
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Ensuring User-side Fairness in Dynamic Recommender Systems

Anonymous Author(s)

ABSTRACT

User-side group fairness is crucial for modern recommender sys-

tems, aiming to alleviate performance disparities among user groups

defined by sensitive attributes like gender, race, or age. In the ever-

evolving landscape of user-item interactions, continual adaptation

to newly collected data is crucial for recommender systems to

stay aligned with the latest user preferences. However, we observe

that such continual adaptation often exacerbates performance dis-

parities. This necessitates a thorough investigation into user-side

fairness in dynamic recommender systems, an area that has been

unexplored in the literature. This problem is challenging due to

distribution shift, frequent model updates, and non-differentiability

of ranking metrics. To our knowledge, this paper presents the first

principled study on ensuring user-side fairness in dynamic recom-

mender systems. We start with theoretical analyses on fine-tuning

v.s. retraining, showing that the best practice is incremental fine-

tuning with restart. Guided by our theoretical analyses, we propose

FAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAir DDDDDDDDDDDDDDDDDynamic rEEEEEEEEEEEEEEEEEcommender (FADE), an end-to-end fine-tuning

framework to dynamically ensuring user-side fairness over time.

To overcome the non-differentiability of recommendation metrics

in the fairness loss, we further introduce Differentiable Hit (DH)

as an improvement over the recent NeuralNDCG method, not only

alleviating its gradient vanishing issue but also achieving higher

efficiency. Besides that, we also address the instability issue of the

fairness loss by leveraging the competing nature between the rec-

ommendation loss and the fairness loss. Through extensive experi-

ments on real-world datasets, we demonstrate that FADE effectively
and efficiently reduces performance disparities with little sacrifice

in the overall recommendation performance.

CCS CONCEPTS

• Information systems→ Data mining; • Computing method-

ologies→ Machine learning.

KEYWORDS

recommender systems, user-side fairness, dynamic updates

ACM Reference Format:

Anonymous Author(s). 2024. Ensuring User-side Fairness in Dynamic Rec-

ommender Systems. In Proceedings of the ACMWeb Conference 2024 (WWW
’24), May 13–17, 2024, Singapore. ACM, New York, NY, USA, 19 pages.

https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WWW ’24, May 13–17, 2024, Singapore
© 2024 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

Pretrain Finetune FADE

0 1 2 3 4 5 6

0.70

0.75

0.80

0.85

Time period

P
e
r
f
o
r
m
a
n
c
e

0 1 2 3 4 5 6

0

1

2

3

·10−2

Time period

D
i
s
p
a
r
i
t
y

(a) Recommendation performance over time (b) Performance disparity between user groups

Figure 1: Even though incremental fine-tuning with new data

(red curve) upholds recommendation performance compared

to pretrain (black curve), the disparity gradually expands

over time without fairness regularization. (See §4 for detail.)

1 INTRODUCTION

Recommender systems are essential for delivering high-quality per-

sonalized recommendations in a two-sided market (i.e., user-side

and item-side) [36, 42]. In this market, users provide feedback on

recommended items, and the system refines the recommendations

to better reflect their preferences. However, these recommender

systems can perform poorly for users from certain demographic

groups even while delivering high-quality recommendations on

average [4, 33]. For example, a job recommender system might rec-

ommend more irrelevant job opportunities to female engineers in

STEM (Science, Technology, Engineering, and Mathematics), which

can significantly impact their career growth [11, 16]. Thus, it is

important to alleviate the performance disparity between different

user groups in recommender systems [17].

Although there is a parallel line of research on item-side fair-

ness, those methods do not apply to user-side fairness due to the

fundamental distinction between user- and item-side fairness. In

essence, user-side fairness is concerned with ensuring equitable

recommendation quality for different users, while item-side fairness

focuses on providing equal exposure opportunities for items within

recommendations, often addressing the so-called popularity bias

of items through debiasing techniques. For example, several works

for item-side fairness [30, 31, 40, 41] calibrates predicted ratings

with item popularity, which does not apply to user-side fairness.

Furthermore, due to the evolving nature of user-item interactions,

real-world recommender systems continually adapt to new data

over time to improve recommendation quality [14, 38]. However,

as shown in Fig. 1, neglecting fairness during dynamic adaptation

leads to performance disparity between user groups persisting

or even expanding over time. This highlights the importance of

maintaining user-side fairness in dynamic recommendation.

Despite its critical importance, to the best of our knowledge,

user-side fairness [7, 17] has not been explored in the context of

dynamic recommendation, which is in stark contrast to the exten-

sive research effort on item-side fairness in dynamic recommenda-

tion [8, 23, 40]. As item-side methods are inapplicable to user-side

fairness, a thorough study of user-side fairness in dynamic recom-

mendation will substantially expand the frontiers of fair dynamic

recommendation and establish a prospective foundation for future

research on two-sided fairness [5, 37] in dynamic recommendation.

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’24, May 13–17, 2024, Singapore Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

This paper presents the first principled study of user-side fair-

ness in dynamic recommender systems. We identify and address

the following challenges: (C1) Distribution shift. Constant emer-

gence of new users/items and evolving user preferences lead to

distribution shift. Distribution shift not only affects recommenda-

tion performance but also worsens performance disparity among

user groups over time. (C2) Frequent model updates. Due to dis-

tribution shift in dynamic recommendation, recommender systems

need frequent updates to cater to current user preferences. This

imposes efficiency requirements on the model updating method.

However, existing postprocessing methods involve time-intensive

re-ranking [7, 17], which are inefficient for frequent model updates.

(C3) Non-differentiability of ranking metrics. The sorting op-

eration in ranking metrics is non-differentiable. This raises a critical

challenge in end-to-end training because we cannot directly use the

non-differentiable performance disparity as the fairness loss. Even

if one resorts to postprocessing methods like re-ranking [7, 17]

which does not involve end-to-end training, they critically suffer

from the existing performance disparity in candidate item lists.

To address the challenges, we propose FAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAir DDDDDDDDDDDDDDDDDynamic rEEEEEEEEEEEEEEEEEcommender

(FADE), an end-to-end framework employing an incremental fine-

tuning strategy to dynamically alleviate performance disparity be-

tween user groups. Specifically, our key contributions are:

• Problem.We observe that the user-side performance disparity

tends to persist or worsen over time, despite improvements in

recommendation performance. To our knowledge, we are the

first to study user-side fairness in dynamic recommendation.

• Theory. To ground the design of our method, we theoretically

analyze fine-tuning v.s. retraining in terms of generalization er-

ror (recommendation & fairness) under distribution shift. Our

Theorems 3.1 & 3.2 show that the best practice is incremental

fine-tuning with restart.

• Algorithm. Based on theoretical analyses, we propose FADE, a
novel dynamic recommender based on incremental fine-tuning

that balances both recommendation quality and user-side fair-

ness. To overcome the non-differentiability of recommendation

metrics in the fairness loss, we further introduceDifferentiable Hit
(DH) as an improvement over the recent NeuralNDCG method

[25], not only alleviating its gradient vanishing but also achiev-

ing higher efficiency. Besides that, we also address the instability

of the fairness loss by leveraging the competing nature between

the recommendation loss and the fairness loss (Proposition 3.3).

• Experiments. Empirical experiments on real-world datasets

demonstrate that FADE effectively reduces performance dispar-

ity (with an average decrease of 48.91%) without significantly

compromising overall performance over time (with an average

drop of 2.44%). It also operates efficiently, achieving an 11x faster

running time on average compared to the retraining approach.

2 PROBLEM DEFINITION

In this section, we first present the key notations in the paper. Then

we provide preliminaries on the settings of dynamic recommenda-

tion and user-side fairness. Finally, we formally define the problem

of dynamic user-side fairness in recommender systems.

Notations. Table 1 provides a list of our symbols. Throughout the

paper, we use bold upper-case letters for matrices (e.g., Y), bold
lower-case letters for vectors (e.g., r) and calligraphic letters for sets

Table 1: Main symbols used in this paper.

Symbol Description

D𝑡 Dataset collected at time period 𝑡

U𝑡 , I𝑡 , E𝑡 Sets of users, items, and their interactions at time period 𝑡

Y𝑡 User-item interaction matrix at the time period 𝑡

Ŷ𝑡 User-item predicted score matrix at time period 𝑡

W𝑡 Set of model parameters at time period 𝑡

𝑎 Binary sensitive attribute of a user

Lrec, Lfair
Recommendation loss and fairness loss, respectively

C𝑢 , 𝑁 Set of candidate items for a user 𝑢 and its size

s𝑢 Unsorted list of recommendation scores of items in C𝑢
r𝑢 List of items in C𝑢 ranked by their scores in s𝑢

P𝑢 , P̂𝑢 Permutation matrix and relaxed permutation matrix for s𝑢
𝜆 Scaling parameter for L

fair

𝜏 Temperature parameter for P̂s𝑢
𝜇 The number of negative items in C𝑢
𝑛 The number of negative items for Lrec

(e.g.,U). We use standard conventions for indexing. For example,

Y[𝑖, 𝑗] is the entry at the 𝑖-th row and the 𝑗-th column in matrix Y.
We use D𝑡 = {U𝑡 ,I𝑡 , E𝑡 ,Y𝑡 } to denote the dataset collected at

time period 𝑡 ∀𝑡 ∈ {1, . . . ,𝑇 }, 1 where the subscript 𝑡 indicates the
time period 𝑡 ,U𝑡 is the user set, I𝑡 is the item set, E𝑡 is the user-
item interaction set, and Y𝑡 is the user-item interaction matrix. We

consider binary user-item interaction in this work, i.e., Y𝑡 [𝑢, 𝑖] = 1

if user 𝑢 has interacted with item 𝑖 within the 𝑡-th time period, and

0 otherwise. The initial user set, item set, user-item interaction set,

and the user-item interaction matrix before the first time period

(i.e., 𝑡 = 1) is denoted asU0, I0, E0, and Y0, respectively. Lastly, we
denote the subscript :𝑡 as the time period from the beginning up to

𝑡 . For example,U:𝑡 denotes a set of items accumulated up to time

period 𝑡 from the beginning (i.e., a set of entire users in the system).

Dynamic recommendation.We assume that an initial recommen-

dation model has been pre-trained withD0 = {U0,I0, E0,Y0} in an
offline manner, and then the model is trained solely with the newly

collected data D𝑡 at the current time period 𝑡, ∀𝑡 ∈ {1, . . . ,𝑇 }.
Once the model has been trained/fine-tuned on D𝑡 , a top-𝐾 recom-

mendation list [𝑖1, . . . , 𝑖𝐾] for each user 𝑢, ranked by the predicted

scores Ŷ𝑡 [𝑢, 𝑖],∀𝑖 , is generated.
User-side fairness. Given a binary sensitive attribute 𝑎 ∈ {0, 1}
(e.g., gender), we focus on ensuring user-side group fairness, i.e.,

mitigate the recommendation performance disparity between the

advantaged user group (𝑎 = 0) and the disadvantaged user group

(𝑎 = 1) [17]. More specifically, the user-side performance disparity

at any time period 𝑡 is defined as follows.

Definition 1 (User-side performance disparity [17]). For a time
period 𝑡 with ground-truth test interaction set Dtest

𝑡 and for a recom-
mendation metric Perf (·) (such as NDCG@𝐾 or F1@𝐾), the user-
side performance disparity is defined by

PD𝑡 := Perf (Dtest

𝑡 | 𝑎 = 0) − Perf (Dtest

𝑡 | 𝑎 = 1) . (1)

Problem definition. We formally define the problem of dynamic

user-side fairness in recommender systems as follows.

1
Depending on the needs of the system or implementation, the time period could

be either a specific time frame (e.g., daily, weekly, monthly) or until a specific number

of interactions has been collected.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Ensuring User-side Fairness in Dynamic Recommender Systems WWW ’24, May 13–17, 2024, Singapore

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Problem 1 (User-side fairness in dynamic recommender sys-

tems). Input: (1) a pre-trained recommendation model with parame-
tersW0; (2) a continually collected datasetD𝑡 = {U𝑡 ,I𝑡 , E𝑡 ,Y𝑡 },∀𝑡 ∈
{1, . . . ,𝑇 }; (3) a binary sensitive attribute 𝑎 ∈ {0, 1}; (4) a specific
performance evaluation metric Perf(·) to calculate PD𝑡 (see Eq. (1)).

Output: For any time period 𝑡 , a fairness-regularized model with
the parametersW𝑡 that (1) optimizes the PD𝑡 to be close to zero and
(2) achieves high-quality recommendations.

3 FADE: A FAIR DYNAMIC RECOMMENDER

In this section, we present FADE, a novel dynamic fair recommender

system designed to effectively and efficiently reduce performance

disparity over time. We begin with theoretical analyses on fine-

tuning v.s. retraining in the context of dynamic fair recommenda-

tion in §3.1, demonstrating that the best practice is incremental fine-

tuning with restart. Then in §3.2, we introduce our incremental fine-

tuning strategy that balances both recommendation performance

and user-side fairness. To address the non-differentiability chal-

lenge, we improve NeuralNDCG [25] and develop Differentiable Hit
(DH), an efficient approximation scheme of the non-differentiable

ranking metric, in §3.3. Building upon DH, we propose a differen-

tiable and lightweight loss function for user-side fairness in §4.3.

