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ABSTRACT

This paper is devoted to the study (common in many applications) of the black-
box optimization problem, where the black-box represents a gradient-free oracle
f̃p = f(x)+ξp providing the objective function value with some stochastic noise.
Assuming that the objective function is µ-strongly convex, and also not just L-
smooth, but has a higher order of smoothness (β ≥ 2) we provide a novel opti-
mization method: Zero-Order Accelerated Batched Stochastic Gradient Descent,
whose theoretical analysis closes the question regarding the iteration complexity,
achieving optimal estimates. Moreover, we provide a thorough analysis of the
maximum noise level, and show under which condition the maximum noise level
will take into account information about batch size B as well as information about
the smoothness order of the function β. Finally, we show the importance of con-
sidering the maximum noise level ∆ as a third optimality criterion along with the
standard two on the example of a numerical experiment of interest to the machine
learning community, where we compare with SOTA gradient-free algorithms.

1 INTRODUCTION

This paper focuses on solving a standard optimization problem:

f∗ := min
x∈Q⊆Rd

f(x), (1)

where f : Q→ R is function that we want to minimize, f∗ is the solution, which we want to find. It
is known that if there are no obstacles to compute the gradient of the objective function f or to com-
pute a higher order of the derivative of the function, then optimal first- or higher-order optimizations
algorithms Nesterov (2003) should be used to solve the original optimization problem equation 1.
However, if computing the function gradient ∇f(x) is impossible for any reason, then perhaps the
only way to solve the original problem is to use gradient-free (zero-order) optimization algorithms
Conn et al. (2009); Rios & Sahinidis (2013). Among the situations in which information about the
derivatives of the objective function is unavailable are the following:

a) non-smoothness of the objective function. This situation is probably the most widespread
among theoretical works Gasnikov et al. (2022); Alashqar et al. (2023); Kornilov et al.
(2024);

b) the desire to save computational resources, i.e., computing the gradient ∇f(x) can some-
times be much ”more expensive” than computing the objective function value f(x). This
situation is quite popular and extremely understandable in the real world Bogolubsky et al.
(2016);

c) inaccessibility of the function gradient. A vivid example of this situation is the problem of
creating an ideal product for a particular person Lobanov et al. (2024).

Like first-order optimization algorithms, gradient-free algorithms have the following optimality cri-
teria: #N – the number of consecutive iterations required to achieve the desired accuracy of the
solution ε and #T – the total number of calls (in this case) to the gradient-free oracle, where by
gradient-free/derivative-free oracle we mean that we have access only to the objective function f(x)
with some bounded stochastic noise ξp (E

[
ξ2p
]
≤ ∆2). It should be noted that because the objective

function is subject to noise, the gradient-free oracle plays the role of a black box. That is why there
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(a) Resource saving (b) Robustness to attacks (c) Confidentiality

Figure 1: Motivation to find the maximum noise level ∆

is a tendency in the literature when the initial problem formulation equation 1 with a gradient-free
oracle is called a black-box optimization problem Kimiaei & Neumaier (2022). However, unlike
higher-order algorithms, gradient-free algorithms have a third optimality criterion: the maximum
noise level ∆ at which the algorithm will still converge ” good”, where by ”good convergence” we
mean convergence as in the case when ∆ = 0. The existence of such a seemingly unusual criterion
can be explained by the following motivational examples (see Figure 1*). Among the motivations
we can highlight the most demanded especially by companies (and not only). Resource saving (Fig-
ure 1a): The more accurately the objective function value is calculated, the more expensive this
process to be performed. Robustness to Attacks (Figure 1b): Improving the maximum noise level
makes the algorithm more robust to adversarial attacks. Confidentiality (Figire 1c): Some compa-
nies, due to secrecy, can’t hand over all the information. Therefore, it is important to be able to
answer the following question: How much can the objective function be noisy?

The basic idea to create algorithms with a gradient-free oracle that will be efficient according to the
above three criteria is to take advantage of first-order algorithms by substituting a gradient approxi-
mation instead of the true gradient Gasnikov et al. (2023). The choice of the first-order optimization
algorithm depends on the formulation of the original problem (on the Assumptions on the function
and the gradient oracle). But the choice of gradient approximation depends on the smoothness of the
function. For example, if the function is non-smooth, a smoothing scheme with l1 randomization
Alashqar et al. (2023); Lobanov (2023) or with l2 randomization Dvinskikh et al. (2022); Lobanov
et al. (2023a;b) should be used to solve the original problem. If the function is smooth, it is enough
to use choose l1 randomization Akhavan et al. (2022) or l2 randomization Gorbunov et al. (2018);
Lobanov & Gasnikov (2023). But if the objective function is not just smooth but also has a higher
order of smoothness (β ≥ 2), then the so-called Kernel approximation Akhavan et al. (2023); Gas-
nikov et al. (2024b;a), which takes into account the information about the increased smoothness of
the function using two-point feedback, should be used as the gradient approximation.

In this paper, we consider the black-box optimization problem equation 1, assuming strong con-
vexity as well as increased smoothness of the objective function. We choose accelerated stochastic
gradient descent Vaswani et al. (2019) as the basis for a gradient-free algorithm. Since the Kernel
approximation (which accounts for the advantages of increased smoothness) is biased, we general-
ize the result of Vaswani et al. (2019) to the biased gradient oracle. We use the resulting accelerated
stochastic gradient descent with a biased gradient oracle to create a gradient-free algorithm. Finally,
we explicitly derive estimates on the three optimality criteria of the gradient-free algorithm.

1.1 MAIN ASSUMPTIONS AND NOTATIONS

Since the original problem equation 1 is general, in this subsection we further define the problem
by imposing constraints on the objective function as well as the zero-order oracle. In particular, we
assume that the function f is not just L-smooth, but has increased smoothness, and is also µ-strongly
convex.

Assumption 1.1 (Higher order smoothness). Let l denote maximal integer number strictly less
than β. Let Fβ(L) denote the set of all functions f : Rd → R which are differentiable l times

*The pictures are taken from the following resource
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and ∀x, z ∈ Q the Hölder-type condition:∣∣∣∣∣∣f(z)−
∑

0≤|n|≤l

1

n!
Dnf(x)(z − x)n

∣∣∣∣∣∣ ≤ Lβ ∥z − x∥β ,

where l < β (β is smoothness order), Lβ > 0, the sum is over multi-index n = (n1, ..., nd) ∈ Nd,
we used the notation n! = n1! · · ·nd!, |n| = n1+ · · ·+nd, ∀v = (v1, ..., vd) ∈ Rd, and we defined

Dnf(x)vn = ∂|n|f(x)
∂n1x1···∂ndxd

vn1
1 · · · v

nd

d .

Assumption 1.2 (Strongly convex). Function f : Rd → R is µ-strongly convex with some constant
µ > 0 if for any x, y ∈ Rd it holds that

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ

2
∥y − x∥2 .

Assumption 1.1 is commonly appeared in papers Bach & Perchet (2016); Akhavan et al. (2023),
which consider the case when the objective function has smoothness order β ≥ 2. It is worth noting
that the smoothness constant Lβ in the case when β = 2 has the following relation with the standard
Lipschitz gradient constant L = 2 ·L2. In addition, Assumption 1.2 is standard among optimization
works Nesterov (2003); Stich (2019).

In this paper, we assume that Algorithm 1 (which will be introduced later) only has access to the
zero-order oracle, which has the following definition.

Definition 1.3 (Zero-order oracle). The zero-order oracle f̃p returns only the objective function
value f(xk) at the requested point xk with stochastic noise ξp:

f̃p = f(xk) + ξp,

where p ∈ {1, 2} and we suppose that the following assumptions on stochastic noise hold

• ξ1 ̸= ξ2 such that E[ξ21 ] ≤ ∆2 and E
[
ξ22
]
≤ ∆2, where ∆ ≥ 0 is level noise;

• the random variables ξ1 and ξ2 are independent from e ∈ Sd(1) is a random vector uni-
formly distributed on the Euclidean unit sphere, and r is a random value uniformly dis-
tributed on the interval.

