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ABSTRACT

We investigate whether three types of post hoc model explanations–feature attri-
bution, concept activation, and training point ranking–are effective for detecting a
model’s reliance on spurious signals in the training data. Specifically, we consider
the scenario where the spurious signal to be detected is unknown, at test-time, to
the user of the explanation method. We design an empirical methodology that uses
semi-synthetic datasets along with pre-specified spurious artifacts to obtain models
that verifiably rely on these spurious training signals. We then provide a suite of
metrics that assess an explanation method’s reliability for spurious signal detection
under various conditions. We find that the post hoc explanation methods tested
are ineffective when the spurious artifact is unknown at test-time especially for
non-visible artifacts like a background blur. Further, we find that feature attribution
methods are susceptible to erroneously indicating dependence on spurious signals
even when the model being explained does not rely on spurious artifacts. This
finding casts doubt on the utility of these approaches, in the hands of a practitioner,
for detecting a model’s reliance on spurious signals.1

It is hard to find a needle in a haystack,
it is much harder if you haven’t seen a needle before (Pearl).

—Judea Pearl

1 INTRODUCTION

A challenge that precludes the deployment of modern deep neural networks (DNN) in high stakes
domains is their tendency to latch onto ‘spurious signals’—shortcuts—in the training data (Geirhos
et al., 2020). For example, Badgeley et al. (2019) showed that an Inception-V3 model trained to
detect hip fracture relied on the scanner type for its classification decision. Deep learning models
easily base output predictions on object backgrounds (Xiao et al., 2020), image texture (Geirhos et al.,
2018), and skin tone (Stock and Cisse, 2018).

Post hoc model explanation methods—approaches that give insight into the associations that a model
has learned—are increasingly used to determine whether a model relies on spurious signals. Ribeiro
et al. (2016) used LIME to show an Inception-V3 model’s reliance on the snow background for
identifying Wolves. Such demonstration and others (Lapuschkin et al., 2019; Rieger et al., 2020)
point to post hoc explanation methods as effective tools for the spurious signal detection task.
However, these results conflict with evidence that indicates that practitioners (and researchers)
struggle to use explanations to identify spurious signals (Chen et al., 2021; Chu et al., 2020;
Alqaraawi et al., 2020; Adebayo et al., 2020; Poursabzi-Sangdeh et al., 2018). We seek to resolve
this conflict by answering the simple but important question:

Can post hoc explanations help detect a model’s reliance on unknown spurious training signal?

Motivating Example. Consider a machine learning (ML) engineer whose job is to train DNN models
to detect knee arthritis from radiographs. She—the engineer—is handed a trained ResNet-50 model,
to be deployed in a hospital, that relies on a hospital tag in the radiographs to detect knee arthritis. She

1We refer readers to the longer version of this work on the arxiv. Code to replicate our findings is available
at: https://github.com/adebayoj/posthocspurious

1



Published as a conference paper at ICLR 2022

has no prior knowledge of the model’s reliance on the spurious tags. In this work, our key concern
is whether the ML engineer can use post hoc explanations to identify that the model is defective.

1.1 OUR CONTRIBUTIONS

We address the motivating question above in a two-pronged manner. First, we develop an actionable
methodology based on the ability to carefully craft datasets to induce spurious correlation in trained
models. Second, we backup this experimental design with a human subject study. Taken together,
the takeaway of the work is that: post hoc explanations can be used to identify a model’s reliance
on a visible spurious signal, provided the signal is known ahead of time by the practitioner. While
this conclusion may seem unsurprising, it has important implications for how post hoc explanation
methods should be used effectively.

Experimental Design & Performance Measures. We provide an end-to-end experimental design
for assessing the effectiveness of an explanation method for detecting a model’s reliance on spurious
training signals. We define a spurious score that helps quantify the strength of a model’s dependence
on a training signal. Using carefully crafted semi-synthetic datasets, we are able to train models where
the ground-truth expected explanation is known. Additionally, we develop 3 performance measures:
i) Known Spurious Signal Detection Measure (K-SSD), ii) Cause-for-Concern Measure (CCM), and
iii) a False Alarm Measure (FAM). These measures help characterize different notions of reliability
for the spurious signal detection task. We instantiate the proposed design on 3 classes of post hoc
explanation types—feature attribution, concept activation, and training point ranking—where we
comprehensively assess the performance of these approaches across 3 datasets (2 medical tasks, and
dog species classification task), and different model architectures.