Our method is presented in Algorithm 1.

3.1 Fine-Tuning v.s. Retraining

Common practice for evolving data includes incremental fine-tuning
and retraining. To obtain a deeper understanding of their behaviors

in dynamic fair recommendation to guide the design of our method,

we theoretically analyze their generalization error (recommenda-

tion & fairness) under distribution shift. Suppose that the model is

currently trained withD0 ∪ · · · ∪D𝑡te−1 and is to be tested onD𝑡te .
For each time period 𝑡 , let𝑚𝑡 := |E𝑡 | denote the size of dataset D𝑡 ,
let LD𝑡 (W) denote the empirical loss (recommendation + fair-

ness) over dataset D𝑡 , let L𝑡 (W) := ED𝑡
[LD𝑡 (W)] denote the

true generalization loss, and let L∗𝑡 := infW L𝑡 (W) denote the
optimal loss value. To obtain concrete yet non-trivial theoretical

results, we let𝑚1 = · · · =𝑚𝑡te−1 ≪𝑚0 and make mild and realistic

assumptions for theoretical analysis (see §A.1).

Next, we introduce our theoretical measure of distribution shift.

There are two sources of distribution shift over time: covariate shift
and concept drift. In dynamic recommendation, covariate shift corre-

sponds to shift of user/item attribute distributions (i.e., the distribu-

tion of (U𝑡 ,I𝑡 , E𝑡)), and concept drift corresponds to evolution of

user preferences (i.e., the conditional distribution Y𝑡 | (U𝑡 ,I𝑡 , E𝑡)).
Regarding covariate shift, a classic measure is the discrepancy

distance [21] (a generalizedHΔH distance [2]):

𝑑HΔH
𝑡,𝑡te

:= sup

W,W′

��|L𝑡 (W)−L𝑡 (W′) | − |L𝑡te (W)−L𝑡te (W′) |��. (2)
The intuition is that if there is no covariate shift between 𝑡 and 𝑡te,

then for any two modelsW,W′, their difference of L should not

differ between 𝑡 and 𝑡te, leading to 𝑑
HΔH
𝑡,𝑡te

= 0. Regarding concept

drift, we use a classic measure called combined error [2]:

𝑑comb

𝑡,𝑡te
:= inf

W

(
L𝑡 (W) + L𝑡te (W)

)
− L∗𝑡 − L∗𝑡te . (3)

The intuition is that if there is no concept drift between 𝑡 and 𝑡te,

then L𝑡 and L𝑡te can achieve their minimum values with the same

modelW, leading to 𝑑comb

𝑡,𝑡te
= 0. Together, we define a unified

measure of distribution shift as follows by combining the measures

of covariate shift and concept drift:

𝑑𝑡,𝑡te := 𝑑
HΔH
𝑡,𝑡te

+ 𝑑comb

𝑡,𝑡te
. (4)

Building upon the measure of distribution shift, we theoreti-

cally analyze the overall behavior (recommendation performance

& user-side fairness) of fine-tuning and retraining in the presence

of distribution shift (Theorems 3.1 & 3.2).

Theorem 3.1 (Fine-tuning). Let Lft

𝑡te
denote the best possible

loss of fine-tuning tillD𝑡te−1. Suppose that the number of fine-tuning
epochs at each time period 𝑡 ≥ 1 is decided according to the proximity
assumption [27] with some 0 < 𝛾 < 1 (see §A.1 for detail). Then with
probability at least 1 − 𝛿 ,

Lft

𝑡te
≤L∗𝑡te +

(1−𝛾)
(
2

𝑡
te
−1∑

𝑡=0
𝛾𝑡te−𝑡−1𝑑𝑡,𝑡

te
+ 4

√︂(
𝛾2𝑡te−2

𝑚
0

+ 1−𝛾2𝑡te−2
(1−𝛾2)𝑚

1

)
log

2

𝛿

)
1−𝛾𝑡te . (5)

Theorem 3.2 (Retraining). Let Lrt

𝑡te
be the best possible loss of

retraining on D0 ∪ · · · ∪ D𝑡te−1. With probability at least 1 − 𝛿 ,

Lrt

𝑡te
≤ L∗𝑡te +

2𝑚0𝑑0𝑇 +2
𝑡
te
−1∑

𝑡=1
𝑚1𝑑𝑡,𝑡

te

𝑚0+(𝑡te−1)𝑚1

+ 4
√︃

1

𝑚0+(𝑡te−1)𝑚1

log
2

𝛿
. (6)

Proofs are in §A.2. Theorems 3.1 & 3.2 point out two sources of

generalization error: (i) distribution shift in terms of 𝑑𝑡,𝑡te and (ii)

learning error due to the finite dataset size𝑚𝑡 . Regarding distri-

bution shift, since larger time differences typically result in larger

distribution shifts, we have 𝑑0,𝑡te > 𝑑1,𝑡te > · · · > 𝑑𝑡te−1,𝑡te Fine-
tuning can exponentially shrink (via the 𝛾𝑡te−𝑡−1 factor) the in-

fluence of distribution shift while retraining suffers from greater

influence of distribution shift. This is consistent with our intuition

since retraining treats old and new data equally while fine-tuning

pays more attention to newer data. This suggests that we should

use fine-tuning to mitigate the impact of distribution shift. Mean-

while, when 𝑡te is large, fine-tuning’s learning error
(1−𝛾)2
(1−𝛾2)𝑚1

will

be greater than retraining’s
1

𝑚0+(𝑡te−1)𝑚1

because𝑚1 ≪𝑚0. This

suggests that the performance of dynamically fine-tuned model will

eventually degrade after a number of periods, which is consistent

with our empirical observation (refer to Fig. 10 in §B.3).

Therefore, to utilize the higher efficiency of fine-tuning without

sacrificing performance, we propose to fine-tune themodel for some

periods 𝑇 until the performance starts to degrade. After that, we

retrain the model from scratch and repeat the fine-tuning process

again.

3.2 Incremental Fine-Tuning Strategy

Building upon our theoretical analysis on distribution shift and for

the sake of time efficiency, FADE fine-tunes the model parameters

incrementally over time only with the new data D𝑡 collected at

time period 𝑡 . We optimize the following loss functions:

LD𝑡
:= LD𝑡

rec
+ 𝜆LD𝑡

fair
, (7)

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’24, May 13–17, 2024, Singapore Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

where Lrec is for improving the recommendation performance,

L
fair

is for regularizing the performance disparity between the dis-

advantaged and advantaged groups, and 𝜆 is the scaling parameter

for controlling the trade-off between the recommendation perfor-

mance and the fairness. In this paper, we use the classic Bayesian

personalized ranking (BPR) loss [28] as Lrec, i.e.,

LD𝑡
rec

:= − 1

|E𝑡 |
∑︁

(𝑢,𝑖) ∈E𝑡

1

|N𝑢𝑖 |
∑︁

𝑖′∈N𝑢𝑖

log(𝜎 (𝑠𝑢𝑖 − 𝑠𝑢𝑖′)), (8)

where 𝜎 (·) is the sigmoid function, and N𝑢𝑖 is a set of sampled

negative items for 𝑢. Note that this loss can be replaced with any

differentiable recommendation loss that can be optimized by gradi-

ent descent. We will define L
fair

in §4.3.

By jointly optimizing Lrec and Lfair
in an end-to-end fashion

to fine-tune the model parameters for each time period, we can

dynamically reduce the performance disparity, which may other-

wise worsen as the optimization continues, while simultaneously

accurately preserving the user preferences over time.

3.3 Differentiable Hit

Most evaluationmetrics for top-𝐾 recommendations, such as NDCG@𝐾 ,

are not differentiable due to their reliance on the ranking/sorting

operation of items. As discussed in §1, this non-differentiability

presents a challenge when optimizing fairness measures, specif-

ically performance disparity, using gradient descent algorithms.

To overcome this challenge, several soft ranking losses have been

proposed to directly optimize relaxed ranking metrics [3, 25, 26].

NeuralNDCG [25] is a recent work on differentiable approximation

of ranking metrics. However, due to the use of the Sinkhorn algo-

rithm, NeuralNDCG is not only inefficient but also suffers from the

gradient vanishing issue. To address these limitations, we improve

NeuralNDCG and propose Differentiable Hit, a function that is not

only effective but also more lightweight than existing methods,

making it well-suited for dynamic recommendation.

First, let us define a standard Hit function. Suppose a score vector
s𝑢 = [𝑠𝑢1, 𝑠𝑢2, . . . , 𝑠𝑢𝑁]T for a user 𝑢 represents the “unsorted” list
of recommendation scores (i.e., 𝑠𝑢𝑖 = Ŷ𝑡 [𝑢, 𝑖]) of 𝑁 candidate items
in a set C𝑢 (with |C𝑢 | = 𝑁), a vector r𝑢 represents the “sorted” list
of items ranked in the descending order by their scores in s𝑢 , and
r𝑢 [𝑘] represents the 𝑘-th ranked item.

With the above definitions, we can define the Hit function,

Hit(C𝑢 ;𝑘) for 𝑘 ∈ {1, . . . , 𝐾}, which indicates whether the 𝑘-th

ranked item r𝑢 [𝑘] is 𝑢’s ground-truth item, as follows:

Hit(C𝑢 ;𝑘) :=
{
1 if Y𝑡 [𝑢, r𝑢 [𝑘]] = 1,

0 if Y𝑡 [𝑢, r𝑢 [𝑘]] = 0.
(9)

Here, the sorting operation used to produce the r𝑢 , which can also

be represented as a permutation matrix, renders the Hit𝑢 (𝑘) non-
differentiable. However, we can overcome this limitation by using

the continuous relaxation for permutation matrices to approximate

the deterministic sorting operation with a differentiable continuous

sorting [9]. First, for the deterministic sorting, the permutation

matrix P𝑢 ∈ R𝑁×𝑁 is given by [9]:

P𝑢 [𝑘, 𝑗] :=
{
1 if 𝑗 = argmax[(𝑁 + 1 − 2𝑘)s𝑢 − A𝑢1],
0 otherwise,

(10)

Algorithm 1 Fine-tuning procedure at time period 𝑡

1: Input: Model parameters W𝑡−1, scaling parameter 𝜆, tem-

perature parameter 𝜏 , the number of negative items 𝑛 for

Lrec and 𝜇 for L
fair

, sensitive attribute 𝑎, incoming dataset

D𝑡 = {U𝑡 ,I𝑡 , E𝑡 ,Y𝑡 }
2: Output: Updated model parametersW𝑡

3: W𝑡 ←W𝑡−1;
4: for epoch do

5: for mini-batch B obtained from E𝑡 do
6: for user-item interaction (𝑢, 𝑖) ∈ B do

7: Sample 𝑛 negative items as N𝑢𝑖 ;
8: Sample 𝜇 negative items as N ′

𝑢𝑖
; C𝑢𝑖 ← {𝑖} ∪ N ′𝑢𝑖 ;

9: end for

10: Lrec← − 1

| B |
∑
(𝑢,𝑖) ∈B

1

|N𝑢𝑖 |
∑
𝑖′∈N𝑢𝑖

log(𝜎 (𝑠𝑢𝑖 − 𝑠𝑢𝑖′));

11: DPD←
∑
(𝑢,𝑖) ∈{B|𝑎=0}DH(C𝑢𝑖 ;1)

| {B |𝑎=0} | −
∑
(𝑢,𝑖) ∈{B|𝑎=1}DH(C𝑢𝑖 ;1)

| {B |𝑎=1} | ;

12: L
fair
← − log(𝜎 (−DPD));

13: UpdateW𝑡 based on Lrec +𝜆Lfair
via gradient descent;

14: end for

15: end for

16: returnW𝑡 ;

where 1 is the column vector of all ones and A𝑢 is the absolute

distance matrix of s𝑢 with A𝑢 [𝑘, 𝑗] = |𝑠𝑢𝑘 − 𝑠𝑢 𝑗 |. For instance, if
we set 𝑘 = ⌊(𝑁 + 1)/2⌋, then the non-zero entry in the 𝑘-th row,

P𝑢 [𝑘, :], corresponds to the element with the minimum sum of

absolute distances to the other elements, and this corresponds to

the median element, as desired.

Then, the argmax operator is replaced by Gumbel-softmax [12]

to obtain a continuous relaxation of the permutation matrix; the

𝑘-th row of the permutation matrix is relaxed as follows [9]:

P̂𝑢 [𝑘, :] := softmax [((𝑁 + 1 − 2𝑘)s𝑢 − A𝑢1) /𝜏] , (11)

where 𝜏 is the temperature parameter, and P̂𝑢 approaches a permu-

tation matrix (i.e., Eq. (10)) when 𝜏 → 0
+
. Intuitively, each entry of

P̂𝑢 [𝑘, :] indicates the probability that the corresponding item will

be the 𝑘-th ranked item. Since P̂𝑢 is continuous everywhere and

differentiable almost everywhere w.r.t. the elements of s𝑢 , we can
define a differentiable Hit, as we elaborate below.