We impose constraints on the Kernel function which is used in Algorithm 1.
Assumption 1.4 (Kernel function). Let function K : [−1, 1]→ R satisfying:

E[K(u)] = 0, E[uK(u)] = 1,

E[ujK(u)] = 0, j = 2, ..., l, E[|u|β |K(u)|] <∞.

Definition 1.3 is common among gradient-free works Lobanov (2023). In particular, a zero-order
oracle will produce the exact function value when the noise level is 0. We would also like to point
out that we relaxed the restriction on stochastic noise by not assuming a zero mean. We only need
the assumption that the random variables ξ1 and ξ2 are independent from e and r. Assumption 1.4
is often found in papers using the gradient approximation – the Kernel approximation. An example
of such a function is the weighted sums of Lejandre polynomial Bach & Perchet (2016).

Notation. We use ⟨x, y⟩ :=
∑d

i=1 xiyi to denote standard inner product of x, y ∈ Rd, where
xi and yi are the i-th component of x and y respectively. We denote Euclidean norm in Rd as
∥x∥ :=

√
⟨x, x⟩. We use the notation Bd(r) :=

{
x ∈ Rd : ∥x∥ ≤ r

}
to denote Euclidean ball,

Sd(r) :=
{
x ∈ Rd : ∥x∥ = r

}
to denote Euclidean sphere. Operator E[·] denotes full expectation.

1.2 RELATED WORKS AND OUR CONTRIBUTIONS

In Table 1, we provide an overview of the convergence results of the most related works, in particular
we provide estimates on the iteration complexity. Research studying the problem equation 1 with
a zero-order oracle (see Definition 1.3), assuming that the function f has increased smoothness
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Table 1: Overview of convergence results of previous works. Notations: d = dimensionality of the problem
equation 1; β = smoothness order of the objective function f ; µ = strong convexity constant; ε = desired
accuracy of the problem solution by function.

References Iteration Complexity Maximum Noise Level

Bach, Perchet (2016) Bach & Perchet (2016) O
(

d
2+ 2

β−1 ∆2

µε
β+1
β−1

)
✗

Akhavan, Pontil, Tsybakov (2020) Akhavan et al. (2020) Õ
(

d
2+ 2

β−1 ∆2

(µε)
β

β−1

)
✗

Novitskii, Gasnikov (2021) Novitskii & Gasnikov (2021) Õ
(

d
2+ 1

β−1 ∆2

(µε)
β

β−1

)
✗

Akhavan, Chzhen, Pontil, Tsybakov (2023) Akhavan et al. (2023) Õ
(

d2∆2

(µε)
β

β−1

)
✗

Theorem 3.1 (Our work) O
(√

L
µ log 1

ε

)
✓

(β ≥ 2, see Assumption 1.1) comes from Polyak & Tsybakov (1990). After 20-30 years, this
problem has received widespread attention. However, as we can see, all previous works ”fought”
(improved/considered) exclusively for oracle complexity (which matches the iteration complexity),
without paying attention to other optimality criteria of the gradient-free algorithm. In this paper, we
ask another question: Is estimation on iteration complexity unimprovable? And as we can see from
Table 1 or Theorem 3.1, we significantly improve the iteration complexity without worsening the
oracle complexity, and also provide the best estimates among those we have seen on ∆.

More specifically, our contributions are the following:

• We provide a detailed explanation of the technique for creating a gradient-free algorithm
that takes advantage of the increased smoothness of the function via Kernel approximation.

• We generalize existing convergence results for accelerated stochastic gradient descent to
the case where the gradient oracle is biased, thereby demonstrating how bias accumulates
in the convergence of the algorithm. This result may be of independent interest.

• We close the question regarding the iteration complexity search by providing an improved
estimate (see Table 1) that is, we provide an optimal estimate.

• We find the maximum noise level ∆ at which the algorithm will still achieve the desired
accuracy ε (see Table 1 and Theorem 3.1). Moreover, we show that if overbatching is done,
the positive effect on the error floor is preserved in a strongly convex problem formulation.

• We show the importance of considering the maximum noise level ∆ as a third optimal-
ity criterion along with the standard two using an example of a numerical experiment of
interest for ML (a logistic regression problem).

Paper Organization This paper has the following structure. In Section 2, we present a first-order
algorithm on the basis of which a novel gradient-free algorithm will be created. And in Section 3
we provide the main result of this paper, namely the convergence results of the novel accelerated
gradient-free optimization algorithm. In Section 4, we provide experiments. While Section 5 con-
cludes this paper. The missing proofs of the paper are presented in Appendix.

2 SEARCH FOR FIRST-ORDER ALGORITHM AS A BASE

As mentioned earlier, the basic idea of creating a gradient-free algorithm is to take advantage of
first-order algorithms. That is, in this subsection, we find the first-order algorithm on which we
will base to create a novel gradient-free algorithm by replacing the true gradient with a gradient
approximation. Since gradient approximations use randomization on the sphere e (e.g., l1, l2 ran-
domization, or Kernel approximation), it is important to look for a first-order algorithm that solves
a stochastic optimization problem (due to the artificial stochasticity of e). Furthermore, since the
gradient approximation from a zero-order oracle concept has a bias, it is also important to find a
first-order algorithm that will use a biased gradient oracle. Using these criteria, we formulate an
optimization problem to find the most appropriate first-order algorithm.

4
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2.1 STATEMENT PROBLEM

Due to the presence of artificial stochasticity in the gradient approximation, we reformulate the
original optimization problem as follows:

f∗ = min
x∈Q⊆Rd

{f(x) := E [f(x, ξ)]} . (2)

We assume that the function satisfies the L-smoothness assumption, since it is a basic assumption in
papers on first-order optimization algorithms.
Assumption 2.1 (L-smooth). Function f is L-smooth if it holds ∀x, y ∈ Rd

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2 .

Next, we define a biased gradient oracle that uses a first-order algorithm.
Definition 2.2 (Biased Gradient Oracle). A map g : Rd × D → Rd s.t.

g(x, ξ) = ∇f(x, ξ) + b(x)

for a bias b : Rd → Rd and unbiased stochastic gradient E [∇f(x, ξ)] = ∇f(x).

We assume that the bias and gradient noise are bounded.
Assumption 2.3 (Bounded bias). There exists constant δ ≥ 0 such that ∀x ∈ Rd the following
inequality holds

∥b(x)∥ = ∥E [g(x, ξ)]−∇f(x)∥ ≤ δ. (3)
Assumption 2.4 (Bounded noise). There exists constants ρ, σ2 ≥ 0 such that the more general
condition of strong growth is satisfied ∀x ∈ Rd

E
[
∥g(x, ξ)∥2

]
≤ ρ ∥∇f(x)∥2 + σ2. (4)

Assumption 2.3 is standard for analysis, bounding bias. Assumption 2.4 is a more general condition
for strong growth due to the presence of σ2.

2.2 FIRST-ORDER ALGORITHM AS A BASE

Now that the problem is formally defined (see Subsection 2.1), we can find an appropriate first-order
algorithm. Since one of the main goals of this research is to improve the iteration complexity, we
have to look for a accelerated batched first-order optimization algorithm. And the most appropriate
optimization algorithm which has the following update rule:

xk+1 = yk − ηg(yk, ξk)

yk = αkzk + (1− αk)xk

zk+1 = ζkzk + (1− ζk)yk − γkηg(yk, ξk).

has the following convergence rate presented in Lemma 2.5.
Lemma 2.5 (Vaswani et al. (2019), Theorem 1). Let the function f satisfy Assumption 1.2 and 2.1,
and the gradient oracle (see Definition 2.2 with δ = 0) satisfy Assumptions 2.3 and 2.4, then with
ρ̃ = max{1, ρ} and with the chosen parameters γk, ak+1, αk, η the Accelerated Stochastic Gradient
Descent has the following convergence rate:

E [f(xN )]− f∗ ≤
(
1−

√
µ

ρ̃2L

)N [
f(x0)− f∗ +

µ

2
∥x0 − x∗∥2

]
+

σ2√
ρ̃2µL

.