When the spurious signal is known, we find that the feature attribution methods tested, and the concept
activation importance approach are able to detect visible spurious signals like a text tag and distinctive
stripped patterns. However, we find these approaches less effective for non-pronounced signals like
background blur. The false alarm measure further indicates that feature attribution methods are
susceptible to erroneously indicating dependence on spurious signals.

The cause-for-concern measure quantifies the similarity between explanations of ‘normal’ inputs
derived from spurious and normal models when the spurious signal is unknown. Across the settings
considered, we find that the methods tested are unable to conclusively detect model reliance on
unknown spurious signals.

Blinded Study. The findings from our empirical assessment question the reliability of the methods
tested; however, it might not correlate with utility in the hands of practitioners. To address this issue,
we conduct a user study where practitioners are randomly assigned to one of two groups: the first
group is told explicitly of potential spurious signals, and the second is not. We consider three different
kinds of explanation methods along with a control where only model predictions are shown. We
find that when participants are not provided with prior knowledge of the spurious signal, none of the
methods tested are effective, in the hands of the participants, for detecting model reliance on spurious
signals. More surprisingly, even when the participants had prior knowledge of the spurious signal,
we find evidence that only the concept activation approach, for visible spurious signals, is effective.
These findings cast doubt on the reliability of current post hoc tools for spurious signal detection.

Guidance. On the basis our analysis, we can provide the following guidance for using the approaches
tested, in this work, for detecting model reliance on spurious signals when the signal of interest is
visible:

• Feature Attributions: to confirm that a model is relying on a ‘visible’ spurious signal, the
practitioner needs to obtain attributions for inputs that contain the hypothesized spurious
signal, and the attribution should be computed for the output class to which the spurious
signal is aligned.

• Concept Activation: the spurious concept should be known ahead of time, and tested
against the output class to which the concept is aligned.

• Training Point Ranking: an input that contains the hypothesized spurious signal of interest
should be used at test-time in computing training point ranking.
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1.2 RELATED WORK

This paper belongs to a line of work on assessing the effectiveness of post hoc explanations meth-
ods (Alqaraawi et al., 2020; Adebayo et al., 2020; Chu et al., 2020; Hooker et al., 2019; Meng et al.,
2018; Poursabzi-Sangdeh et al., 2018; Tomsett et al., 2020). Here we focus on directly relevant
literature, and defer an extensive discussion of the literature to the Appendix.

This work departs from previous work in two ways: 1) we focus exclusively on whether these
explanations can be used by a practitioner (or researcher) to detect spurious signals that are unknown
to her at test-time, and 2) we move beyond sole focus on the feature attribution setting to test concept
activation and training point ranking methods.

Han et al. (2020) and Adebayo et al. (2020) find that certain kinds of feature attributions and training
point ranking via influence functions are able to detect a model’s reliance on spurious signals.
However, in their setting, the spurious signal is known ahead of time. More recently, Zhou et al.
(2021) conduct an extensive assessment of several feature attribution methods also under the spurious
correlation setting, for visible and non-visible artifacts, and find that these class of methods are not
effective for non-visible artifacts. In addition, they also propose an experimental methodology for
controlling model dependence on training set features, which allows them to quantify attribution
effectiveness precisely. Overall, our findings align with theirs; however, we focus, specifically, on the
setting where the spurious signal is not known ahead of time.

Kim et al. (2021) conduct an assessment of several feature attribution methods using a synthetic
evaluation framework where the ground-truth explanation is known reasoning tasks. They find that
feature attribution methods often attribute irrelevant features even in simple settings, and show high
variability across data modalities and tasks. Plumb et al. (2021) introduce a method to identify
important associations that a model might have learned, detect which of these associations are
spurious, and propose a data augmentation procedure to overcome the reliance. Nguyen et al. (2021)
conduct a large-scale user study to assess the effectiveness of feature attribution methods on image
tasks. They find that feature attributions are not more effective than showing end users nearest
neighbor training points. In this work, we only consider image tasks, however Bastings et al. (2021)
devised a similar experimental procedure and metrics to test several attribution methods for spurious
signal detection in text settings. They find that the effectiveness of an attribution method depends on
the task, spurious signal, and other dataset dependent properties.

