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ABSTRACT

Low-Rank Adaptation (LoRA) is extensively used in generative models to enable
concept-driven personalization, such as rendering specific characters or adopting
unique styles. Although recent approaches have explored LoRA combination to
integrate diverse concepts, they often require further fine-tuning or modifications
to the generative model’s original architecture. To address these limitations, we
introduce GPT4LoRA, a novel method for LoORA combination that adjusts com-
bination coefficients by leveraging the self-reflection capabilities of multimodal
large language models (MLLMs). GPT4LoRA operates through a three-step pro-
cess—Generate, Feedback, and Refine—without the need for additional training,
relying solely on tailored prompts and iterative refinement to enhance perfor-
mance. This iterative approach ensures more constructive feedback and optimizes
the model responses. Experiments on various LORA model combinations, in-
cluding both realistic and anime styles, demonstrate that GPT4LoRA achieves
superior results compared to existing methods. Additionally, an evaluation frame-
work based on GPT-4o further highlights the clear performance gains offered by
GPT4LoRA over standard baselines, showcasing its potential for advancing the
field.

1 INTRODUCTION
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Figure 1: Comparison between GPT4LoRA and some representative LORA combination methods.

In recent years, advancements in generative modeling techniques have significantly enhanced the
ability to produce complex and customized image outputs. Among these developments, Low-Rank
Adaptation (LoRA) has emerged as an efficient method for fine-tuning large pre-trained models with
minimal computational resources. The flexibility of LoRA in adapting models to distinct attributes
and styles has led to its widespread use, particularly in areas where high-quality image generation
is critical. However, combining multiple LoRA models to achieve seamless compositions presents
a challenge, as current methods often involve complex integration processes that can compromise
image quality or demand significant manual adjustments (Ruiz et al., 2023} |sce; [civ).

Existing approaches to LoORA model combination, such as ZipLoRA (Shah et al.| 2023)) and LoRA
Switch (Zhong et al.,[2024), aim to mitigate these difficulties by introducing techniques that modify
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coefficient matrices or activate models sequentially during the denoising process. However, these
methods often require additional fine-tuning or manual intervention, complicating the workflow and
potentially leading to inconsistencies in the final output. While LoRA Composite (Zhong et al.|
2024) offers a decoding-centric approach to altering denoising steps, and simpler coefficient adjust-
ment methods have shown some effectiveness (sce)), they are computationally costly and impractical
when a large number of LoRA models are involved. Furthermore, the absence of robust evalua-
tion mechanisms adds to these challenges, as current approaches rely on manually designed rules or
CLIP-based automatic scoring systems, which have been shown to be unreliable in evaluating image
quality.

A fundamental limitation of these methods lies in the subjectivity and unreliability of the evaluation
process for image quality. Many approaches depend on manually crafted rules or automated eval-
uators such as CLIP, which often fail to provide consistent and accurate assessments of generated
images. This lack of reliable evaluation weakens the effectiveness of LoRA combinations, as the
resulting images may not meet the intended quality or adhere to the desired attributes. Consequently,
there is a critical need for a more reliable and adaptable approach to optimizing LoRA combinations
without reliance on manual designs or unstable scoring mechanisms.

In response to these limitations, we propose GPT4LoRA, a new training-free method for combin-
ing LoRA models that leverages the self-reflection capability of multimodal large language models
(MLLMs) (Renze & Guvenl 2024; Shinn et al., [2024)). Unlike previous methods, as shown in Fig. E]
GPT4LoRA generates and refines combination coefficients dynamically, without the need for fine-
tuning or modification of the denoising process. By utilizing the self-assessment mechanism of
MLLMs, GPT4LoRA provides a more reliable system for evaluating and optimizing LoRA com-
binations, resulting in higher-quality images with reduced computational overhead. This method
operates through an iterative process of generation, feedback, and refinement, enabling continuous
improvement of generated images based on real-time evaluations.

Our approach is supported by a carefully designed paradigm for few-shot sample selection, which
guides the self-reflection mechanism of the MLLM during the iterative process. GPT4LoRA does
not require annotated data or manually designed rules, instead relying on few-shot samples and
specifically tailored prompts for generating, evaluating, and refining LoRA combinations. Ex-
tensive experiments conducted on a benchmark of widely-used LoRA models demonstrate that
GPT4LoRA outperforms existing methods in both quantitative and qualitative evaluations. By
eliminating reliance on unreliable automatic scoring systems and harnessing MLLM-based self-
reflection, GPT4LoRA establishes a new standard for efficient and high-quality LoORA composition
in generative image models.

