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Abstract. A lane-level, high-definition (HD) digital map is needed for
autonomous cars to provide safety and security to the passengers. How-
ever, it continues to prove very difficult to produce error-free maps. To
avoid the deactivation of autonomous driving (AD) mode caused by
map errors, ensuring map data quality is a crucial task. We propose an
ontology-based workflow for HD map data quality assurance, including
semantic enrichment, violation detection, and violation handling. Evalu-
ations show that our approach can successfully check the quality of map
data and suggests that violation handling is even feasible on-the-fly in the
car (on-board), avoiding the autonomous driving mode’s deactivation.
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1 Introduction

Autonomous cars act in a highly dynamic environment and consistently have to
provide safety and security to passengers. A detailed, high-definition (HD) map
is needed for a car to understand its surroundings, which provides lane-level in-
formation to support vehicle perception and highly precise localisation [3]. The
creation of a road map involves a series of decisions on how features of the road
are to be represented concerning the map scale, level of generalization, projec-
tion, datum, and coordinate system. Every step of map creation may introduce
an error in one of the map features and Figure 1 shows a road gap that has been
found in a commercially available HD map, which caused a degradation of the
autonomous driving (AD) mode and a driver take-over request.

Usually, a take-over request is conducted for safety reasons when the AD
system is approaching its limits due to, for example, weather conditions. In
general, a take-over request is a complex and risky process and should be avoided
as much as possible and, in case of map errors, the request is not even related to
system limits. Therefore, the goal of our work is to use ontologies and reasoning
to find and fix map errors to extend the AD function’s availability. Ensuring
(general) data quality with an ontology-based approach has been well-studied
recently [7, 12, 6]. Yilmaz et al. [28, 27] have even demonstrated the feasibility
of using ontological methods for spatial data quality evaluation. The latter work
does, however, not consider map-specific concepts, e.g., lanes and the resulting
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Fig. 1: Snap shots of a normal driving scenario without map errors and active AD
mode (left-hand side) and an error scenario (right-hand side) with deactivated
AD mode and a driver take-over request due to a gap in the road model

challenges, and neither are the challenges and possibilities of handling violations
considered. We address these challenges and present an ontology-based approach
for ensuring map data quality. The main contributions are:

– We present a workflow for ensuring map data quality based on OWL 2 RL
ontologies [13] and Datalog rules [1].

– We present the develop Map Quality Violation Ontology (MQVO) and a set
of constraint rules for violation detection.

– We demonstrate violation handling strategies using violation tolerance and
resolution.

– We evaluate the performance of violation detection and the correctness of
violation resolution using RDFox [21] and realistic map data.

The rest of this paper is structured as follows: Section 2 introduces related
work, followed by some preliminaries in Section 3. Section 4 describes the work-
flow consisting of semantic enrichment, violation detection, and violation han-
dling. In Section 5, we describe the experimental setup and results, and we
conclude in Section 6. Additional explanations, rules, available resources and
evaluation discussion can be found in an accompanying technical report [22].

2 Related Work

Spatial data quality can be assessed with ontology-based approaches. Mostafavi
et al. [18] propose an ontology-based approach for quality assessment of spatial
databases. The ontology is encoded in Prolog, and queries are used to determine
the existence of inconsistencies. Wang et al. [25] investigate the feasibility of
applying rule-based spatial data quality checks over mobile data using the Se-
mantic Web Rule Language (SWRL). The authors show that the system has the
capability to warn the data collector if there is any inconsistent data gathered in
the field. Yilmaz et al. [28] created an ontology associated with spatial concepts
from the Open Geospatial Consortium and rules implemented as GeoSPARQL
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queries for detecting inconsistencies. Yilmaz et al. also developed the Spatial
Data Quality Ontology together with SWRL rules for performing quality assess-
ment [27]. Huang et al. [14] investigate the feasibility of combining ontologies
and semantic constraints modelled in the Shapes Constraint Language (SHACL)
for ensuring the semantic correctness of geospatial data from different levels of
detail. A number of RDF stores also support geospatial queries and integrity
constraints, e.g., Stardog,3 Virtuoso,4 and GraphDB.5