2 EXPERIMENTAL METHODOLOGY

Figure 1: Overview of Spurious Sig-
nals Considered.

In this section, we setup our experimental methodology.
We discuss quantitative analysis of post hoc explanations
derived from models trained to rely on pre-defined spu-
rious signals, and a blinded user study that measures the
ability of users to use the post hoc explanation methods
tested to detect model reliance on spurious signals. We
discuss the types of spurious signals considered, define
a spurious score that allows us to ascertain that a model
indeed relies on a signal as basis of its classification de-
cision, and layout performance measures that capture the
reliability of the explanation methods. We conclude with
an overview of the methods tested, datasets, and models.

2.1 EXPERIMENTAL DESIGN

Spurious Signals & Score. We consider a spurious signal to be input features that encode for the
output but have ‘no meaningful connection’ to the ‘data generating process’ (DGP) of the task. A
hospital tag present in a hand radiograph is not clinically relevant to the age of the patient. If the
tag encodes for the output then it is a spurious signal. Domain expertise is ultimately required for
adjudicating that a signal is spurious.
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We consider 3 (2 visible and 1 non-visible) kinds of spurious signals (See Figure 1): i) a localized
tag; ii) a distinctive stripped pattern; and iii) Gaussian blur applied to the image background. The
signals are all spatially localized, so we can easily obtain ground-truth expected explanations.

To induce reliance on spurious signals, we train models on "contaminated” versions of the train-
ing set. Given input-label pairs, {(xi, yi)}ni , where xi ∈ X and yi ∈ Y , we can learn a classi-
fier, fθ, via empirical risk minimization (ERM) that corresponds to minimizing a loss function, `:
arg minθ

∑n
i=1 `(x

i, yi; θ). To contaminate the training set, we apply a spurious contamination
function (SCF) to the training set; SCF : X × Y × C → S, where C is the spurious signal set
and S is the transformed set. An example of an SCF is a function that pastes an hospital tag onto
the bone age radiographs of all pre-puberty individuals in the dataset. To derive models reliant on
a spurious signal, ci ∈ C, we simply learn a new classifier via ERM on the modified dataset as
follows: arg minθ

∑n
i=1 `

(
SCF(xi, yi, ci)

)
to obtain θspu. Contemporary evidence suggests that

this approach produces models that easily latch onto the spurious signal (Nagarajan et al., 2020).

We focus on the classification setting, and restrict spurious signals to encode, only, for a single
class—the spurious aligned class. We measure a model’s reliance on the spurious signal via a score.

Definition 2.1. (Spurious Score). Given a spurious signal, ci, the index of its spurious aligned class,
j ∈ [k], a model, θspu : Rd → Rk, where arg max(θspu) indicates the classifier’s predicted class, we
define the spurious score as:

SCci,j(θspu) := P{xi|θspu(xi) != j}[arg max(θspu(SCF(xi, yi, ci))) = j].

Given an input that does not contain the spurious signal, and for which the model’s prediction is not
the spurious aligned class, the model’s spurious score is the probability that the model assigns the
input to the spurious aligned class if the spurious signal is added to the input.

Model Conditions. We focus our analysis on two model conditions: i) a ‘normal model’, fnorm, for
which we can rule out dependence on any of the spurious signals tested across all classes on the basis
of the spurious score, and ii) a ‘spurious model’, fspu, for which one of the spurious signals encodes
for a particular output class. We empirically estimate the spurious score and term models that have a
score above 0.85 for any of the pre-defined signals ‘spurious models’. We term a model ‘normal’ if
the spurious score is below 0.1 across all classes and the 3 pre-defined spurious signals.

