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Abstract
We investigate model calibration in the setting001
of zero-shot cross-lingual transfer with large-002
scale pre-trained language models. The level003
of model calibration is an important metric004
for evaluating the trustworthiness of predic-005
tive models. There exists an essential need006
for model calibration when natural language007
models are deployed in critical tasks. We study008
different post-training calibration methods in009
structured and unstructured prediction tasks.010
We find that models trained with data from the011
source language become less calibrated when012
applied to the target language, and that calibra-013
tion errors increase with intrinsic task difficulty014
and relative sparsity of training data. Moreover,015
we observe a potential connection between the016
level of calibration error and an earlier pro-017
posed measure of the distance from English018
to other languages. Finally, our comparison019
demonstrates that among other methods Tem-020
perature Scaling (TS) and Gaussian Process021
Calibration(GPcalib) generalizes well to dis-022
tant languages, but TS fails to calibrate more023
complex confidence estimation in structured024
predictions.025

1 Introduction026

While deep neural networks, especially large pre-027

trained language models, have driven striking im-028

provements on various standard benchmarks (Wang029

et al., 2018, 2019a), it is never a good practice to030

assume their predictions are accurate and should be031

taken blindly. In many cases, it is important to un-032

derstand “what a model does not know” through its033

estimation of its uncertainty. For example, reliable034

model confidence is important in high stakes do-035

mains (Begoli et al., 2019; Zhong et al., 2019), or036

when downstream tasks leverage confidence scores037

to mitigate error propagation (Chang et al., 2007).038

Moreover, accurate confidence can serve as a mea-039

sure on the value of information in iterative data040

collection or human-in-the-loop learning (Zhang041

et al., 2019; Chaudhary et al., 2021).042

Figure 1: Averaged Expected Calibration Error (ECE)
before and after temperature scaling on English (top)
and Arabic (bottom) xlm-roberta-large; lower
is better. Multiple bars for a task reference full-data,
low-data, and very-low-data (from left to right). Models
appear less calibrated when transferred to other lan-
guages while temperature scaling remains effective.

Whether the model confidence is accurate is usu- 043

ally measured by how well it matches the observa- 044

tional data – through confidence calibration (Guo 045

et al., 2017). Yet modern neural networks are criti- 046

cized for being overconfident with their predictions, 047

given their increased capacity to fit the training 048

dataset (Guo et al., 2017). This problem is ex- 049

acerbated by domain-shift (Ovadia et al., 2019b) 050

or zero-/few-shot transfer (Liu et al., 2018). An 051

important task that is often concerned with such 052

data-shift is zero-shot cross-lingual transfer, which 053

has been viewed as a natural extension to domain 054

adaptation (Ruder et al., 2019; Xian et al., 2021). 055

Existing studies in natural language processing 056

have mainly focused on zero-shot transfer accu- 057

racy alone (Wu and Dredze, 2019; Wang et al., 058

2019b; Lauscher et al., 2020), without concern for 059

the uncertainty measures of massive cross-lingual 060
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pretraining models (Devlin et al., 2019; Conneau061

