected representations,
we have tried to control the esp All of our expermints are conducted on two Machines; Machine
1 with Nvidia RTX GeForce 4080 with 16GB RAM GPU, 13th Gen Intel(R) Core(TM) i7-13700k
CPU, 135GB RAM, and 3.7 TB disk space. Machine 2 with NVIDIA GeForce RTX 4090 24GB
RAM GPU, 13th Gen Intel(R) Core(TM) 19-13900K CPU, 125GB RAM and 1.8TB disk space.

4 RESULTS AND DISCUSSION

4.1 HYPERNYMY DIRECTIONALITY DETECTION

Tabel |/| shows the experiment results for the 8 embeddings on 8 datasets. On ASRD, the best-
performing model is 100D Poincare GloVe, but 50x2D Poincare GloVe, LEAR 5, LEAR 20,
Poincare embedding, and GLEN performed relatively similarly. GloVe baseline and LEAR 100
are the least-performing models.

Comparing LEAR versions with the GloVE baseline shows similar performance in most cases except
on ASRD. This indicates that LEAR is powerful if it is trained on constraints similar to the dataset
and less useful when fewer constraints are available; it performs similarly to GloVe or sometimes
less. Similarly, Poincare GloVe performs better than the GloVe baseline when the constraints are
similar to the dataset and perform similarly to GloVE otherwise. In the case of GLEN embedding,
it outperforms GloVe on all datasets except BLESS and Root_a. Furthermore, it outperforms other
embedding on 3 evaluation datasets, which is consistent with |Glavas & Vulic| [2019| findings that
GLEN is better when fewer constraints are known.
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On 6 out of 8 datasets, 100D Poincare GloVe is the best-performing embedding for the detection
tasks, followed by GLEN on 3 out of 8 datasets. The results show that 100D Poincare GloVe is the
best embedding on the Directionality detection task.

Dataset| #Examp GloVe  Lear LEAR LEAR Poincar¢ 100D 50x2D GLEN

5 20 100 Em- Poincar¢ Poincar¢
bed- GloVe GloVe
ding
ASRD 147368 | 0.81 0.85 0.85 0.84 0.89 0.88 0.85 0.86
BLESS | 10409 0.45 0.42 0.41 0.41 0.44 0.49 0.48 0.41

BIBLE. | 1743 0.71 0.71 0.66 0.66 0.64 0.64 0.66 0.73
ENTA. | 2755 0.67 0.67 0.64 0.66 0.59 0.68 0.67 0.71
L&B 4604 0.55 0.55 0.54 0.53 0.51 0.57 0.56 0.56
Weeds 3128 0.60 0.59 0.57 0.56 0.55 0.60 0.60 0.60
Root9_a| 8139 0.55 0.53 0.52 0.51 0.53 0.58 0.58 0.54
Root9 b| 11728 0.50 0.48 0.48 0.47 0.49 0.53 0.52 0.49

Table 7: F1-score results for the directionality detection task (BIBLE. is BIBLESS, ENTALI is EN-
TAILMENT, and L&B is LenciBenotto)

4.2 HYPERNYMY DETECTION

Tabel [8| shows the results of evaluating different embeddings on the hypernymy detection task on 8
datasets. On ASRD, the best-performing model is Poincare embedding, followed by 50x2D Poincare
GloVe. Moreover, all hypernymy-specific embeddings outperform the GloVe baseline. On 4 out of
8 datasets, Poincare GloVe models outperform others, Followed by GLEN, which outperforms other
embeddings on 2 out of 8 datasets and performs similarly to the best embedding model on the
other 4 datasets. 100D Poincare Glove outperforms other embeddings on BLESS, Root9_a, and
Root9_b, while 50x2D Poincare GloVe outperforms others on the Weeds dataset. GLEN has the
best performance on BIBLESS and ENTAILMENT and has a similar performance to the best model
on ASRD, Lenci/Benotto, Weeds, and Root9_a datasets. Surprisingly, BERT is the least-performing
model on the ASRD dataset, and it is outperformed by all hypernymy-specific embeddings, which
might indicate the difficulty of the task. LEAR performs similarly to the GloVe baseline on all
datasets, and Poincare embedding performs lower than the GloVe baseline on all datasets except
ASRD, which is reasonable since it was trained on ASRD lexical-semantic constraints. The results
show that the choice of the datasets plays a major role in the performance of the hypernymy detection
task.