Spurious Signal Detection Reliability Measures. Equipped with spurious (fspu) and normal
(fnorm) models, we are now able to quantitatively assess the motivating question of this work.
We do this by comparing explanations derived from spurious models, fspu, to those derived from nor-
mal models (fnorm). We can partition the kinds of inputs used for deriving explanations into two: 1)
spurious inputs (xspu)—inputs that include the spurious signal and 2) normal inputs (xnorm)—inputs
do not not contain the spurious signal. Comparing the explanations produced by these two classes of
inputs for normal and spurious models, we derive reliability performance measures.

• Known Spurious Signal Detection Measure (K-SSD) - measures the similarity of expla-
nations derived from spurious models on spurious inputs to the ground truth explanation.
The ground truth explanation is one that only assigns relevance to the spurious signal as
explanation of the output of a spurious model on a spurious input. K-SSD measures method
reliability when the spurious signal is known. Given a similarity metric, Sd, then K-SSD
corresponds to: Sd

(
Efspu

(xspu), xgt)
)
; where Efspu(xspu) are explanations derived from

the spurious model for spurious inputs, and xgt is the ground truth explanation. The similar-
ity function, Sd, depends on the type of explanation considered—we will make our choice
of this function concrete shortly.

• Cause-for-Concern Measure (CCM) - measures the similarity of explanations derived
from spurious models for normal inputs to explanations derived from normal models for
normal inputs: Sd

(
Efspu

(xnorm),Efnorm(xnorm)
)
. This measure simulates the setting where

a practitioner does not know the spurious signal, and can only inspect explanations for inputs
without the signal. If this measure is high, then it is unlikely that such a method alert a
practitioner that a spurious model exhibits defects.

• False Alarm Measure (FAM) - measures the similarity of explanations derived from normal
models for spurious inputs to explanations derived from spurious models for spurious inputs:
Sd
(
Efnorm(xspur),Efspu(xspu)

)
. We also introduce a variant of this measure, FAM-GT,
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which measures the similarity of a explanations derived from normal models for spurious
inputs to the ground truth explanation of a spurious model for that spurious input. If this
measure is high, then that approach is more likely to signal to a practitioner that a model is
relying on spurious signal when the model does not.

Having defined the metrics above, it remains which similarity function to use.

Computing Metrics for Feature Attribution. For feature attribution methods, we use the Struc-
tural Similarity Index (SSIM). SSIM measures the visual similarity between two images. Concretely,
given a set of normal inputs, we obtain a corresponding spurious set of these inputs by applying
the spurious contamination function, SCF to these inputs. Consequently, we can then compute the
K-SSD, CCM, and FAM metrics given these two sets of inputs using the SSIM metric.

Computing Metrics for Concept Activation. We measure comparison between two concept rank-
ings using a Kolmogorov-Smirnoff (KS) test comparing two distributions where the null hypothesis
is that the two distributions are identical; we set significance level to be 0.05.

Computing Metrics for Training Point Ranking. Recently, Hanawa et al. (2020) introduced the
Identical class metric’ (ICM), which is the fraction of the top training inputs, for a given test example,
that belong to the same class as the true class of the test example in question. Here we also use the
KS test to compare the ICM distributions for two different models and set the significance level to be
0.05.

Taken together, these measures provide a comprehensive overview of an explanation method’s
performance for detecting spurious signals.

2.2 BLINDED STUDY

To complement the quantitative setup, we further designed a user study (IRB approved) to assess
the ability of end-users (200 in total) to use post hoc explanations to detect a model’s reliance on
spurious signals. About 50 percent of the participants had trained a ML model before, and 74 percent
had interacted with an ML model. We refer to the appendix for additional details.

Figure 2: Feature Attributions. Here we show 5
different inputs, one for each bone age category,
and the corresponding Gradient feature attribution
map. We refer to the Appendix for an equivalent
visualization for other feature attribution methods
considered. We test three additional feature attribu-
tion methods: SmoothGrad, Integrated Gradients,
and Guided BackProp.

Task & Setup: The study participants were
tasked with assessing model reliability with the
aid of model explanations. The participants
were randomly assigned to one of two groups:
the first group is told explicitly of potential
spurious signals, and the second is not. They
were asked to rate how likely they are to recom-
mend the model for deployment using a 5-point
Likert scale, and a rationale for their decision.
Our study design follows that of Adebayo et al.
(2020); however, we use a mixed within-subjects
and between subjects design for the factors of
interest. The Likert scale is as follows, 1: Def-
initely Not to 5: Definitely. Participants select
‘Definitely’ if they deemed the dog breed classi-
fication model reliable. We refer to Appendix I
for discussion on user recruitment, statistical
analyses, and study design.