As can be seen from Lemma 2.5, that the presented First Order Accelerated Algorithm is not appro-
priate for creating a gradient-free algorithm, since this algorithm uses an unbiased gradient oracle,
and also does not use the batching technique. Therefore, we are ready to present one of the signif-
icant results of this work, namely generalizing the results of Lemma 2.5 to the case with an biased
gradient oracle and also adding batching (where B is a batch size).

5
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(a) Case without bias (b) Case with bias

Figure 2: Bias influence on the algorithm convergence

Theorem 2.6. Let the function f satisfy Assumption 1.2 and 2.1, and the gradient oracle (see
Definition 2.2) satisfy Assumptions 2.3 and 2.4, then with ρ̃B = max{1, ρ

B } and with the
chosen parameters γk = 1√

2µηρ
, βk = 1− µη

2ρ , bk+1 =
√
2µ

(1−
√

µη
2ρ )

(k+1)/2 , ak+1 = 1

(1−
√

µη
2ρ )

(k+1)/2 ,

αk =
γkβkb

2
k+1η

γkβkb2k+1η+2a2
k

, η ≤ 1
2ρL the Accelerated Stochastic Gradient Descent with batching has the

following convergence rate:

E [f(xN )]− f∗ ≤
(
1−

√
µ

ρ̃2BL

)N [
f(x0)− f∗ +

µ

2
∥x0 − x∗∥2

]
+

σ2√
ρ̃2BµLB

2

+

(
1−

√
µ

ρ̃2BL

)N

R̃δ +
δ2√
4µL

,

where R̃ = maxk{∥xk − x∗∥, ∥yk − x∗∥}.

As can be seen from Theorem 2.6, this result is very similar to the result of Lemma 2.5, moreover,
they will be the same if we take δ = 0 and B = 1. It is also worth noting that the third summand does
not affect convergence much (the noise does not accumulate due to the decreasing sequence), so we
will not consider it in the future for simplicity. Finally, it is worth noting that the Algorithm presented
in Vaswani et al. (2019) can converge as closely as possible to the problem solution (see the red line
in Figure 2), while the Algorithm using the biased gradient oracle can only converge to the error floor
(see the blue line in Figure 2). This is explained by the last summand from Theorem 2.6. However,
convergence to the error floor opens questions about how this asymptote can be controlled. And
as shown in Gasnikov et al. (2024a), the convergence of gradient-free algorithms to the asymptote
depends directly on the noise level: the more noise, the better the algorithm can achieve the error
floor. This fact is another clear motivation for finding the maximum noise level. For a detailed proof
of Theorem 2.6, see the supplementary materials (Appendix B).

3 ZERO-ORDER ACCELERATED BATCHED SGD

Now that we have a proper first-order algorithm, we can move on to creating a novel gradient-free
algorithm. To do this, we need to use the gradient approximation instead of the gradient oracle. In
this work, we are going to use exactly the Kernel approximation because it takes into account the
advantages of increased smoothness of the function, and which has the following

g(x, e) = d
f(x+ hre) + ξ1 − f(x− hre)− ξ2

2h
K(r)e, (5)

where h > 0 is a smoothing parameter, e ∈ Sd(1) is a random vector uniformly distributed on
the Euclidean unit sphere, r is a random value uniformly distributed on the interval r ∈ [0, 1],
K : [−1, 1] → R is a Kernel function. Then a novel gradient-free method aimed at solving the
original problem equation 1 is presented in Algorithm 1. The missing hyperparameters are given in
the Theorem 2.6.

6
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Algorithm 1 Zero-Order Accelerated Batched Stochastic Gradient Descent (ZO-ABSGD)

Input: iteration number N , batch size B, Kernel K : [−1, 1]→ R, step size η, smoothing pa-
rameter h, x0 = y0 = z0 ∈ Rd, a0 = 1, ρ = 4dκ.

for k = 0 to N − 1 do
1. Sample vectors e1, e2..., eB ∈ Sd(1) and scalars r1, r2, ..., rB ∈ [−1, 1]
1. independently
2. Calculate gk = 1

B

∑B
i=1 g(xk, ei) via equation 5

3. yk ← αkzk + (1− αk)xk

4. xk+1 ← yk − ηgk

5. zk+1 ← βkzk + (1− βk)yk − γkηgk

end
Return: xN

Now, in order to obtain an estimate of the convergence rate of Algorithm 1, we need to evaluate the
bias as well as the second moment of the gradient approximation equation 5. Let’s start with the
bias of the gradient approximation:

Bias of gradient approximation Using the variational representation of the Euclidean norm, and
definition of gradient approximation equation 5 we can write:

∥E [g(xk, e)]−∇f(xk)∥

=

∥∥∥∥ d

2h
E
[(

f̃(xk + hre)− f̃(xk − hre)
)
K(r)e

]
−∇f(xk)

∥∥∥∥
①
=

∥∥∥∥dhE [f(xk + hre)K(r)e]−∇f(xk)

∥∥∥∥
②
= ∥E [∇f(xk + hru)rK(r)]−∇f(xk)∥
= sup

z∈Sd
2 (1)

E [(∇zf(xk + hru)−∇zf(xk)) rK(r)]

③,④

≤ κβh
β−1 L

(l − 1)!
E
[
∥u∥β−1

]
≤ κβh

β−1 L

(l − 1)!

d

d+ β − 1

≲ κβLh
β−1, (6)

where u ∈ Bd(1); ① = the equality is obtained from the fact, namely, distribution of e is symmetric’
② = the equality is obtained from a version of Stokes’ theorem Zorich & Paniagua (2016); ③ = Tay-
lor expansion (see Appendix for more detail); ④ = assumption that |R(hru)| ≤ L

(l−1)! ∥hru∥
β−1

=
L

(l−1)! |r|
β−1hβ−1 ∥u∥β−1.

Now we find an estimate of the second moment of the gradient approximation equation 5.

Bounding second moment of gradient approximation By definition gradient approximation
equation 5 and Wirtinger-Poincare inequality we have

E
[
∥g(xk, e)∥2

]
=

d2

4h2
E
[∥∥∥(f̃(xk + hre)− f̃(xk − hre)

)
K(r)e

∥∥∥2]
=

d2

4h2
E
[
(f(xk + hre)− f(xk − hre) + (ξ1 − ξ2)))

2
K2(r)

]
≤ κd2

2h2

(
E
[
(f(xk + hre)− f(xk − hre))

2
]
+ 2∆2

)
≤ κd2

2h2

(
h2

d
E
[
∥∇f(xk + hre) +∇f(xk − hre)∥2

]
+ 2∆2

)
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=
κd2

2h2

(
h2

d
E
[
∥∇f(xk + hre) +∇f(xk − hre)± 2∇f(xk)∥2

]
+ 2∆2

)
≤ 4dκ︸︷︷︸

ρ

∥∇f(xk)∥2 + 4dκL2h2 +
κd2∆2

h2︸ ︷︷ ︸
σ2

. (7)

Now substituting into Theorem 2.6 instead of δ → κβLh
β−1 from equation 6, ρ → 4dκ from

equation 7 and σ2 → 4dκL2h2 + κd2∆2

h2 from equation 7, we obtain convergence for the novel
gradient-free method (see Algorithm 1) with ρB = max{1, 4dκ

B }:

E [f(xN )]− f∗ ≤
(
1−

√
µ

ρ2BL

)N [
f(x0)− f∗ +

µ

2
∥x0 − x∗∥2

]
︸ ︷︷ ︸

①

+
4dκL2h2√
ρ2BµLB

2︸ ︷︷ ︸
②

+
κd2∆2

h2
√
ρ2BµLB

2︸ ︷︷ ︸
③

+
κ2
βL

2h2(β−1)

√
4µL︸ ︷︷ ︸
④

.