Since the𝑘-th row of the permutationmatrix P𝑢 [𝑘, :] (i.e., Eq. (10))
is equal to the one-hot vector of the 𝑘-th ranked item, we can re-

formulate the Hit function (i.e., Eq. (9)) as follows:

Hit(C𝑢 ;𝑘) = P𝑢 [𝑘, :] · Y𝑡 [𝑢, :]T, (12)

where Y𝑡 [𝑢, 𝑖] = 1 if the item 𝑖 is a ground-truth item, and 0 other-

wise. Finally, by replacing P𝑢 [𝑘, :] (Eq. (10)) with P̂𝑢 [𝑘, :] (Eq. (11)),
we define a Differentiable Hit (DH) as follows:

DH(C𝑢 ;𝑘) := P̂𝑢 [𝑘, :] · Y𝑡 [𝑢, :]T . (13)

Using DH as a building block, we can differentiably approximate

various top-𝐾 recommendation metrics. For example,

NDCG@𝐾 ≈ 1

|U𝑡 |
∑︁
𝑢∈U𝑡

1

maxDCG(C𝑢)

𝐾∑︁
𝑘=1

DH(C𝑢 ;𝑘)
log

2
(𝑘 + 1) , (14)

wheremaxDCG(C𝑢) is themaximumpossible value of

∑𝐾
𝑘=1

DH(C𝑢 ;𝑘)
log

2
(𝑘+1) ,

computed by decreasingly ordering 𝑖 ∈ C𝑢 by Y𝑡 [𝑢, 𝑖].
4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Ensuring User-side Fairness in Dynamic Recommender Systems WWW ’24, May 13–17, 2024, Singapore

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

3.4 Fairness Loss

We design our fairness loss for reducing performance disparity

between the advantaged (𝑎 = 0) and disadvantaged (𝑎 = 1) user

groups. For the sake of training efficiency, we compose each candi-

date set with only 1 positive item and several negative items and

use differentiable Hit@1 in our fairness loss. Formally, for each

(𝑢, 𝑖) ∈ E𝑡 , we sample 𝜇 negative items N ′
𝑢𝑖
, compose a candidate

set C𝑢𝑖 := {𝑖} ∪ N ′𝑢𝑖 and use DH(C𝑢𝑖 ; 1) as a surrogate of the mea-

sure of recommendation quality for a user. While this differentiable

Hit@1 used for training encourages the top-1 recommendation, it

could also potentially benefit Hit@𝐾-based metrics. We will empir-

ically demonstrate that these settings consistently yield effective

results across various recommendation metrics that rely on the Hit

function. Based on DH, we define the differentiable performance

disparity (DPD) as follows:

DPD
D𝑡

:=

∑
(𝑢,𝑖) ∈{E𝑡 |𝑎=0}

DH(C𝑢𝑖 ; 1)

|{E𝑡 |𝑎 = 0}| −

∑
(𝑢,𝑖) ∈{E𝑡 |𝑎=1}

DH(C𝑢𝑖 ; 1)

|{E𝑡 |𝑎 = 1}| , (15)

which is an approximation of PD𝑡 in Eq. (1) on the sampled item

set. Then, a naïve fairness loss function is to minimize |DPD|:

LD𝑡

fair-abs
:= − log(𝜎 (−|DPDD𝑡 |)), (16)

where 𝜎 (·) is the sigmoid function. However, the non-smoothness

of L
fair-abs

will cause instability in training, as shown in our exper-

iment (Fig. 2). To address this limitation, we leverage the property

of the sigmoid function and surprisingly prove that removing the

absolute value operation | · | can still ensure fairness adaptively.

Formally, we propose the following fairness loss:

LD𝑡

fair
:= − log(𝜎 (−DPDD𝑡)) . (17)

Then we have Proposition 3.3.

Proposition 3.3. Let W̃𝑡 :=W𝑡 − 𝜂∇W𝑡
(LD𝑡

rec
+ 𝜆LD𝑡

fair
) denote

a gradient descent step with learning rate 𝜂 > 0. Suppose that Lrec

causes unfairness (i.e., ⟨∇W𝑡
LD𝑡
rec
,∇W𝑡

DPD
D𝑡 ⟩ ≤ 0), and that the

fairness loss has influence (i.e., ∇W𝑡
LD𝑡

fair
≠ 0). Then, there exists

𝜆 ≥ 0 such that

sgn(DPDD𝑡(W𝑡)) · lim
𝜂→+0

DPD
D𝑡(W̃𝑡) − DPDD𝑡(W𝑡)

𝜂
≤ 0. (18)

In particular, if DPDD𝑡(W𝑡) ≤ 0, then DPD
D𝑡(W̃𝑡) ≥DPDD𝑡(W𝑡)

as 𝜂 → +0.

Proof is in §A.3. Intuitively, our L
fair

aims to benefit the dis-

advantaged user group (𝑎 = 1) over the advantaged group (𝑎 = 0).

Meanwhile, whenever DPD < 0, the influence of L
fair

will be re-

duced adaptively, so the unfair Lrec will push DPD back to zero.

3.5 Complexity Analysis

Our fairness loss only adds a constant amount of complexity to

most existing recommendation models. Assuming we employ MF-

BPR [28] as the base recommendation model with user/item embed-

dings of dimensionality 𝑑 , the time complexity of minimizing LD𝑡
rec

is O(|E𝑡 |𝑛𝑑), where 𝑛 represents the number of negative items.

Regarding our fairness loss, for each user interaction, computing

the score vector s𝑢 has a time complexity of O(𝜇𝑑), and computing

DH incurs O(𝜇2) time complexity due to computing P̂𝑢 [𝑘, :] (i.e.,

Eq. (11)), which involves computingA𝑢 ∈ R(𝜇+1)×(𝜇+1) . As a result,
the time complexity of minimizing LD𝑡

fair
becomes O(|E𝑡 | (𝜇2 + 𝜇𝑑)),

which can be approximated as O(|E𝑡 |𝜇𝑑) since 𝜇 ≪ 𝑑 . Therefore,

the time complexity of minimizing the recommendation loss, LD𝑡
rec

,

and the fairness loss, LD𝑡

fair
, are comparable.

4 EXPERIMENTS

We design experiments to answer the following key research ques-

tions (RQs)
2
:

RQ1. How does learning new data affect model overall behavior?

RQ2. How effective is the fairness loss and fine-tuning in FADE?
RQ3. Does FADE outperform its fairness-aware competitors?

RQ4. How time-efficient is FADE?
RQ5. How effective/efficient is the Differentiable Hit in FADE?
RQ6. How sensitive is FADE to its hyperparameters?

4.1 Experimental Settings

4.1.1 Dataset. For experiments, we use two real-world recommen-

dation datasets from different domains.

• Movielens
3
: This dataset contains 836, 478 ratings on 3, 628movies

by 6, 039 users at different timestamps. The sensitive attribute

𝑎 is determined by the gender of each user, with male users as

𝑎 = 0 (advantaged) and female users as 𝑎 = 1 (disadvantaged).

This classification is based on the observation that the dataset

is male-dominated, consisting of 4, 330 male users with 627, 933

training instances and 1, 709 female users with 208, 545 training

instances [19].

• ModCloth
4
[32]: This e-commerce dataset contains 83, 147 rat-

ings on 1, 014 items (i.e., women’s clothing) by 37, 142 users at

different timestamps. The sensitive attribute 𝑎 is determined

by the body shape of each user, with "Small" users as 𝑎 = 0

(advantaged) and "Large" users as 𝑎 = 1 (disadvantaged). The

dataset is dominated by "Small" users, comprising 28, 374 "Small"

users with 66, 663 training instances and 8, 768 "Large" users with

16, 484 training instances.

Following previous works in recommender systems [13, 39], we

binarize the 5-star ratings for both datasets. We set Y[𝑢, 𝑖] = 1 if

user𝑢 gives item 𝑖 a rating greater than 2, and Y[𝑢, 𝑖] = 0 otherwise.

Note that the dataset descriptions provided earlier are based on

these pre-processed datasets.

To simulate dynamic settings defined in §2, we first sort the

interactions in the dataset in chronological order and use 60%/70%

of them as pre-training data, and 28%/21% as dynamically observed

data for Movielenz/ModCloth. We then split the dynamically ob-

served data into 7 periods, each containing an equal number of

interactions. This process yields {D0,D1, . . . ,D𝑇 }, where 𝑇 = 7.

4.1.2 Comparedmethods. To ensure that the effectiveness of FADE is
independent of the base recommender system used, we use two

base system including Matrix Factorization (MF) and Neural Col-

laborative Filtering (NCF), both with the Bayesian Personalized

Ranking (BPR) loss [28]. In this setup, we aim to validate the ef-

fectiveness of our fine-tuning strategy and the fairness loss used in

2
Note that throughout the subsections for all RQs, we use PD to refer to absolute

performance disparity |PD | .
3
https://grouplens.org/datasets/movielens/1m/

4
https://github.com/MengtingWan/marketBias

5

https://grouplens.org/datasets/movielens/1m/
https://github.com/MengtingWan/marketBias

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’24, May 13–17, 2024, Singapore Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

FADE in ensuring high recommendation performance and user-side

fairness over time. To establish a benchmark, we compare FADE
with the following six combinations:

• Pretrain/Pretrain-Fair: The static model pre-trained on D0

w/o and w/ the fairness loss, respectively.

• Retrain/Retrain-Fair: Fully retraining the model using the ac-

cumulated historical data D:𝑡 at each time period 𝑡 , w/o and w/

the fairness loss, respectively.

• Finetune/FADE-Abs: Fine-tuning the model based on the current

D𝑡 at each 𝑡 , w/o the fairness loss and w/ the (naïve) fairness

loss L
fair-abs

that uses |DPD| (Eq. 16), respectively.

In addition, we also compare FADEwith the other fairness-aware
competitors. To ensure a fair comparison, we implemented these

methods with a fine-tuning strategy, even though they were origi-

nally not based on fine-tuning. The competitors we consider are:

• Adver [18]: This method is based on adversarial learning tech-

nique. It is originally designed to filter out sensitive attributes

from user embeddings, but its primary focus is not on reducing

the performance disparity among different user groups.

• Re-rank [17]: This method is a fairness-constrained re-ranking

approach. At each time period, a fine-tuned base model generates

recommendation lists, which are used as the basis for generating

new fair recommendation lists using this method.

4.1.3 Evaluation tasks. To evaluate the recommendation recom-

mendation performance and the disparity, we design two types of

recommendation tasks:

• Task-Remain (Task-R): Given the model trained up until time

period 𝑡 , the model is tested by recommending items for the

remaining time periods with the test setDtest

𝑡 = D𝑡+1∪· · ·∪D𝑇 .
• Task-Next (Task-N): Given the model trained up until time period

𝑡 , the model is tested by recommending items for the right-next

time period with the test set Dtest

𝑡 = D𝑡+1.

Note that for both tasks, the data at the last time period, D𝑇 , is
only used for testing and not for training purposes. Due to space

issue, we put the full results for Task-N in §B.3.

We use widely-used metrics normalized discounted accumulated

gain 20 (NDCG@20) and F1@20 to evaluate the top-20 recom-

mendation quality. We adopt a similar approach as previous stud-

ies [14, 17], where we randomly sample 100 items that the user has

not interacted with as negative samples. These negative samples,

along with the ground-truth items, are used for evaluation.

4.1.4 Implementation details. For all compared methods, we set 𝑛

(the number of negative samples for BPR loss) to 4, the learning

rate to 0.001, and L2 regularization to 0.0001. We use the Adam

optimization algorithm [15] to update model parameters.

For FADE and Retrain-Fair based on both MF and NCF, we set

𝜏 = 3, 𝜇 = 4, and the number of dynamic update epochs to 10,

which consistently show excellent trade-off between performance

and disparity across all metrics, tasks, and datasets. The 𝜆 is selected

within range [0, 4] for Pretrain-Fair, Retrain-Fair, FADE-Abs, and
FADE in all cases. We use a random seed for better reproducibility.

For the implementation details of Rerank [17] and Adver [18],

please refer to §B.1

4.2 The Effect of Learning from New Data

For RQ1 and RQ2, we compare the recommendation performance

and performance disparity, both averaged across each dynamic

update data, of the five methods (Pretrain, Retrain, Finetune,
Pretrain-Fair, Retrain-Fair) with FADE. Fig. 2 shows the results
w.r.t. different metrics, base recommender, and datasets.

First, compared to Pretrain, Retrain and Finetune yield an av-

erage increase of 9.01% and 4.61%, respectively, in recommendation

performance in all cases, indicating that the new data is indeed use-

ful for improving recommendation performance of the models over

time. For Pretrain-Fair, Retrain-Fair, and FADE, the similar trend

is observed: an average increase of 4.66% and 4.09%, respectively.

However, in some cases on ModCloth, FADE performs worse than

Pretrain-Fair due to the initial high disparity of Pretrain-Fair.
Regarding performance disparity, the PDs of Retrain tend to

exceed those of Pretrain, and those of Finetune tend to fall below

but still remain significant. This highlights the need to incorporate

fairness considerations when integrating new data.

4.3 Ablation Study of FADE

4.3.1 With and without fairness loss. To answer RQ2, we continue

comparing FADE with aforementioned five methods. First, regard-

ing disparity, Fig. 2 shows that Retrain-Fair and FADE yield sig-

nificantly lower PDs compared to Retrain and Finetune, in all
cases, with an average reduction of 47.60% and 48.91%, respectively.