et al., 2019; Liu et al., 2020; Xue et al., 2020). On062

the other hand, large-scale uncertainty estimation063

and calibration work has mostly been conducted in064

the vision domain (Ovadia et al., 2019b; Minderer065

et al., 2021). large-scaled calibration studies put066

predominant importance on computer vision. In067

natural language processing, while model calibra-068

tion has wide application w.r.t tasks such as text069

classification (Jung et al., 2020; Kong et al., 2020),070

seq2seq generation (Ott et al., 2018; Dong et al.,071

2018; Wang et al., 2020b), question answering (Ye072

and Durrett, 2021; Kamath et al., 2020) and zero-073

shot learning (Zhao et al., 2021), benchmarking074

results have not been as comprehensive as in the075

vision field.076

In this work, we evaluate how the calibration of077

large-scale multilingual models is affected by zero-078

shot cross-lingual transfer, and whether we might079

mitigate calibration error with standard techniques080

reliant solely on the source language. We conduct081

our experiments on six standard cross-lingual trans-082

fer tasks across seven typologically diverse target083

languages, using English as the annotated source084

language. Our key findings include:085

• NLP models become less calibrated under086

cross-lingual transfer.087

• Task difficulty, data sparsity, and distance be-088

tween source and target languages each im-089

pact model calibration, as shown in fig. 1.090

• TS and GPCalib using the source language091

effectively mitigates miscalibration on target092

languages.093

• Model calibration in structured prediction ex-094

hibits a similar trend as in classification.095

2 Background096

2.1 Calibration in NLP Tasks097

Why calibration in NLP tasks? Uncertainty quan-098

tification for neural networks and model calibra-099

tion has received attention from various machine-100

learning-related fields, especially when machine101

learning is applied in the high stake decision mak-102

ing (Gal and Ghahramani, 2016; Kendall and Gal,103

2017; Lakshminarayanan et al., 2017; Grathwohl104

et al., 2019; Thulasidasan et al., 2019). For ex-105

ample, a wrong but overconfident prediction in106

autonomous driving perception under domain shift107

may cost human lives (Han et al., 2019; Wang et al.,108

2020a; Park et al., 2020; Wang et al., 2020c). AI for109

scientific discovery applications like drug discov-110

ery (Zhang et al., 2019) and AI-augmented medical 111

decision making (Begoli et al., 2019) may gain 112

more trust from human by generating accurate un- 113

certainty estimates. In particular, in NLP tasks, 114

uncertainty plays an important role in AI-aided 115

mental health diagnosis (Chandler et al., 2022) and 116

human-in-the-loop active data curation (Yuan et al., 117

2022). 118

Calibration of large scale models Noticeably, 119

Ovadia et al. (2019a); Minderer et al. (2021) have 120

produced large-scale benchmarks over a variety of 121

tasks and existing calibration methods with mixed 122

results. While empirically Ovadia et al. (2019a) 123

shows that the traditional post-training calibration 124

methods such as temperature scaling does not al- 125

ways transfer under domain shift, results from Min- 126

derer et al. (2021) indicates that there is correla- 127

tion between in-domain and out-of-domain calibra- 128

tion error for models with large capacities like ViT 129

(Dosovitskiy et al., 2020), and that model calibra- 130

tion decreases more slowly than accuracy. In NLP, 131

Desai and Durrett (2020) shows that pretrained 132

transformer models achieve better calibration and 133

that temperature scaling further reduces calibra- 134

tion error in-domain. Mohta and Raffel (2021) 135

demonstrates that the benefit of pretrained model 136

diminishes as the domain shift increases. Our work 137

extends these analyses to model calibration under 138

zero-shot cross-lingual transfer. 139

Calibration of structured prediction Calibra- 140

tion of structured prediction models is relatively 141

under-explored, due to the difficulty in defining 142

the calibration setting (Kuleshov and Liang, 2015). 143

Jagannatha and Yu (2020) proposed a general cali- 144

bration scheme where the calibration is measured 145

on the sequence level. Yet under challenging trans- 146

fer condition for difficult tasks, the top-k sequences 147

do not contain enough positive events, and letting 148

event set of interest depending on model prediction 149

making cross-method comparison difficult. In this 150

paper, we investigate model calibration of struc- 151

tured prediction tasks as well as of classification, 152

given the high interest in tasks with a sequence 153

tagging nature where one has to model inter-label 154

dependencies in the multilingual community. We 155

employ a slightly different setting with (Jagannatha 156

and Yu, 2020) where either tag-wise calibration 157

is measured (Reich et al., 2020; Kranzlein et al., 158

2021), or a balanced set of positive or negative 159

set of spans are used to construct the event set of 160

interest. In section 3.3 we discuss our formula- 161
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tion in detail, and show that it is compatible with162

