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ABSTRACT

One key step of protein drug development is the screening of protein-protein bind-
ing (PPB) affinity. The current mainstream screening method of PPB affinity is
laboratory experiments, which are costly and time-consuming, making it difficult
to quickly perform high-throughput screening. Various deep learning methods
have been proposed to predict PPB affinity, but they are often limited by the avail-
ability of high-quality data and the compatibility of the algorithms with that data.
In this work, we developed two AI models, PPBind-3D and PPBind-1D, to pre-
dict PPB affinity. PPBind-3D leverages structural information near the protein-
protein binding interface to make its predictions. By employing monotonic neural
network-constrained multi-task learning (MMTL), we effectively utilized hetero-
geneous affinity data from diverse wet lab experiments to expand the development
dataset to over 23,000 samples, thereby enhancing the model’s generalization ca-
pabilities. Additionally, PPBind-1D was developed using sequence data to ad-
dress the lack of structural data in practical applications. During the training of
PPBind-1D, we aligned it with PPBind-3D by incorporating an additional 42,108
no-affinity-label samples through an alignment approach. Finally, we demon-
strated three application cases of our AI models in the virtual screening of pro-
tein drugs, illustrating that our models can significantly facilitate high-throughput
screening.

1 INTRODUCTION

A critical challenge in the engineering of protein drugs is to assess the strength of binding between
the protein drug and the target protein, known as protein-protein binding (PPB) affinity. The ther-
apeutic effect of protein drugs typically relies on their ability to bind to specific target proteins.
Protein drugs with high PPB affinity can bind more effectively to target proteins, thereby exerting a
therapeutic effect. On the other hand, protein drugs with high PPB affinity can bind more specifi-
cally to the target proteins, reducing the impact on non-target proteins. This helps to reduce the side
effects of the drug and enhance the safety of treatment.

High-throughput PPB affinity screening can accelerate the development of protein drugs. In recent
years, technologies such as protein microarrays(MacBeath, 2002) and the Octet system(Cameron
et al., 2021) have been developed. Although these experimental methods are accurate, they require
cumbersome experimental operations, strict experimental conditions, and expensive equipment and
consumables. Therefore, algorithm-based PPB affinity prediction is a more promising paradigm for
high-throughput screening.

However, the PPB affinity prediction is limited by the generalization of the algorithm model, which
often lacks more diverse and high-quality data(Kortemme, 2024). On the other hand, in real-world
scenario, the accurate true-structure of the mutant-type complex is usually unavailable. These lim-
itations highlight the need for continued development and refinement of computational methods to
improve the efficiency and accuracy of PPB affinity screening.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In order to address the aforementioned challenges, this work makes three contributions. First, the
largest protein affinity dataset to date, PPB-Affinity(Liu, 2024), comprising 12,062 samples, was
employed in the development of a geometric deep learning model, PPBind-3D, which predicts PPB
affinity based on structural features near the binding interface of protein-protein complexes. We also
trained the model by integrating the heterogeneous affinity data, especially Deep Mutation Screen-
ing(DMS)(Fowler & Fields, 2014) data, through a monotonic neural network module(Sill, 1997;
Wang et al., 2023), thereby further enhancing the model’s generalization performance. Second,
we proposed a more rigorous method for clustering protein complex structures. In previous stud-
ies of AI-predicted binding affinity, there has always been data leakage of varying degrees due to
the lack of rigorous data division, making it impossible to accurately assess the predictive perfor-
mance of the model. To address this, we calculated the features of protein complex structures in a
SE(3)-Invariant manner using the iDist algorithm(Bushuiev et al., 2023) and then clustered the pro-
tein complex structure features based on graph partition algorithms(Karypis & Kumar, 1998), thus
achieving a more rigorous data division. Finally, we developed a sequence model PPBind-1D based
on our innovative "Feature Alignment" principle, which guided the sequence model through struc-
tural models to achieve the predictive performance of structural models. Additionally, a substantial
number of authentic protein complex structures were employed, including unlabeled samples, to
assist in training the PPBind-1D model to align with the PPBind-3D model.
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Figure 1: (A) Dataset. (B)PPBind-3D. (C)PPBind-1D.

2 RELATED WORK

Molecular dynamics based methods. Representative methods include, Rosetta Flex ddG(Kellogg
et al., 2011), FoldX(Schymkowitz et al., 2005), GROMACS(Abraham et al., 2015), are based on
physical principles. They predict free energy and its changes by analyzing and evaluating factors
such as chemical bonds, residue conformation, Coulomb forces, van der Waals forces, and thermo-
dynamic integration, offering good generality. However, these methods require complex computa-
tional processes, leading to high demands for computational resources and longer calculation times.
More importantly, they often have limitations in the prediction accuracy of PPB affinity and typi-
cally require known three-dimensional structures of complexes, making it difficult to apply them to
high-throughput virtual screening of PPB affinity.

AI algorithms for predicting binding free energy change upon mutation(∆∆G). Representative
algorithms include TopNetTree(Wang et al., 2020), ddGpred(Shan et al., 2022), RDE-Net(Luo et al.,
2023) and UniBind(Wang et al., 2023), etc. These algorithms are mainly applied to affinity matu-
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ration, where a few mutations are made at specific sites of the parent protein to enhance its binding
affinity with the receptor protein. However, the limitation of these methods is the inability to predict
the affinity changes resulting from animo acid deletion and insertion, which restricts its application
in virtual screening of proteins with varying lengths.