We are now ready to present the main result of this paper.

Theorem 3.1. Let the function f satisfy Assumptions 1.1 and 1.2, and let the Kernel approximation
with zero-order oracle (see Definition1.3) satisfy Assumptions 1.4 and 2.3–2.4, then the novel Zero-
Order Accelerated Batched Stochastic Gradient Descent (see Algorithm 1) converges to the desired
accuracy ε at the following parameters

Case B = 1: with smoothing parameter h ≲ ε1/2µ1/4, after N = O
(√

d2L
µ log 1

ε

)
successive

iterations, T = N · B = O
(√

d2L
µ log 1

ε

)
oracle calls and at ∆ ≲ εµ1/2

√
d

maximum noise
level.

Case 1 < B < 4dκ: with parameter h ≲ ε1/2µ1/4, after N = O
(√

d2L
B2µ log 1

ε

)
successive

iterations, T = N · B = O
(√

d2L
µ log 1

ε

)
oracle calls and at ∆ ≲ εµ1/2

√
d

maximum noise
level.

Case B = 4dκ: with smoothing parameter h ≲ ε1/2µ1/4, after N = O
(√

L
µ log 1

ε

)
successive

iterations, T = N · B = O
(√

d2L
µ log 1

ε

)
oracle calls and at ∆ ≲ εµ1/2

√
d

maximum noise
level.

Case B > 4dκ: with parameter h ≲
(
ε
√
µ
) 1

2(β−1) , after N = O
(√

L
µ log 1

ε

)
succes-

sive iterations, T = N · B = max{Õ
(√

d2L
µ

)
, Õ
(

d2∆2

(εµ)
β

β−1

)
} oracle calls and at

∆ ≲ (ε
√
µ)

β
2(β−1)

d B1/2 maximum noise level.

As can be seen from Theorem 3.1, Algorithm 1 indeed improves the iteration complexity compared
to previous works (see Table 1), reaching the optimal estimate in a class of algorithms based on first-
order algorithms at batch size B = 4dκ. However, if we consider the case B ∈ [1, 4dκ], then when
the batch size increases from 1, the algorithm improves the convergence rate (without changing the
oracle complexity), but achieves the same error floor. This is not very good, because the asymptote
does not depend on either the batch size or the smoothness order of the function. However, if we
take the batch size larger than B > 4dκ, we will significantly improve the maximal noise level by
worsening the oracle complexity. That is, in the overbatching condition, the error floor depends on
both the batch size and the smoothness order, which can play a critical role in real life. For a detailed
proof, see Appendix D.
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Remark 3.2 (Convex case.). It is not difficult to show that the results of Theorem 3.1 general-
ize to the convex case (see Assumption 1.2 with µ = 0), preserving the same dependence on
B, namely in the case B ∈ [1; 4dκ] and h ≲ ε3/4 we have the following convergence esti-

mates for Algorithm 1: N = O
(√

d2LR2

B2ε

)
;T = O

(√
d2LR2

ε

)
and ∆ ≲ ε3/2√

d
. We can also

observe that the optimal estimate of iteration complexity in the convex setup is achieved when

B = 4dκ. Moreover, the maximum noise level behaves in a similar way:N = O
(√

LR2

ε

)
;T =

max

[
O
(√

d2LR2

ε

)
,O
(

d2∆2

ε
2+ 2

β−1

)]
and ∆ ≲ ε

3β+1
4(β−1)

d B1/2. It can be seen that if we take µ ∼ ε,

the oracle complexity is the same in the worst case, and the maximum noise level is inferior depend-
ing on the order of smoothness compared to the strongly convex set (which is surprising).
Remark 3.3 (Deterministic adversarial noise). It should be noted that when considering determin-
istic adversarial noise (|ξ̃(x)| ≤ ∆) in a zero-order oracle instead of stochastic (see Definition 1.3),

Theorem 3.1 will preserve the results except for the maximum noise level: ∆ ≲ (ε
√
µ)

β
2(β−1)

d B1/2 →

∆ ≲ (ε
√
µ)

β
2(β−1)

d . This can be explained by the fact that deterministic noise is more adversarial
because it accumulates not only in the second moment of the gradient approximation, but also in the
bias! The results in the convex case will change similarly.
Remark 3.4 (High probability deviations bound). Given that Algorithm 1 in strongly convex setting
demonstrates a linear convergence rate and employs a randomization (see e.g. e ∈ Sd(1)), we can
derive exact estimates of high deviation probabilities using Markov’s inequality Anikin et al. (2017):

P
(
f(xN(εω)

)− f∗ ≥ ε
)
≤ ω

E
[
f(xN(εω)

)
]
− f∗

εω
≤ ω

.
Remark 3.5 (Non-convex setup (PL)). It should be noted that our algorithm will have global con-
vergence for a subclass of non-convex functions that satisfy the Polyak—Lojasiewicz (PL) condition
(see Karimi et al. (2016)). It is not hard to see that the results will have a similar dependence on
the batch size: N = Õ

(
d
B µ̃−1

)
; T = Õ

(
dµ̃−1

)
and ∆ ≲ εµ̃√

d
, where µ̃ from PL Assumption

(see Karimi et al. (2016)). We can also observe that the optimal estimate of iteration complexity
in the convex setup is achieved when B = 4dκ. Also, the maximum noise level behaves similarly:

N = Õ
(
µ̃−1

)
; T = max

[
Õ
(
dµ̃−1

)
, Õ
(

d2∆2

ε
β

β−1 µ̃
2β−1
β−1

)]
and ∆ ≲ (εµ̃)

β
2(β−1)

d B1/2.

Similarly to the cases discussed above, when considering deterministic adversarial noise, the depen-
dence on the batch size will disappear in the estimation of the maximum noise level. The transition
to High probability deviations bounds is also valid. And if we compare with the estimates of The-
orem 3.1, provided µ ∼ ε from the strong convexity condition, and µ̃ ∼ ε from the PL condition,
then the iteration complexity is the same, but the oracle complexity in the PL case is inferior to the
strongly convex case. This can be explained by the fact that the PL condition covers a subclass of
non-convex functions.

4 NUMERICAL EXPERIMENTS

In this section, we show the importance of considering the maximum noise level ∆ as a third opti-
mality criterion along with the standard two. We consider a problem of interest in machine learning,
namely the logistic regression problem:

min
x∈Rd

{
f(x) =

1

M

M∑
i=1

log(1 + exp(−yi · (Ax)i))

}
.

Here we can understand log(1+exp(−yi · (Ax)i)) = fi(x) as the loss at the i-th data point, x ∈ Rd

as a vector of parameters (or weights), y ∈ {−1, 1}M as a vector of labels, and A ∈ RM×d as a
matrix of instances. For our experiments we use data from the LIBSVM library Chang & Lin (2011),

9
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namely the a9a data. In the gradient approximation equation 5, we choose as the kernel function
K(r) the Legendre polynomials, for which it is shown in Bach & Perchet (2016) that the parameters
κ and κβ depend only on the smoothness order β. We have the following values for different β:

K(r) =
15r

4
(5− 7r2) for β = 3, 4;

K(r) =
195r

16
(99r4 − 126r2 + 35) for β = 5, 6.

To show the effectiveness of our Algorithm 1 (ZO-ABSGD) we compare with SOTA accelerated
gradient-free algorithms, namely ZO-VARAG from Chen et al. (2020), ARDFDS from Gorbunov
et al. (2022). We also compare our Algorithm 1 with RDFDS from Gorbunov et al. (2022) to
demonstrate the superiority of the accelerated algorithm over the unaccelerated ones, which are all
previous works (see Table 1).

