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Abstract—Shannon’s sampling theorem plays a central role in the
discrete-time processing of bandlimited signals. However, the infinite
precision assumed by Shannon’s theorem is impractical because of the
ADC clipping effect that limits the signal’s dynamic range. Moreover, the
power consumption of an analog-to-digital converter (ADC) increases
linearly with the sampling frequency and may be prohibitively high
for a wide bandwidth signal. Recently, unlimited and one-bit sampling
frameworks have been proposed to address these shortcomings. The
former is a high-resolution technique that employs self-reset ADCs to
achieve an unlimited dynamic range. The latter achieves relatively low
cost and reduced power consumption at an elevated sampling rate. In
this paper, we examine jointly exploiting the appealing attributes of both
techniques. We propose unlimited one-bit (UNO) sampling, which entails
a judicious design of one-bit sampling thresholds. This enables storing
the distance between the input signal value and the threshold. We then
utilize this information to accurately reconstruct the signal from its
one-bit samples via a randomized Kaczmarz algorithm (RKA) which is
considered to be a strong linear feasibility solver that selects a random
linear equation in each iteration. The numerical results illustrate the
effectiveness of RKA-based UNO over the state-of-the-art.

Index Terms—One-bit quantization, unlimited sampling, self-reset
ADCs, signal reconstruction, time-varying sampling thresholds.

I. INTRODUCTION

Sampling theory lies at the heart of all modern digital signal
processing systems. A seminal result in the sampling literature is
the Whittaker-Kotelńikov-Shannon (or, simply Shannon’s) theorem,
which states that a lowpass bandlimited signal can be perfectly
reconstructed from its discrete samples taken uniformly at a sam-
pling frequency that is at least the Nyquist rate, i.e., twice the
signal bandwidth [1–3]. However, practical implementations of this
result are beset with hardware limitations. For example, the theorem
operates under an impractical assumption of the availability of
infinite precision samples. In practice, digital sampling is realized by
quantizing the signals-of-interest through analog-to-digital converters
(ADCs) that clip or saturate whenever the signal amplitude exceeds
the maximum recordable ADC voltage, leading to a significant
information loss. Substantial work has been done and is still ongoing
to overcome this problem [4–7], and the approaches are too diverse to
summarize here; see, e.g., [8] and references therein, for comparisons
of various techniques. Overall, these approaches require de-clipping
[9], multiple ADCs [10], and scaling techniques [11], which are
expensive and cumbersome. On the other hand, the recently proposed
unlimited sampling framework fully overcomes this limitation by
employing modular arithmetic [8, 12, 13].

Note that conventional ADCs require a large number of bits to
sample the original continuous signal with low quantization errors.
Sampling at high rates with high-resolution ADCs, however, dramat-
ically increases the power consumption and the manufacturing cost
[14]. This problem is exacerbated in systems that require multiple
ADCs such as large array receivers [15]. Therefore, in recent years,
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the design of receivers with low-complexity one-bit ADC has been
emphasized to meet the requirements of both wide signal bandwidth
and low cost/power. The one-bit quantization is an extreme scenario,
wherein the ADCs merely compare the signals with given or known
threshold levels, producing one-bit sign (±1) outputs [16, 17], thereby
considerably bringing down the analog complexity of the receiver.
The classical clipping-based sampling [18, 19] also yields one-bit
samples but the signal recovery is achieved by comparing the signal
with a zero threshold. In lieu of signal reconstruction, the objective
of these techniques is to recover the signal’s autocorrelation, yet the
clipped output is not guaranteed to yield accurate estimates. In this
context, recent investigations using time-varying sampling thresholds
have shown better estimation performance [20–22].