2 RELATED WORK

2.1 MODEL MERGING

Using pre-trained models (Rombach et al., 2022} |Podell et al., 2023} |Liu et al.| |2024; |/Achiam et al.,
2023)) typically involves fine-tuning them to specialize on a specific task (Devlin, [2018)), which can
lead to improved performance with a small amount of task-specific labeled data. These benefits have
resulted in the release of thousands of fine-tuned checkpoints (Wolf},|2019; [civ). However, maintain-
ing a separate fine-tuned model for each task presents challenges: (1) each new task requires storing
and deploying a distinct model, and (2) isolated models miss the opportunity to share insights be-
tween related tasks, which could boost performance on both similar and new tasks. To solve this
problem, a series of model merging techniques (Zhang et al.,2023b; [lharco et al.;,|2022;Yadav et al.,
2023} |Yu et al., |2024) are introduced. Model merging, or model fusion, is a valuable technique that
combines the parameters of several distinct models, each with unique capabilities, to create a uni-
versal model. This process does not require access to the original training data or involves high
computational costs. Although model merging is a relatively young topic, it is evolving rapidly and
has already found applications in several domains, such as improving performance on a single target
task (Gupta et al., [2020), improving out-of-domain generalization (Jin et al.| [2022), compression
(L1 et al} 2023), multi-modal merging models (Sung et al., 2023)), and other settings [Don-Yehiya
et al.|(2022). Recently, the availability of pre-trained and fine-tuned models in the machine-learning
community has increased significantly. Open-source platforms such as Huggingface (Wolfl, [2019)
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provide easy access to a wide range of well-trained models with different capabilities. These com-
prehensive model repositories facilitate quick advancements in the field of model integration.

2.2 LORA COMBINATION

Recently, diffusion models (Podell et al., 2023} Rombach et al.| 2022} Saharia et al.,|2022) have al-
lowed for impressive image generation quality with their excellent understanding of diverse artistic
concepts and enhanced controllability due to multi-modal conditioning support (with text being the
most popular mode). The usability and flexibility of generative models have further progressed with
a wide variety of personalization approaches, such as DreamBooth (Ruiz et al.,2023)) and StyleDrop
(Sohn et al.l [2023)). These approaches fine-tune a base diffusion model on the images of a specific
concept to produce novel renditions in various contexts. Such concepts can be a specific object or
person, or an artistic style. Naturally, one may wish to render a specific person in their personal
style. To this end, a series of LoORA combination techniques (Yang et al., | 2024b; Shah et al., 2023}
Zhong et al.| [2024) are proposed to fulfill this task. For example, ZipLoRA (Shah et al., [2023)
learns mixing coefficients for each column for both style and subject LoRAs and requires a further
fine-tuning process to update both mixing coefficients. By utilizing textual, layout, and image-based
conditions (optional) to integrate multiple LoRAs, LoRA-Composer (Yang et al., [2024b)) alleviates
the concept confusion and concept vanishing issues. Instead of directly manipulating the combi-
nation coefficients, LORA Composite (Zhong et al., 2024)) concentrates on the denoising process,
involving all LoRAs working together as guidance throughout the generation process.

2.3 IN-CONTEXT LEARNING

In-context learning (ICL) is a recent methodology from natural language processing (NLP), where
large models perform tasks they haven’t seen before by analyzing a few given examples along with
the test instance. This approach is effective because it allows users to adapt the model to various
tasks without needing to fine-tune model parameters. Numerous methods have been developed
based on in-context learning for tasks such as text classification (Zhang et al,, [2022)) and machine
translation (Zhang et al.,[2023a)). In the realm of multi-modality learning, in-context learning is still
a relatively new concept. Most existing work in this area has focused on employing large image-to-
image models for tasks like image inpainting (Bar et al.,|2022).