AI algorithms for predicting binding free energy change(∆G). Representative methods include
CSM-AB(Myung et al., 2020a; 2022; 2020b), PPI-Affinity(Romero-Molina et al., 2022b), AREA-
AFFINITY(Yang et al., 2023a;b), and DG-Affinity(Yuan et al., 2023). These methods extract fea-
tures of the three-dimensional structure of protein complexes and the amino acid sequence of pro-
teins in order to predict the affinity. Specifically, in PPI-Affinity, the spatial structure of residues
is grouped, and topographic indices, thermodynamic indices, property-based indices, and other fea-
tures are reconstructed and calculated through aggregation operators to obtain features with spatial
information(Ruiz-Blanco et al., 2015). In AREA-AFFINITY, the area of interface residue pairs is
first calculated, and dr-sasa is used to obtain surface area. Then information such as amino acid
types and physicochemical properties at the interface and surface are aggregated to obtain features
with three-dimensional structural information. Despite the inclusion of spatial structural informa-
tion in the extracted features, the three-dimensional structure of the protein complex is not explicitly
described, and well-defined features are more conducive to the learning of AI models.

3 DATASET

3.1 DATA COMPOSITION

Our data source is shown in Fig.1(A), which mainly consists of four parts: (1) PPB-Affinity
Dataset: This is the largest protein affinity dataset to date, where each sample has a experimen-
tally measured ∆G value, the three-dimensional structure of the wild-type complex, and mutation
information, etc. (2) Heterogeneous DMS Affinity Datasets: Heterogeneous affinity datasets such
as PBAD-AS(Chan et al., 2020), PDAD-SA(Starr et al., 2022), where the affinity measurements are
not ∆G or dissociation constant(KD) values, but rather Kd,app or log2 enrichment ratio. Within the
same set of experiments, these measurements are positively or negatively correlated with the affinity
∆G values, but they cannot be directly converted to ∆G values using known formulas. (3)Protein
Complex Structure Dataset: DIPS-Plus(Morehead et al., 2023), an enhanced, feature-rich dataset
of 42,108 complexes for geometric deep learning of protein interfaces. (4)Validation Case Dataset:
Affinity data of nanobodies with different antigens, including CTLA-4, PD1, PD-L1, and HEL.

The PPB-Affinity dataset and the heterogeneous DMS affinity datasets are used for the development
and validation of PPBind-3D and PPBind-1D, while the DIPS-Plus dataset is used exclusively for
the development of PPBind-1D. The validation case Dataset does not participate in model training.

3.2 DATA PARTITIONING

Data partition is usually used to verify the true performance of the model. For protein affinity
data, however, traditional random partition is not reasonable because the same or similar protein
complexes may appear in both the training set and the validation set, resulting in an inability to
correctly evaluate the model’s performance. Luo Shitong(Luo et al., 2023) proposed data partition
based on PDB code, but there may be data leakage(Bushuiev et al., 2023) due to the fact that protein
complexes with different PDB codes may also be composed of homologous proteins (such as 2NU0,
1SGQ). In order to address this issue, we propose a novel data partitioning method based on Anton
Bushuiev’s SE (3) PPI redundancy removal technique iDist(Bushuiev et al., 2023). This method has
the advantage of less data leakage and is more conducive to reflecting the true of the model.

First, we computed the similarity of all PDB files in the PPB-Affinity dataset using iDist, and em-
ployed the nearest neighbors algorithm to identify several most similar complexes for each complex.
Treating each complex as a node and connecting similar complexes with edges, we could repre-
sent the similarity relationships of the dataset as a Graph. Next, the graph partitioning algorithm
METIS(Karypis & Kumar, 1998) was applied to divide the dataset into N folds for cross validation
of the proposed models. Finally, we set N to 5 in our experiments and used the Fruchterman-
Reingold algorithm to arrange the nodes to visualise the graph as shown in Fig.2. Nodes lacking
edge connections constitute the "ring" in the figure. Conversely, nodes with a greater number of
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edge connections will be situated in closer proximity to the "centre" of the circle. We use differ-
ent colours to represent different data folds, and it is evident that each data fold exhibits distinct
characteristics. Optimising the partitioning quality through minimising edge cutting by METIS, it
is possible to group together nodes with greater similarity. This approach to data partitioning facili-
tates the enrichment of homologous or similar structures within a single data fold. Furthermore, we
also analyzed the differences in data partitioning methods in A.3.

A B

Figure 2: (A): Overall rendering divided into five parts. (B): Five subplots that make up the overall
rendering

4 PPBIND

4.1 PPBIND-3D

We designed the network as illustrated in Fig.1(B). Firstly, it should be noted that despite the signif-
icant differences in protein length and conformation observed between different protein complexes,
they all possess a binding interface that directly affects affinity. In order to concentrate the model on
the area in close proximity to the binding interface, for each amino acid residue present in the recep-
tor of the protein complex, if there is an amino acid residue present on the ligand and the distance
between their C-alpha atoms is less than 10 Å, then this pair of residues is defined as the binding
sites. The amino acid residues in the receptor and ligand in closest proximity to the binding site were
extracted using the K nearest neighbour algorithm, which identified the visible patches of the model.
We employ ROTAMER DENSITY ESTIMATOR(Luo et al., 2023) to extract and simulate the amino
acid side chain potential conformational distribution information. To fully leverage the affinity data
of various protein complex mutations without the necessity of inputting mutant structures, thereby
significantly expanding the quantity of available data.