Evidently, one-bit and unlimited sampling frameworks address
complementary requirements. One-bit sampling is indifferent to the
dynamic range because, apart from the comparison bit, other informa-
tion such as the distance between the signal value and the threshold
is not stored. On the other hand, the self-reset ADC in unlimited
sampling provides a natural approach to producing judicious time-
varying thresholds for one-bit ADCs. In this paper, to harness the
advantages of both methods, we propose unlimited one-bit (UNO)
sampling that yields unlimited dynamic range and a low-cost low-
power receiver while retaining a high sampling rate. There is a
related body of literature on consistent reconstruction methods for
oversampled frames from sparse samples [23] and one-bit quantized
measurements [24–26]. However, these studies differ from UNO in
two key aspects. Firstly, they did not incorporate the practice of
unlimited sampling at the core of their sampling methodology, which
involves folding the signal within the range of the ADC threshold.
Secondly, these earlier works assign multiple bits to each measure-
ment value using a multi-bit quantizer. On the contrary, we compare
modulo samples with multiple time-varying threshold sequences.
This approach has the benefits of one-bit measurements, including
robustness to certain nonlinearities (e.g., ADC saturation) in signal
acquisition. The reconstructing of the input signal is more challenging
in UNO because its quantizer provides only low-resolution (one-bit)
data.

Among prior studies, state-of-the-art results in [27] proposed one-
bit Σ∆ quantization via unlimited sampling, whose objective is to
shrink the dynamic range between the input signal and its one-bit
samples. This study developed a guaranteed reconstruction as long as
the dynamic range of the input signal is less than the dynamic range
of the one-bit data (i.e., 1). However, when the ratio of the input
signal amplitude to the ADC threshold is large, then the imperfect
noise shaping in sigma-delta conversion degrades this reconstruction.
Contrary to this approach, our proposed UNO technique focuses on
a different problem, i.e., shrinking the dynamic range between the
input signal and the time-varying sampling thresholds. The UNO
framework offers arbitrary time-varying sampling thresholds; thus,
effectively reducing the gap between the input signal and the time-
varying sampling thresholds. To reconstruct the full-precision signal



from one-bit sampled data, conventional approaches include maxi-
mum likelihood estimation (MLE) and weighted least squares [28].
However, these methods have high computational cost, especially
for high-dimensional input signals. To this end, we propose using
the randomized Kaczmarz algorithm (RKA) [29, 30], which is an
iterative algorithm for solving a system of linear equations. The RKA
is simple to implement and performs comparably with the state-of-
the-art optimization methods. While the deterministic version of the
Kaczmarz method usually selects the linear equation sequentially, the
RKA is randomized in its selection at each iteration which can lead
to a faster convergence.

Throughout this paper, we use boldface lowercase, boldface up-
percase, and calligraphic letters for vectors, matrices, and sets,
respectively. The notations C, R, and Z represent the set of complex,
real, and integer numbers, respectively. We represent a vector x in
terms of its elements {xi} as x = [xi]. We use (·)⊤ and (·)H
to denote the vector/matrix transpose, and the Hermitian transpose,
respectively. We define x ⪰ y as a component-wise inequality
between vectors x and y, i.e., xi ≥ yi for every index i [31,
p. 32]. The max-norm (p → ∞) of a function x is defined as,
∥x∥∞= inf {c0 ≥ 0 : |x(t)|≤ c0}, where inf(·) denotes the infimum
of its argument; for vectors, we have ∥x∥∞= maxk|xk|. The
Frobenius norm is denoted by ∥·∥F. The function diag(·) outputs
a diagonal matrix with the input vector along its main diagonal.
For a vector x, ∆x = xk+1 − xk denotes the finite difference and
recursively applying the same yields N -th order difference, ∆Nx.
We denote the Ω-bandlimited Paley-Wiener subspace of the square-
integrable function space L2 by PWΩ. The Hadamard (element-wise)
product of two matrices B1 and B2 is denoted as B1 ⊙ B2. The
vectorized form of a matrix B is written as vec(B). Given a scalar
x, we define the operator (x)+ as max {x, 0}. For an event E , 1(E)

is the indicator function for that event meaning that 1(E) is 1 if E
occurs; otherwise, it is zero. The function sgn(·) yields the sign of
its argument. The floor operation is denoted by ⌊⌋.