The existing ontology-based approaches, however, focus on general spatial
data. Map-related concepts and relationships, such as the relationships among
coordinate points, lanes, and roads, are not studied. While SHACL is designed
for RDF validation, by checking nodes w.r.t. class axioms or paths w.r.t. prop-
erty axioms, it cannot describe complex (spatial) relationship constraints, which
is crucial for map data. Although SHACL provides validation reports, it does
not provide a mechanism (e.g., vocabulary) for fixing errors, while we aim at
supporting violation detection and handling in a closed loop.

3 Preliminaries

In this section, we present relevant background for map data, the Resource
Description Framework, and rules.

3.1 Map Data

Our work is focused on the Navigation Data Standard (NDS) [20]. Map data is
partitioned in to adjacent tiles. They form approximately rectangular territorial
sections. The magnification level determines the edge length of a tile. Nodes
within a map tile represent a point location on the surface of the Earth by a
pair of longitude (y-coordinate) and latitude (x-coordinate) coordinates. Links
represent a stretch of road between two nodes and are represented by a line
segment (corresponding to a straight section of the road) or a curve having
a shape that is generally described by intermediate points called shape points
along the link. Shape points are represented by x-y coordinates as nodes, but
shape points do not serve the purpose of connecting links, as do nodes. Link
and road are synonyms and road has the same meaning as in everyday language
use. Links have attributes such as travel direction and types, such as highway.
The ordering of the shape points is with respect to the travel direction. The
geometry of Lanes is described by shape points too. Lanes are connected via
lane connectors. Each lane is described by two lane boundaries with lane marking
types (solid/dashed, single/double, etc.). Finally, lanes are organized into lane
groups with link references. We refer the interested reader to the literature for
further details about HD maps [15, 11].

3 https://www.stardog.com/
4 https://virtuoso.openlinksw.com/
5 https://graphdb.ontotext.com/
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3.2 RDF Graphs

Resource Description Framework (RDF) is a W3C standardised model for data
interchange in applications on the Web, where a subject (s) and a object (o) are
related with an explicit predicate (p). These simple s-p-o statements can be seen
as a directed, labelled (knowledge) graph. We formally introduce RDF graphs
as follows:

Definition 1 (RDF Graph [5]). Let I, L, and B be pairwise disjoint infinite
sets of IRIs, literals, and blank nodes, respectively. A tuple (s, p, o) ∈ I ∪B× I×
(I ∪ L ∪ B) is called an RDF triple, where s is the subject, p is the predicate,
and o is the object. An RDF graph G is finite set of RDF triples and induces a
set of vertices V = {s | (s, p, o) ∈ G} ∪ {o | (s, p, o) ∈ G}.

On top of RDF, we use the RL (rule language) profile of the Web Ontology
Language (OWL) [13] and custom Datalog rules [1] (RDFox syntactic variant)
to model complex knowledge and to infer, in particular, spatial relationships.

3.3 Rules

For defining such Datalog rules, we fix countable, disjoint sets of constants and
variables. A term is a constant or a variable. An atom has the form P (t1, . . . , tk),
where P is a k-ary predicate and each ti, 1 ≤ i ≤ k, is a term. We focus on
unary and binary atoms only (i.e., 1 ≤ k ≤ 2), which correspond to classes and
properties of the ontology, respectively. An atom is ground if it does not contain
variables. A fact is a ground atom and a dataset is a finite set of facts, e.g.,
as defined in an ontology. A Datalog rule is a logical implication of the form
H1, . . . ,Hj ← B1, . . . , Bk, where each Hi, 1 ≤ i ≤ j, is a head atom, and each
B`, 1 ≤ ` ≤ k, is a body atom. A Datalog program is a finite set of rules.