The results indicate that our fairness loss indeed helps reduce the

performance disparity at each time period.

Furthermore, we examine how disparities change over time

with FADE and the three methods, Retrain, Retrain-Fair, Fine-
tune, as shown in Fig. 3. We can see that without the fairness loss

(Retrain/Finetune), the PDs tend to persist relatively high over

time in all cases. However, when augmented with the fairness loss

(Retrain-Fair/FADE), the PDs tend to remain stably low.

Besides significant reduction of PDs, FADEhas merely marginal

sacrifice (2.44% on average) in recommendation performance com-

pared to Finetune, and similar results are observed for Retrain and

Retrain-Fair, with an average decrease of 0.495%. This relatively

slight decrease in recommendation performance is because FADE
improves the performance of the disadvantaged group while reduc-

ing the performance of the advantaged group, in all cases, with an

average increase of 2.06% and decrease of 3.37%, respectively.

4.3.2 Fine-tuning v.s. Retraining. Fig. 2 shows that Finetune con-
sistently outperform Retrain w.r.t. both PD (an average decrease

of 14.79%) and recommendation performance (an average increase

of 1.38%) in all cases. FADE outperform Retrain-Fair w.r.t. PD (an

average decrease of 16.47%) while only slightly compromising rec-

ommendation performance (an average decrease of 0.61%). These

results are consistent with our theoretical findings in §3.1, indi-

cating that retraining is more affected by distribution shifts, while

fine-tuning can exponentially shrink this impact. The lack of a clear

advantage for fine-tuned models in recommendation performance

is due to their eventual degradation after multiple periods, which

is shown, for example, in the results for Movielenz in Fig. 8 in §B.3.

4.4 Comparison with Fairness Competitors

To answer RQ3, we further compare FADE with the two fairness-

aware competitors, Adver and Rerank, in Fig. 2. Note that all of

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Ensuring User-side Fairness in Dynamic Recommender Systems WWW ’24, May 13–17, 2024, Singapore

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Adver Rerank Pretrain Retrain Finetune Pretrain-Fair Retrain-Fair FADE-Abs FADE (Ours)

0.75 0.80 0.85

0.5

1.0

1.5

2.0
·10−2

NDCG@20

|P
D
|

MF

0.280.300.320.34
0.0

1.0

2.0

·10−2

F1@20

MF

0.83 0.84 0.85
0.5

1.0

1.5

2.0
·10−2

NDCG@20

NCF

0.32 0.33 0.34

1.0

2.0

·10−2

F1@20

NCF

0.26 0.27 0.28 0.29

5.0

6.0

7.0

8.0

·10−2

NDCG@20

MF

0.07 0.08 0.09 0.10

2.0

2.5

3.0

·10−2

F1@20

MF

0.26 0.27 0.28
5.0

6.0

7.0

8.0
·10−2

NDCG@20

NCF

0.07 0.08 0.09 0.10

2.5

2.6

2.7

2.8

2.9
·10−2

F1@20

NCF

(a) Movielenz (b) ModCloth

Figure 2: The trade-off between recommendation performance (NDCG@20 & F1@20) and absolute performance disparity |PD|
of eight compared methods and FADE in Task-R. Employing our fairness loss leads to a substantial reduction in |PD| across all
cases, with a modest impact on overall performance. Note that the optimal point should be situated in the bottom-right corner.

Retrain Finetune Retrain-Fair FADE (Ours)

1 2 3 4 5 6

0.0

1.0

2.0

3.0
·10−2

Time period

|P
D
|

NDCG@20 / MF

1 2 3 4 5 6

0.0

1.0

2.0

3.0
·10−2

Time period

|P
D
|

F1@20 / MF

1 2 3 4 5 6

0.0

1.0

2.0

·10−2

Time period
|P
D
|

NDCG@20 / NCF

1 2 3 4 5 6

0.0

1.0

2.0

·10−2

Time period

|P
D
|

F1@20 / NCF

(a) Movielenz

1 2 3 4 5 6

0.0

0.1

0.1

0.1

Time period

|P
D
|

NDCG@20 / MF

1 2 3 4 5 6

2.0

3.0

4.0
·10−2

Time period

|P
D
|

F1@20 / MF

1 2 3 4 5 6

4.0

6.0

8.0

·10−2

Time period

|P
D
|

NDCG@20 / NCF

1 2 3 4 5 6

2.0

3.0

·10−2

Time period

|P
D
|

F1@20 / NCF

(b) ModCloth

Figure 3: The trend of the absolute performance disparity (|PD|) in Task-R. Without the fairness loss, the |PD| is relatively high

and often increase, while with the fairness loss, particularly in FADE, the |PD| tends to remain relatively low.

those methods are implemented based on fine-tuning strategy for

fair comparison. First, FADE consistently achieves smaller PDs,

averaging 36.53%, and it offers comparable recommendation perfor-

mance on average 1.49% better than Adver. This is because Adver
is not designed to reduce the performance gap between user groups;

instead, its focus is on removing information related to sensitive

attributes from user representations.

Rerank and Finetune yield similar results in many cases, mean-

ing that its re-ranking algorithm struggle to effectively re-rank

the given recommendation lists. This is because the given base

recommendation lists are already too unfair. For example, for dis-

advantaged users, the predicted scores may not accurately reflect

the user’s true interests, resulting in very low predicted scores for

the ground-truth items in the list. This issue is exacerbated when

the given recommendation lists are short, which is a common in

practice. This observation agrees with our intuition that dynamic

adaptation is necessary rather than using post-processing.

4.5 Time-efficiency Comparison

To answer RQ4, we compare running time of FADE with the full-

retraining based methods and the other fairness-aware techniques.

The results are in Table 2 and each entry is the average running

time of a model across the dynamic update data at each time period.

We have several observations based on the running time, aver-

aged over base models and datasets. Firstly, Finetune/FADE achieve

approximately 323/270 times faster running time compared to Re-
train/Retrain-Fair, indicating that the fine-tuning strategy em-

ployed in FADE enables the models to achieve high time efficiency,

making them ideal for dynamic settings. Secondly,Retrain-Fair/FADE
exhibit approximately 1.06/1.27 times slower running time in com-

parison to Retrain/Finetune. This suggests that the additional

computational cost introduced by our fairness loss is not signif-

icant. Lastly, FADE demonstrates a time efficiency around 10.23

times and 94.11 times faster than Adver and Rerank, respectively,
highlighting the lightweight design of our fairness loss compared

to the existing fairness-aware losses.

4.6 Comparison with Soft Ranking Metrics

Due to the space limit, the results for RQ5 are deferred to §B.4. In

essense, they show that FADE outperforms ormatches the variant of

FADE adapting NeuralNDCG in both recommendation performance

and disparity, while being approximately four times faster. This is

because our differentiable Hit addresses NeuralNDCG’s gradient

vanishing issue by eliminating Sinkhorn’s algorithm.

4.7 Hyperparameter Analysis

For RQ6, we investigate the sensitivity of FADE to four hyperpa-

rameters: (1) the scaling parameter 𝜆, (2) the number of epochs

of dynamic updates, (3) the temperature parameter 𝜏 , and (4) the

number of negative items 𝜇. Due to the space limit, we only show

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’24, May 13–17, 2024, Singapore Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 2: Efficiency comparison on the running time (seconds).

Data Models

Full-retrain-based Fine-tune-based

Retrain Retrain-Fair Adver Rerank Finetune FADE

Movie.

MF 1373.17 1401.18 55.16 132.46 2.57 4.08

NCF 1381.59 1488.5 61.66 420.54 5.07 5.93

Mod.

MF 154.22 163.12 4.01 250.75 0.79 0.93

NCF 188.58 242.29 4.01 344.51 1.15 1.26

Average 774.39 823.77 31.21 287.06 2.40 3.05

Advantaged group Disadvantaged group

0 0.1 0.3 0.5 0.8 1.0 1.5 2.0

0.830

0.840

0.850

𝜆

N
D
C
G
@
2
0

0 0.1 0.3 0.5 0.8 1.0 1.5 2.0

0.325

0.330

0.335

0.340

𝜆

F
1
@
2
0

Figure 4: The effect of the scaling parameter 𝜆 on the perfor-

mance of the advantaged and disadvantaged groups.

Advantaged group Disadvantaged group

1 5 101520253035404550

0.70

0.75

0.80

0.85

(a) The number of epochs

N
D
C
G
@
2
0

0.1 0.5 1.0 2.0 3.0 4.0 5.0

0.40

0.60

0.80

(b) Tau 𝜏

N
D
C
G
@
2
0

Figure 5: Effect of hyperparamters.

the results of FADE based on MF on Movielenz for 𝜆, the number of

epochs, and 𝜏 in Figs. 4 & 5. Please refer to §B.5 for the full results.

They illustrate the performance of the advantaged and disadvan-

taged user groups for different values of these hyperparameters.

4.7.1 Effect of scaling parameter 𝜆 for the fairness Loss. Fig. 4 shows
that the performance of the advantaged group tend to decrease

while that of the disadvantaged group tend to increase as 𝜆 increases.

In other words, the performance disparity between the two user

groups steadily reduces until 𝜆 reaches an optimal value, which

varies depending on the specific metric used. The results indicate

that 𝜆 effectively controls the trade-off between recommendation

performance and performance disparity.

4.7.2 Effect of the number of epochs of dynamic updates. Fig. 5-(a)
shows that the performance of both user groups increases as the

number of epochs of dynamic fine-tuning increases until reaching

a peak around epoch 5 or 10. Subsequently, the performance gradu-

ally declines with further increases in the number of epochs. We

suspect that setting the number of epochs too low may result in the

model not learning enough from the current data. Conversely, when

the number of epochs is set too high, the model potentially loses

the knowledge acquired from historical data. We argue that this

phenomenon is well-suited for the dynamic environment, as setting

a low value for the number of epochs results in high efficiency.

4.7.3 Effect of temperature parameter 𝜏 in the relaxed permutation
matrix. Higher values of 𝜏 result in smoother rows in the relaxed

permutation matrix, P̂𝑢 [𝑖, :]. Fig 5-(b) shows that the performance

of both user groups increases until 𝜏 = 2, and then stabilizes. These

findings indicate that FADE is not highly sensitive to 𝜏 , consis-

tently delivering excellent performance for both user groups as

long as 𝜏 is not too small. When 𝜏 is set too low, the Gumbel-

softmax distribution becomes sharp, resulting in a nearly deter-

ministic decision-making process for the model, i.e., P̂𝑢 [𝑖, :] will be

close to the one-hot vector of the 𝑖-th ranked item. As a result, the

entry corresponding to the positive item in that vector is likely to

have an extremely small value, from the initial phase of training,

potentially hindering the the fairness regularization.

5 RELATEDWORK

Dynamic recommender systems. Instead of fully retraining with

the entire dataset when new data is collected, which can be time-

inefficient, we can fine-tune the model parameters using only the

new data, which is referred to as dynamic/online recommender

systems in the literature. To effectively learn from relatively sparse

new data, several methods have been proposed based on reweight-

ing either (1) the impact of each user-item interaction [10, 29] or

(2) that of each model parameter [6, 20, 38]; [14] utilizes both ap-

proaches. One unique advantage of the fairness loss in FADE is

that it can be easily applied to any existing dynamic recommender

systems optimized using gradient-based algorithms.

Fair recommender systems in dynamic scenarios. Various

fairness demands exist in recommender systems, including user-

side, item-side, and multi-side fairness. User-side fairness ensures

fair recommendation quality for different users, while item-side

fairness concentrates on equal exposure opportunities for items

in recommendations. Two-sided fairness seeks to balance these

two aspects. While the literature [8, 23, 40] has addressed item-

side fairness in dynamic recommendations, such as the work by

[40] that scales predicted ratings by item popularity with higher

strength over time, user-side fairness in dynamic settings remains

unexplored, to the best of our knowledge.

As described in Section 1, existing user-side fairness-aware re-

ranking methods [7, 17] face the difficulties in dynamic settings.

These methods tend to be time-inefficient, involving optimization

problem akin to 0-1 integer programming problem. Furthermore,

their non-differentiable fairness constraint, separating fairness op-

timization from that of recommendation quality, precludes model

parameters from being regularized by fairness constraints. This

hinders adaptation to distribution shifts in dynamic settings.

Another line of research into user-side fairness [1, 34, 35] em-

ploys adversarial functions to generate fair user representations in-

dependent of sensitive user attributes. However, these formulations

do not explicitly address the reduction of performance disparity.