Methods: We test SmoothGrad, TCAV (a con-
cept activation method), a training point ranking
method, and a Control setting with no explanations.

2.3 EXPLANATION METHODS, DATA, & MODELS

Here we give an overview of the explanation methods, datasets, and models. We present a discussion
of how these methods are used in practice in Appendix.
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Feature Attributions assign a relevance score for each dimension of an input towards an output.
We consider: Input-Gradient, SmoothGrad, Integrated Gradients (IG), and Guided Backprop
(GBP).

Concept-Based ((Bau et al., 2017; Kim et al., 2018)) approaches measure the dependence of a
DNN’s prediction on user-defined features—termed concepts. We select TCAV as the approach to
assess in this class (Kim et al., 2018).

Training Point Ranking via Influence Functions (Koh and Liang, 2017). This approach ranks
the training samples in order of importance/influence on the loss (or prediction) of a test example.

B: Concept Importance Ranking (TCAV) 
A: Clinical Concepts

Figure 3: Concept Importance Methods for a Normal (non-spurious) model. Here we show the
TCAV score for all clinical concepts as well as the spurious concepts for a normal model that was
confirmed to not rely on the spurious signals.

Models, Datasets, & Tasks. We consider two medical datasets: Hand (Halabi et al., 2019) and Knee
radiographs (Chen et al., 2019) and a dog breed classification task. We consider a small DNN (6
layers, 5 of which are the traditional conv-relu-batchnorm-maxpool combination) inspired by the
CBR-Tiny architecture of Raghu et al. (2019) and a ResNet-50 model (See Appendix for additional
details).

3 FEATURE ATTRIBUTIONS

In this section, we present results on whether feature attributions are effective for detecting unknown
spurious correlation.

Setup. We consider 3 kinds of spurious signals which we term: Tag for the ‘MGH’ hospital tag added
to the pre-puberty class, Stripe for the paired vertical stripped signal, and Blur for the background
blur. Given these signals, we then compute the three performance measures of interest: K-SSD, CCM,
FAM, and FAM-GT. K-SSD indicates a method’s reliability when the spurious signal is known, CCM
when the signal is not known and the practitioner only has access to inputs that don’t encode the
spurious signal. Lastly, FAM and FAM-GT indicates the susceptibility of a method to false positives.
An oft-used heuristic based on prior work (Adebayo et al., 2020) for interpreting SSIM scores is that
SSIM scores 0.2− 0.4 indicate weak visual similarity, 0.5− 0.7 indicate moderate similarity, and
> 0.75 high similarity. This is because two random images typically have SSIM much less than 0.1.
For example, we empirically estimate the similarity of two random (229 × 229) Gaussian images
to be less than 0.00023. Even for natural images, we still find the SSIM values to be below 0.005,
which substantiates the previous heuristic.

Results. We show performance measures for all the feature attribution methods tested for the Tag and
Blur settings in Tables 1 & 11 (See Appendix). For the tag setting, the attribution methods are indeed
able to attribute to the visible spurious signal and the K-SSD measure indicates this finding with mean
scores typically above 0.65 for the bone age setting. Contrary to previous findings, we find that GBP
outperforms other approaches for known spurious signals. Alternatively, GBP is more suceptible
to false positives based on the FAM and FAM-GT score. Across all methods, we find that these
methods also seem to attribute to the spurious signal (FAM-GT > 0.4) even when the signal is not
being relied on by the model. We observe similar findings for the strip setting as well across all tasks.
The CCM measure further indicates that these methods do not indicate presence of spurious signals
when the signal is unknown for both the Tag and Stripe signals. This finding, however, reverses for
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Figure 4: Top-Detecting Spurious Tag. Here we show in A) Feature attributions for 5 different
inputs across the four feature attribution methods with a normal model but with spurious Tag inputs;
B) Feature attributions on the same 5 inputs as in (A), but without spurious Tag inputs with a model
that has learned a spurious alignment between Pre-Puberty and Tag; C) Feature attributions on the
same 5 inputs as in (A), but with the spurious Tag inputs with a model that has learned a spurious
alignment between Pre-Puberty and Tag. Middle-Detecting Spurious Stripe. Here we show in A)
Feature attributions for 5 different inputs across the four feature attribution methods with a normal
model but with spurious Stripes inputs; B) Feature attributions on the same 5 inputs as in (A), but
without the spurious Stripe with a model that has learned a spurious alignment between Pre-Puberty
and Stripe; C) Feature attributions on the same 5 inputs as in (A), but with the spurious Stripe with
a model that has learned a spurious alignment between Pre-Puberty and Stripe. Middle-Detecting
Spurious Blur. The blur images are analogous to the Tag and Stripe settings. Please refer to the
Figures 7, 8, 9 in the Appendix for SmoothGrad, Integrated Gradients, and Guided BackProp
examples.