2.4 SELF-REFLECTION IN LLMS

Self-reflection is a process in which a person thinks about their thoughts, feelings, and behaviors.
Similar to humans, this ability allows LLMs to identify errors, explain the cause of these errors,
and generate advice to avoid making similar types of errors in the future (Pan et al.| 2023; [Madaan
et al., [2024; |Shinn et al.| 2024). Reflexion Shinn et al.|(2024) converts binary or scalar feedback
from the environment into verbal feedback in the form of a textual summary, which is then added
as additional context for the LLM agent in the next episode. Self-refine (Madaan et al., 2024)
introduces an iterative self-refinement algorithm that alternates between two generative steps, which
work in tandem to generate high-quality outputs. In this paper, we follow the philosophy of self-
reflection and, for the first time, employ self-reflection and in-context learning ability in MLLMs to
LoRA combination.

3 METHOD

3.1 BACKGROUND

Diffusion Models

Diffusion models (Rombach et al.|[2022) are generative models that create data samples from Gaus-
sian noise via a sequential denoising process. These models utilize a series of denoising autoen-
coders to estimate the score of a data distribution. The denoising process introduces noise into
feature representations, varying across different timesteps. The trained diffusion model predicts the
added noise in these noisy features based on text instruction conditioning. This paper concentrates
on latent diffusion models (Rombach et al., [2022)), which learn the diffusion process in the latent
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space rather than the image space. Specifically, we employ Stable Diffusion XL v1 (Podell et al.,
2023)) for all our experiments.

LoRA Combination

Low-Rank Adaptation (LoRA) (Hu et al., [2021])) is a method for efficient adaptation of Large Lan-
guage and Vision Models to a new downstream task. The key concept of LoRA is integrating
additional trainable low-rank matrices within the neural network. Specifically, for a weight ma-
trix W € R™" in the pre-trained model, the update of W after applying LoRA is formulated as
W' = W + AW, where AW = BA. Here, B € R"*" and A € R™*™. The low-rank factor
satisfies » << min(n, m). During training, only A and B are updated to find suitable AW = BA,
while keeping W constant. Due to its efficiency, LoRA is widely used for fine-tuning open-sourced
diffusion models (Podell et al., 2023)).

To generate images containing several distinct characters or styles, a series of LORA combination
methods are proposed, one of which is LoORA Merge. The concept of LoORA Merge is realized by
linearly combining multiple LoRAs to synthesize a unified LoRA, subsequently plugged into the
diffusion model. Formally, when introducing n different LoRAs, the update of W are as follows.

W/:W+Zwi><BkAk7 (D
k=1

where w; stands for the combination coefficient. Other LoRA combination methods either require
additional gradient computations to update to w; Shah et al.| (2023) or avoid tuning w; by altering
the forward pass of diffusion models. Therefore, these methods require more time (around sev-
eral hours) and they may still under-perform than naive adjustment of the combination coefficient.
On the contrary, manual adjustment enjoys fast inference speed (around several seconds), but it
requires tens or hundreds of attempts, especially when the number of LoRAs increases. This pa-
per investigates the potential of directly adjusting combination coefficients for LORA combination
by harnessing the in-context learning ability of MLLMs, which, to our knowledge, has not been
explored before.
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Figure 2: GPT4LoRA Overview. GPT4LoRA mainly consists of three steps: Generate, Feedback,
and Refine. These steps formulate an iterative refinement procedure, following the logic of self-
reflection.

3.2 ITERATIVE REFINEMENT WITH GPT4LORA

Given a user-defined textual prompt and several LoORA models as inputs, GPT4LoRA generates
the candidate weights, provides feedback on the candidate weight, and refines the candidate weight
according to the feedback. GPT4LoRA iterates among these steps until the iterative refinement
procedure ends. GPT4LoRA relies on a suitable multimodal large language model and three prompts
(for generate, feedback, and refine), and does not require training. The overview of GPT4LoRA is
shown in Figure [2]and Algorithm[I] Next, we describe GPT4LoRA in more detail.