Figure 3: Comparison of SOTA gradient-free algorithms convergence. Here we optimize f(x) with the param-
eters: d = 123 (problem dimensionality), B = 1000 (batch size), ∆ = 10−5 (noise level), η = 10−4 (step
size), h = 10−4 (smoothing parameter). In all experiments, the hyperparameters of the algorithms are tuned.

Figure 3 shows both standard results, such as the superiority of accelerated methods over unacceler-
ated methods, and the outperformance, the robustness of our algorithm. It is not hard to see that the
ZO-VARAG algorithm outperforms the convergence rate on the first iterations, but converges to an
error floor thereafter. This effect (convergence to the asymptote) can be explained by the fact that in
Chen et al. (2020) an accelerated ZO-VARAG algorithm was proposed, which is not robust to ad-
versarial noise. Regarding the RDFDS and ARDFDS algorithms, as the Figure shows they are also
robust to adversarial stochastic noise like our algorithm. The robust convergence of the algorithms
from Gorbunov et al. (2022) can be explained by the fact that in Gorbunov et al. (2022) algorithms
were proposed that are robust to deterministic adversarial noise (DAN). As we know DAN is more
antagonistic than stochastic adversarial noise because it accumulates not only in the variance but
also in the bias of the gradient approximation. Despite this, ZO-ABSGD has better convergence
compared to ARDFDS because the proposed 1 takes advantage of increased smoothness (β = 3),
unlike its counterpart. Thus, this Figure 3 demonstrates not only the advantage of our algorithm, but
also the importance in the design and analysis of algorithms robust to adversarial noise!

5 CONCLUSION

In this paper, we proposed a novel accelerated gradient-free algorithm to solve the black-box op-
timization problem under the assumption of increased smoothness and strong convexity of the ob-
jective function. By choosing a first-order accelerated algorithm and generalizing it to the Batched
algorithm with a biased gradient oracle, we were able to improve the iteration complexity, reaching
optimal estimates. Moreover, we have shown the importance of considering the maximum noise
level as a third optimality criterion in a numerical experiment of interest in machine learning. And
finally, we believe that this work offers a new perspective on black-box optimization and opens
avenues for future research.

10
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APPENDIX

A AUXILIARY FACTS AND RESULTS

In this section we list auxiliary facts and results that we use several times in our proofs.

A.1 SQUARED NORM OF THE SUM

For all a1, ..., an ∈ Rd, where n = {2, 3}

∥a1 + ...+ an∥2 ≤ n ∥a1∥2 + ...+ n ∥an∥2 . (8)

A.2 FENCHEL-YOUNG INEQUALITY

For all a, b ∈ Rd and λ > 0

⟨a, b⟩ ≤ ∥a∥
2

2λ
+

λ∥b∥2

2
. (9)

A.3 L SMOOTHNESS FUNCTION

Function f is called L-smooth on Rd with L > 0 when it is differentiable and its gradient is
L-Lipschitz continuous on Rd, i.e.

∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ , ∀x, y ∈ Rd. (10)

It is well-known that L-smoothness implies (see e.g., Assumption 2.1)

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2 ∀x, y ∈ Rd,

and if f is additionally convex, then

∥∇f(x)−∇f(y)∥2 ≤ 2L (f(x)− f(y)− ⟨∇f(y), x− y⟩) ∀x, y ∈ Rd.

A.4 WIRTINGER-POINCARE INEQUALITY

Let f is differentiable, then for all x ∈ Rd, he ∈ Sd
2 (h):

E
[
f(x+ he)2

]
≤ h2

d
E
[
∥∇f(x+ he)∥2

]
. (11)

A.5 TAYLOR EXPANSION

Using the Taylor expansion we have

∇zf(x+ hru) = ∇zf(x) +
∑

1≤|n|≤l−1

(rh)|n|

n!
D(n)∇zf(x)u

n +R(hru), (12)

where by assumption

|R(hru)| ≤ L

(l − 1)!
∥hru∥β−1

=
L

(l − 1)!
|r|β−1hβ−1 ∥u∥β−1

. (13)
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A.6 KERNEL PROPERTY

If e is uniformly distributed on Sd
2 (1) we have E[eeT] = (1/d)Id×d, where Id×d is the identity

matrix. Therefore, using the facts E[rK(r)] = 1 and E[r|n|K(r)] = 0 for 2 ≤ |n| ≤ l we have

E

d
h

⟨∇f(x), hre⟩+ ∑
2≤|n|≤l

(rh)|n|

n!
D(n)f(x)en

K(r)e

 = ∇f(x). (14)

A.7 BOUNDS OF THE WEIGHTED SUM OF LEGENDRE POLYNOMIALS

Let κβ =
∫
|u|β |K(u)|du and set κ =

∫
K2(u)du. Then if K be a weighted sum of Legendre

polynomials, then it is proved in (see Appendix A.3, Bach & Perchet (2016)) that κβ and κ do not
depend on d, they depend only on β, such that for β ≥ 1:

κβ ≤ 2
√
2(β − 1), (15)

κ ≤ 3β3. (16)

B MISSING PROOF OF THEOREM 2.6

In this Section we demonstrate a missing proof of Theorem 2.6, namely a generalization of
Lemma 2.5 to the case with a biased gradient oracle (see Definition 2.2). Therefore, our reason-
ing is based on the proof of Lemma 2.5 Vaswani et al. (2019).

Before proceeding directly to the proof, we recall the update rules of First-order Accelerated SGD
from Vaswani et al. (2019):

yk = αkzk + (1− αk)xk; (17)
xk+1 = yk − ηgk; (18)
zk+1 = βkzk + (1− βk)yk − γkηgk, (19)

where we choose the parameters γk, αk, βk, ak, bk such that the following equations are satisfied:

γk =
1

2ρ
·
[
1 +

βk(1− αk)

αk

]
; (20)

αk =
γkβkb

2
k+1η

γkβkb2k+1η + 2a2k
; (21)

βk ≥ 1− γkµη; (22)
ak+1 = γk

√
ηρbk+1; (23)

bk+1 ≤
bk√
βk

. (24)

Now, we’re ready to move on to the proof itself. Let rk+1 = ∥zk+1 − x∗∥ and gk = g(yk, ξk) from
Definition 2.2, then using equation equation 19:

r2k+1 = ∥βkk + (1− βk)yk − x∗ − γkηgk∥2

r2k+1 = ∥βkk + (1− βk)yk − x∗∥2 + γ2
kη

2 ∥gk∥2 + 2γkη ⟨x∗ − βkk − (1− βk)yk,gk⟩ .