the framework proposed by Kuleshov and Liang163

(2015).164

2.2 Understanding Cross-Lingual Transfer165

Since massive language model pretraining yielded166

promising zero-shot transfer result on cross-lingual167

datasets (Conneau et al., 2018), much effort has168

been put into understanding why these language169

models work and what is the limit of standard and170

direct zero-shot transfer paradigm (Wu and Dredze,171

2019; Pires et al., 2019; Conneau et al., 2020;172

Libovickỳ et al., 2019; Chi et al., 2020; Hewitt173

and Manning, 2019; Yarmohammadi et al., 2021).174

While useful, these works tend to employ model175

performance as the sole metric; in this work we176

investigate the reliability of confidence estimation.177

A frequently discussed topic for cross-lingual178

transfer evaluation is how the language-specific179

features are able to influence the transfer perfor-180

mance. A common way to do this is to differentiate181

languages by language groups (Wu and Dredze,182

2020; Chi et al., 2020). Other works rely on nu-183

meric distance calculated from information depict-184

ing some specific aspect of language similarity185

(Lauscher et al., 2020; Pires et al., 2019). A line of186

research that tries to parameterize the language re-187

lationships is typological embeddings (Littell et al.,188

2017; Malaviya et al., 2017; Cotterell and Eisner,189

2017). Results from comprehensive transfer evalu-190

ation work also induce certain proximity between191

languages (Wu and Dredze, 2019; Han et al., 2019;192

Fan et al., 2021; Yu et al., 2021). We observe that193

these various notions of distance result in similar194

orderings across languages. Therefore we follow195

previous work by loosely referring to this language-196

specific characteristic as "language similarity"1.197

3 Metrics and Methods198

3.1 Measuring Model Calibration199

Consider a classifier p̂ : X → ∆k−1 that maps200

each instance x ∈ X to some class member-201

ship probability, (p̂i(x), p̂2(x), . . . p̂k(x)). We202

describe p̂ as calibrated, or more specifically203

confidence-calibrated (Kull et al., 2019), if for204

any c ∈ [0, 1]:205

Pr(Y=argmax
i

p̂i(x)|max
i

p̂i(x)=c) = c. (1)206

1Each proposed similarity metric is based on statistics
about certain aspects of languages, they are not necessarily
serving as a measurement of universal language distance.

Directly calculating probability in eq. (1) with fi- 207

nite number of examples is impossible. Several em- 208

pirical approximations have been proposed (Guo 209

et al., 2017). Here we adopt the Expected Calibra- 210

tion Error (Naeini et al., 2015) (ECE), which is the 211

most prevailing statistic, and the Brier Score (Brier 212

et al., 1950). 213

For N predictions, ECE approximates eq. (1) 214

by spliting [0, 1] into M equal length bins 215

{B1, B2, . . . , BM}, and calculates a weighted av- 216

erage of absolute difference between within-bin 217

accuracy and within-bin average confidence: 218

ECE =
M∑

m=1

|Bm|
N

|acc(Bm)− conf(Bm)|. 219

The ECE score is sensitive to the choice of bin- 220

ning schemes, and a model can trivially achieve a 221

perfect ECE score by returning the marginal class 222

probability. As a result, a number of works have 223

proposed alternatives to ECE to mitigate such prob- 224

lems. Nixon et al. (2019) propose Adaptive Calibra- 225

tion Error, where instances are split into equal-sized 226

groups. Kull et al. (2019) proposes the classwise- 227

ECE, where the ECE is calculated and averaged 228

across all class-labels. Kumar et al. (2019) shows 229

that it is always possible to construct a poorly cali- 230

brated prediction even when ECE = 0. It should be 231

noticed that it is also possible to construct such pre- 232

dictions for ACE. Despite these shortcomings, we 233

still use the ECE as our primary statistics for eval- 234

uating calibration error for two reasons. First, we 235

observe little variance when gradually reducing the 236

number of bins from 100 to 10. Second, some of 237

our experiments require classification among indef- 238

inite number of labels, which makes the classwise 239

statistics inapplicable. 240

3.2 Post-training Calibration 241

We study four post-training calibration methods on 242

zero-shot cross-lingual calibration tasks. They are 243

representative and relevant enough with NLP tasks. 244

Firstly, they can be intuitively extended to indef- 245

inite number of classes which suit our tasks like 246

dependency head predictions. Secondly, they have 247

relatively fewer hyper parameters to tune. There- 248

fore, we are able to provide a more general eval- 249

uation of their effectiveness over zero-shot cross- 250

lingual transfer tasks. Specifically, for methods that 251

are only applicable to binary classifications (e.g., 252

histogram binning and beta calibration), we follow 253
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previous practice by Wenger et al. (2020) and Patel254

et al. (2021) to use one-vs-rest extension to multi-255

class classification over the outputs of multi-class256

classifiers. All the methods share the same class-257

wise binning strategy. We do not renormalize the258

scaled probability because it is either previously259

employed in previous work or reported to mitigate260

the accuracy degradation Patel et al. (2021).261

For each task we tune the temperature scaling262

parameter T with a dev set that is different from263

the model-selection dev on English, in order to264

investigate how much the effect of temperature265

scaling transfer to target language zero-shot.266

Temperature Scaling (Guo et al., 2017) Given a267

logits vector z = (z0, z1, . . . , zk) ∈ RK , tempera-268

ture scaling produces a normalized class member-269

ship probability vector (q0,q1, . . . ,qk) by a single270

scalar parameter T > 0:271

qi =
exp(zi/T )∑K
i=1 exp(zi/T )