6 CONCLUSION

In this paper, we study the problem of user-side fairness in the dy-

namic recommendation scenario. We point out three key challenges

in this problem: (1) distribution shifts, (2) frequent model updates,

and (3) non-differentiability of ranking metrics. To address these

challenges, we begin with theoretical analyses on fine-tuning v.s.

retraining, showing that the best practice is incremental fine-tuning

with restart. Guided by these insights, we propose FAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAir DDDDDDDDDDDDDDDDDynamic

rEEEEEEEEEEEEEEEEEcommender (FADE), an end-to-end fine-tuning framework that

dynamically ensures user-side fairness over time. It incorporates

our fairness loss equipped with our lightweight Differentiable Hit,

which alleviating the gradient vanishing issue in the recent Neural-

NDCG method and enhances efficiency. Through extensive experi-

ments, we verify that FADE effectively and efficiently alleviates the

performance disparity without significantly sacrificing recommen-

dation performance.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Ensuring User-side Fairness in Dynamic Recommender Systems WWW ’24, May 13–17, 2024, Singapore

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES

[1] Ghazaleh Beigi, Ahmadreza Mosallanezhad, Ruocheng Guo, Hamidreza Alvari,

Alexander Nou, and Huan Liu. 2020. Privacy-aware recommendation with

private-attribute protection using adversarial learning. In Proceedings of the 13th
International Conference on Web Search and Data Mining. 34–42.

[2] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira,

and Jennifer Wortman Vaughan. 2010. A theory of learning from different

domains. Machine Learning 79 (2010), 151–175.

[3] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning

to rank: from pairwise approach to listwise approach. In Proceedings of the 24th
international conference on Machine learning. 129–136.

[4] Jiawei Chen, Hande Dong, Xiang Wang, Fuli Feng, Meng Wang, and Xiangnan

He. 2020. Bias and debias in recommender system: A survey and future directions.

ACM Transactions on Information Systems (2020).
[5] Virginie Do, Sam Corbett-Davies, Jamal Atif, and Nicolas Usunier. 2021. Two-

sided fairness in rankings via Lorenz dominance. Advances in Neural Information
Processing Systems 34 (2021), 8596–8608.

[6] Zhengxiao Du, Xiaowei Wang, Hongxia Yang, Jingren Zhou, and Jie Tang. 2019.

Sequential scenario-specific meta learner for online recommendation. In Proceed-
ings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining. 2895–2904.

[7] Zuohui Fu, Yikun Xian, Ruoyuan Gao, Jieyu Zhao, Qiaoying Huang, Yingqiang

Ge, Shuyuan Xu, Shijie Geng, Chirag Shah, Yongfeng Zhang, et al. 2020. Fairness-

aware explainable recommendation over knowledge graphs. In Proceedings of
the 43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval. 69–78.

[8] Yingqiang Ge, Shuchang Liu, Ruoyuan Gao, Yikun Xian, Yunqi Li, Xiangyu Zhao,

Changhua Pei, Fei Sun, Junfeng Ge, Wenwu Ou, et al. 2021. Towards long-

term fairness in recommendation. In Proceedings of the 14th ACM international
conference on web search and data mining. 445–453.

[9] Aditya Grover, Eric Wang, Aaron Zweig, and Stefano Ermon. 2019. Stochastic

Optimization of Sorting Networks via Continuous Relaxations. In Proceedings of
the International Conference on Learning Representations.

[10] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast ma-

trix factorization for online recommendation with implicit feedback. In Proceed-
ings of the 39th International ACM SIGIR conference on Research and Development
in Information Retrieval. 549–558.

[11] Rashidul Islam, Kamrun Naher Keya, Ziqian Zeng, Shimei Pan, and James Foulds.

2021. Debiasing career recommendations with neural fair collaborative filtering.

In Proceedings of the Web Conference 2021. 3779–3790.
[12] Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categorical reparameterization

with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016).
[13] Piyush Kansal, Nitish Kumar, Sangam Verma, Karamjit Singh, and Pranav Poudu-

val. 2022. FLiB: Fair Link Prediction in Bipartite Network. In Advances in
Knowledge Discovery and Data Mining: 26th Pacific-Asia Conference, PAKDD
2022, Chengdu, China, May 16–19, 2022, Proceedings, Part II. Springer, 485–498.

[14] Minseok Kim, Hwanjun Song, Yooju Shin, Dongmin Park, Kijung Shin, and

Jae-Gil Lee. 2022. Meta-Learning for Online Update of Recommender Systems. In

Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36. 4065–4074.
[15] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[16] Preethi Lahoti, Krishna P Gummadi, and Gerhard Weikum. 2019. ifair: Learning

individually fair data representations for algorithmic decision making. In 2019
ieee 35th international conference on data engineering (icde). IEEE, 1334–1345.

[17] Yunqi Li, Hanxiong Chen, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. 2021.

User-oriented fairness in recommendation. In Proceedings of the Web Conference
2021. 624–632.

[18] Yunqi Li, Hanxiong Chen, Shuyuan Xu, Yingqiang Ge, and Yongfeng Zhang.

2021. Towards personalized fairness based on causal notion. In Proceedings of
the 44th International ACM SIGIR Conference on Research and Development in
Information Retrieval. 1054–1063.

[19] Yanying Li, Xiuling Wang, Yue Ning, and Hui Wang. 2022. Fairlp: Towards fair

link prediction on social network graphs. In Proceedings of the International AAAI
Conference on Web and Social Media, Vol. 16. 628–639.

[20] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. 2017. Meta-sgd: Learning to

learn quickly for few-shot learning. arXiv preprint arXiv:1707.09835 (2017).
[21] Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. 2009. Domain

adaptation: Learning bounds and algorithms. In Proceedings of The 22nd Annual
Conference on Learning Theory.

[22] Andreas Maurer andMassimiliano Pontil. 2021. Concentration inequalities under

sub-Gaussian and sub-exponential conditions. In Advances in Neural Information
Processing Systems, Vol. 34. 7588–7597.

[23] Marco Morik, Ashudeep Singh, Jessica Hong, and Thorsten Joachims. 2020.

Controlling fairness and bias in dynamic learning-to-rank. In Proceedings of
the 43rd international ACM SIGIR conference on research and development in
information retrieval. 429–438.

[24] Allan Pinkus. 1999. Approximation theory of the MLP model in neural networks.

Acta Numerica 8 (1999), 143–195.
[25] Przemysław Pobrotyn and Radosław Białobrzeski. 2021. Neuralndcg: Direct

optimisation of a ranking metric via differentiable relaxation of sorting. arXiv
preprint arXiv:2102.07831 (2021).

[26] Tao Qin, Tie-Yan Liu, and Hang Li. 2010. A general approximation framework

for direct optimization of information retrieval measures. Information Retrieval
13 (2010), 375–397.

[27] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. 2019.

Meta-learning with implicit gradients. In Advances in Neural Information Pro-
cessing Systems, Vol. 32.

[28] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-

Thieme. 2012. BPR: Bayesian personalized ranking from implicit feedback. arXiv
preprint arXiv:1205.2618 (2012).

[29] Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, and Deyu

Meng. 2019. Meta-weight-net: Learning an explicit mapping for sample weight-

ing. Advances in neural information processing systems 32 (2019).
[30] Harald Steck. 2011. Item popularity and recommendation accuracy. In Proceedings

of the fifth ACM conference on Recommender systems. 125–132.
[31] Harald Steck. 2019. Collaborative filtering via high-dimensional regression. arXiv

preprint arXiv:1904.13033 (2019).
[32] Mengting Wan, Jianmo Ni, Rishabh Misra, and Julian McAuley. 2020. Addressing

marketing bias in product recommendations. In Proceedings of the 13th interna-
tional conference on web search and data mining. 618–626.

[33] YifanWang, Weizhi Ma, Min Zhang, Yiqun Liu, and Shaoping Ma. 2023. A survey

on the fairness of recommender systems. ACM Transactions on Information
Systems 41, 3 (2023), 1–43.

[34] Chuhan Wu, Fangzhao Wu, Xiting Wang, Yongfeng Huang, and Xing Xie. 2021.

Fairness-aware news recommendation with decomposed adversarial learning. In

Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 4462–4469.
[35] Le Wu, Lei Chen, Pengyang Shao, Richang Hong, Xiting Wang, and Meng Wang.

2021. Learning fair representations for recommendation: A graph-based per-

spective. In Proceedings of the Web Conference 2021. 2198–2208.
[36] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. 2022. Graph neural

networks in recommender systems: a survey. Comput. Surveys 55, 5 (2022), 1–37.
[37] Yao Wu, Jian Cao, Guandong Xu, and Yudong Tan. 2021. TFROM: A two-sided

fairness-aware recommendation model for both customers and providers. In

Proceedings of the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 1013–1022.

[38] Yang Zhang, Fuli Feng, Chenxu Wang, Xiangnan He, Meng Wang, Yan Li, and

Yongdong Zhang. 2020. How to retrain recommender system? A sequential meta-

learning method. In Proceedings of the 43rd International ACM SIGIR Conference
on Research and Development in Information Retrieval. 1479–1488.

[39] Yu Zheng, Chen Gao, Xiang Li, Xiangnan He, Yong Li, and Depeng Jin. 2021.

Disentangling user interest and conformity for recommendation with causal

embedding. In Proceedings of the Web Conference 2021. 2980–2991.
[40] Ziwei Zhu, Yun He, Xing Zhao, and James Caverlee. 2021. Popularity bias in

dynamic recommendation. In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining. 2439–2449.

[41] Ziwei Zhu, Yun He, Xing Zhao, Yin Zhang, Jianling Wang, and James Caverlee.

2021. Popularity-opportunity bias in collaborative filtering. In Proceedings of the
14th ACM International Conference on Web Search and Data Mining. 85–93.

[42] Lixin Zou, Long Xia, Zhuoye Ding, Jiaxing Song, Weidong Liu, and Dawei

Yin. 2019. Reinforcement learning to optimize long-term user engagement

in recommender systems. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 2810–2818.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW ’24, May 13–17, 2024, Singapore Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A THEORETICAL ANALYSES

A.1 Assumptions

In this subsection, we introduce our theoretical assumptions, which

are quite mild and realistic.

To ensure that the dataset has a good coverage of the underlying

distribution, a common assumption in literature is independence:

Assumption 1 (Data independence). For every 𝑡 , the data
tuples in D𝑡 are mutually independent.

Regarding the loss function, a well-behaved loss function should

be able to be minimized. Common loss functions satisfy this prop-

erty. This leads us to the following Assumption 2:

Assumption 2 (Existence of infima). For every 𝑡 , the infimum
L∗𝑡 := infW L𝑡 (W) exists.

Note that we do not assume realizability, i.e., we do not assume

that there existsW that can achieve this infimum. Our Assump-

tion 2 is realistic in machine learning. For example, neural networks

can arbitrarily approximate any continuous function over any com-

pact domain [24], but they may not be exactly equal that function.

Besides that, since data tuples are mutually independent, each

data tuple in the dataset should not have dominant influence on the

overall loss function, which means that the loss function should

use the whole dataset. This leads us to the following Assumption 3:

Assumption 3 (No dominant influence). For every 𝑡 , for each
data tuple 𝑧 ∈ D𝑡 , the loss LD𝑡 (W) conditioned on D𝑡 \ {𝑧} is
𝜍2

𝑚𝑡
-subgaussian. Without loss of generality, we can assume 𝜍 = 1 by

rescaling L.

The subgaussian property is a common assumption in machine

learning [22], and common loss functions satisfy our Assumption 3.

Since there exist various definitions of the subgaussian property

(yet equivalent up to constant factors), we clarify our definition as

follows:

Definition 1 (Subgaussian property). For 𝜍 > 0, a real-
valued random variable 𝑋 is said to be 𝜍2-subgaussian if

E[e𝑣 (𝑋−E[𝑋])] ≤ e
𝜍2𝑣2/2, ∀𝑣 ∈ R. (19)

The equality holds for univariate Gaussians with variance 𝜍2.

Finally, we state our assumption on fine-tuning and retraining.

For each 𝑡 ≥ 1, letWft

𝑡 denote the model parameters fine-tuned

till D𝑡 . To characterize the fact that thefine-tunedWft

𝑡 does not

completely forget the previously learned knowledge inWft

𝑡−1, we
assume that all time periods share the same parameter space and

use the following classic Assumption 4 (adapted from [27]):

Assumption 4 (Proximal fine-tuning). There is 0 < 𝛾 < 1

such that for each 𝑡 ≥ 1, the number of fine-tuning epochs is decided
such that the fine-tunedWft

𝑡 is minimizing

ℓ𝑡 (W) := LD𝑡 (W) + 𝛾ℓ𝑡−1 (W), (20)

where ℓ0 (W) := LD0 (W) denotes the pretraining loss function.

For retraining, we assume that the influence of each time period

𝑡 to the retraining loss is a proportional to the size𝑚𝑡 of D𝑡 :

Assumption 5 (Retraining loss).

Lrt

𝑡te−1 (W) :=
∑𝑡te−1
𝑡=0

𝑚𝑡LD𝑡 (W)∑𝑡te−1
𝑡=0

𝑚𝑡
. (21)

Although this is a simplification of the retraining loss in practice,

it still captures the essential properties of retraining.

A.2 Proofs of Theorems 3.1 & 3.2

Our proofs of Theorems 3.1 & 3.2 rely the following Lemma A.1.