A negative body atom has the form, NOT EXISTS v1, . . . , vj IN B, where each
vi, 1 ≤ i ≤ j, is a variable and B is an atom. A rule r is safe if variables that
appear in the head or in a negative body atom also appear in a positive body
atom. A safe Datalog rule can be extended with stratified negation by extend-
ing the rule to have negative body atoms, where there is no cyclic dependency
between any predicate and a negated predicate.

An aggregate is a function that takes a multiset of values as input and returns
a single value as output. An aggregate atom has the form Aggregate(B1, . . . , Bk

ON x1, . . . , xj BIND f1(e1) AS r1 . . . BIND fn(en) AS rn), where each Bi, 1 ≤ i ≤ k,
is an atom, each xu, 1 ≤ u ≤ j, is a variable that appears in Bi, each fv,
1 ≤ v ≤ n, is an aggregate function, each ew, 1 ≤ w ≤ n, is an expression
containing variables from Bi, and each rz, 1 ≤ z ≤ n, is a constant for a variable
that does not appear in Bi.

4 Ensuring Map Data Quality

In this section, we present the workflow of ensuring map data quality consisting
of: (i) semantic enrichment, (ii) violation detection, and (iii) violation handling
(see Figure 2). We next describe these steps in more detail.
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Fig. 2: Workflow diagram of ensuring map data quality

Fig. 3: An HD map ontology based on NDS (partial rendering)

4.1 Semantic Enrichment

We adopt the concept of semantic enrichment [10] and use a set of rules for
inferring spatial semantics, e.g., start/end points and direct lane successors. This
allows us to express complex spatial relationships, which are the basis for the
subsequent violation detection and handling process. We modelled an HD map
ontology based on the NDS specification for describing the map entities as shown
in Figure 3. The rules can be categorised into: (1) primitive rules, (2) bounding
rules, (3) coordinate distance rules, and (4) topological rules:
(1) Primitive rules enrich instances with one-step inferences regarding relation-
ships and attributes and their results serve as input for all other rules. For a
concrete example consider:
hasLane(x, y)← LaneGroup(x), laneGroupId(x, i), Lane(y), laneGroupId(y, i).

(2) Bounding rules infer the boundaries of an area or the range of a lane or road,
such as a start/end shape point of a lane or the left or right-most lane. As a
concrete example, consider:
StartShapePoint(z)← Lane(l), AGGREGATE(hasShapePoint(l, p), index(p, idx) ON l

BIND MIN(idx) AS m), hasShapePoint(l, z), index(z, m).

AGGREGATE takes the matches for hasShapePoint(l, p) and index(p, idx) as
input and groups them based on the lane l. The aggregation function MIN then
selects the minimal index per group and assigns this value to m using BIND.
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Fig. 4: Classes and properties in MQVO

Since there is no suitable aggregate function for selecting the point for the index
m, it remains to get the point z that has the index m.
(3) Coordinate distance rules indicate the distance between two points using
coordinates. An auxiliary concept (CoordinateDistance) represents the ternary
relation that connects the source point to the target point via two object prop-
erties hasSource and hasTarget and the calculated distance value via the data
property distance:

CoordinateDistance(d), hasSource(d, s), hasTarget(d, t), distance(d, z)←
ShapePoint(s), x(s, xs), y(s, ys), ShapePoint(t), x(t, xt), y(t, yt),
BIND(sqrt((xs−xt)2+(ys−yt)2) AS z), BIND(SKOLEM("d", s, t) AS d).

The SKOLEM function allows for dynamically generating “fresh” IRIs [5] based on
the string "d" and the variable bindings for s and t.
(4) Topology rules refer to topological relations, more specifically, lateral (left-
/right) and longitudinal (predecessor/successor) relations. Connectivity can nat-
urally be expressed using recursive rules. The base case (one-step connectivity) is
usually inferred based on a pre-defined connectivity reference. For example, the
hasDirectNext relation over lanes is defined based on source and destination
connectors, while for links, it is defined by comparing the coordinates of start
and end points of links.