272

Temperature scaling has been proven effective273

in other scenarios (Ovadia et al., 2019a; Desai and274

Durrett, 2020) and has the property of not chang-275

ing model prediction orders. This makes post-276

training calibration orthogonal to overall model277

performance.278

Histogram Binning (Zadrozny and Elkan, 2002)279

divides all uncalibrated predictions p̂y(x) into M280

mutually exclusive bins {B1, . . . , BM} and assigns281

calibrated probabilities qm
y (x) that minimizes the282

bin-wise square loss:283

L(q) =
M∑

m=1

∑
x∈X

1
[
x ∈ Bm

]
(qm

y (x)− y)2284

Notice that evaluating against ECE instead of285

class-wise metrics enables us to jointly calibrate all286

one-vs-rest probabilities induced from multi-class287

classifiers without renormalization.288

Beta Calibration (Kull et al., 2017) is a calibra-289

tion function family defined based on the likeli-290

hood ratio between two Beta distributions. In the291

one-vs-rest case the calibration map can be re-292

parameterized into a bivariate logistic regression293

with ln p̂y(x) and − ln(1 − p̂y(x)) to predict a294

binary label 1[ŷ = y].295

GPcalib (Wenger et al., 2020) fits a one-296

dimensional Gaussian process to the latent function297

g : R → R that transforms raw logits. Given uncal-298

ibrated logits vector z, the model output probability299

⨿i is then given by: 300

qi =
exp(g(zi))∑K
j=1 exp(g(zj))

301

When the dataset is large, Wenger et al. (2020) 302

proposes to use inducing point methods (Hensman 303

et al., 2015) for scalability. Since the GPcalib 304

framework uses the same function to transfer all 305

components of z, it is straightforward to batchify 306

the latent process along a dimension with indefinite 307

number of classes. 308

3.3 Calibration for Structured Prediction 309

For structure prediction tasks, a natural question 310

will be whether explicitly modeling inter-label de- 311

pendencies can help with the model calibration. 312

A similar comparison has been hinted by Jagan- 313

natha and Yu (2020) and Reich et al. (2020), but 314

no experiments has been proposed. However, the 315

label space is exponentially large when we consider 316

predictions over a complete sequence. It is then 317

difficult to define a calibration objective. 318

In this work, we follow previous efforts and de- 319

fine a set of “Events of Interests” I(x) (Kuleshov 320

and Liang, 2015; Jagannatha and Yu, 2020). Given 321

the complete label space Y of a structured predic- 322

tion task, an event E ∈ I(x) is a subset E ⊂ Y , 323

whose probability we would like to calibrate. For 324

sequence labeling tasks, a natural choice for I(x) 325

is the model prediction at each position. This falls 326

back to calibrating a multi-class classifier at each 327

sequence position for a standard masked language 328

model with a classification head. But we need to 329

perform the constrained forward-backward (Cu- 330

lotta and McCallum, 2004) marginalization for a 331

conditional random field (Lafferty et al., 2001) 332

based model. A more interesting case will be 333

named entity recognition, where extracting an en- 334

tity span often consists of multiple tag-level pre- 335

dictions. Jagannatha and Yu (2020) proposes to 336

define each E ∈ I(x) as a set of tag sequences 337

{y1, . . . , yN} that contains a single span from top- 338

k p(y|x) decoding. This does not suit our purpose 339

as it is not convenient to compare calibration per- 340

formance between models under that setup. For 341

example, the model with very high precision and 342

confidence would be considered more calibrated 343

than its counterparts that proposes more diverse 344

candidates. 345

To remedy this problem, we define I(x) as a 346

set of events where each event E corresponds to 347

4



a set of sequence that extracts one of all possible348

span candidates s ∈ S. This is equivalent to eval-349

uate model to perfom binary classifications over350

whether a candiate is actually a valid span. Since351

the number of possible span candidates grows352

quadratically with the sequence length, we only353

consider spans with no more than a certain length l.354

Specifically, given a NER task with named entity355

type space C (e.g., “PER”, “LOC”, etc.), denote the356

corresponding tag space by B (“B-PER”, “I-PER”,357

“O”, etc.). The probability of a span s with type358

c ∈ C and end points 1 ≤ i < j ≤ N = |x| be-359

ing extracted under BIO sequence tagging can be360

written as:361

Pr(s, c|x) =
∑
y∈Y

{
p(y|x)