Subsequently, in order to fully leverage the information derived from the three-dimensional struc-
ture, we represented the residues as nodes and their pairs as edges. This allows us to represent the
protein complex as a complete graph. Specifically, we define the node feature vector at the residue
level as h, which includes the type of amino acid residue, physicochemical properties of amino
acids, relative solvent-accessible surface area, types of dihedral angles, and types of side chain tor-
sion angles. The edge feature vector is denoted as e, including the amino acids types, differences in
relative solvent-accessible surface areas, relative positions, Euclidean distances, and virtual dihedral
angles between the two connected residues.

The core of our architecture is the geometric encoder, inspired by DDG-Pred(Shan et al., 2022) and
RDE-Network(Luo et al., 2023), which is an SE (3) invariant attention module. In the Geometric
Encoder, two modes of feature updating, ’SELF’ and ’MUTUAL’ , are designed. The ’SELF’ mode
involves the ligand or receptor updating features based solely on its own structural information,
while the ’MUTUAL’ mode involves the ligand or receptor updating features based on the structural
information of the counterpart. A complete feature update is defined as a process that begins with
’SELF’ and then proceeds to ’MUTUAL’ once more. Specifically, for a L-layer model, the attention
computation process in the l-th (1 ≤ l ≤ L) layer Geometric encoder can be represented as follows:
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Among them, R and T represent the rotation matrix and translation vector of the i-th residue trans-
formed from the local coordinate system to the global coordinate system; h represents the node
feature; γ is a learnable parameter, and α

(l)
ij is the weight of the l-th layer Geometric encoder at-

tention. In the "SELF" mode, both i and j are residues in the ligand or receptor. If i and j are not
homologous, the mode is "MUTUAL". The process of feature updating can be expressed as:
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(5)

Many studies on protein-protein binding affinities, such as the heterogeneous DMS affinity dataset
we collected, did not measure the KD or ∆G values directly, but measured values like ligand en-
richment, which were more abundant. Although these values cannot be directly converted into KD

or ∆G values through a formula, they are positively or negatively correlated with KD and ∆G. To
leverage this valuable heterogeneous affinity wet-lab data, we referred to G. Wang’s work(Wehenkel
& Louppe, 2019) and introduced Monotonic Neural Networks into the prediction head, which we
called it as monotonic neural network-constrained multi-task learning (MMTL). Specifically, affin-
ity prediction is treated as multi-task learning, with each task corresponding to a distinct prediction
head, all prediction head sharing a common backbone network. The primary prediction head is
tasked with predicting ∆G values, while the other prediction heads predict various non-∆G from
different sources. Thus, the learning objective for PPBind-3D can be expressed as a minimization
objective function as follows.

argmin
θ,θt

 1

T ∗N

T∑
t=1

N∑
i=1

(yt,i −Mθ(xi)t)
2 +

1

(T − 1)∗N

T∑
t ̸=1

N∑
i=1

(λt ·Mθ(xi)1 − Fθt (λt ·Mθ(xi)t))
2


(6)

Here, T represents the task (prediction head) index, yt,i represents the true value of the i-th sample
for task t. Mθ is PPBind network used to predict values for different tasks. Fθ is a neural net-
work that approximates the computation of integrals using the Crenshaw-Coulters method, thereby
enhancing the accuracy of the integrals. It is capable of learning and integrating monotonically in-
creasing functions. For more details on neural network Fθ , please refer to A.4. As Fθ is applicable
solely to functions that control monotonically increasing functions, we employ the symbol λt to
denote the monotonicity of task label values with respect to ∆G, where a value of 1 denotes mono-
tonically increasing and -1 denotes monotonically decreasing. The term before the + is the mean
squared error formula, which is used for training the model to predict affinity values. The term fol-
lowing the + is used to train the model on the monotonicity between different affinity metrics and
the ∆G values.

4.2 PPBIND-1D

In protein complexes, there are often more than one chain of ligands and receptors, i.e., the ligand
and receptor themselves might constitute a complex. Currently, the protein language models or other
sequence models can only take monomeric sequences and a linker is commonly used to connect
the complex sequences into a single entity to accommodate complex sequences to handle complex
sequences. To simplify the problem, this study considers data where the number of receptor and
ligand chains does not exceed two. Thus, the most complex protein complex situation addressed
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here is that both the ligand and receptor are dimers. A linker consisting of 25 Gly residues is used
to connect the sub-complexes of the ligand or receptor.

We designed the network as illustrated in Fig.1(C). We used physicochemical properties of amino
acids and protein language models ESM2(Lin et al., 2022) to extract the basic features of ligand
sequences or receptor sequences, respectively. Next, we simulated the process of protein-protein
interactions using a cross-attention mechanism to facilitate information transferring and updating
between ligand and receptor. The cross attention mechanism can be represented by the following
formula:

βli,rj = softmax

(
1√
d
Linear (sli) · Linear (srj)T

)
(7)

h′
li = βli,rj Linear (sli) (8)

Where s represents sequence features, βli,rjrepresents the attention of the i-th residue in the ligand
to the j-th residue in the receptor, and similarly, the attention of the i-th residue in the receptor to
the j-th residue in the ligand can be expressed as βri,lj .

In order to enable the sequence model to learn structural information, we proposed a novel Align-
ment method for training the model that was more lightweight and also simplified the model training
process, allowing the model to extract as much structure-related features as possible and to approach
the data distribution of the latent vector in the structural model more closely. "Alignment" consist
of cosine similarity and mean square error, defined as:

Lalign =
χstructure · χsequence

max (∥χstructure ∥2 , ϵ) ·max
(
∥χsequence ∥2′ ϵ

) + (χstructure − χsequence )
2 (9)

Where χ is the feature vector before inputting into the multi-modal prediction head. The purpose
of this design is to ensure that the direction of the feature vectors is as uniform as possible and the
magnitude of the modulus is close, with features extracted solely from sequence information align-
ing with those extracted from structural information, thereby enhancing the predictive performance
of the sequence model. To provide further guidance to Alignment, the architecture and weights of
the multimodal prediction head of PPBind-3D are transferred to PPBind-1D. The learning objective
of PPBind-1D can be defined as a minimization objective function as the sum of Lalign term and
Equation(6).