3.2.1 FEW-SHOT SAMPLE SELECTION

Unlike previous methods [Lee et al.|(2024); Xu et al.|(2023)) where annotations, e.g., cropping coor-
dinates, are available, the absence of standardized benchmarks in LoRA combination areas hinders
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the selection of few-shot samples, as the performance is highly sensitive to the quality of the chosen
few-shot samples (Liu et al., 2021} [Lu et al., 2021). To this end, we propose a few-shot sample
selection paradigm for LoORA combination to better prompt MLLMs. Specifically, when combining
multiple LoRA models, given an input text description, we can generate a set of images based on all
possible combinations of coefficients. We then calculate the text-alignment scores of the generated
images w.r.t. the given text description and rank these images according to their scores. Directly
selecting generation samples with the highest text-alignment scores may result in unbalanced com-
bination coefficients. This phenomenon primarily arises from explicit information leakage, where
certain LORA models contain trigger phrases that prompt the pre-trained text-to-image model to gen-
erate the desired image even without incorporating the corresponding LoRA model. As pointed out
in the previous study, LoORA combination with unbalanced weights will destabilize the combination
process (Huang et al.,[2023). To overcome this issue, we simply filter out images with a minimum
score of less than a pre-defined threshold. After obtaining the filtered samples, we selected the
samples with the top-5 highest text-similarity scores, i.e, {(i1,1), ..., (i5,s)}, to formulate the
few-shot samples.

Algorithm 1: GPT4LoRA

Input: textual prompt ¢, LoORA models {Lg, t }¥_,

Prerequisite: iterations N, MLLM M, SDXL G, generate prompt pgen, feedback prompt py,,
refine prompt p,., few-shot samples s, combination coefficient w, number of candidate
weights M, current iteration r

Output: Image I

r < 0;

while » < N do

Wi, ey Ws < M (Pgen(8), G(t, {Lg}_ 1, w), [G(ti, Li)|i € 1,...,k]) // generate;
fb,. < M (pm, [G(t, {Li}r_,,wi)li € 1,..., M],[G(t;,L;)|i € 1,...,k]) // feedback;
w 4 M (pre, tby, [G(t, {Li iy, wi)|i € 1,..., M]) // refine;

j7’ «— G(ta {Lk}gzla w);

r<r+1;

end

I+ M(prea Ila ,IN),

Return: /

3.2.2 OPTIMIZATION LORA COMBINATION VIA SELF-REFLECTION

Generate Given LoRA models {Ly, tk}’,:zl, a text prompt ¢, a generate prompt pgen, few-shot
samples s, and a MLLM M, GPT4LoRA generates several candidate combination coefficients (set
to 5 by default).

Wi, ooy W5 < M(pgen(s), G(t, {Li Yoy, w), [G(t:, Li)]i € 1, ..., K]). 2)

Here, pger is a task-specific few-shot prompt (or instruction) for generation and the few-shot samples
contain input-output pairs < (¢, L), w > for LORA combination.

Feedback Without explicit supervision, MLLM lacks a deep understanding of the context of the
LoRA combination task, such as the understanding of certain styles at a fine-grained level. Conse-
quently, it may produce nonsensical outputs even with good ICL samples. Empirically, we observe
that the initial combination coefficient candidates generated by the GPT-40 lack diversity and some-
times fail to make sense. Previous study (Yang et al.}|2024a)) has shown that large language models
can optimize the output by iteratively incorporating feedback. To this end, GPT4LoRA utilizes
GPT-4o0 as a qualified evaluator to provide fruitful feedback. Given separate LoRA models’ infor-
mation, intermediate images that are generated given the candidate combination coefficients, and a
task-specific prompt p g, for generating feedback, GPT4LoRA uses the same model M to provide
feedback fb on its own output:

fb < M (pp, [G(t, {LpYr_y,wi)|i € 1, ..., M), [G(t;,Ly)|i € 1, ..., k]). 3)

Intuitively, the feedback may contain constructive information on how the input LoRA models be-
have and interact with each other.
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Refine Finally, GPT4LoRA uses M to refine its last output and select the optimal combination
coefficient, given its own feedback:

W $— M(preafb7 [G(ta {Lk}ﬁzhwl)'l S la 7M]) (4)

Iterating GPT4LoRA

GPT4LoRA alternates among generate, feedback and refine steps until the iteration ends. This
iterative process is repeated IV times, and the top output is selected as the final result. Details of the
prompt design are shown in the supplementary material.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Implementation Details

In our experiments, we utilize Stable Diffusion XL (Podell et al., [2023) as the backbone model.
For a thorough evaluation, we use two specific checkpoints: “SDXL-vae-fix” for realistic images
and “Animagine-x1-3.1” for anime images. For generating realistic images, we configure the model
with 50 denoising steps, and a guidance scale of 7, and employ the Euler scheduler for the diffusion
process. The image resolution is set to 1024x1024 pixels to enhance quality. In contrast, for anime-
style images, we adjust the settings to 30 denoising steps, a guidance scale of 6, and use the Euler
Ancestral scheduler, maintaining the same image resolution of 1024x1024 pixels. For both types of
images, we set the number of total updates to 5 and the number of candidate weights to 5. To ensure
the robustness of our results, we generate images using three different random seeds. All reported
results represent the average evaluation scores across these three trials.