II. ONE-BIT SAMPLING

Consider a bandlimited continuous-time signal x ∈ PWΩ that we
represent via Shannon’s sampling theorem as [3]

x(t) =

k=+∞∑
k=−∞

x(kT) sinc

(
t

T
− k

)
, 0 < T ⩽

π

Ω
, (1)

where 1/T is the sampling rate, Ω is the signal bandwidth, and
sinc(t) = sin(πt)

πt
is an ideal low-pass filter. Denote the uniform

samples of x(t) with the sampling rate 1/T by xk = x(kT).
In practice, the discrete-time samples occupy pre-determined quan-

tized values. We denote the quantization operation on xk by the
function Q(·). This yields the quantized signal as

rk = Q(xk). (2)

In one-bit quantization, compared to zero or constant thresholds,
time-varying sampling thresholds yield a better recovery performance
[14, 22]. These thresholds may be chosen from any distribution.
In this work, to be consistent with the state-of-the-art [14, 19,
28], we consider a Gaussian non-zero time-varying threshold vector
τN = [τk] that follows the distribution τN ∼ N (d = 1d,Σ).
Following a bell-shaped distribution, a Gaussian threshold is likely
to be concentrated in the center and may not cover the entire signal
range accurately. Therefore, alternatively, we also employ uniformly
distributed thresholds in the sequel as τU ∼ U[a,b]. In the case
of one-bit quantization with such time-varying sampling thresholds,
rk = sgn (xk − τk). For notational simplicity, hereafter, we denote

the time-varying sampling thresholds by dropping the subscripts, i.e.
τ = [τk].

The information gathered through the one-bit sampling with time-
varying thresholds may be formulated in terms of an overdetermined
linear system of inequalities. We have rk = +1 when xk > τk and
rk = −1 when xk < τk. Therefore, one can formulate the geometric
location of the signal as rk (xk − τk) ≥ 0. Collecting all the elements
in the vectors as x = [xk] ∈ Rn and r = [rk] ∈ Rn, we have

r⊙ (x− τ) ⪰ 0, (3)

or equivalently
Ωx ⪰ r⊙ τ, (4)

where Ω ≜ diag (r). Denote the time-varying sampling threshold in
ℓ-th signal sequence by τ(ℓ), where ℓ ∈ L = {1, · · · ,m}. It follows
from (4) that

Ω(ℓ)x ⪰ r(ℓ) ⊙ τ(ℓ), ℓ ∈ L, (5)

where the sign matrix Ω(ℓ) = diag
(
r(ℓ)

)
. Denote the concatenation

of all m sign matrices as

Ω̃ =
[
Ω(1) · · · Ω(m)

]⊤
, Ω̃ ∈ Rmn×n. (6)

Rewrite the m linear inequalities in (5) as

Ω̃x ⪰ vec (R)⊙ vec (Γ) , (7)

where R and Γ are matrices, whose columns are the sequences{
r(ℓ)

}m

ℓ=1
and

{
τ(ℓ)

}m

ℓ=1
, respectively.

The linear system of inequalities in (7) associated with the one-
bit sampling scheme is overdetermined. We recast (7) into a one-bit
polyhedron as

P =
{
x | Ω̃x ⪰ vec (R)⊙ vec (Γ)

}
. (8)

Instead of complex high-dimensional optimization with techniques
such as MLE, our objective is to employ the polyhedron (8) that
encapsulates the desired signal x, which leads to solving a system of
linear inequalities with linear convergence in expectation.