4.2 Violation Detection

We developed the Map Quality Violation Ontology (MQVO) and a set of spatial
constraint rules to detect violations after the enrichment process. The MQVO
describes the type of violation, the affected objects, the severity level, etc. and
provides information to guide the subsequent violation handling process. The
spatial constraint rules are classified into (1) topology, (2) geometry and (3) at-
tribute checking rules. We first describe MQVO, then we introduce the three
types of constraint checking rules.
Map Quality Violation Ontology We developed MQVO to describe map data
errors since, to the best of our knowledge, there are no ontologies for the specific
purpose of describing map data violations. MQVO supports error detection by
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Table 1: Constraint axioms as Datalog Constraint Atoms (DCA). We use C for
classes, op for object, dp for data, and p for object or data properties.
OWL Axiom Datalog Constraint Atom (DCA)

Existential Quantification C(x), NOT EXISTS y IN (C(y), p(x, y))
Individual Value Restriction C(x), NOT op(x, individual)
Literal Value Restriction C(x), NOT dp(x, literal)
HasKey C(x), dp(x, z), C(y), dp(y, z), FILTER(x 6= y)
Min (<)/Max (>) C(x), AGGREGATE(p(x, v) ON x BIND count(v) AS n),
Cardinality Restriction FILTER(n ./ max), ./∈ {>,<}

defining properties that can identify map objects (e.g., links/lanes) in which a vi-
olation is detected. It also provides context information for a violation to guide
the repair process. Figure 4 shows the main concept Violation and the re-
lated properties and classes. Each violation is associated with a ViolationType,
QualityParameter, Severity, affected MapObject, and the reason. Severity
is described by one of the individuals Low, Medium, High and Critical. If a
violation is repaired, then the involved map objects are linked to it via the
hasResolvedObject object property. A violation can have an accepted Threshold,
such as the threshold of the distance between two points.

Constraint Rules are classified into (1) topology, (2) geometry, and (3) attribute
checking rules based on the map error types. Before describing the details of
each rule type, we first introduce Violation Recording Rule Templates (VRRTs),
which provide patterns for modelling constraint violation detection rules. Ta-
ble 1 shows OWL axioms used to capture the map data quality requirements
together with their corresponding Datalog Constraint Atoms (DCA). Constraint
violations are recorded using freshly generated instances of Violation as shown
in the following rule template:

Violation(v), hasAffectedObject(v, x), hasReason(v, "r")←
<DCA>, BIND(SKOLEM("d", x) AS v).

A concrete example of minimum cardinality constraint of lane shape points using
the above template is as follows:

Violation(v), hasAffectedObject(v, l), hasReason(v, "MinCardinalityError")←
Lane(l), AGGREGATE(hasPoint(l, p) ON l BIND count(p) AS n),
FILTER(n < 2), BIND(SKOLEM("d", l) AS v).

(1) Topology Checking Rules are designed for checking the spatial relationships
of map objects. A comprehensive formal categorisation of binary topological
relations between regions, lines, and points has been developed by Egenhofer
and Herring [9]. In this paper, we model full coverage constraints, checking if a
set of other map objects fully covers a given map object. For example, a link
should be fully covered by a set of lane groups. To describe such constraints, we
first introduce some basic notations.



8 H. Qiu et al.

Algorithm 1: Check full coverage
input : pq: a base line, L = {u1v1, . . . , unvn}: a set of line segments
output: Lg, Lo: sets of line segments causing gaps and overlappings, resp.