5 RESULT

5.1 EVALUATION

We trained and tested PPBind-3D by the PPB-Affinity dataset and the DMS-Het dataset, where the
DMS-Het dataset was for model training only and the PPB-Affinity dataset was for cross-validation.
Under strict data partitioning, the five-fold cross-validation performance of PPBind-3D on the PPB-
Affinity dataset was showed as Fig.3A. Fig.3B illustrates the performance of PPBind-3D when
trained and tested at an 8:2 ratio with random partitioning.

Similarly, PPBind-1D has been validated using both strict and random partitioning, in a manner
consistent with the validation of PPBind-3D. However, the training set for PPBind-1D additionally
included DIPS-Plus. After a simple filtering of the PPB-Affinity dataset (as described in section ’4.2
PPBind-1D’), PPBind-1D was trained based on the principle of sequence-structure-alignment. The
performance of PPBind-1D was as follows in Fig.4.

The test metrics for random partitioning are significantly higher than those for strict partitioning.
This is because the random partitioning introduces data leakage, which artificially boosts the test
metrics. In contrast, strict partitioning avoids data leakage and provides a more accurate evalua-
tion of the model’s generalization performance. These results demonstrate the superiority of our
proposed data partitioning method. Furthermore, the Pearson and Spearman correlations of our
PPBind-3D and PPBind-1D models are both greater than 0.6 under the strict partitioning of data,
indicating that our model architecture is preeminent.
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A B

Figure 3: (A)The performance of PPBind-3D under strict data partitioning.(B)The performance of
PPBind-3D under random data partitioning.

A B

Figure 4: (A)The performance of PPBind-1D under strict data partitioning.(B)The performance of
PPBind-1D under random data partitioning.

To better evaluate the performance of our model, we used the following models as baseline com-
parisons: PRODIGY(Xue et al., 2016), which predicts affinity based on intermolecular contacts
and properties derived from non-interface surfaces; DFIRE(Liu et al., 2004), which predicts affinity
based on a potential function using the ideal gas state as a physical reference; CP_PIE(Ravikant
& Elber, 2010), a mathematical programming-based approach for protein-protein docking filter-
ing and scoring that utilizes residue contacts and overlap areas; ISLAND(Abbasi et al., 2020),
which employs sequence-based features and a machine learning model to predict affinity; and
ProBAN(Bogdanova & Novoseletsky, 2024), which utilizes complex structural data and a deep 3D
convolutional neural network to predict affinity. The test data and baseline model metrics were
sourced from ProBAN. The test data consists of two components: test set 1, which includes 126
samples, and test set 2, which includes 83 samples, with all samples in set 2 being protein complexes
composed of two chains. Both sets are subsets of those in PDBbind v2020(Wang et al., 2004). Ad-
ditionally, all PDB entries identified in the test data were excluded, and PPBind-3D was retrained.
The resulting performance are illustrated in Table 1, from which it can be seen that PPBind-3D
outperforms other algorithms in all aspects, demonstrating its superior performance.

5.2 VISUALIZATION OF ALIGNMENT

To observe the effectiveness of ’Alignment’, the feature representations are visualised by dimen-
sionality reduction using the following steps:

7
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Table 1: Comparison between PPBind-3D and other models

Method Test set 1(126) Test set 2(83)
Pearson MAE(kcal/mol) RMSE(kcal/mol) Pearson MAE(kcal/mol) RMSE(kcal/mol)

PRODIGY - - - 0.28 2.47 3.52
DFIRE - - - 0.08 25.05 29.17
CP_PIE - - - -0.10 10.90 11.27
ISLAND - - - 0.28 2.30 2.85

PPI-Affinity - - - 0.49 1.83 2.40
ProBAN 0.60 1.60 1.95 0.55 1.75 2.28

PPBind-3D(ours) 0.626 1.482 1.898 0.559 1.647 2.210

Step1 Extract high-dimensional feature representations of the training samples using the PPBind-
3D model, and fit a dimensionality reduction function FU using the UMAP (Uniform Man-
ifold Approximation and Projection) algorithm.

Step2 Extract high-dimensional feature representations of the validation samples using the PDBind-
3D, PDBind-1D, and PPBind-1D-w/o Align models, respectively.

Step3 Individually project the three sets of high-dimensional feature representations onto a 2D
plane using the fitted FU function and visualize them.

By comparing the three dimensionality reduction visualizations Fig5, it can be observed that the
dimensionality reduction representation of the PPBind-1D model retains a similar data topological
structure to that of the PPBind-3D model, whereas the PPBind-1D model without ’Alignment’ ex-
hibits a scattered state. This indicates that the representations extracted by the PPBind-1D model
are similar to those of the PPBind-3D model, suggesting that it is possible to enhance the predic-
tion accuracy of the PPBind-1D model to the level of the PPBind-3D model through our proposed
’Alignment’ method.

Figure 5: Visualize the representation of three models

5.3 VIRTUAL SCREENING

To validate the performance of the model in virtual screening of protein affinity, a series of three
case studies was conducted. In order to enhance the precision of the screening outcomes, this section
employs the models that has been trained through the random partitioning of the data set. At the
same time, we also compared three cases with the training data, including the Euclidean distance
represented by iDist, PDB ID and its descriptive information. For details, please refer to A.6.