Taking expecation wrt to ξk,

E[r2k+1] = E[∥βkk + (1− βk)yk − x∗∥2] + γ2
kη

2E ∥gk∥2

+ 2γkηE [⟨x∗ − βkk − (1− βk)yk,gk⟩]
equation 2.4

≤ ∥βkk + (1− βk)yk − x∗∥2 + γ2
kη

2ρ ∥∇f(yk)∥2

+ 2γkη⟨x∗ − βkk − (1− βk)yk,E [gk]⟩+ γ2
kη

2σ2

14
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= ∥βk(k − x∗) + (1− βk)(yk − x∗)∥2 + γ2
kη

2ρ ∥∇f(yk)∥2

+ 2γkη⟨x∗ − βkk − (1− βk)yk,E [gk]⟩+ γ2
kη

2σ2

≤ βk ∥k − x∗∥2 + (1− βk) ∥yk − x∗∥2 + γ2
kη

2ρ ∥∇f(yk)∥2

+ 2γkη⟨x∗ − βkk − (1− βk)yk,E [gk]⟩+ γ2
kη

2σ2 (By convexity of ∥·∥2)

= βkk2 + (1− βk) ∥yk − x∗∥2 + γ2
kη

2ρ ∥∇f(yk)∥2

+ 2γkη⟨x∗ − βkk − (1− βk)yk,E [gk]⟩+ γ2
kη

2σ2

= βkk2 + (1− βk) ∥yk − x∗∥2 + γ2
kη

2ρ ∥∇f(yk)∥2

+ 2γkη ⟨βk(yk − k) + x∗ − yk,E [gk]⟩+ γ2
kη

2σ2

equation 17
= βkk2 + (1− βk) ∥yk − x∗∥2 + γ2

kη
2ρ ∥∇f(yk)∥2

+ 2γkη

〈
βk(1− αk)

αk
(xk − yk) + x∗ − yk,E [gk]

〉
+ γ2

kη
2σ2

= βkk2 + (1− βk) ∥yk − x∗∥2 + γ2
kη

2ρ ∥∇f(yk)∥2

+ 2γkη

[
βk(1− αk)

αk
⟨E [gk] , (xk − yk)⟩+ ⟨E [gk] , x

∗ − yk⟩
]

+ γ2
kη

2σ2

≤ βkk2 + (1− βk) ∥yk − x∗∥2 + γ2
kη

2ρ ∥∇f(yk)∥2

+ 2γkη

[
βk(1− αk)

αk
(f(xk)− f(yk)) + ⟨E [gk] , x

∗ − yk⟩
]
+ γ2

kη
2σ2

+ 2γkη

[
βk(1− αk)

αk
⟨E [gk]−∇f(yk), xk − yk⟩

]
. (By convexity)

By strong convexity,

E[r2k+1] ≤ βkk2 + (1− βk) ∥yk − x∗∥2 + γ2
kη

2ρ ∥∇f(yk)∥2

+ 2γkη

[
βk(1− αk)

αk
(f(xk)− f(yk)) + f∗ − f(yk)−

µ

2
∥yk − x∗∥2

]
+ 2γkη

[
βk(1− αk)

αk
⟨E [gk]−∇f(yk), xk − yk⟩+ ⟨E [gk]−∇f(yk), x∗ − yk⟩

]
+ γ2

kη
2σ2. (25)

By Lipschitz continuity of the gradient,

f(xk+1)− f(yk) ≤ ⟨∇f(yk), xk+1 − yk⟩+
L

2
∥xk+1 − yk∥2

≤ −η⟨∇f(yk),gk⟩+
Lη2

2
∥gk∥2

= −η ∥∇f(yk)∥2 +
Lη2

2
∥gk∥2 − η ⟨∇f(yk),gk −∇f(yk)⟩ .

Taking expectation wrt ξk, we obtain

E[f(xk+1)− f(yk)] ≤ −η ∥∇f(yk)∥2 +
Lρη2

2
∥∇f(yk)∥2 +

Lη2σ2

2
− η ⟨∇f(yk),E [gk]−∇f(yk)⟩

E[f(xk+1)− f(yk)]
equation 9

≤
[
−η

2
+

Lρη2

2

]
∥∇f(yk)∥2 +

Lη2σ2

2

+
η

2
∥E [gk]−∇f(yk)∥2 .
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If η ≤ 1
2ρL ,

E[f(xk+1)− f(yk)] ≤
(
−η
4

)
∥∇f(yk)∥2 +

Lη2σ2

2
+

η

2
∥E [gk]−∇f(yk)∥2

∥∇f(yk)∥2 ≤
(
4

η

)
E[f(yk)− f(xk+1)] + 2Lησ2 + 2 ∥E [gk]−∇f(yk)∥2 . (26)

From equations equation 25 and equation 26, we get

E[r2k+1] ≤ βkk2 + (1− βk) ∥yk − x∗∥2 + 4γ2
kρηE[f(yk)− f(xk+1)]

+ 2γkη

[
βk(1− αk)

αk
(f(xk)− f(yk)) + f∗ − f(yk)−

µ

2
∥yk − x∗∥2

]
+

[
2γkη ·

βk(1− αk)

αk

]
⟨E [gk]−∇f(yk), xk − yk⟩

+ 2γkη ⟨E [gk]−∇f(yk), x∗ − yk⟩
+ γ2

kη
2σ2 + 2Lγ2

kη
3ρσ2 + 2γ2

kη
2ρ ∥E [gk]−∇f(yk)∥2

≤ βkk2 + (1− βk) ∥yk − x∗∥2 + 4γ2
kηρE[f(yk)− f(xk+1)]

+ 2γkη

[
βk(1− αk)

αk
(f(xk)− f(yk)) + f∗ − f(yk)−

µ

2
∥yk − x∗∥2

]
+

[
2γkη ·

βk(1− αk)

αk

]
⟨E [gk]−∇f(yk), xk − yk⟩

+ 2γkη ⟨E [gk]−∇f(yk), x∗ − yk⟩
+ 2γ2

kη
2σ2 + 2γ2

kη
2ρ ∥E [gk]−∇f(yk)∥2 (Since η ≤ 1

ρL )

= βkk2 + ∥yk − x∗∥2 [(1− βk)− γkµη]

+ f(yk)

[
4γ2

kηρ− 2γkη ·
βk(1− αk)

αk
− 2γkη

]
− 4γ2

kηρEf(xk+1) + 2γkηf
∗ +

[
2γkη ·

βk(1− αk)

αk

]
f(xk)

+

[
2γkη ·

βk(1− αk)

αk

]
⟨E [gk]−∇f(yk), xk − yk⟩

+ 2γkη ⟨E [gk]−∇f(yk), x∗ − yk⟩
+ 2γ2

kη
2σ2 + 2γ2

kη
2ρ ∥E [gk]−∇f(yk)∥2 .

Since βk ≥ 1− γkµη and γk = 1
2ρ ·

(
1 + βk(1−αk)

αk

)
,

E[r2k+1] ≤ βkk2 − 4γ2
kηρEf(xk+1) + 2γkηf

∗ +

[
2γkη ·

βk(1− αk)

αk

]
f(xk)

+

[
2γkη ·

βk(1− αk)

αk

]
⟨E [gk]−∇f(yk), xk − yk⟩

+ 2γkη ⟨E [gk]−∇f(yk), x∗ − yk⟩
+ 2γ2

kη
2σ2 + 2γ2

kη
2ρ ∥E [gk]−∇f(yk)∥2 .

Multiplying by b2k+1,

b2k+1E[r2k+1] ≤ b2k+1βkk2 − 4b2k+1γ
2
kηρEf(xk+1) + 2b2k+1γkηf

∗

+

[
2b2k+1γkη ·

βk(1− αk)

αk

]
f(xk)

+

[
2b2k+1γkη ·

βk(1− αk)

αk

]
⟨E [gk]−∇f(yk), xk − yk⟩
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+ 2b2k+1γkη ⟨E [gk]−∇f(yk), x∗ − yk⟩
+ 2b2k+1γ

2
kη

2σ2 + 2b2k+1γ
2
kη

2ρ ∥E [gk]−∇f(yk)∥2 .

Since b2k+1βk ≤ b2k, b2k+1γ
2
kηρ = a2k+1, γkηβk(1−αk)

αk
=

2a2
k

b2k+1

b2k+1E[r2k+1] ≤ b2kk2 − 4a2k+1Ef(xk+1) + 2b2k+1γkηf
∗ + 4a2kf(xk)

+ 4a2k ⟨E [gk]−∇f(yk), xk − yk⟩
+ 2b2k+1γkη ⟨E [gk]−∇f(yk), x∗ − yk⟩

+
2a2k+1σ

2η

ρ
+ 2a2k+1η ∥E [gk]−∇f(yk)∥2

= b2kk2 − 4a2k+1 [Ef(xk+1)− f∗] + 4a2k [f(xk)− f∗]

+ 2
[
b2k+1γkη − 2a2k+1 + 2a2k

]
f∗

+ 4a2k ⟨E [gk]−∇f(yk), xk − yk⟩
+ 2b2k+1γkη ⟨E [gk]−∇f(yk), x∗ − yk⟩

+
2a2k+1σ

2η

ρ
+ 2a2k+1η ∥E [gk]−∇f(yk)∥2 .