1 Lg = Lo = ∅;
2 usvs = getStartSegment(L) ; // apply bounding rules
3 ueve = getEndSegment(L) ; // apply bounding rules
4 if us > p then
5 Lg = Lg ∪ {usve} ; // gap at the start

6 if ve < q then
7 Lg = Lg ∪ {ueve} ; // gap at the end

8 for i = 1 . . . n− 1 do
9 uv = getDirectNext(uivi) ; // apply topology rules

10 if vi < u then
11 Lg = Lg ∪ {uivi, uv} ; // gap in the middle

12 else if vi > u then
13 Lo = Lo ∪ {uivi, uv} ; // overlapping

Definition 2. A line (segment) pq is defined by its start point p and its end
point q, where p 6= q. A (base) line pq is fully covered by a sequence of lines
u1v1 . . . unvn if p = u1, q = vn, and vi = ui+1 for each 1 ≤ i < n, where ui 6= vi.
We say that there is a gap at the start if p < u1, a gap at the end if vn < q, a
gap in the middle if vi < ui+1 for some 1 ≤ i < n, and there is an overlapping
if vi > ui+1 for some 1 ≤ i < n.

Algorithm 1 presents the pseudo-code of full coverage checking. Given a base
line pq and a sequence of line segments L without self-loops, the algorithm first
identifies the start and end segment in L (lines 2–3) using bounding rules. The
algorithm checks if there is a gap at the start or end w.r.t. the base line (lines 4–
7). At last, it iterates through the given line segments and, for each segment, it
gets the direct next line segment (line 9) through topology rules, checks if there
is any gap in the middle (lines 8–10) or any overlapping (lines 11–12).

(2) Geometry Checking Rules are designed to check the geometric representa-
tion of links (lanes). The link (lane) model uses an ordered sequence of shape
points describing the geometry of a polyline that represents a link (lane). We fur-
ther subdivide geometry checking rules into cardinality and geometric accuracy
checking rules. Cardinality checking rules use minimum or maximum cardinality
restrictions in VRRTs. Geometric accuracy is checked via coordinate proxim-
ity using distance thresholds [8] to account for different levels of accuracy and
precision [29] in the collected map data. The following rule, where we abbrevi-
ate hasAffectedObject as hao, illustrates the case of checking a radius distance
threshold of geometric points in two connected lanes.
Violation(v), hao(v, up), hao(v, vq), hasReason(v, "GeometryError")←

Lane(p), Lane(q), hasDirectNext(p, q), endPoint(p, up), startPoint(q, vq),
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CoordinateDistance(c), hasSource(c, q), hasTarget(c, p), distance(c, d),
Threshold(t), hasValue(t, vt), FILTER(d > vt),
BIND(SKOLEM("d", up, vq) AS v).

(3) Attribute Accuracy Checking Rules are used to check if the recorded at-
tributes of map data representing real-world entities are correct and consis-
tent. The attributes could be feature classifications, text information for feature
names, or descriptions, and they ought to be consistent with each other. For ex-
ample, if a road is classified as a motorway, it should also have a controlled-access
designed for high-speed vehicular traffic. Controlled-access is modelled as a data
property with a Boolean value. Hence, the corresponding violation detection rule
can be modelled using a literal value restriction in the VRRT.

4.3 Violation Handling

Violations are handled based on the severity level. If a critical violation is
detected during the map pre-loading phase, the autonomous driving mode is
switched off, and control is handed over to the driver in the corresponding re-
gion. For non-critical violations, we rely on violation tolerance and violation
resolution strategies considering the spatial relations. Violation tolerance is fea-
sible because errors in the low-level (raw) data do not necessarily affect the
decision taken at the knowledge (human-perceivable) level in intelligent systems
[26]. In cases where the violations cannot be tolerated, spatial knowledge, e.g.,
topological relations, can be used to resolve violations [17, 2]. These strategies
allow us to support autonomous driving applications, even in the presence of
low-level data errors.