III. UNLIMITED SAMPLING

In unlimited sampling, instead of point-wise samples of the ban-
dlimited function x(t), the folded amplitudes with values in the range
[−λ, λ], where λ > 0 is the ADC threshold, are used [8, 12]. The
folding corresponds to introducing a non-linearity in the sensing
process [8, 12] and is denoted by the modulo operator Mλ as

Mλ : x̃k = xk − 2λ

⌊
xk

2λ
+

1

2

⌋
, (9)

where x̃k are the modulo samples of x(t), respectively. According
to the unlimited sampling theorem [8], the required condition for the
perfect reconstruction of the input signal from its modulo samples,
is T ≤ 1

2Ωmaxe
, where Ωmax denotes the maximum frequency of the

input bandlimited signal and e is the Euler’s number.
The following process is a stepping stone towards the reconstruc-

tion of the bandlimited function x(t) from its modulo samples {x̃k}.
Then, x(t) admits a decomposition [8, 12],

x(t) = x̃(t) + ϵx(t), (10)

where x̃(t) = Mλ (x(t)) and the error ϵx between the input signal
and its modulo samples is

ϵx(t) = 2λ
∑
u∈Z

eu1Du(t), eu ∈ Z, (11)

where
⋃

u∈Z Du = R is a partition of the real line into intervals Du.
It follows from (11) that ϵx takes only those values that are integer

multiples of 2λ thereby leading to a robust reconstruction algorithm
[8]. Specifically, to obtain ϵx (up to an unknown additive constant)



and subsequently the desired signal x(t), the reconstruction procedure
in [8, 12] requires the higher-order differences of x̃ = [x̃k] to obtain
∆Nϵx = Mλ

(
∆N x̃

)
−∆N x̃, where ϵx = [ϵx]. Define the inverse-

difference operator as a sum of real sequence {sb}, i.e.,

∇ : {sk}k∈Z+ →
k∑

b=1

sb. (12)

Then, applying ∇
(
∆Nϵx

)
and rounding the result to the nearest

multiple of 2λZ yields ϵx. For a guaranteed and stable reconstruction
performance, a suitable choice for difference order N is [8],

N ≥
⌈
log λ− log βx

log (TΩe)

⌉
, (13)

where βx is chosen such that βx ∈ 2λZ and ∥x∥∞≤ βx.

IV. PROPOSED UNO FRAMEWORK

The dynamic range of a signal x is defined as DRx = ∥x∥∞.
Denote the dynamic ranges of the desired signal x and the time-
varying threshold τ by DRx and DRτ, respectively. If DRx ≤ DRτ,
then the reconstructed signal x⋆ may be found inside the polyhedron
(8) with a high probability for an adequate number of samples.
Otherwise, if DRx > DRτ, there is no guarantee to obtain x⋆ since
the desired solution cannot be inside the finite-volume space imposed
by the set of inequalities in (8) indicating an irretrievable information
loss. We demonstrate this as follows. Without loss of generality,
consider xk > 0. Assume xk = DRx and the maximum threshold
τ⋆
k = maxℓ τ

(ℓ)
k . Since DRτ = ∥τ∥∞, we have τ⋆

k ≤ DRτ. If
DRx > DRτ, then τ⋆

k < DRx = xk. Therefore, to reconstruct the k-
th entry of the input signal xk, we always have a gap δ = xk−τ⋆

k > 0
not covered by any sample to capture the amplitude information of
x. As a result, the desired signal is not found inside the finite-volume
space imposed by the set of inequalities (8).

Using unlimited sampling framework, we now design the time-
varying threshold with the same dynamic range as the modulo
samples x̃ = [x̃k]; i.e. DRτ = λ. We modify the thresholds to be
closer to the clipping value thereby integrating self-reset ADC with
one-bit sampling. The UNO sampling framework is summarized as
follows:

1) Apply the modulo operator defined in (9) to the input signal x
and obtain modulo samples x̃ = Mλ (x).

2) Design sequences of the time-varying sampling threshold{
τ(ℓ)

}m

ℓ=1
such that |DRτ(ℓ) − λ| ≤ ε0 for all ℓ ∈ L =

{1, · · · ,m} and a small number ε0 > 0.
3) Apply the one-bit quantization to modulo samples as r(ℓ) =

sgn
(
x̃− τ(ℓ)

)
.