Since
[
b2k+1γkη − a2k+1 + a2k

]
= 0,

b2k+1E[r2k+1] ≤ b2kk2 − 4a2k+1 [Ef(xk+1)− f∗] + 4a2k [f(xk)− f∗]

+ 4a2k ⟨E [gk]−∇f(yk), xk − x∗⟩
+ 4a2k+1 ⟨E [gk]−∇f(yk), x∗ − yk⟩

+
2a2k+1σ

2η

ρ
+ 2a2k+1η ∥E [gk]−∇f(yk)∥2 .

Denoting Ef(xk+1)− f∗ as Φk+1, we obtain

4a2k+1Φk+1 − 4a2kΦk

equation 2.3

≤ b2kk2 − b2k+1E[r2k+1]

+ 4a2kδR̃− 4a2k+1δR̃

+
2a2k+1σ

2η

ρ
+ 2a2k+1ηδ

2,

where R̃ = maxk{∥xk − x∗∥ , ∥yk − x∗∥}.
By summing over k we obtain:

4

N−1∑
k=0

[
a2k+1Φk+1 − a2kΦk

]
≤

N−1∑
k=0

[
b2kk2 − b2k+1E[r2k+1]

]
+ 4

N−1∑
k=0

[
a2kδR̃− a2k+1δR̃

]
+

N−1∑
k=0

[
2a2k+1σ

2η

ρ

]
+ 2

N−1∑
k=0

[
a2k+1ηδ

2
]
.

Let’s substitute a2k+1 = b2k+1γ
2
kηρ:

4b2Nγ2
N−1ηρΦN ≤ 4a20Φ0 + b20r

2
0 − b2NE

[
r2N
]

+ 4a20δR̃− 4a2NδR̃

17
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+

N−1∑
k=0

[
2a2k+1σ

2η

ρ

]
+ 2

N−1∑
k=0

[
a2k+1ηδ

2
]
.

Divide the left and right parts by 4ρη:

b2Nγ2
N−1ΦN ≤

a20
ρη

Φ0 +
b20r

2
0

4ρη
+

a20R̃

ρη
δ +

ησ2

2ρ

N−1∑
k=0

[
b2k+1γ

2
k

]
+

η

2
δ2

N−1∑
k=0

[
b2k+1γ

2
k

]
.

Next, we show that according to equation 20-equation 24 the following relation is correct:

γ2
k − γk

[
1

2ρ
− µηγ2

k−1

]
= γ2

k−1

Namely,

γk
equation 20

=
1

2ρ

[
1 +

βk(1− αk)

αk

]
γ2
k −

γk
2ρ

=
γkβk(1− αk)

2ραk

equation 21
=

1

ηρ

a2k
b2k+1

equation 24
=

βk

ηρ

a2k
b2k

equation 22
=

1− γkµη

ηρ

a2k
b2k

equation 23
=

1− γkµη

ηρ
(γk−1

√
ηρ)

2

= (1− γkµη) γ
2
k−1

⇒ γ2
k − γk

[
1

2ρ
− µηγ2

k−1

]
= γ2

k−1. (27)

If γk = C, then

γk =
1√
2µηρ

βk = 1−
√

µη

2ρ

bk+1 =
b0(

1−
√

µη
2ρ

)(k+1)/2

ak+1 =
1√
2µηρ

· √ηρ · b0(
1−

√
µη
2ρ

)(k+1)/2
=

b0√
2µ
· 1(

1−
√

µη
2ρ

)(k+1)/2
.

If b0 =
√
2µ,

ak+1 =
1(

1−
√

µη
2ρ

)(k+1)/2
.

The above equation implies that a0 = 1.

Now the above relations allow us to obtain the following inequality:

2µ(
1−

√
µη
2ρ

)N 1

2µηρ
ΦN ≤

1

ρη
Φ0 +

2µr20
4ρη

+
R̃

ρη
δ

18
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+
σ2

ρ2

N−1∑
k=0

 1(
1−

√
µη
2ρ

)(k+1)



+
1

2ρ
δ2

N−1∑
k=0

 1(
1−

√
µη
2ρ

)(k+1)

 ;

1(
1−

√
µη
2ρ

)N ΦN ≤ Φ0 +
µ

2
r20 + R̃δ

+
σ2η

ρ

N−1∑
k=0

 1(
1−

√
µη
2ρ

)(k+1)



+
η

2
δ2

N−1∑
k=0

 1(
1−

√
µη
2ρ

)(k+1)

 ;

1(
1−

√
µη
2ρ

)N ΦN ≤ Φ0 +
µ

2
r20 + R̃δ

+
σ2
√
2η

√
ρµ
· 1(

1−
√

µη
2ρ

)N
+

√
ηρ
√
2µ

δ2 · 1(
1−

√
µη
2ρ

)(k+1)
;

E [f(xN )]− f∗ ≤
(
1−

√
µη

2ρ

)N [
f(x0)− f∗ +

µ

2
r20

]
+

(
1−

√
µη

2ρ

)N

R̃δ +
σ2
√
2η

√
ρµ

+

√
ηρ
√
2µ

δ2;

E [f(xN )]− f∗ ≤
(
1−

√
µ

4ρ2L

)N [
f(x0)− f∗ +

µ

2
∥x0 − x∗∥2

]
+

(
1−

√
µ

4ρ2L

)N

R̃δ +
σ2√
ρ2µL

+
1√
4µL

δ2.

By adding batching, given that ρ̃B = max{1, ρ
B } and σ2

B = σ2

B we have the convergence rate for
accelerated batched SGD with biased gradient oracle and parameter η ≲ 1

2ρBL :

E [f(xN )]− f∗ ≤
(
1−

√
µ

4ρ̃2BL

)N [
f(x0)− f∗ +

µ

2
∥x0 − x∗∥2

]
+

(
1−

√
µ

4ρ̃2BL

)N

R̃δ +
σ2
B√

ρ̃2BµL
+

1√
4µL

δ2.

C PROPERTIES OF THE KERNEL APPROXIMATION

In this Section, we extend the explanations for obtaining the bias and second moment estimates of
the gradient approximation.
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Using the variational representation of the Euclidean norm, and definition of gradient approximation
equation 5 we can write:

∥b(xk)∥ = ∥E [g(xk, e)]−∇f(xk)∥

=

∥∥∥∥ d

2h
E
[(

f̃(xk + hre)− f̃(xk − hre)
)
K(r)e

]
−∇f(xk)

∥∥∥∥
①
=

∥∥∥∥dhE [f(xk + hre)K(r)e]−∇f(xk)

∥∥∥∥
②
= ∥E [∇f(xk + hru)rK(r)]−∇f(xk)∥
= sup

z∈Sd
2 (1)

E [(∇zf(xk + hru)−∇zf(xk)) rK(r)]

equation 12,equation 13

≤ κβh
β−1 L

(l − 1)!
E
[
∥u∥β−1

]
≤ κβh

β−1 L

(l − 1)!

d

d+ β − 1

≲ κβLh
β−1,

where u ∈ Bd(1), ① = the equality is obtained from the fact, namely, distribution of e is symmetric,
② = the equality is obtained from a version of Stokes’ theorem Zorich & Paniagua (2016).