We apply graph aggregation [16] for violation tolerance and decomposition
[4] for violation resolution to achieve knowledge level consistency. Essentially,
these strategies take advantage of graph structure similarity, which is captured
by the notion of isomorphisms :

Definition 3 (RDF Graph Isomorphism [5]). Let G1 and G2 be RDF
graphs with V1, V2 the induced vertices of G1 and G2, respectively. We say that
G1 and G2 are isomorphic, if there is a bijection µ : V1 → V2 such that µ(b) ∈ B
for each b ∈ V1 ∩B, µ(`) ∈ L for each ` ∈ V1 ∩ L, µ(v) ∈ I for each v ∈ V1 ∩ I,
and, for each triple (s, p, o) ∈ G1, (µ(s), p, µ(o)) ∈ G2. We call such µ an iso-
morphism between G1 and G2.

Based on isomorphism, we introduce graph aggregation and its use for vio-
lation tolerance. Apart from its use in violation tolerance, graph aggregation is
helpful in itself to obtain a higher-level view of the map data, with a focus on
the details that are important for autonomous driving.

Definition 4 (RDF Graph Aggregation). Let G1, G2, and G be RDF graphs
with vertices V1, V2, and V , respectively, such that G1 is isomorphic to G2 wit-
ness by the isomorphism µ. A (partial) function α : V1∪V2 → V is an abstraction
function w.r.t. G1, G2, and G if, for each v ∈ V , there are nodes v1 ∈ V1 and
v2 ∈ V2 such that µ(v1) = v2 and α(v1) = α(v2) = v. If an abstraction function
w.r.t. G1, G2, and G exists, we call G an aggregation graph of G1 and G2.
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Fig. 5: A violation-free example of RDF graph aggregation over lanes

We generalise the notion of an abstraction graph to a set of pairwise isomorphic
graphs G1, . . . , Gn in a natural way.

Figure 5 shows an example where we apply graph aggregation over lanes of
two lane groups with ID 1 and 2. We abbreviate lane as l, laneGroup as lg, and link
as lk, e.g., l11 stands for lane11. Subfigure (a) shows a map visualisation, while (b)
shows the corresponding graph representation, and the aggregation is shown in
the upper part. Note that the mapping with a dotted line shows the isomorphism
between graph A and graph B (we omit the mapping for identical values such
as a mapping from true in graph A to true in graph B). The dashed lines show
the abstraction function, where we again omit identical value mappings. The
abstraction function only maps the lanes (l11 in graph A and l21 in graph B) as
well as the lane index and direction attribute. The lane aggregation aligns with
the human perception of l11 and l21 as one continuous lane.

(1) Violation Tolerance. Figure 6 shows an example with a violation, which
consists of a duplicate lane group ID. More precisely, lg1 and lg2 both have ID 1
in the map data. As a result of this, the map data is parsed as containing just
one lane group (with ID 1), which also causes l11 and l21 to be considered equal
as they both have ID 1 and belong to the lane group with ID 1. Hence, we get
identical RDF graphs for l11 (graph A) and l21 (graph B), which is a special case
of RDF graph isomorphism. Applying the abstraction function (as in Figure 6,
dashed line) results, however, in the same (correct) aggregation graph (graph
C) as for the violation-free scenario shown in Figure 5. Hence, the RDF graph
aggregation can tolerate some data errors.

(2) Violation Resolution. We illustrate how violations can be resolved (in par-
ticular, lane ambiguity) using graph decomposition.

Definition 5 (RDF Graph Decomposition). An RDF decomposition of an
RDF graph G is a collection of edge-disjoint, isomorphic subgraphs G1, . . . , Gn

of G such that every edge of G belongs to exactly one Gi, 1 ≤ i ≤ n. We denote
such a decomposition of G as Ĝ = {G1, G2, . . . , Gn}.
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Fig. 6: An example of lane aggregation with lane group ID uniqueness violation

Fig. 7: A example of lane ambiguity caused by lane group ID duplication.