Table 1: Performance metrics for each attribution method across tasks for the Tag Setting. Below
each metric in the Table is another row (SEM) that indicates the standard error of the mean for each
value.

Method Bone Age Knee Dog Breeds

Grad SG IG GBP Grad SG IG GBP Grad SG IG GBP
K-SSD 0.65 0.66 0.67 0.81 0.51 0.49 0.47 0.76 0.71 0.76 0.79 0.88

K-SSD (SEM) 0.0097 0.013 0.019 0.006 0.012 0.017 0.019 0.023 0.01 0.011 0.014 0.01
CCM 0.37 0.39 0.35 0.75 0.32 0.33 0.35 0.66 0.42 0.41 0.39 0.64

CCM (SEM) 0.0031 0.002 0.015 0.029 0.027 0.023 0.029 0.014 0.013 0.016 0.012 0.015
FAM 0.51 0.55 0.53 0.68 0.46 0.47 0.45 0.69 0.59 0.64 0.68 0.73

FAM (SEM) 0.0029 0.0019 0.018 0.024 0.023 0.024 0.019 0.016 0.015 0.011 0.022 0.035
FAM-GT 0.56 0.53 0.46 0.61 0.42 0.48 0.41 0.63 0.76 0.73 0.77 0.81

FAM-GT (SEM) 0.017 0.035 0.0253 0.028 0.016 0.019 0.0045 0.006 0.011 0.033 0.024 0.0053

the non-visible blur spurious signal. Across all measures, we find that all methods struggle to reliably
indicate that spurious models are reliant on the blur signal.

Additionally, we also find that the FAM scores are typically higher than the CCM scores across the
tasks. This finding indicates that the feature attribution methods tested are more susceptible to false
positives than they are to indicate to a practitioner that a model is defective in the absence of the
spurious signal, a finding that casts doubt on the utility of such approaches in practice.
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4 CONCEPT ACTIVATION IMPORTANCE

We find that concept methods can indicate a model’s reliance on Tag and Stripe signals when known.
However, the approach struggles to detect Blur signal even when known. As is the case with feature
attributions, when a spurious signal is not explicitly tested for, our significance tests indicate that
reliance cannot be detected in the non-spurious concepts available.

Overview & Setup. In this setting, we compute the 3 performance metrics of interest: K-SSD, CCM,
and FAM. To measure comparison between two concept rankings, we use a Kolmogorov-Smirnoff
(KS) test comparing two distributions where the null hypothesis is that the two distributions are
identical; we set significance level to be 0.05.

Figure 5: Concept Results for Tag and Blur Models. TCAV scores for a model reliant on the
spurious Tag and a model reliant on Blur.

Table 2: Concept
Metrics Tag.

Metric Result

K-SSD X
CCM X
FAM X

Result. In Figure 5, we show TCAV scores for each bone age class for both the
spurious tag and the blur models. In Table 2, we show results of the KS-Test
across metrics for the Tag Setting. Here, a X means we reject the null, while
an Xmeans we are unable to do so at the pre-specified significance level. For
the K-SSD metric, the KS-test rejects the null for the Tag and Stripe signals.
However, we find that the opposite is the case for the blur signal. This suggests
that concept rankings can help detect reliance on the visible signals but not non-
visible signals when the spurious signals are unknown. However, for the CCM
metric, we are unable to reject the hypothesis that the distribution of concept
rankings are not similar for all spurious signals. This finding suggests that when
the spurious signal is unknown, and we only compare the distributions of known
(non-spurious) concepts for a normal model and a spurious model, there is high similarity. Lastly, a
difference in means test as well as a KS-Test for the FAM measure indicates that the normal models
do not rely on the spurious signals as well. Overall, this finding suggests that TCAV is less susceptible
to false positives.