By definition gradient approximation equation 5 and Wirtinger-Poincare inequality equation 11 we
have

E
[
∥g(xk, e)∥2

]
=

d2

4h2
E
[∥∥∥(f̃(xk + hre)− f̃(xk − hre)

)
K(r)e

∥∥∥2]
=

d2

4h2
E
[
(f(xk + hre)− f(xk − hre) + (ξ1 − ξ2)))

2
K2(r)

]
equation 8

≤ κd2

2h2

(
E
[
(f(xk + hre)− f(xk − hre))

2
]
+ 2∆2

)
equation 11

≤ κd2

2h2

(
h2

d
E
[
∥∇f(xk + hre) +∇f(xk − hre)∥2

]
+ 2∆2

)
=

κd2

2h2

(
h2

d
E
[
∥∇f(xk + hre) +∇f(xk − hre)± 2∇f(xk)∥2

]
+ 2∆2

)
equation 10

≤ 4dκ︸︷︷︸
ρ

∥∇f(xk)∥2 + 4dκL2h2 +
κd2∆2

h2︸ ︷︷ ︸
σ2

.

D MISSING PROOF OF THEOREM 3.1

Let us consider case B = 1, then we have the following convergence rate:

E [f(xN )]− f∗ ≤
(
1−

√
µ

(4dκ)2L

)N [
f(x0)− f∗ +

µ

2
∥x0 − x∗∥2

]
︸ ︷︷ ︸

①

+
4dκL2h2√
(4dκ)2µL︸ ︷︷ ︸

②

+
κd2∆2

h2
√
(4dκ)2µL︸ ︷︷ ︸

③

+
κ2
βL

2h2(β−1)

√
4µL︸ ︷︷ ︸
④

.

From term ①, we find iteration number N required to achieve ε-accuracy:(
1−

√
µ

(4dκ)2L

)N [
f(x0)− f∗ +

µ

2
∥x0 − x∗∥2

]
≤ ε ⇒ N = Õ

(√
d2L

µ

)
.
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From terms ②, ④ we find the smoothing parameter h:

② :
4dκL2h2√
(4dκ)2µL

≤ ε ⇒ h2 ≲ ε
√
µ ⇒ h ≲ (ε

√
µ)1/2;

④ :
κ2
βL

2h2(β−1)

√
4µL

≤ ε ⇒ h2(β−1) ≲ ε
√
µ ⇒ h ≲ (ε

√
µ)

1
2(β−1) .

From term ③, we find the maximum noise level ∆ at which Algorithm 1 can still achieve the desired
accuracy:

κd2∆2

h2
√
(4dκ)2µL

≤ ε ⇒ ∆2 ≲
ε
√
µh2

d
⇒ ∆ ≲

ε
√
µ

√
d
.

The oracle complexity in this case is obtained as follows:

T = N ·B = Õ

(√
d2L

µ

)
.

Consider now the case 1 < B < 4dκ, then we have the convergence rate:

E [f(xN )]− f∗ ≤

(
1−

√
µB2

(4dκ)2L

)N [
f(x0)− f∗ +

µ

2
∥x0 − x∗∥2

]
︸ ︷︷ ︸

①

+
4dκL2h2√
(4dκ)2µL︸ ︷︷ ︸

②

+
κd2∆2

h2
√

(4dκ)2µL︸ ︷︷ ︸
③

+
κ2
βL

2h2(β−1)

√
4µL︸ ︷︷ ︸
④

.

From term ①, we find iteration number N required for Algorithm 1 to achieve ε-accuracy:(
1−

√
B2µ

(4dκ)2L

)N [
f(x0)− f∗ +

µ

2
∥x0 − x∗∥2

]
≤ ε ⇒ N = Õ

(√
d2L

B2µ

)
.

From terms ②, ④ we find the smoothing parameter h:

② :
4dκL2h2√
(4dκ)2µL

≤ ε ⇒ h2 ≲ ε
√
µ ⇒ h ≲ (ε

√
µ)1/2;

④ :
κ2
βL

2h2(β−1)

√
4µL

≤ ε ⇒ h2(β−1) ≲ ε
√
µ ⇒ h ≲ (ε

√
µ)

1
2(β−1) .

From term ③, we find the maximum noise level ∆ at which Algorithm 1 can still achieve the desired
accuracy:

κd2∆2

h2
√
(4dκ)2µL

≤ ε ⇒ ∆2 ≲
ε
√
µh2

d
⇒ ∆ ≲

ε
√
µ

√
d
.

The oracle complexity in this case is obtained as follows:

T = N ·B = Õ

(√
d2L

µ

)
.

Now let us move to the case where B = 4dκ, then we have convergence rate:

E [f(xN )]− f∗ ≤
(
1−

√
µ

L

)N [
f(x0)− f∗ +

µ

2
∥x0 − x∗∥2

]
︸ ︷︷ ︸

①

+
L2h2

√
µL︸ ︷︷ ︸
②

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

+
d∆2

h2
√
µL︸ ︷︷ ︸

③

+
κ2
βL

2h2(β−1)

√
4µL︸ ︷︷ ︸
④

.

From term ①, we find iteration number N required for Algorithm 1 to achieve ε-accuracy:(
1−

√
µ

L

)N [
f(x0)− f∗ +

µ

2
∥x0 − x∗∥2

]
≤ ε ⇒ N = Õ

(√
L

µ

)
.

From terms ②, ④ we find the smoothing parameter h:

② :
L2h2

√
µL
≤ ε ⇒ h2 ≲ ε

√
µ ⇒ h ≲ (ε

√
µ)1/2;

④ :
κ2
βL

2h2(β−1)

√
4µL

≤ ε ⇒ h2(β−1) ≲ ε
√
µ ⇒ h ≲ (ε

√
µ)

1
2(β−1) .

From term ③, we find the maximum noise level ∆ at which Algorithm 1 can still achieve the desired
accuracy:

d∆2

h2
√
µL
≤ ε ⇒ ∆2 ≲

ε
√
µh2

d
⇒ ∆ ≲

ε
√
µ

√
d
.

The oracle complexity in this case is obtained as follows:

T = N ·B = Õ

(√
d2L

µ

)
.

Finally, consider the case when B > 4dκ, then we have convergence rate:

E [f(xN )]− f∗ ≤
(
1−

√
µ

L

)N [
f(x0)− f∗ +

µ

2
∥x0 − x∗∥2

]
︸ ︷︷ ︸

①

+
4dκL2h2√

µLB2︸ ︷︷ ︸
②

+
κd2∆2

h2
√
µLB2︸ ︷︷ ︸
③

+
κ2
βL

2h2(β−1)

√
4µL︸ ︷︷ ︸
④

.

From term ①, we find iteration number N required for Algorithm 1 to achieve ε-accuracy:(
1−

√
µ

L

)N [
f(x0)− f∗ +

µ

2
∥x0 − x∗∥2

]
≤ ε ⇒ N = Õ

(√
L

µ

)
.

From terms ②, ④ we find the smoothing parameter h:

② :
4dκL2h2√

µLB2
≤ ε ⇒ h2 ≲

ε
√
µ

d
B ⇒ h ≲

√
ε
√
µB

d
;

④ :
κ2
βL

2h2(β−1)

√
4µL

≤ ε ⇒ h2(β−1) ≲ ε
√
µ ⇒ h ≲ (ε

√
µ)

1
2(β−1) .

From term ③, we find the maximum noise level ∆ (via batch size B) at which Algorithm 1 can still
achieve ε accuracy:

κd2∆2

h2
√
µLB2

≤ ε ⇒ ∆2 ≲
(ε
√
µ)1+

1
β−1B

d2
⇒ ∆ ≲

(ε
√
µ)

β
2(β−1)B1/2

d
.
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or let’s represent the batch size B via the noise level ∆:

κd2∆2

h2
√
µLB2

≤ ε ⇒ B ≳
κd2∆2

(ε
√
µ)1+

1
β−1

⇒ B = O

(
d2∆2

(ε
√
µ)

β
β−1

)
.

Then the oracle complexity T = N ·B in this case has the following form:

T = max

{
Õ

(√
d2L

µ

)
, Õ

(
d2∆2

(εµ)
β

β−1

)}
.
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