Dataset #Exam| GloVe Lear LEAR LEAR Poinca 100D 50x2D GLEN BERT

ples 5 20 100 re Poinca Poinca
Em- re re
bed- GloVe GloVe
ding
ASRD | 191668| 0.76 0.80 0.80 0.80 0.84 0.83 0.80 0.81 0.62

BLESS| 9486 0.57 0.52 0.53 0.53 0.55 0.58 0.53 0.51 NA
BIBLE,| 1167 0.67 0.69 0.67 0.65 0.48 0.63 0.64 0.72 NA
ENTAI| 1837 0.64 0.64 0.62 0.62 0.51 0.65 0.64 0.66 NA
L&B 3253 0.55 0.57 0.55 0.54 0.44 0.53 0.56 0.55 NA
Weeds | 2074 0.58 0.58 0.56 0.55 0.46 0.57 0.58 0.57 NA
Root9a| 6181 0.59 0.54 0.54 0.55 0.50 0.61 0.57 0.58 NA
Root9b| 9233 0.55 0.52 0.53 0.53 0.54 0.56 0.54 0.52 NA

Table 8: Fl-score results for the hypernymy detection task (BIBLE. is BIBLESS, ENTAL is EN-
TAILMENT, and L&B is LenciBenotto)

4.3 SEMANTIC RELATION CLASSIFICATION

Tabel0] shows the result of using a different representation model on 3 datasets. We have filtered
relations out of ASRD that are not available on the testing set and trained a separate model for each
test set. The results are relatively low. This could be attributed to fewer examples representing each
class, especially the autonomy class, which has only 27 examples. Nevertheless, GloVe is the least-
performing embedding in all datasets except on Lenci/Benotto datasets Poincare GloVe is lower.
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Poincare Embedding is the best-performing model on the ASRD test set, which is reasonable since
it was trained on ASRD lexical-semantic constraints. Moreover, it is the best-performing model on
the evaluation dataset. LEAR is the best-performing embedding on Lenci/Benotto datasets. Similar
to hypernymy detection results, the results show that the datasets have an effect on the performance
of the SRC task.

Dataset| #Examp GloVe Lear LEAR LEAR Poinca 100D 50x2D  GLEN

les 5 20 100 re Poin Poin
Em- care care
bed- GloVe GloVe
ding

ASRD 112967 | 0.28 0.43 0.43 0.45 0.52 0.42 0.40 0.48
Eval. 12095 0.13 0.16 0.16 0.16 0.20 0.15 0.16 0.16
ASRD 112556 | 0.50 0.52 0.52 0.51 0.54 0.53 0.51 0.51
L&B 3253 0.28 0.31 0.31 0.31 0.19 0.29 0.30 0.30

Table 9: Fl-score results for the Semantic relation classification task (Eval. is Evaluation and L&B
is LenciBenotto)

4.4 DISCUSSION

From the results in the previous subsections, we observe that, despite being trained without lexical-
semantics constraints, Poincare GloVe iconsistently performs best on the hypernymy detection and
hypernymy directionality detection tasks. Additionally, 100D Poincare GloVe slightly outperforms
its counterpart, 50x2D Poincare GloVe. This highlights the effectiveness of modeling hypernymy re-
lation in hyperbolic space even without even being exposed to explicit hypernymy constraints. How-
ever, in the semantic relation classification task, which involves non-hierarchical relations, Poincare
GloVe shows lower performance. This could be attributed to the fact that non-hierarchical relations
are less suited to hyperbolic modeling. On the other hand, GLEN outperforms other representations
on some of the hypernymy detection and directionality datasets, although it falls short on ASRD.
This is expected given that ASRD constraints are used to train GLEN, and it has been known to have
more impact when used with datasets with fewer known constraints |Glavas & Vulicl 2019,

The results also reveal that no single representation outperforms consistently outperforms the others
across all evaluation datasets; different representations perform differently on different datasets.
This suggests that the way training and evaluation datasets are constructed plays a crucial role in
model performance. This observation is supported by the findings of |Chang et al., 2017, which
show that the way negative examples are constructed in the dataset has a significant impact on
model performance.

5 CONCLUSION

In this work, we investigated the impact of various types of embeddings on the performance of
three hypernymy-related tasks. We selected a diverse range of embeddings: one traditional neural
word embedding (GloVe), one contextual word embedding (BERT), four hypernymy-specific em-
beddings, including two geometric-based embeddings (Poincare GloVe and Poincare embedding),
and two retrofitting-based embeddings (LEAR and GLEN). These embeddings were trained on half
of the AraBERT corpus. The effectvense of the embeddings was evaluated across three tasks: hy-
pernymy detection, hypernymy directionality detection, and semantic relation classification. The
classification models of these tasks were trained on our Arabic Semantic Relation Dataset (ASRD)
and tested on the ASRD test set and eight translated English benchmarked datasets.

The experimental results demonstrate that Poincare GloVe can effectively model hypernymy rela-
tion, even ithout incorporating explicit constraints during training, while GLEN performs well on
datasets with fewer known constraints. Furthermore, our findings suggest that the choice of dataset
used in the training and evaluation has a significant effect on model performance. This highlights
the importance of carefully designing datasets and selecting training examples.

Future work will include exploring additional hypernymy-specific embeddings, such as hierarchical
and graph-based embeddings. We also plan to experiment with various unsupervised metrics pro-
posed in the literature, including informativnesse and distributional inclusion hypothesis measures.
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