Case1. Based on PPBind-3D, predict affinity from real structure. We have compiled a set of
recent experimental data (Kang-Pettinger et al., 2023) on affinity and complex structures, which
have not yet been included in the PPB-Affinity dataset. This dataset involves affinity KD values
and complex structures for various antibodies binding to antigens such as Cytotoxic T-Lymphocyte
Antigen 4 (CTLA-4), Programmed Death Protein 1 (PD-1), and Programmed Death-Ligand 1 (PD-
L1), as well as their mutants. PPBind-3D, was used to predict the affinities of these antibody-antigen
complexes. The Fig.6A is based on whether the affinity originates from a mutant or not, while the

8
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Fig.6B is based on the PDB code. Overall, this case shows that PPBind-3D can be used for affinity
prediction and virtual screening when real structural information is available.

A B

Figure 6: Display the prediction results of the model under real structure. (A) is based on the type,
(B) is based on the PDB code.

Case2. Anti-Hen Egg lysozyme antibodies affinity ranking. To assess the performance of the
proposed models in virtual affinity screening without real structures, we conducted case2. We ob-
tained a set of 38 KD values for different nanobodies binding to HEL, as measured by Porebski
et al. (2024) through experiments. We then predicted the complex structures of each nanobody with
HEL using AlphaFold3, follwed by affinity predictions with PPBind-3D and PPBind-1D (Fig.7).

As shown in Fig7 A, the affinity predictions for structures using PPBind-3D based on AlphaFold3
were found to be of a comparable level to those using PPBind-1D-Align. Conversely, PPBind-
1D-No-Align performed significantly less well than PPBind-1D-Align. It was observed that the
predicted structures in this batch exhibited a general low ipTM(Fig.7D), indicating potential inaccu-
racy in the structure prediction of the interface region. Furthermore, it was determined that distinct
complexes exhibit disparate epitopes(Fig.7E), which markedly influence the affinity strength and
ultimately result in the failure of PPBind-3D prediction.

A B C

D E

Figure 7: Correlation between the affinities predicted by (A) model PPBind-3D, (B) model PPBind-
1D-NoAlignment, (C) model PPBind-1D-Alignment and the actual affiinties in Case 2; D. Box
plot of the ipTM and pTM for the complex structures predicted by AlphaFold3 in Case 2; E. Two
structures predicted by AlphaFold3 in case 2. The left side has lowest ipTM, and the right side has
highest ipTM.
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Case3. Anti-PD-L1 antibodies affinity ranking. The antibodies and the affinity values derived
from Brzostek et al. (2016); Gao et al. (2020); Guan et al. (2023); He et al. (2017); Hong et al.
(2021); Rajasekaran et al. (2024); Tan et al. (2018; 2017) were used to validate ours model in the
case. Similar to Case 2, only the sequences of the proteins are known. We also used AlphaFold3 to
predict complex structures and compared the predictions of the three models.

As shown in Fig.8A, the results of the predictive modelling demonstrate that PPBind-3D is the least
effective; PPBind-1D-No-Align is the second-best performer, and PPBind-1D-Align is the most
accurate. We found that even with high ipTM (Fig.8D), docking posture and epitopes and paratopes
varied between individuals (Fig.8E), which we believe contributes to affinity prediction.

A B C

D E

Figure 8: Correlation between the affinities predicted by (A) model PPBind-3D, (B) model PPBind-
1D-NoAlignment, (C) model PPBind-1D-Alignment and the actual affiinties in Case 3; D. Box plot
of the ipTM and pTM for the complex structures predicted by AlphaFold3 in Case 3; E. The two
structures for which AlphaFold3 predicted the highest ipTM scores in Case 3. The blue chains is
PD-L1, and the green chains is antibody.

6 CONCLUSION

In this paper, a substantial corpus of disparate PPB affinity data was integrated, and a data par-
titioning method was proposed that can markedly diminish data leakage. The feasibility of this
data partitioning method was demonstrated by training the model PPBind-3D. Subsequently, our
model PPBind-1D was trained based on a novel training paradigm based on a principle of sequence-
structure-alignment, which effectively combines the precision of structural models with the expedi-
ency of sequence models. The simulation of a genuine virtual screening scenario has demonstrated
that PPBind-1D-Align is highly compatible with the actual application requirements.
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A APPENDIX

A.1 REPRODUCIBILITY

The codes for our work are available at https://anonymous.4open.science/r/PPBind-for-ICLR2025

A.2 DETAILS ON THE HYPERPARAMETERS

For training the PPBind models we use the Adam optimizer with an initial learning rate at 1e-4.
We use a batch size of 16. We train the models for 10,000 to 300,000 iterations across various
experiments. We also use the plateau learning rate scheduler for all model training. For PPBind-3D
training, we used K nearest neighbour algorithm with K=64, to respectifully clip the amino acid
residues in the receptor and ligand in closest proximity to the binding site. With batch size=16,
using a single NVIDIA A100 GPU, training PPBind-3D for 100000 iterations takes about 7hours,
and training PPBind-1D for 360,000 iterations takes about 22hours.

A.3 COMPARE DIFFERENT WAYS OF PARTITIONING DATA

We evaluated the partition performance of three methods , namely the proposed partition method,
partitioning according to PDB codes, and partitioning according to sample randomization. The
minimum, maximum and average Euclidean distances between each fold of data were calculated
shown as Fig.9. Observing the distribution of the minimum, there were similar complexes between
different folds in both randomized divisions. In our proposed strict division method, there were no
similar complexes between each fold. From the average distance plot, the two randomized division
methods were compared with our proposed method, which divides as many similar complexes as
possible in the same fold, because the average distance per fold of the randomized division method is
very close to the average distance per fold of the randomized division method, whereas the average
distance per fold of our method is somewhat different, and the value is both large and small.