Lemma A.1. For 𝜶 ∈ R𝑡te≥0 with
∑𝑡te−1
𝑡=0

𝛼𝑡 = 1 and for 𝜖 > 0, let
W𝜶 ,𝜖
𝑡te−1 denote some model parameters such that

𝑡te−1∑︁
𝑡=0

𝛼𝑡L𝑡 (W𝜶 ,𝜖
𝑡te−1) ≤ 𝜖 + infW

𝑡te−1∑︁
𝑡=0

𝛼𝑡LD𝑡(W) . (22)

Then with probability at least 1 − 𝛿 ,

L𝑡te (W
𝜶 ,𝜖
𝑡te−1) ≤ L

∗
𝑡te
+ 𝜖 + 2

𝑡te−1∑︁
𝑡=0

𝛼𝑡𝑑𝑡,𝑡te + 4

√√√𝑡te−1∑︁
𝑡=0

𝛼2𝑡

𝑚𝑡
log

2

𝛿
.

Proof of Lemma A.1. Generalized from [2]. For 𝑘 ≥ 1, let

W𝑘
𝑡 ∈ L−1𝑡

((
−∞,L∗𝑡 + 1

𝑘

])
, (23)

W𝑘
𝑡,𝑡te
∈ (L𝑡 + L𝑡te)−1

((
−∞,L∗𝑡 + L∗𝑡te + 𝑑

comb

𝑡,𝑡te
+ 1

𝑘

])
. (24)

Then for anyW, by the triangle inequality,��(L𝑡 (W) − L∗𝑡) − (L𝑡te (W) − L∗𝑡te)�� (25)

=
��|L𝑡 (W) − L∗𝑡 | − |L𝑡te (W) − L∗𝑡te |�� (26)

=
�� (|L𝑡 (W) − L𝑡 (W𝑘

𝑡,𝑡te
) | − |L𝑇 (W) − L𝑡te (W𝑘

𝑡,𝑡te
) |
)

+
(
|L𝑡 (W) − L∗𝑡 | − |L𝑡 (W) − L𝑡 (W𝑘

𝑡,𝑡te
) |
)

(27)

−
(
|L𝑡te (W) − L∗𝑡te | − |L𝑡te (W) − L𝑡te (W

𝑘
𝑡,𝑡te
) |
) ��

≤
��|L𝑡 (W) − L𝑡 (W𝑘

𝑡,𝑡te
) | − |L𝑡te (W) − L𝑡te (W𝑘

𝑡,𝑡te
) |
��

+
��|L𝑡 (W) − L∗𝑡 | − |L𝑡 (W) − L𝑡 (W𝑘

𝑡,𝑡te
) |
��

(28)

+
��|L𝑡te (W) − L∗𝑡te | − |L𝑡te (W) − L𝑡te (W𝑘

𝑡,𝑡te
) |
��

≤ 𝑑HΔH
𝑡,𝑡te

+
��(L𝑡 (W) − L∗𝑡) − (L𝑡 (W) − L𝑡 (W𝑘

𝑡,𝑡te
))
��

+
��(L𝑡te (W) − L∗𝑡te) − (L𝑡te (W) − L𝑡te (W𝑘

𝑡𝑇))
��

(29)

= 𝑑HΔH
𝑡,𝑡te

+ |L𝑡 (W𝑘
𝑡,𝑡te
) − L∗𝑡 | + |L𝑡te (W𝑘

𝑡,𝑡te
) − L∗𝑡te | (30)

= 𝑑HΔH
𝑡,𝑡te

+ L𝑡 (W𝑘
𝑡,𝑡te
) − L∗𝑡 + L𝑡te (W𝑘

𝑡,𝑡te
) − L∗𝑡te (31)

≤ 𝑑HΔH
𝑡,𝑡te

+ 𝑑comb

𝑡,𝑡te
+ 1

𝑘
(32)

= 𝑑𝑡,𝑡te +
1

𝑘
. (33)

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Ensuring User-side Fairness in Dynamic Recommender Systems WWW ’24, May 13–17, 2024, Singapore

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Thus,

���� 𝑡te−1∑︁
𝑡=0

𝛼𝑡 (L𝑡 (W) − L∗𝑡) − (L𝑡te (W) − L∗𝑡te)
���� (34)

=

���� 𝑡te−1∑︁
𝑡=0

𝛼𝑡 (L𝑡 (W) − L∗𝑡) −
𝑡te−1∑︁
𝑡=0

𝛼𝑡 (L𝑡te (W) − L∗𝑡te)
���� (35)

=

���� 𝑡te−1∑︁
𝑡=0

𝛼𝑡 ((L𝑡 (W) − L∗𝑡) − (L𝑡te (W) − L∗𝑡te))
���� (36)

≤
𝑡te−1∑︁
𝑡=0

𝛼𝑡 | (L𝑡 (W) − L∗𝑡) − (L𝑡te (W) − L∗𝑡te) | (37)

≤
𝑡te−1∑︁
𝑡=0

𝛼𝑡

(
𝑑𝑡,𝑡te +

1

𝑘

)
(38)

=

𝑡te−1∑︁
𝑡=0

𝛼𝑡𝑑𝑡,𝑡te +
1

𝑘
. (39)

Besides that, by Theorem 3 in [22] and Assumption 3,

P

{ 𝑡te−1∑︁
𝑡=0

𝛼𝑡LD𝑡(W) ≥
𝑡te−1∑︁
𝑡=0

𝛼𝑡L𝑡 (W) + 𝜖
}

(40)

≤ exp

(
− 𝜖2

4

∑𝑡te−1
𝑡=0

𝑚𝑡
(
𝛼𝑡

𝜍
𝑚𝑡

)
2

)
= exp

(
− 𝜖2

4𝜍2
∑𝑡te−1
𝑡=0

𝛼2

𝑡

𝑚𝑡

)
. (41)

Then for 𝜍 = 1, with probability at least 1 − 𝛿/2,

𝑡te−1∑︁
𝑡=0

𝛼𝑡LD𝑡(W) ≤
𝑡te−1∑︁
𝑡=0

𝛼𝑡L𝑡 (W) + 2

√√√𝑡te−1∑︁
𝑡=0

𝛼2𝑡

𝑚𝑡
log

2

𝛿
. (42)

Similarly, with probability at least 1 − 𝛿/2,

𝑡te−1∑︁
𝑡=0

𝛼𝑡L𝑡 (W) ≤
𝑡te−1∑︁
𝑡=0

𝛼𝑡LD𝑡 (W) + 2

√√√𝑡te−1∑︁
𝑡=0

𝛼2𝑡

𝑚𝑡
log

2

𝛿
. (43)

Together, with probability at least 1 − 𝛿 ,

L𝑡te (W
𝜶 ,𝜖
𝑡te−1) (44)

= L∗𝑡te + L𝑡te (W
𝜶 ,𝜖
𝑡te−1) − L

∗
𝑡te

(45)

≤ L∗𝑡te +
𝑡te−1∑︁
𝑡=0

𝛼𝑡 (L𝑡 (W𝜶 ,𝜖
𝑡te−1) − L

∗
𝑡) +

𝑡te−1∑︁
𝑡=0

𝛼𝑡𝑑𝑡,𝑡te +
1

𝑘
(46)

≤ L∗𝑡te +
𝑡te−1∑︁
𝑡=0

𝛼𝑡 (LD𝑡(W𝜶 ,𝜖
𝑡te−1) − L

∗
𝑡) +

𝑡te−1∑︁
𝑡=0

𝛼𝑡𝑑𝑡,𝑡te

+ 1

𝑘
+ 2

√√√𝑡te−1∑︁
𝑡=0

𝛼2𝑡

𝑚𝑡
log

2

𝛿
(47)

≤ L∗𝑡te + 𝜖 +
𝑡te−1∑︁
𝑡=0

𝛼𝑡 (LD𝑡(W𝑘
𝑡te
) − L∗𝑡) +

𝑇−1∑︁
𝑡=0

𝛼𝑡𝑑𝑡,𝑡te

+ 1

𝑘
+ 2

√√√𝑡te−1∑︁
𝑡=0

𝛼2𝑡

𝑚𝑡
log

2

𝛿
(48)

≤ L∗𝑡te + 𝜖 +
𝑡te−1∑︁
𝑡=0

𝛼𝑡 (L𝑡 (W𝑘
𝑡te
) − L∗𝑡) +

𝑡te−1∑︁
𝑡=0

𝛼𝑡𝑑𝑡,𝑡te

+ 1

𝑘
+ 4

√√√𝑡te−1∑︁
𝑡=0

𝛼2𝑡

𝑚𝑡
log

2

𝛿
(49)

≤ L∗𝑡te + 𝜖 + L𝑡te (W
𝑘
𝑡te
) − L∗𝑡 + 2

𝑡te−1∑︁
𝑡=0

𝛼𝑡𝑑𝑡,𝑡te +
2

𝑘
+ 4

√√√𝑡te−1∑︁
𝑡=0

𝛼2𝑡

𝑚𝑡
log

2

𝛿

(50)

≤ L∗𝑡te + 𝜖 + 2
𝑡te−1∑︁
𝑡=0

𝛼𝑡𝑑𝑡,𝑡te +
3

𝑘
+ 4

√√√𝑡te−1∑︁
𝑡=0

𝛼2𝑡

𝑚𝑡
log

2

𝛿
. (51)

It follows from the continuity of probability that

P

{
L𝑡te (W

𝜶 ,𝜖
𝑡te−1) > L

∗
𝑡te
+ 𝜖 + 2

𝑡te−1∑︁
𝑡=0

𝛼𝑡𝑑𝑡,𝑡te + 4

√√√𝑡te−1∑︁
𝑡=0

𝛼2𝑡

𝑚𝑡
log

2

𝛿

}
(52)

= P

[∞⋃
𝑘=1

{
L𝑡te (W

𝜶 ,𝜖
𝑡te−1) ≥ L

∗
𝑡te
+ 𝜖 + 2

𝑡te−1∑︁
𝑡=0

𝛼𝑡𝑑𝑡,𝑡te

+ 3

𝑘
+ 4

√√√𝑡te−1∑︁
𝑡=0

𝛼2𝑡

𝑚𝑡
log

2

𝛿

}]
(53)

= lim

𝑘→∞
P

{
L𝑡te (W

𝜶 ,𝜖
𝑡te−1) ≥ L

∗
𝑡te
+ 𝜖 + 2

𝑡te−1∑︁
𝑡=0

𝛼𝑡𝑑𝑡,𝑡te

+ 3

𝑘
+ 4

√√√𝑡te−1∑︁
𝑡=0

𝛼2𝑡

𝑚𝑡
log

2

𝛿

}
(54)

≤ lim

𝑘→∞
𝛿 = 𝛿. □

Corollary A.2. Under the setup of Lemma A.1, let

𝐿𝜶𝑡te := inf

𝜖>0
𝜖∈Q

𝐿𝑡te (W
𝜶 ,𝜖
𝑡te−1) (55)

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

WWW ’24, May 13–17, 2024, Singapore Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

denote the best possible loss w.r.t. 𝜶 . With probability at least 1 − 𝛿 ,

𝐿𝜶𝑡te ≤ L
∗
𝑡te
+ 2

𝑡te−1∑︁
𝑡=0

𝛼𝑡𝑑𝑡,𝑡te + 4

√√√𝑡te−1∑︁
𝑡=0

𝛼2𝑡

𝑚𝑡
log

2

𝛿
. (56)

Proof of Corollary A.2. By the continuity of probability,

P

{
L𝜶
𝑡te

> L∗𝑡te + 2
𝑡te−1∑︁
𝑡=0

𝛼𝑡𝑑𝑡𝑇 + 4

√√√𝑡te−1∑︁
𝑡=0

𝛼2𝑡

𝑚𝑡
log

2

𝛿

}
(57)

= P

[∞⋃
𝑘=1

{
L𝜶
𝑡te
≥ L∗𝑡te +

1

𝑘
+ 2

𝑡te−1∑︁
𝑡=0

𝛼𝑡𝑑𝑡,𝑡te + 4

√√√𝑡te−1∑︁
𝑡=0

𝛼2𝑡

𝑚𝑡
log

2

𝛿

}]
(58)

= lim

𝑘→∞
P

{
L𝜶
𝑡te
≥ L∗𝑡te +

1

𝑘
+ 2

𝑡te−1∑︁
𝑡=0

𝛼𝑡𝑑𝑡,𝑡te + 4

√√√𝑡te−1∑︁
𝑡=0

𝛼2𝑡

𝑚𝑡
log

2

𝛿

}
(59)

≤ lim sup

𝑘→∞
P

{
L𝑡te

(
W𝜶 , 1

𝑘

𝑡te−1
)
≥ L∗𝑡te +

1

𝑘
+ 2

𝑡te−1∑︁
𝑡=0

𝛼𝑡𝑑𝑡,𝑡te

+ 4

√√√𝑡te−1∑︁
𝑡=0

𝛼2𝑡

𝑚𝑡
log

2

𝛿

}
(60)

≤ lim sup

𝑘→∞
𝛿 = 𝛿. □

Now we give the proofs of Theorems 3.1 & 3.2.

Proof of Theorem 3.1. By Assumption 4,

ℓ𝑡te−1 (W) = LD𝑡
te
−1 (W) +𝛾ℓ𝑡te−2 (W) =

𝑡te−1∑︁
𝑡=0

𝛾𝑡te−𝑡−1LD𝑡 (W) .