In order to derive a guarantee for the UNO threshold, we introduce
a useful lemma as follows.

Lemma 1. Assume τ(ℓ) ∼ N
(
0, σ2

τI
)
. Then, with probability at

least 1− η, we have∥∥∥τ(ℓ)
∥∥∥
∞

≤ στ

√
2 ln

(
2n

η

)
. (14)

Proof: According to the Hoeffding inequality and union bound
for the Gaussian random variables τ(ℓ) ∼ N

(
0, σ2

τI
)
, we have [32]

Pr
(∥∥∥τ(ℓ)

∥∥∥
∞

≥ t
)
≤ 2n e

− t2

2σ2
τ . (15)

Therefore, with 2n e
− t2

2σ2
τ ≤ η proving the lemma.

The following Proposition 1 states the UNO threshold design.

Proposition 1 (Judicious threshold design). Under the UNO sam-
pling framework, the following dynamic range guarantees hold:

• Gaussian threshold: When τ
(ℓ)
N ∼ N

(
0, σ2

τI
)
, then considering

the ADC threshold λ, στ will be equal to λ√
2 ln

(
2n
η

) with a

probability of at least 1− η.
• Uniform threshold: When τ

(ℓ)
U ∼ U[−a,a], then λ = a with a

probability of 1.

Proof: With a probability of at least 1 − η, the maximum
amplitude of each threshold sequence is obtained via Lemma 1. When
στ = λ√

2 ln
(

2n
η

) , then time-varying sampling threshold also has a DR

of λ with a probability of at least 1− η. The proof for the uniform
threshold follows mutatis mutandis except that, for each ℓ, we have
DR

τ
(ℓ)
U

≤ a with a probability of 1 leading to a = λ.
In Proposition 1, we design time-varying sampling threshold

sequences so that their dynamic range is close to that of the
modulo samples. This enables storing the information on the distance
between the modulo samples and the thresholds without any loss of
information via one-bit sampling.

V. RKA-BASED RECONSTRUCTION

To reconstruct the signal of interest x⋆ after UNO sampling, we
rewrite the polyhedron (8) for modulo samples x̃ as

P̃ =
{
x̃ | Ω̃x̃ ⪰ vec (R)⊙ vec (Γ)

}
. (16)

To obtain the unlimited samples x̃ in the polyhedron (16), it is
required to solve a linear system of inequalities. We tackle this
polyhedron search problem through RKA because of its optimal
randomized projection and linear convergence in expectation [30].
The RKA is a subconjugate gradient method to solve overdetermined
linear systems, i.e., Cx ⪯ b, where C is a m′×n′ matrix, m′ > n′

[29, 30]. The conjugate-gradient methods immediately turn such an
inequality to an equality of the following form:

(Cx− b)+ = 0, (17)

and then approach the solution by the same process as used for
systems of equations.

Given a sample index set J , without loss of generality, rewrite
(17) as the polyhedron{

cjx ≤ bj (j ∈ I≤) ,

cjx = bj (j ∈ I=) ,
(18)

where the disjoint index sets I≤ and I= partition J and {cj} are
the rows of C. The projection coefficient βi of the RKA is [30, 33,
34]

βi =

{
(cjxi − bj)

+ (j ∈ I≤) ,

cjxi − bj (j ∈ I=) .
(19)

The unknown column vector x is iteratively updated as

xi+1 = xi −
βi

∥cj∥22
cHj , (20)

where, at each iteration i, the index j is drawn from the set J
independently at random following the distribution

P{j = k} =
∥ck∥22
∥C∥2F

. (21)

Note that in (16), we have only the inequality partition I≤. Herein,
m′ = m × n and n′ = n, and further, the row vector cj and the
scalar bj used in the RKA (18)-(21) are j-th row of −Ω̃ and j-th
element of − (vec (R)⊙ vec (Γ)), respectively. After reconstructing



Figure 1. Illustration of UNO reconstruction when the ADC threshold λ = 0.2. (a) True signal x, unlimited samples x̃, and the reconstructed signal x∗

obtained via RKA. (b) Modulo samples x̃ and RKA-reconstructed modulo samples x̃⋆ from one-bit measurements. The inset figures show the plots on a
larger scale.

the modulo samples, the desired signal x is obtained from the approx-
imated modulo samples using the unlimited sampling reconstruction
procedure explained earlier in Section III.