Inference Details

We have selected two distinct subsets of LoRAs that represent realistic and anime styles. Each subset
includes a diverse mix of elements: characters, clothing, styles, and backgrounds. Altogether, these
subsets form a collection of 24 LoRA models in total. In constructing inference sets, we adhere to a
key principle: each set must include one character LoRA and avoid duplicating element categories
to prevent conflicts. Consequently, our evaluation comprises 105 distinct composition sets. Trigger
words, i.e., key features, are manually annotated. These trigger words serve as input prompts for
the text-to-image models to generate images and as reference points for subsequent evaluation using
GPT-40. Detailed descriptions of each LoRA are provided in the Appendix. The main experiments
are performed to fulfill the combination of three LoORA models, one for character, one for clothing,
and the other one for style or background. LoRA Merge, LoRA Switch [Zhong et al.| (2024), and
LoRA Composite Zhong et al.|(2024) are chosen as the baseline methods for their ability to combine
multiple LoORA models. We also provide the experimental results of combining two LoRA models
(including ZipLoRA (Shah et al.,[2023)) in the supplementary material.

Evaluation Metrics Following DreamBooth (Ruiz et al.,|2023)), we provide comparisons of image-
alignment and text-alignment scores. Furthermore, we also leverage GPT-40’s capabilities to serve
as an evaluator for LoORA combination-based image generation. This MLLM-based evaluation in-
volves scoring the performance of two comparative results across two dimensions, as well as deter-
mining the winner based on these scores

4.2 COMPARATIVE EVALUATION WITH GPT-40

While existing quantitative metrics, e.g., image-alignment and text-alignment scores, can calculate
the alignment between text and images (Shah et al.| 2023} Zhong et al., 2024)), they fail to capture
subtle stylistic details and are intertwined with the semantic properties of images, including their
overall content. Recent studies (Zhong et al.| 2024} [Zhang et al., 2023c) demonstrate the efficiency
of MLLMs in evaluating various multimodal tasks, underscoring their potential in evaluating image
generation tasks. As a comprehensive evaluation, we leverage GPT-40’s ability to serve as a dis-
criminator to evaluate generated images in two dimensions: composition quality and image quality
with the former evaluating local details restoration and the latter evaluating from a rather global
perspective. We present an example in Table (1] Besides, for a more fair comparison, we repeat the
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Figure 3: Results of comparative evaluation using GPT-4o.

MLLM-based evaluation 10 times to calculate the specific win rates and provide specific scores and
win rates in Figure[3] It can be observed from Figure [3 that our proposed GPT4LoRA consistently
outperforms existing methods across both composition quality and image quality.

Table 1: Example of GPT-40-based evaluation. The evaluation prompt and result are in a simplified
version.

Evaluation Prompt

I need assistance in comparatively evaluating two text-to-image models based on their ability to
compose different elements into a single image. The key elements are:

1. Character: ganyu, black gloves;

2. Clothing: black legwear, hair ribbon, dress, short sleeves, frills apron, puffy short sleeves;

3. Style: lineart, traditional media, sketch, monochrome, greyscale;

Please help me rate based on composition and image quality:

Evaluation Results from GPT-40

For Image 2:

Composition Quality:

Dress: Present but colored.

Short sleeves: Present with puffy detailing.

Monochrome: No, has blue tones.

Image Quality:

Consistent but lacks detailed variation.