(61)

Thus, normalizing the coefficients gives

𝛼 ft𝑡 :=
(1 − 𝛾)𝛾𝑡te−𝑡−1

1 − 𝛾𝑡te . (62)

It follows from Corollary A.2 that

Lft

𝑡te
= L𝜶 ft

𝑡te
(63)

≤ L∗𝑡te + 2
𝑡te−1∑︁
𝑡=0

𝛼 ft𝑡 𝑑𝑡,𝑡te + 4

√√√𝑡te−1∑︁
𝑡=0

(𝛼 ft𝑡)2
𝑚𝑡

log

2

𝛿
(64)

= L∗𝑡te +
(1 − 𝛾)

(
2

𝑡te−1∑
𝑡=0

𝛾𝑡te−𝑡−1𝑑𝑡,𝑡te + 4
√︂(𝛾2𝑡te−2

𝑚0

+ 1−𝛾2𝑡te−2
(1−𝛾2)𝑚1

)
log

2

𝛿

)
1 − 𝛾𝑡te .□

Proof of Theorem 3.2. By Assumption 5, we have

𝛼rt𝑡 :=
𝑚𝑡∑𝑡te−1

𝑡 ′=0 𝑚𝑡
′
=

𝑚𝑡

𝑚0 + (𝑡te − 1)𝑚1

. (65)

It follows from Corollary A.2 that

Lrt

𝑡te
= L𝜶 rt

𝑡te
(66)

≤ L∗𝑡te + 2
𝑡te−1∑︁
𝑡=0

𝛼rt𝑡 𝑑𝑡,𝑡te + 4

√√√𝑡te−1∑︁
𝑡=0

(𝛼rt𝑡)2
𝑚𝑡

log

2

𝛿
(67)

= L∗𝑡te +
2𝑚0𝑑0𝑇 + 2

𝑡te−1∑
𝑡=1

𝑚1𝑑𝑡,𝑡te

𝑚0 + (𝑡te − 1)𝑚1

+ 4
√︂

1

𝑚0 + (𝑡te − 1)𝑚1

log
2

𝛿
. □

A.3 Proof of Proposition 3.3

Proof of Proposition 3.3. Note that

∇W𝑡
LD𝑡

fair
(W𝑡) = ∇W𝑡

(− log(𝜎 (−DPDD𝑡 (W𝑡)))) (68)

= 𝜎 (DPDD𝑡 (W𝑡))∇W𝑡
DPD

D𝑡 (W𝑡) . (69)

Since ∇W𝑡
LD𝑡

fair
(W𝑡) ≠ 0, then ∇W𝑡

DPD
D𝑡 (W𝑡) ≠ 0. Consider

𝜆 :=
−2⟨∇W𝑡

LD𝑡
rec
(W𝑡),∇W𝑡

DPD
D𝑡 (W𝑡)⟩

∥∇W𝑡
DPD

D𝑡 (W𝑡)∥2
2

≥ 0. (70)

By the chain rule,

lim

𝜂→+0
DPD

D𝑡 (W̃𝑡) − DPDD𝑡(W𝑡)
𝜂

(71)

= ⟨∇W𝑡
LD𝑡
rec
(W𝑡) + 𝜆∇W𝑡

LD𝑡

fair
(W𝑡),∇W𝑡

DPD
D𝑡 (W𝑡)⟩ (72)

= (1 − 2𝜎 (DPDD𝑡 (W𝑡)))⟨∇W𝑡
LD𝑡
rec
(W𝑡),∇W𝑡

DPD
D𝑡 (W𝑡)⟩.

(73)

The conclusion follows from the fact that

sgn(𝑥) (1 − 2𝜎 (𝑥)) ≤ 0, ∀𝑥 ∈ R. (74)

□

B EXPERIMENTS

B.1 Implementation Details of Competitors

For Adver, the adversarial coefficient 𝛾 is selected from the sug-

gested range [1, 10, 20, 50], as mentioned in their paper [18]. The

filter modules are two-layer neural networks with the LeakyReLU

activation. The discriminators are multi-layer perceptrons with 7

layers, LeakyReLU activation function, and a dropout rate of 0.3.

The discriminators are trained for 10 steps.

In the original paper of Rerank [17], they use a re-ranking tech-

nique under a fairness-constraint based on the test positive data,

which does not align with our assumption that we cannot access

future data when serving the recommendation list. Thus, we adopt

this method by designating items with predicted scores above a

certain threshold as ground-truth items. In our experiments, the

predicted scores are normalized to the range of 0 to 1, and we set

the threshold to 0.7.

B.2 Software and Hardware Configuration.

All codes are programmed in Python 3.6.9 and PyTorch 1.4.0. All

experiments are performed on a Linux server with 2 Intel Xeon

Gold 6240R CPUs and 1 Nvidia Tesla V100 SXM2 GPU with 32 GB

GPU memory.

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Ensuring User-side Fairness in Dynamic Recommender Systems WWW ’24, May 13–17, 2024, Singapore

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

B.3 Additional Effectiveness Results

• Fig. 6 show the results for the trade-off between recommen-

dation performance and absolute performance disparity in

Task-N. The results for Task-R is in the main body.

• Fig. 7 shows the results for the trend of performance dispar-

ity in Task-N. The results for Task-R is in the main body.

• Fig. 9 and Fig. 8 show the trend of recommendation perfor-

mance in Task-R and Task-N, respectively.

• Fig. 10 displays the trend in recommendation performance

of Pretrain, Retrain, Finetune, Retrain-Fair, and FADE in

Task-R on Movielenz. This includes the results immediately

after pretraining (i.e., 𝑡 = 0) and subsequent time periods

(i.e., 𝑡 = 7, 8, 9). Notably, the results for MF demonstrate that

fine-tuning-based methods outperform retraining-based

methods in the earlier time periods because fine-tuning is

less affected by distribution shifts. However, in later periods,

the performance of fine-tuned models eventually degrades,

falling even below that of retrained models due to accu-

mulated learning errors. These observations are consistent

with our theoretical analyses in §3.1 and suggest that the

best practice involves incremental fine-tuning with restart.

B.4 Comparison of Soft Ranking Methods

Fig. 11 presents FADE adapting different soft ranking metrics, in-

cluding ApproxNDCG [26] and NeuralNDCG [25], as well as FADE
incorporating the differentiable Hit in Task-R. The legend also pro-

vides the average running time for each method.

First, FADE outperforms or matches the NeuralNDCG variant

in both recommendation performance and performance disparity,

while being approximately four times faster. This is because the

differentiable Hit addresses NeuralNDCG’s gradient vanishing issue

by eliminating several processes, including the sinkhorn algorithm.

In comparison toApproxNDCG, FADE generally achieves smaller

performance disparity. Although ApproxNDCG may yield lower

disparity in some cases, it excessively sacrifices recommendation

quality, which is undesirable.

B.5 Hyperparameter Analysis

B.5.1 Effect of the scaling parameter 𝜆 for the fairness Loss. Fig. 13
and Fig. 17 show the effect of the scaling parameter 𝜆 on the rec-

ommendation performances of the advantaged and disadvantaged

groups in Task-R and Task-N, respectively.

B.5.2 Effect of the number of dynamic update epochs. Fig. 14 and
Fig. 18 show the effect of the number of dynamic update epochs on

the recommendation performances of the advantaged and disad-

vantaged groups in Task-R and Task-N, respectively.

B.5.3 Effect of temperature parameter 𝜏 in the relaxed permutation
matrix. Fig. 15 and Fig. 19 show the effect of the temperature pa-

rameter 𝜏 on the recommendation performances of the advantaged

and disadvantaged groups in Task-R and Task-N, respectively.

B.5.4 Effect of the number of negative items 𝜇. Fig. 16 and Fig. 20

show the effect of the number of negative candidate items 𝜇 for a

user in our fairness loss on the recommendation performances of

the advantaged and disadvantaged groups in Task-R and Task-N,

respectively.

In general, the results suggest that FADE performance remains

relatively stable when varying the number of negative items in

most cases. Thus, setting 𝜇 to 4 results in comparable performance

while also enhancing the execution time of FADE.

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

WWW ’24, May 13–17, 2024, Singapore Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

Adver Rerank Pretrain Retrain Finetune Pretrain-Fair Retrain-Fair FADE-Abs FADE (Ours)

0.50 0.60 0.70

2.0

3.0

4.0

·10−2

NDCG@20

|P
D
|

MF

0.20 0.25 0.30

1.0

1.5

2.0

2.5

·10−2

F1@20

MF

0.710.720.730.74

2.5

3.0

·10−2

NDCG@20

NCF

0.30 0.30

1.8

2.0

2.2

·10−2

F1@20

NCF

0.17 0.18 0.19 0.20

3.0

4.0

5.0

·10−2

NDCG@20

MF

3.00 4.00 5.00 6.00

·10−2

1.0

1.2

1.4

1.6

·10−2

F1@20

MF

0.16 0.17 0.18 0.19
3.5

4.0

4.5

5.0

·10−2

NDCG@20

NCF

3.00 4.00 5.00 6.00

·10−2

1.2

1.3

1.4

1.5

·10−2

F1@20

NCF

(a) Movielenz (b) ModCloth

Figure 6: Trade-off between recommendation performance and absolute performance disparity in Task-N.

Retrain Finetune Retrain-Fair FADE (Ours)

1 2 3 4 5 6

0.0

2.0

4.0

6.0
·10−2

Time period

|P
D
|

NDCG@20 / MF

1 2 3 4 5 6

0.0

2.0

4.0

·10−2

Time period

|P
D
|

F1@20 / MF

1 2 3 4 5 6

0.0

2.0

4.0

6.0

8.0
·10−2

Time period

|P
D
|

NDCG@20 / NCF

1 2 3 4 5 6

0.0

2.0

4.0

·10−2

Time period

|P
D
|

F1@20 / NCF

(a) Movielenz

1 2 3 4 5 6

2.0

4.0

6.0

·10−2

Time period

|P
D
|

NDCG@20 / MF

1 2 3 4 5 6

1.0

2.0

·10−2

Time period

|P
D
|

F1@20 / MF

1 2 3 4 5 6

0.0

2.0

4.0

6.0

·10−2

Time period

|P
D
|

NDCG@20 / NCF

1 2 3 4 5 6

0.5

1.0

1.5

2.0

·10−2

Time period

|P
D
|

F1@20 / NCF

(b) ModCloth

Figure 7: Trend of absolute performance disparity in Task-N.

Pretrain Retrain Finetune Pretrain-fair Retrain-Fair FADE (Ours)

1 2 3 4 5 6

0.7

0.8

0.8

0.9

Time period

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

1 2 3 4 5 6

0.3

0.3

0.3

0.3

Time period

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

1 2 3 4 5 6

0.8

0.8

0.8

0.9

Time period

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

1 2 3 4 5 6

0.3

0.3

0.4

Time period

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(a) Movielenz

1 2 3 4 5 6

0.2

0.3

0.3

0.4

Time period

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

1 2 3 4 5 6

0.1

0.1

0.1

0.1

Time period

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

1 2 3 4 5 6

0.2

0.3

0.3

0.4

Time period

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

1 2 3 4 5 6

0.1
0.1
0.1
0.1
0.1

Time period

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(b) ModCloth

Figure 8: Trend of recommendation performance in Task-R.

14

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

Ensuring User-side Fairness in Dynamic Recommender Systems WWW ’24, May 13–17, 2024, Singapore

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

Pretrain Retrain Finetune Pretrain-fair Retrain-Fair FADE (Ours)

1 2 3 4 5 6

0.50

0.60

0.70

0.80

Time period

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

1 2 3 4 5 6

0.20

0.25

0.30

0.35

Time period

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

1 2 3 4 5 6

0.65

0.70

0.75

0.80

Time period

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

1 2 3 4 5 6

0.26

0.28

0.30

0.32

0.34

Time period

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(a) Movielenz

1 2 3 4 5 6

0.10

0.15

0.20

Time period

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

1 2 3 4 5 6

4.00

6.00

·10−2

Time period

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

1 2 3 4 5 6

0.10

0.15

0.20

Time period

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

1 2 3 4 5 6

3.00

4.00

5.00

6.00

·10−2

Time period

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(b) ModCloth

Figure 9: Trend of recommendation performance in Task-N.

Pretrain Retrain Finetune Retrain-Fair FADE (Ours)

0 1 2 3 4 5 6 7 8 9

0.7

0.8

Time period

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

0 1 2 3 4 5 6 7 8 9

0.3
0.3
0.3
0.3
0.3
0.4

Time period

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

0 1 2 3 4 5 6 7 8 9

0.8

0.8

0.8

Time period

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

0 1 2 3 4 5 6 7 8 9

0.3

0.3

0.4

Time period

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(a) Movielenz

Figure 10: Trend of recommendation performance in Task-R on Movielenz, including subsequent time periods.