Figure 7 shows an example of lane ambiguity also caused by a lane group ID du-
plication. Subfigure (a) shows a normal map visualisation of lg1 and lg2 located
in separate roads. Subfigure (b) shows the graph representation resulting from
a duplicate ID of lg1 and lg2 which causes l11 and l21 to merge into one lane
instance having both lanes’ spatial relationships, such as associated points, links
and successor lanes. Based on the graph structure of the ambiguous graph, there
exists a mapping between subgraph A and B, which indicates the application
of RDF decomposition. Hence, we apply RDF graph decomposition to fix the
topology and distance measurements to restore geometry. Figure 8 shows the
concrete steps: (1) violation detection, (2) topology correction, and (3) assign-
ment of geometric points.

In Step 1, a topology violation is detected if a lane group is associated with
two disconnected links. This is modelled by checking the existence of a connection
between links associated to a lane group using an existential qualification in
a VRRT, and an instance of LaneViolation is generated having topology (an
instance of class Topology) as its QualityParameter.

In Step 2, the topology correction is achieved via graph decomposition and
relationship establishment. The original graph of l11/21 can be decomposed
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Fig. 8: Lane ambiguity violation resolution steps

into isomorphic subgraphs A and B. Two new lane instances (nl1 and nl2) are
generated with the correct topological relationships.

NewLane(l), hasFeature(n, f), hasDirectNext(l, n), hasOriginalLane(l,m)←
LaneViolation(v), hasQualityParameter(v, topology), hao(v,m),
hasLane(lg1,m), isOn(lg1, f), LaneGrp(lg2), hasLane(lg2, n),
isOn(lg2, f), hasDirectNext(m,n), index(m, i),
BIND(SKOLEM("d", f, i) AS l)

In Step 3, geometric shape point assignment is achieved via a point grouping
strategy which compares the distance from each shape point of the lane to the
first and last shape point of the lane associated links. The shape points are then
grouped if the difference between the calculated distance and the links’ length
is within a threshold, e.g., 10m.
hasPossibleLanePoint(f, p)←

LaneViolation(v), hasQualityParameter(v, topology), hao(v, l), hasShapePoint(l, p),
hasFeature(l, f), length(f, n), hasFirstShapePoint(f, u), hasLastShapePoint(f, v),
CoordinateDistance(d1), hasSource(d1, p), hasTarget(d1, u), distance(d1, t1),
CoordinateDistance(d2), hasSource(d2, p), hasTarget(d2, v), distance(d2, t2),
FILTER(ABS((t1 + t2)− n) < 10).

While assigning the point groups to correct new lanes, geometric point group-
ing is verified by comparing the number of points in each group to the total
number of points of the original lane to prevent wrong point group assignments.
hasShapePoint(n, p)←

NewLane(n), hasOriginalLane(n, l), numPoints(l, u), hasFeature(n, f),
hasPossibleLanePoint(f, p), numPossibleLanePoints(f,m), FILTER(m < u).

5 Evaluation

Tile-based map data is stored as Binary Large Object (BLOB) in an NDS map
database. We use SQLite Python APIs to extract map data and construct RDF
triples based on the HD map ontology (see Figure 3). We have implemented
the proposed workflow of ensuring map data quality into an application called
SmartMapApp using RDFox 4.0.0 as reasoner. The evaluation was performed
on a 64-bit Ubuntu virtual machine with 8 Intel(R) Core(TM) i7-8550U CPU
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Fig. 9: Performance of semantic enrichment and violation detection over real map
data; the left-hand side scale shows the execution time for semantic enrichment
(dots on a solid line) and violation detection (diamonds on a dotted line) in
seconds; the number of input triples is shown in form of bars using the scale on
the right-hand side

Table 2: Number of rules used for semantic enrichment and violation detection
Semantic Enrichment Rules Violation Detection Rules

Primitive Rules 15 Topology Checking Rules 10

Bounding Rules 14 Geometry Checking Rules 14

Coordinate Distance Rules 3 Attribute Accuracy Checking Rules 13

Topology Rules 10 Total 37

Total 42

@ 1.80GHz running at 33MHz with 15 GB memory. We first show the perfor-
mance of semantic enrichment and violation detection and then we evaluate the
correctness of violation handling.