j+1∏
k=i

1
[
yk ∈ sk

]}
362

Where (si, . . . , sj , sj+1) is the tag subset se-363

quence ({B-c}, . . . , {I-c},B\{I-c}). The classifier364

output can be directly multiplied to get this condi-365

tional probability when tags are independent. In the366

case of linear-chain CRF, constrained FB algorithm367

can be applied.368

4 Experiments369

Tasks We consider six zeros-shot cross-lingual370

transfer tasks: part-of-speech tagging (POS), uni-371

versal dependency parsing (UDP), named entity372

recognition (NER), cross-lingual natural language373

inference (XNLI), Automatic Content Extraction374

(ACE) and the Better Extraction from Text Towards375

Enhanced Retrieval (BETTER). These six tasks376

are of distinct formulation and have a reasonable377

spread over difficulty levels. For detailed data con-378

figuration and task descriptions, please refer to379

appendix A. Also, only plots relevant to the dis-380

cussion are presented inline, please also refer to381

appendix A for complete experiment data.382

Evaluation we evaluate the calibration before383

and after a post-training calibration step using384

the expected calibration error (ECE). To prop-385

erly evaluate the expected calibration error, we set386

num_bins=100. We choose this number to bal-387

ance granularity with the amount of data, as we388

observe ECE tends to converge after the number389

of bins increase to above a threshold. This bin-390

ning scheme has been employed to evaluate cal-391

ibration methods (Wenger et al., 2020; Minderer392

et al., 2021).393

Base models We experiment with three 394

common multilingual transformer encoders: 395

bert-base-multilingual-cased, xlm- 396

roberta-base and xlm-roberta-large . 397
2 We keep the token embedding weight fixed for 398

all our experiments, and use learning_rate 399

= 1.2e-5 for pretrained transformer parameters, 400

and learning_rate = 1e-5 for the rest of 401

models (except for very-low-data NLI, where we 402

choose learning_rate = 1e-4). 403

Varying training size We evaluate our pipeline 404

with three training-data-size configurations when 405

available (that is, on POS, UDP NER and XNLI): 406

full-dataset, where all the specified training data are 407

used; low-data, where 1000 sentences are sampled 408

for the sentence-level dataset, or 50 documents are 409

sampled for the doc-level dataset; very-low-data, 410

where 100 sentences or 10 documents are sampled 411

respectively. 412

Training details We train our models on a single 413

RTX 6000 GPU until convergence or a maximum 414

number of epochs (256) is reached. We use the 415

dev set for model selection and early stopping, and 416

gradually scale our learning rate by .25 on plateau. 417

For all tasks, we apply the four calibration methods 418

mentioned in section 3.2 as the post-training cal- 419

ibration step. We set learning_rate = .1 420

and use a large batch size to tune the calibration 421

module parameters. We also gradually scale learn- 422

ing rate by .25 on plateau. The learning rate for tem- 423

perature scaling is determined via an Optuna (Ak- 424

iba et al., 2019) trial with a searching range be- 425

tween [5e-2, .5] on subtasks. For each calibration 426

method, we do 10 runs and do significant test with 427

classic bootstrap from dataset to address the con- 428

cern of randomness raise by Vaicenavicius et al. 429

(2019). 430

4.1 Impact of Training Configurations 431

Impact of Data Size In most cases, training with 432

more data helps calibration especially when the 433

difference in training data size is large (e.g., com- 434

paring full-data setting and very-low-data setting. 435

see fig. 2). However, we do not observe such a 436

tendency when the task is simple enough and the 437

model performance is reasonably high, like in POS. 438

It indicates that the representation for the task has 439

already been learned well during the pre-training, 440

and the relevant information is easily recovered 441

even with a small number of examples. Interest- 442

2https://huggingface.co/models
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Figure 2: Averaged Expected Calibration Error (ECE)
before and after temperature scaling on English (top)
and Arabic (bottom) for xlm-roberta-base; lower
is better. each bar in a group corresponds to a training
data theme as in fig. 1.