A.4 DETAILS OF MONOTONIC CONTROL

Monotonic Neural Networks (MMN) fundamentally represent a monotonic function y = F (x, θ),
facilitating the transformation between two scalar values x ∈ R and y ∈ R. This transformation,
without loss of generality, strictly enforces a monotonic positive correlation between x and y. We-
henkel & Louppe (2019) constructed such a monotonic function by integrating a strictly positive
derivative f(t, θ), as expressed in the following equation:

F (x, θ) =

∫ x

0

f(t, θ) dt+ F (0, θ)
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A

B

C

Figure 9: (A): Our proposed strict partitioning method; (B): Randomly partitioning according to
PDB; (C): Randomly partitioning according to samples

Here, f(t, θ) is always greater than zero, and F (0, θ) is a constant. We represent f(t, θ) us-
ing a simple Multi-Layer Perceptron (MLP) network, ensuring that the output remains posi-
tive by applying a ELU activation function in the final layer and adding one to the network
output value. Subsequently, we employ the Clenshaw-Curtis quadrature method for numeri-
cal integration to compute y = F (x, θ) over the interval [0, x]. In practical implementa-
tion, we can compute the forward integral and backward differentiation of F more efficiently
through mathematical transformations, with specific details available in the referenced Github link:
https://github.com/AWehenkel/UMNN/blob/master/models/UMNN/MonotonicNN.py.

In our application case, the input x to the monotonic neural network is the model-predicted dG
value multiplied by its sign, while the output y corresponds to other heterogeneous affinity values.
The sign indicates the monotonicity between the dG value and the heterogeneous affinity values,
where +1 denotes a monotonic positive correlation and -1 denotes a monotonic negative correlation.
Specifically, the sign of Kd,app is +1, while the sign of the log2 enrichment ratio is -1.

A.5 ABLATION STUDY

To investigate the impact of data partitioning methods, network design, and training strategies on
model performance, we conducted ablation experiments on the PPB-Affinity dataset, as summarized
in the table2. The overall metrics were derived from the complete PPB-Affinity dataset, while the
Per-Structure metrics were obtained from samples with more than 10 mutants in the PPB-Affinity
dataset.

The structural model PPBind-3D outperforms the sequence model PPBind-1D. To rigorously
assess the effects of strict versus random data partitioning on model performance, we performed 10
experiments. The strict partitioning employed five-fold cross-validation (details can be found in the
Methods section under Data Partitioning), while the random partitioning used an 80:20 split between
the training and validation sets without cross-validation. In the case of random data partitioning,
PPBind-3D significantly outperformed PPBind-1D, particularly in the Per-Structure metrics. This
aligns with the intuition that structural information is more beneficial for predicting binding affinity
than sequence information, especially in capturing the affinity differences induced by mutations.
Conversely, under strict data partitioning, both models exhibited a notable decline in performance.
However, PPBind-3D still maintained superior performance over PPBind-1D, particularly in the
Per-Structure metrics. This comparative analysis suggests that random data partitioning likely in-
troduces data leakage, resulting in inflated performance evaluations to some extent. Conversely, it
demonstrates that our proposed strict data partitioning method can substantially mitigate the risk of
data leakage.
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MMTL enhances the models’ generalization performance. A comparison between Experiments
1 and 2 reveals that employing MMTL (utilizing the DMS-Het dataset) results in a significant im-
provement in overall model performance. This indirectly supports the reliability of the non-dG
affinity data. Considering that incorporating more data for training is beneficial for improving the
model’s generalization performance, we advocate for the use of MMTL.

S&M-attention outperforms All-attention. In the Geometric Module, we conducted ablation stud-
ies (Experiments 2, 3) to analyze the impact of different attention mechanisms. "All-attention" refers
to a method that does not distinguish between the receptor and ligand, treating the complex struc-
ture as a whole for attention calculation and feature updating. In contrast, "S&M-attention" (self-
attention and mutual attention) treats the receptor and ligand as individual entities. It first computes
self-attention within each entity to update their features, followed by mutual attention to capture
interactions between the receptor and ligand, further refining their respective feature representa-
tions. By comparing Experiments 2 and 3, it is clear that S&M-attention significantly outperforms
All-attention.

The alignment mechanism enhances PPBind-1D, and incorporating unlabeled samples (DIPS-
Plus dataset) further boosts model performance. To validate the effectiveness of our proposed
"Alignment" method for PPBind-1D, we conducted Experiments 4,5,6 and 8,9,10. In Experiments
6 and 10, the models were trained directly without using Alignment. Experiments 5 and 9 employed
the Alignment method but did not utilize unlabeled samples. Experiments 4 and 5 aligned with
Experiment 3, while Experiments 8 and 9 aligned with Experiment 7. Under strict data partitioning
(Experiments 4, 5, and 6), it is evident that models using the Alignment mechanism outperform those
trained directly across all metrics. Additionally, incorporating unlabeled samples further improves
the model’s performance, bringing it closer to PPBind-3D. In contrast, experiments 8, 9, 10 show
that the model incorporating unlabeled samples for alignment performed the worst. This is due to
data leakage between the PPB-Affinity training and test sets under random data partitioning, leading
to inflated test set performance.