Dress color can be considered a minor flaw affecting coherence.

gcores:
- Image 1: Composition Quality: 10/10, Image Quality: 10/10
- Image 2: Composition Quality: 5/10, Image Quality: 8.5/10




Under review as a conference paper at ICLR 2025

Input Prompt:
Scarlett Johansson,
helmet, gloves,
orange and white
spacesuit, train
track, tall buildings,
Chernobyl

Chernobyl

Chinese Armor

Input Prompt:
Brad Pitt,
chinese armor,
chinese painting,
painting lake and
mountain landscape

Chinese style paint

Y 7

Nicole Demara School Uniform

Input Prompt:
nicole demara,
school uniform,
black legwear,
white sailor collar,
long sleeves,
- oil painting
Oil Painting

LoRA Composite GPT4LoRA (Ours)
Figure 4: Visual Comparisons between GPT4LoRA and other LoORA combination methods. Key
areas are marked with red boxes or arrows.

4.3 VISUAL COMPARISON AND QUANTITATIVE RESULTS

We use CLIP-I scores of image embeddings of output and the style reference for image-alignment,
as well as CLIP-T embeddings of the output and the text prompt for text-alignment. We evaluate
realistic and anime subsets respectively, the quantitative results are presented in Table 2} It can
be observed that GPT4LoRA surpasses current methods in image and text alignment, indicating
its proficiency in maintaining text-to-image generation capabilities while effectively expressing the
specified style and subject outlined in the text prompt. Besides, we present the visual comparison
between GPT4LoRA and other methods in Figure [d where we also include manual adjust to com-
parison. It can be observed that GPT4LoRA not only generates objects that are strictly coherent to
prompt but also seamlessly integrates different styles.
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Table 2: Quantitative Results between GPT4LoRA and other LoRA combination methods.

LoRA Merge LoRA Switch LoRA Composite = GPT4LoRA

Realistic CLIP-I 0.6026 0.6117 0.6109 0.6191
Realistic CLIP-T 0.3429 0.3387 0.3501 0.3561
Anime CLIP-I 0.6767 0.6713 0.6789 0.6827
Anime CLIP-T 0.3023 0.2869 0.3011 0.3082

4.4  ANALYSIS

To better enhance the understanding of the proposed GPT4LoRA, we further investigate the follow-
ing critical questions:

4.4.1 DOES GPT-40 KNOW HOW THE DIRECTION AND AMOUNT OF TUNING COMBINATION
COEFFICIENTS?

To explore this, we perform the following ablation ex-
periments. Three LoRA models were given to com-  Fjgure 5: Ablation study on ignoring some
pose by ignoring style-LoRA’s trigger words in the in-  rjigger words.

put prompt. We present the visual comparison in Fig-
ure 5] It can be observed that GPT4LoRA generates
an impressive image that is coherent with the input
prompt and does not corrupt the image with irrelevant w/o trigger words w/ trigger words
LoRA. s

Input Prompt: xxx, ei-painting

4.4.2 TO WHAT EXTENT DO THE FEW-SHOT
SAMPLES INFLUENCE THE FINAL PERFORMANCE?

To explore this, we perform the following ablation ex-
periments. Given three LoRA models to compose,
we ignore the few-shot sample information during
prompting GPT-40. We present the quantitative com-
parison w.r.t text-alignemnt and image-alignment in Table 3] Without few-shot samples, GPT-40
tends to generate nonsensical and repetitive responses |[Lee et al.| (2024), which fails to grasp the
implicit interaction among different LoORA models and poses inferior performance in both text- and
image-alignment.

Table 3: Ablation studies on the impact of few-shot samples.

Realistic CLIP-I  Realistic CLIP-T  Anime CLIP-I Anime CLIP-T

w/o few-shot samples 0.5994 0.3218 0.6265 0.2745
w/ few-shot samples 0.6191 0.3561 0.6827 0.3082

5 CONCLUSION

This paper presents GPT4LoRA, the first exploration of utilizing of self-reflection mechanism in
MLLMs for LoRA combination. By a carefully designed paradigm for few-shot sample selection,
which guides the self-reflection mechanism of the MLLM during the iterative process, the proposed
GPT4LoRA does not require annotated data or manually designed rules, instead relying on few-shot
samples and specifically tailored prompts for generating, evaluating, and refining LoRA combina-
tions. Extensive experiments conducted on a benchmark of widely-used LoRA models demonstrate
that GPT4LoRA outperforms existing methods in both quantitative and qualitative evaluations. By
eliminating reliance on unreliable automatic scoring systems and harnessing MLLM-based self-
reflection, GPT4LoRA establishes a new standard for efficient and high-quality LoORA composition
in generative image models.
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