ApproxNDCG (avg. runtime: 3.13s) NeuralNDCG (avg. runtime: 12.15) FADE (Ours) (avg. runtime: 3.05s)

0.840.840.840.85

4.0

5.0

6.0

7.0

·10−3

NDCG@20

|P
D
|

MF

0.330.330.330.33

0.5

1.0

·10−2

F1@20

MF

0.84 0.84 0.85

5.0

6.0

7.0

·10−3

NDCG@20

NCF

0.34 0.34

4.0

5.0

6.0

·10−3

F1@20

NCF

0.240.250.260.27

2.0

4.0

6.0
·10−2

NDCG@20

MF

0.07 0.08 0.09 0.10
0.5

1.0

1.5

2.0

·10−2

F1@20

MF

0.26 0.27 0.28 0.29
5.0

5.5

6.0

·10−2

NDCG@20

NCF

8.80 9.00 9.20

·10−2

2.4

2.6

·10−2

F1@20

NCF

(a) Movielenz (b) ModCloth

Figure 11: Trade-off between recommendation performance and absolute performance disparity in Task-R.

ApproxNDCG (avg. runtime: 3.13s) NeuralNDCG (avg. runtime: 12.15) FADE (Ours) (avg. runtime: 3.05s)

0.730.740.740.74

2.4

2.5

2.5

·10−2

NDCG@20

|P
D
|

MF

0.29 0.29

1.9

2.0

2.1

·10−2

F1@20

MF

0.73 0.74 0.74

2.5

2.6

2.6

·10−2

NDCG@20

NCF

0.30 0.30 0.30

1.8

2.0

2.2

2.4
·10−2

F1@20

NCF

0.16 0.17 0.18 0.19

2.0

2.5

3.0

·10−2

NDCG@20

MF

4.404.604.805.00

·10−2

0.4

0.6

0.8

1.0

·10−2

F1@20

MF

0.18 0.18 0.19

3.4

3.6

3.8

4.0

·10−2

NDCG@20

NCF

4.80 4.85 4.90

·10−2

1.0

1.1

1.2

1.3

·10−2

F1@20

NCF

(a) Movielenz (b) ModCloth

Figure 12: Trade-off between recommendation performance and absolute performance disparity in Task-N.

15

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

WWW ’24, May 13–17, 2024, Singapore Anon.

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

Advantaged group Disadvantaged group

0 0.1 0.3 0.5 0.8 1.0 1.5 2.0 2.5 3.0

0.80

0.82

0.84

𝜆

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

0 0.1 0.3 0.5 0.8 1.0 1.5 2.0 2.5 3.0

0.31

0.32

0.33

0.34

𝜆

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

0 0.1 0.3 0.5 0.8 1.0 1.5 2.0 2.5 3.0

0.84

0.84

0.85

𝜆

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

0 0.1 0.3 0.5 0.8 1.0 1.5 2.0 2.5 3.0

0.33

0.34

𝜆

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(a) Movielenz

0 0.1 0.3 0.5 0.8 1.0 1.5 2.0 2.5 3.0

0.22

0.24

0.26

0.28

0.30

𝜆

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

0 0.1 0.3 0.5 0.8 1.0 1.5 2.0 2.5 3.0

0.07

0.08

0.09

0.10

𝜆

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

0 0.1 0.3 0.5 0.8 1.0 1.5 2.0 2.5 3.0

0.22

0.24

0.26

0.28

0.30

𝜆

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

0 0.1 0.3 0.5 0.8 1.0 1.5 2.0 2.5 3.0

7.00

8.00

9.00

·10−2

𝜆

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(b) ModCloth

Figure 13: The effect of the scaling factor 𝜆 on the recommendation performances of the advantaged and disadvantaged groups

in Task-R.

Advantaged group Disadvantaged group

1 5 10 15 20 25 30 35 40 45 50

0.70

0.75

0.80

0.85

The number of epochs

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

1 5 10 15 20 25 30 35 40 45 50

0.25

0.30

0.35

The number of epochs

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

1 5 10 15 20 25 30 35 40 45 50

0.83

0.84

0.85

The number of epochs

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

1 5 10 15 20 25 30 35 40 45 50

0.32

0.33

0.34

0.35

The number of epochs

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(a) Movielenz

1 5 10 15 20 25 30 35 40 45 50

0.22

0.24

0.26

0.28

0.30

The number of epochs

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

1 5 10 15 20 25 30 35 40 45 50

7.00

8.00

9.00

·10−2

The number of epochs

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

1 5 10 15 20 25 30 35 40 45 50

0.24

0.26

0.28

0.30

The number of epochs

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

1 5 10 15 20 25 30 35 40 45 50

0.07

0.08

0.09

0.10

The number of epochs

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(b) ModCloth

Figure 14: The effect of the number of dynamic update epochs on the recommendation performances of the advantaged and

disadvantaged groups in Task-R.

16

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

Ensuring User-side Fairness in Dynamic Recommender Systems WWW ’24, May 13–17, 2024, Singapore

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

Advantaged group Disadvantaged group

0.1 0.5 1.0 2.0 3.0 4.0 5.0

0.40

0.60

0.80

Tau 𝜏

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

0.1 0.5 1.0 2.0 3.0 4.0 5.0

0.10

0.20

0.30

Tau 𝜏

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

0.1 0.5 1.0 2.0 3.0 4.0 5.0

0.84

0.84

0.85

0.85

Tau 𝜏

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

0.1 0.5 1.0 2.0 3.0 4.0 5.0

0.32

0.33

0.34

Tau 𝜏

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(a) Movielenz

0.1 0.5 1.0 2.0 3.0 4.0 5.0

0.22

0.24

0.26

0.28

0.30

Tau 𝜏

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

0.1 0.5 1.0 2.0 3.0 4.0 5.0

7.00

8.00

9.00

·10−2

Tau 𝜏

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

0.1 0.5 1.0 2.0 3.0 4.0 5.0

0.24

0.26

0.28

0.30

Tau 𝜏

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

0.1 0.5 1.0 2.0 3.0 4.0 5.0

7.00

8.00

9.00

·10−2

Tau 𝜏

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(b) ModCloth

Figure 15: The effect of the hyperparameter 𝜏 in our Differentiable Hit (DH) on the recommendation performances of the

advantaged and disadvantaged groups in Task-R.

Advantaged group Disadvantaged group

4 8 12 16 20 24 28 32 36 40

0.84

0.84

0.85

The number of negative items 𝜇

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

4 8 12 16 20 24 28 32 36 40

0.33

0.33

0.33

0.34

The number of negative items 𝜇

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

4 8 12 16 20 24 28 32 36 40

0.85

0.85

The number of negative items 𝜇

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

4 8 12 16 20 24 28 32 36 40

0.34

0.34

0.35

The number of negative items 𝜇

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(a) Movielenz

4 8 12 16 20 24 28 32 36 40

0.22

0.24

0.26

0.28

The number of negative items 𝜇

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

4 8 12 16 20 24 28 32 36 40

7.00

8.00

9.00

·10−2

The number of negative items 𝜇

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

4 8 12 16 20 24 28 32 36 40

0.24

0.26

0.28

0.30

The number of negative items 𝜇

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

4 8 12 16 20 24 28 32 36 40

7.00

8.00

9.00

·10−2

The number of negative items 𝜇

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(b) ModCloth

Figure 16: The effect of the number of negative items for each user in our fairness loss on the recommendation performances

of the advantaged and disadvantaged groups in Task-R.

17

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

WWW ’24, May 13–17, 2024, Singapore Anon.

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

Advantaged group Disadvantaged group

0 0.1 0.3 0.5 0.8 1.0 1.5 2.0 2.5 3.0

0.70

0.72

0.74

𝜆

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

0 0.1 0.3 0.5 0.8 1.0 1.5 2.0 2.5 3.0

0.28

0.29

0.30

𝜆

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

0 0.1 0.3 0.5 0.8 1.0 1.5 2.0 2.5 3.0

0.73

0.74

0.75

𝜆

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

0 0.1 0.3 0.5 0.8 1.0 1.5 2.0 2.5 3.0

0.30

0.30

0.31

𝜆

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(a) Movielenz

0 0.1 0.3 0.5 0.8 1.0 1.5 2.0 2.5 3.0

0.16

0.18

0.20

𝜆

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

0 0.1 0.3 0.5 0.8 1.0 1.5 2.0 2.5 3.0

4.00

4.50

5.00

5.50

·10−2

𝜆

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

0 0.1 0.3 0.5 0.8 1.0 1.5 2.0 2.5 3.0

0.14

0.16

0.18

0.20

𝜆

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

0 0.1 0.3 0.5 0.8 1.0 1.5 2.0 2.5 3.0

4.00

4.50

5.00

·10−2

𝜆

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(b) ModCloth

Figure 17: The effect of the scaling factor 𝜆 on the recommendation performances of the advantaged and disadvantaged groups

in Task-N.

Advantaged group Disadvantaged group

1 5 10 15 20 25 30 35 40 45 50

0.65

0.70

0.75

The number of epochs

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

1 5 10 15 20 25 30 35 40 45 50

0.24

0.26

0.28

0.30

The number of epochs

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

1 5 10 15 20 25 30 35 40 45 50

0.72

0.73

0.74

0.75

The number of epochs

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

1 5 10 15 20 25 30 35 40 45 50

0.30

0.30

0.31

The number of epochs

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(a) Movielenz

1 5 10 15 20 25 30 35 40 45 50

0.14

0.16

0.18

0.20

The number of epochs

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

1 5 10 15 20 25 30 35 40 45 50

4.00

4.50

5.00

5.50

·10−2

The number of epochs

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

1 5 10 15 20 25 30 35 40 45 50

0.16

0.18

0.20

The number of epochs

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

1 5 10 15 20 25 30 35 40 45 50

4.00

4.50

5.00

5.50
·10−2

The number of epochs

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(b) ModCloth

Figure 18: The effect of the number of dynamic update epochs on the recommendation performances of the advantaged and

disadvantaged groups in Task-N.

18

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

Ensuring User-side Fairness in Dynamic Recommender Systems WWW ’24, May 13–17, 2024, Singapore

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

Advantaged group Disadvantaged group

0.1 0.5 1.0 2.0 3.0 4.0 5.0

0.20

0.40

0.60

0.80

Tau 𝜏

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

0.1 0.5 1.0 2.0 3.0 4.0 5.0

0.10

0.20

0.30

Tau 𝜏

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

0.1 0.5 1.0 2.0 3.0 4.0 5.0

0.72

0.73

0.74

Tau 𝜏

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

0.1 0.5 1.0 2.0 3.0 4.0 5.0

0.27

0.28

0.29

0.30

Tau 𝜏

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(a) Movielenz

0.1 0.5 1.0 2.0 3.0 4.0 5.0

0.14

0.16

0.18

0.20

Tau 𝜏

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

0.1 0.5 1.0 2.0 3.0 4.0 5.0

4.00

4.50

5.00

5.50

·10−2

Tau 𝜏

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

0.1 0.5 1.0 2.0 3.0 4.0 5.0

0.16

0.18

0.20

Tau 𝜏

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

0.1 0.5 1.0 2.0 3.0 4.0 5.0

4.00

4.50

5.00

·10−2

Tau 𝜏

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(b) ModCloth

Figure 19: The effect of the hyperparameter 𝜏 in our Differentiable Hit (DH) on the recommendation performances of the

advantaged and disadvantaged groups in Task-N.

Advantaged group Disadvantaged group

4 8 12 16 20 24 28 32 36 40

0.73

0.74

0.75

The number of negative items 𝜇

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

4 8 12 16 20 24 28 32 36 40

0.29

0.29

0.30

0.30

The number of negative items 𝜇

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

4 8 12 16 20 24 28 32 36 40

0.74

0.74

0.75

The number of negative items 𝜇

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

4 8 12 16 20 24 28 32 36 40

0.30

0.30

0.30

0.30

The number of negative items 𝜇

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(a) Movielenz

4 8 12 16 20 24 28 32 36 40

0.16

0.18

0.20

The number of negative items 𝜇

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

4 8 12 16 20 24 28 32 36 40

4.50

5.00

5.50

·10−2

The number of negative items 𝜇

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

4 8 12 16 20 24 28 32 36 40

0.16

0.18

The number of negative items 𝜇

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

4 8 12 16 20 24 28 32 36 40

4.00

4.50

5.00

·10−2

The number of negative items 𝜇

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(b) ModCloth

Figure 20: The effect of the number of negative items for each user in our fairness loss on the recommendation performances

of the advantaged and disadvantaged groups in Task-N.

19

	Abstract
	1 Introduction
	2 Problem Definition
	3 FADE: A Fair Dynamic Recommender
	3.1 Fine-Tuning v.s. Retraining
	3.2 Incremental Fine-Tuning Strategy
	3.3 Differentiable Hit
	3.4 Fairness Loss
	3.5 Complexity Analysis

	4 Experiments
	4.1 Experimental Settings
	4.2 The Effect of Learning from New Data
	4.3 Ablation Study of FADE
	4.4 Comparison with Fairness Competitors
	4.5 Time-efficiency Comparison
	4.6 Comparison with Soft Ranking Metrics
	4.7 Hyperparameter Analysis

	5 Related Work
	6 Conclusion
	References
	A Theoretical Analyses
	A.1 Assumptions
	A.2 Proofs of Theorems 3.1 & 3.2
	A.3 Proof of Proposition 3.3

	B Experiments
	B.1 Implementation Details of Competitors
	B.2 Software and Hardware Configuration.
	B.3 Additional Effectiveness Results
	B.4 Comparison of Soft Ranking Methods
	B.5 Hyperparameter Analysis