A.6 COMPARISON OF CASE DATA

In order to investigate the potential correlation between the three validation cases and the training
data, we employed the iDist method to characterise all the samples. We then computed and identified
the training data PDB with the smallest Euclidean distance from the case data and obtained brief
descriptions of these by querying the RCSB. The above information was then collated into Tables3,
4, 5 and 6
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Table 2: The result of Ablation Study
Index Data

split network Overall Per-Structure
Pearson Spearman R2 MAE Pearson Spearman

1 strict

PPBind-3D
-w/o MMTL

-w All Attention 0.582 0.593 0.288 1.876 0.378 0.343

2 strict

PPBind-3D
-w MMTL

-w All Attention 0.617 0.618 0.374 1.779 0.383 0.343

3 strict

PPBind-3D
-w MMTL

-w S&M Attention 0.666 0.663 0.440 1.684 0.380 0.362

4 strict

PPBind-1D
-w Align

-w Unlabeled Samples 0.648 0.631 0.403 1.690 0.004 0.004

5 strict

PPBind-1D
-w Align

-w/o Unlabeled Samples 0.626 0.606 0.311 1.847 0.004 0.004

6 strict

PPBind-1D
-w/o Align

-w/o Unlabeled Samples 0.594 0.587 0.229 1.932 0.062 0.050

7 random
PPBind-3D
-w MMTL

-w S&M Attention
0.887 0.882 0.785 0.898 0.634 0.607

8 random

PPBind-1D
-w Align

-w Unlabeled Samples 0.865 0.857 0.745 0.966 0.336 0.319

9 random

PPBind-1D
-w Align

-w/o Unlabeled Samples 0.876 0.866 0.763 0.908 0.443 0.412

10 random
PPBind-1D
-w/o Align

-w/o Unlabeled Samples
0.868 0.862 0.748 0.958 0.463 0.441
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Table 3: Comparative Information Table for Case 1. 5TRU, 6RP8 has been deleted and does not
appear in the case 1 final result.

Case 1 Training Data IDist
distancePDB description PDB description

1I85 Crystal Structure Of The
Ctla-4/B7-2 Complex 1I8L Human B7-1/Ctla-4 Co-Stimulatory

Complex 0.059

4ZQK

Structure of the complex of
human programmed death-1
(PD-1) and its ligand PD-L1. 4C9B

Crystal structure of eIF4AIII-CWC22
complex 0.038

5B8C

High resolution structure of the
human PD-1 in complex with

pembrolizumab Fv 6J6Y FGFR4 D2 - Fab complex 0.046

5GGS
PD-1 in complex with
pembrolizumab Fab 5D8J

Development of a therapeutic monoclonal
antibody targeting secreted aP2 to treat type

2 diabetes.
0.050

5GGT
PD-L1 in complex with

BMS-936559 Fab 5DWU
Beta common receptor in complex with a

Fab 0.052

5GGV
CTLA-4 in complex with

tremelimumab Fab 5KVF
Zika specific antibody, ZV-64, bound to

ZIKA envelope DIII 0.063

5JXE

Human PD-1 ectodomain
complexed with

Pembrolizumab Fab 1YQV

The crystal structure of the antibody Fab
HyHEL5 complex with lysozyme at 1.7A

resolution
0.046

5TRU

Structure of the first-in-class
checkpoint inhibitor

Ipilimumab bound to human
CTLA-4

5TRU

Structure of the first-in-class checkpoint
inhibitor Ipilimumab bound to human

CTLA-4
0.000

6RP8

Crystal Structure of
Ipilimumab Fab complexed

with CTLA-4 at 2.6A
resolution

5TRU

Structure of the first-in-class checkpoint
inhibitor Ipilimumab bound to human

CTLA-4
0.023

6XY2

Crystal structure of CTLA-4
complexed with the Fab of

HL32 antibody 1FE8

Crystal Structure Of The Von Willebrand
Factor A3 Domain In Complex With A Fab

Fragment Of Igg Ru5 That Inhibits
Collagen Binding

0.061

7CGW
Complex structure of PD-1 and

tislelizumab Fab 5K59

Crystal structure of LukGH from
Staphylococcus aureus in complex with a

neutralising antibody
0.050

8HIT

Crystal structure of
anti-CTLA-4 humanized IgG1
MAb–JS007 in complex with

human CTLA-4

6P67
Crystal Structure of a Complex of human
IL-7Ralpha with an anti-IL-7Ralpha 2B8

Fab
0.048
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Table 4: Comparative Information Table for Case 2
Case 2 Training Data IDist

DistanceID description PDB description

M1

Anti-Hen Egg
lysozyme

antibodies

4PGJ Human heavy-chain domain antibody in complex with
hen egg-white lysozyme 0.039

M2 4ML7
Crystal structure of Brucella abortus PliC in complex

with human lysozyme 0.051

M3 1PVH
Crystal structure of leukemia inhibitory factor in

complex with gp130 0.072

M4 3U7Y
Structure of NIH45-46 Fab in complex with gp120 of

93TH057 HIV 0.046

M5 1FSK

Complex Formation Between A Fab Fragment Of A
Monoclonal Igg Antibody And The Major Allergen

From Birch Pollen Bet V 1
0.044

M6 4GN4 OBody AM2EP06 bound to hen egg-white lysozyme 0.045

M7 5J7C A picomolar affinity FN3 domain in complex with hen
egg-white lysozyme 0.050

M8 4CJ2 Crystal structure of HEWL in complex with affitin H4 0.054

M9 4PGJ Human heavy-chain domain antibody in complex with
hen egg-white lysozyme 0.047