VI. NUMERICAL ILLUSTRATIONS

We assessed the performance of our UNO framework through
numerical experiments. We set the ADC threshold to λ = 0.2. A
total of 15 realizations of a bandlimited function x with piecewise
constant Fourier spectrum were generated such that x̂(ω) ∈ U[0,1].
The number of time-varying sampling threshold sequences were set
to m = 400. Throughout the experiments, the generated signals had
the same dynamic range. Accordingly, we generated sequences of
the time-varying sampling threshold as

{
τ(ℓ) ∼ N

(
0, λ2

9
I
)}m

ℓ=1
.

We assess the reconstruction performance via the normalized mean

square error (NMSE) defined as NMSE ≜
∥x⋆−x̄∥2

2

∥x⋆∥22
, where x⋆ and

x̄ denote the true discretized and the corresponding reconstructed
signals, respectively.

Fig. 1a illustrates the RKA-based reconstruction performance of
the UNO algorithm. UNO guarantees excellent reconstruction with
the NMSE, averaged over 15 experiments, of the order 1e−6. Fig. 1b
shows the performance of RKA in unlimited samples reconstruction,
which is at the heart of UNO framework, for the same signal as in
Fig. 1a.

We compared the reconstruction performance of UNO with one-
bit unlimited Σ∆ sampling of [27] for the same input signal. The
ADC threshold was set to λ = 1 and sequences of the time-
varying sampling threshold were generated following the procedure
as before. Table I lists the reconstruction NMSE (on a log10 scale)
for both sampling methods for different amplitudes ∥x∥∞. The UNO
outperforms one-bit Σ∆ when the peak-signal-to-range (PSR) ratio
η =

∥x∥∞
λ

becomes large, e.g., when ∥x∥∞ = 50 for a fixed λ = 1.
The degradation in one-bit Σ∆ reconstruction for large η is because
of round-off noise in software and, primarily, imperfect noise shaping
in sigma-delta conversion that results in sample corruption.

Fig. 2 compares the reconstruction using the Gaussian and uniform
thresholds. Reconstruction with uniform thresholds exhibits lower
errors than the Gaussian case because the former exploits the bit
diversity after UNO sampling arising from the fact that the dynamic
range of the generated time-varying thresholds is the same as the
ADC threshold λ under UNO sampling architecture.

Table I
RECONSTRUCTION log10 NMSE FOR λ = 1

∥x∥∞ One-bit unlimited Σ∆ UNO

20 0.0402 −6.3969
50 0.3777 −6.2081

Figure 2. Element-wise absolute error in input signal reconstruction using
Gaussian and uniform thresholds. The input signal is as in Fig. 1 with the
amplitude ∥x∥∞ = 20. Further, λ = 1 and m = 400. We generated
Gaussian and uniform time-varying thresholds as

{
τ(ℓ) ∼ N

(
0, 1

9
I
)}m

ℓ=1
and

{
τ(ℓ) ∼ U[−1,1]

}m

ℓ=1
, respectively.

VII. SUMMARY

We jointly addressed the problems of clipped inputs and high
ADC power consumption through a new sampling framework, UNO,
which naturally facilitates a judicious design of time-varying one-bit
sampling thresholds. This method effectively utilizes the distance be-
tween the signal values and the thresholds in the wide dynamic range
scenarios. Numerical examples show UNO signal reconstruction via
RKA has very low NMSE. Numerical comparisons of reconstruction
error between UNO and one-bit unlimited Σ∆ techniques show that
the former is more robust in large PSR ratio scenarios.
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