5.1 Violation Detection

We used 10 adjacent real map tiles along Federal Motorway 92 (Bundesautobahn
92) in Germany for violation detection evaluation, and record the computation
time after doing a warm-up run by executing the tasks 3 times sequentially .
Semantic enrichment is performed via 42 rules and violation detection consists
of 37 rules (see Table 2). The result of the two phases is summarised in Figure 9.
The computation time for both phases increases with respect to the data size.
The average number of input triples is 146, 182, the average execution time of
semantic enrichment is 1, 584ms, and the average execution time of violation
detection is 197ms.
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Table 3: The violation tolerance over a lane using graph aggregation, both ground
truth and dirty data are aggregated results

lane length (m) #points successor link

ground truth BE9D6 2034 54 563E 02
dirty data BE9D6 2034 54 563E 02

Table 4: The violation resolution of a lane using graph decomposition
lane length (m) #points successor link

ground truth 1116_0 358 14 1117_0 199
dirty data 1116_0 214, 358 5, 14 1117_0, 1188_0 199, 197
resolved violation 1116_0 358 14 1117_0 199

5.2 Violation Handling

We consider the use case of lane group ID uniqueness violations to evaluate
violation handling strategies. We show the result of violation tolerance over the
error on a high way described in Figure 1 (see Section 1), and violation resolution
over an error on separated roads. At last, we discuss the evaluation results.
Violation Tolerance. The error in Figure 1 occurred in the map data containing
a highway in Germany. Part of this highway is represented as five continuous
lane groups with the same number of lanes. Two of the lane groups have the
same ID, which caused the degradation of the autonomous driving mode. We
applied graph aggregation over both the ground truth and dirty data. The lane
aggregation results agree on both inputs, which shows that the lane group ID
issue can be solved (see Table 3).
Violation Resolution. We evaluated the resolution strategy over two lane groups
containing only one lane allocated to different links. The ID duplication caused
the lanes in these two lane groups to be merged into one lane. Table 4 shows the
result of applying graph decomposition over the dirty data. Row 2 (dirty data)
shows that the lane is ambiguous as it has the length, number of shape points,
successors, and related links of both lanes. Row 3 shows that the graph decom-
position can resolve the error and all lane properties are correctly recovered.

Overall, the results demonstrate that our approach can improve map data
quality, resulting in a better error-tolerance of AD systems. On the one hand, the
performance of the violation detection allows the deployment of the proposed
solution in the back-end (cloud side) to check the map data before sending it to
the car or on-board (embedded side, in the car) in case of loss of connectivity
with the back-end. On the other hand, the evaluation of the violation handling
strategies has shown that we could avoid the deactivation of the AD mode by
detecting the error and correcting the map data in both cases of the lane group
error. The cost of reasoning generally depends not only on the number of rules
but also on the complexity of the combination of certain rules and the input
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data. For details of how RDFox performs reasoning, we refer interested readers
to the description of the materialization algorithm in RDFox [19].

6 Conclusion and Future Work

In this paper, we present an ontology-based approach for ensuring map data
quality. We propose a workflow considering semantic enrichment, violation de-
tection and violation handling. Semantic enrichment is achieved via a set of rules
combined with an HD map ontology and the results provide the needed spatial
knowledge for violation detection and handling. Violation detection is modelled
via the novel Map Quality Violation Ontology and suitable constraint viola-
tion rules. At last, we show novel violation handling strategies over non-critical
violations using graph aggregation and graph decomposition. We evaluate the
performance of violation detection and the correctness of violation handling.
The results show that our approach can successfully check the quality of map
data and suggests that violation handling is even feasible on-the-fly in the car
(on-board), avoiding the autonomous driving mode’s deactivation. We plan to
integrate this approach into the developed knowledge-spatial architecture [23],
and test the approach in ROS (Robot Operating System) [24], which requires a
re-implementation of the Java-based SmartMapApp in C++.
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