M10 5EZO
Crystal Structure of PfCyRPA in complex with an

invasion-inhibitory antibody Fab 0.051

M11 3VG9

Crystal structure of human adenosine A2A receptor
with an allosteric inverse-agonist antibody at 2.7 A

resolution
0.042

M12 4PGJ Human heavy-chain domain antibody in complex with
hen egg-white lysozyme 0.042

M13 2C1T Structure of the Kap60p:Nup2 complex 0.058

M14 4MAY Crystal structure of an immune complex 0.047

M15 4CJ0 Crystal structure of CelD in complex with affitin E12 0.051

M16 4ML7
Crystal structure of Brucella abortus PliC in complex

with human lysozyme 0.055

M17 3G6D
Crystal structure of the complex between CNTO607

Fab and IL-13 0.047

M18 4PGJ Human heavy-chain domain antibody in complex with
hen egg-white lysozyme 0.039

M19 4ML7
Crystal structure of Brucella abortus PliC in complex

with human lysozyme 0.050

M23 4GN4 OBody AM2EP06 bound to hen egg-white lysozyme 0.050
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Table 5: Case 2 Comparison Information Table Continued
Case 2 Training Data IDist

DistanceID description PDB description

C1

Anti-Hen Egg
lysozyme
antibodies

4ZS7
Structural mimicry of receptor interaction by

antagonistic IL-6 antibodies 0.058

C2 3KV4 Structure of PHF8 in complex with histone H3 0.068

C3 1VEU
Crystal structure of the p14/MP1 complex at 2.15 A

resolution 0.049

C4 3IDY
Crystal structure of HIV-gp120 core in complex with
CD4-binding site antibody b13, space group C2221 0.044

C5 3PL6
Structure of Autoimmune TCR Hy.1B11 in complex

with HLA-DQ1 and MBP 85-99 0.043

C6 4ML7
Crystal structure of Brucella abortus PliC in complex

with human lysozyme 0.047

C7 3T2N
Human hepsin protease in complex with the Fab

fragment of an inhibitory antibody 0.034

C8 3FFC
Crystal Structure of CF34 TCR in complex with

HLA-B8/FLR 0.070

F1 1KIR

Fv Mutant Y(A 50)S (Vl Domain) Of Mouse
Monoclonal Antibody D1.3 Complexed With Hen Egg

White Lysozyme
0.050

F2 4GLV OBody AM3L09 bound to hen egg-white lysozyme 0.050

F3 1B3S
Structural Response To Mutation At A Protein-Protein

Interface 0.052

F4 3T2N
Human hepsin protease in complex with the Fab

fragment of an inhibitory antibody 0.046

F5 1DZB

Crystal structure of phage library-derived single-chain
Fv fragment 1F9 in complex with turkey egg-white

lysozyme
0.043

F6 4GN4 OBody AM2EP06 bound to hen egg-white lysozyme 0.051

F7 4ML7
Crystal structure of Brucella abortus PliC in complex

with human lysozyme 0.045

F8 4PGJ
Human heavy-chain domain antibody in complex with

hen egg-white lysozyme 0.043

F9 1KIR

Fv Mutant Y(A 50)S (Vl Domain) Of Mouse
Monoclonal Antibody D1.3 Complexed With Hen Egg

White Lysozyme
0.048

F10 3T2N
Human hepsin protease in complex with the Fab

fragment of an inhibitory antibody 0.036

M19 4ML7
Crystal structure of Brucella abortus PliC in complex

with human lysozyme 0.050

M23 4GN4 OBody AM2EP06 bound to hen egg-white lysozyme 0.050
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Table 6: Comparative Information Table for Case 3
Case 3 Training Data IDist

DistanceID description PDB description

VHH1

Anti-
PD-L1

antibodies

6CDO

Structure of vaccine-elicited HIV-1 neutralizing antibody
vFP16.02 in complex with HIV-1 fusion peptide residue

512-519
0.051

VHH2 6UMT High-affinity human PD-1 PD-L2 complex 0.037

VHH4 5FUG Crystal structure of a human YL1-H2A.Z-H2B complex 0.055

VHH6 4I0C The structure of the camelid antibody cAbHuL5 in complex
with human lysozyme 0.041

VHH9 4JLR Crystal structure of a designed Respiratory Syncytial Virus
Immunogen in complex with Motavizumab 0.059

VHH10 1DHK Structure Of Porcine Pancreatic Alpha-Amylase 0.049

VHH13 1VEU
Crystal structure of the p14/MP1 complex at 2.15 A

resolution 0.053

VHH14 4AYD

Structure of a complex between CCPs 6 and 7 of Human
Complement Factor H and Neisseria meningitidis FHbp

Variant 1 R106A mutant
0.040

VHH15 4ML7
Crystal structure of Brucella abortus PliC in complex with

human lysozyme 0.052

VHH16 4P5T 14.C6 TCR complexed with MHC class II I-Ab/3K peptide 0.053

VHH17 3K2M
Crystal Structure of Monobody HA4/Abl1 SH2 Domain

Complex 0.056

VHH18 5GTB
crystal structure of intermembrane space region of the

ARC6-PDV2 complex 0.054

VHH19 1EFN
Hiv-1 Nef Protein In Complex With R96I Mutant Fyn Sh3

Domain 0.057

VHH20 5E3E Crystal structure of CdiA-CT/CdiI complex from Y.
kristensenii 33638 0.041

VHH21 3CHW
Complex of Dictyostelium discoideum Actin with Profilin

and the Last Poly-Pro of Human VASP 0.053

VHH22 6FQ0

Crystal structure of the CsuC-CsuA/B chaperone-subunit
preassembly complex of the archaic chaperone-usher Csu pili

of Acinetobacter baumannii
0.050
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