5 TRAINING POINT RANKING & BLINDED STUDY

Overview & Setup. We now describe our empirical findings for the training point ranking via
influence functions approach. Here we present results for the case where the spurious signal is aligned
with the Pre-Puberty class.

Results. The main take away is that given a known spurious signal, the fraction of top ranked training
spurious signal inputs increases with a spurious model across all of the spurious signals. While this
might seem encouraging, we note that such increase actually indicates that the ICM metric might
provide illusory confidence in a spurious model. Ultimately, a critical requirement here is knowing
what the spurious signal ahead of time and to be able to select the right inputs to inspect.
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Blinded Study. We now turn to a summary of the results of the blinded user study. The median
recommendations selected by participants (200 in total) is reported for each explanation-model
condition in Table 6. We plot a box plot of all 16 categories in the appendix. Our setting mimics
traditional randomized experimental settings, so we adopt a randomization inference analysis to
determine the effect of each treatment, which is the explanation method in this case, on the ability of
the users to recommend a model. A higher Likert score means the user is more likely to recommend
a model. Consequently, if an explanation method is effective, then it should be the case that users
should be less likely to recommend a model that relies on a spurious signal.

Table 3: Training Point Rank-
ing

Metric Result

K-SSD X
CCM X
FAM X

We conduct two kinds of statistical analyses of the data. First, un-
der each condition, we perform a difference of means test for each
treatment compared to the control setting. Secondly, for each model
manipulation, we performed a one-way Anova test, and a Tukey-
Kramer test to assess the effect of the explanation type on the ability
of the participants to reject a defective model.

We observe that when blinded, in none of the methods do participants
conclusively reject spurious models. Perhaps more surprising, when
the participants were not blinded, we see that only participants using
the TCAV approach rejected a spurious model. This finding has
significant implications on whether these current tools are effective in
the hands of a practitioner.

Method B-Normal NB-Normal B-Spurious NB-Spurious

SmoothGrad 4∗ 4∗ 3∗ 3
TCAV 4∗ 3 3∗ 2∗

Influence 3∗ 3 3∗ 3
Control 4 3 4 4

Table 4: Blinded User Study. Here we report the median recommendation for each condition across
all explanation types and control. This median is derived from user provided responses assessing
model reliability. B indicates Blinded, and NB indicates Not-Blinded. In the Table, the ∗ symbol
indicates statistically significant conditions. For the sake of space, we defer the full distribution
description to the Appendix.

6 DISCUSSION & CONCLUSION

Conclusion. DNNs trained on image datasets can naturally rely on spurious training signals (Geirhos
et al., 2020). Discovering this reliance is crucial in consequential settings like medical imaging. Post
hoc explanations methods are a promising direction towards detecting such reliance; however, their
effectiveness is currently under question. We investigated whether 3 classes of post hoc explanations
are effective for detecting a model’s reliance on spurious training signals. We present an experimental
setup that can also be easily adapted to other settings to assess a larger class of approaches. The
setup comes equipped with a spurious score and performance measures for spurious signal detection.
We find that the 3 classes of post hoc explanations tested are only sometimes able to diagnose the
spurious training signal even if they are used to explicitly test for model dependence on these signals.
Consequently, our findings calls for, potentially, a completely different paradigm of methods that are
designed to address the important and challenging question of detecting spurious training signals.

Limitations. In this work, we have focused exclusively on DNNs trained on image tasks; related
work (Bastings et al. (2021) has considered the text setting), however, it is unclear if our findings will
generalize to other modalities like time-series data. While we considered a diverse set of methods,
the literature on post hoc explanations is quite vast, so undoubtedly there exist methods that do not fit
neatly into the 3 explanation classes that we explored.
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