ingly, XNLI model trained under very-low-data443

setting can be similarly or even better calibrated444

compared to XNLI model trained under full-data445

setting after post-training calibration, though the446

gap of accuracy for models trained with different447

data amount is large (accuracy results are available448

in the Appendix). It indicates that more accurate449

model is not always more calibrated by default.450

Impact of Language Similarity Our result indi-451

cates that target language calibration errors are gen-452

erally lower when the target language is similar453

to English as measured by human language learn-454

ing distances (Chiswick and Miller, 2005) (see455

fig. 1, fig. 4 etc.). While the distance between456

languages is an intuitive concept among linguists457

in the abstract, there is not a prevailing theory on458

how this should be quantitatively measured. We459

abstain from calculating direct correlations with460

scores proposed by Chiswick and Miller (2005),461

merely noting that further investigations into the re-462

lationship between language distance and domain-463

shift is worth future consideration. This echos the464

result from the previous research (Lauscher et al.,465

2020; Pires et al., 2019) showing that commonly466

perceived language difference influences the diffi-467

culty of zero-shot transfer. However, post-training468

calibration often has less effect on more similar469

target languages.470

Impact of Pretrained Model Size Giving the sim-471

ilar trend observed for different calibration meth-472

Figure 3: Calibration plot for different models when
transferred to different language on NER (top) with very-
low-data, and XNLI (bottom) with full-data. Result
shows that larger model generalizes better when training
data size is small or task is difficult.

ods, here we only plot post-training calibration 473

statistics for temperature-scaling (See section 4.2 474

below). Comparing results shown in fig. 1 and 475

fig. 2, we come to the conclusion that the larger 476

pre-trained language model is usually more cali- 477

brated before and after the post-training calibration. 478

Though both large and base models become less 479

and less calibrated while gradually transferred to 480

more and more distant languages, the calibration 481

error increases more slowly than smaller model. 482

This becomes more prominent when the training 483

data is smaller or the target language is more dis- 484

tant (see fig. 3). We hypothesize this is probably 485

due to the fact that with sufficient training data, a 486

larger language model learns better cross-lingual 487

representations that allows better zeor-shot cross- 488

lingual transfer. This echos previous findings by 489

Minderer et al. (2021), where they have shown 490

that the calibration error increases more slowly for 491

larger models. 492

4.2 Comparing Calibration Methods 493

We do 10 runs of classic bootstrap from each 494

dataset to evaluate all four calibration methods men- 495

tioned in section 3.2. All of the methods are able to 496

significantly reduce the calibration error in terms 497

of the ECE (see appendix A for complete statistics). 498

fig. 4 demonstrates the effectiveness of different 499

post-training calibration methods. In most cases, 500

different calibration methods have similar perfor- 501
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mance. Models calibrated by any of the method502

are still likely to be less and less calibrated when503

zero-shot transferred to more and more distant lan-504

guages as described in section 4.1. In most cases,505

either temperature scaling or GPcalib is at or near506

the best, under all training data source settings.507

Histogram binning performs well on the source lan-508

guage, but it may decline the most in effectiveness509

in the test language. Moreover, when the model510

is zero-shot transferred to more distant languages,511

temperature scaling gains a small edge comparing512

to other methods.513

Figure 4: Bars and whiskers plot for different calibration
methods for xlm-roberta-large when zero-shot
transferred to different languages, sorted by language
distance to English Chiswick and Miller (2005).

Another observation is that the calibration effec-514

tiveness of methods are more variable on XNLI515

than other tasks, and the model calibration error516

after post-training calibration follows the language517

Figure 5: Bars and whiskers plot for different calibration
methods for xlm-roberta-base on low-data set-
ting when zero-shot transferred to different languages,
sorted by language distance to English Chiswick and
Miller (2005).

distance less strictly. This becomes more eminent 518

when examining smaller models and fewer training 519

samples, as shown in fig. 5. This could due to that 520

XNLI requires more complex semantic knowledge 521

(Lauscher et al., 2020) that is not directly accessible 522

in the multilingual encoder, making the calibration 523

less transferable to other languages. 524

4.3 Calibration for Structured Prediction 525

We also consider model calibration for two struc- 526

tured prediction tasks: POS-tagging and NER. We 527

follow the definition of I(x) in section 3.2. The 528

WikiAnn dataset (Pan et al., 2017) is very suit- 529

able for our purposes as it contains many short 530

sequences that avoid span number explosion. We 531

further restrict the maximum span length l = 5 532

and the maximum sequence length s = 32 to re- 533

duce the search space. To prevent the model from 534

reducing calibration error by scaling down the ex- 535

traction probability of all spans, we further sub- 536

sample negative samples by probability p = .01. 537

Notice that this kind of subsampling can be viewed 538

as an adjusted environment for robust calibration 539

and should not affect a perfectly calibrated model 540

(Wald et al., 2021). It also corresponds in practice 541

to the use case of performing span filtering from a 542

high quality subset. 543

However, when applied to structured labels like 544

in span extraction, temperature scaling could be 545

less effective. Particularly in NER calibration, we 546
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Figure 6: Top: Adding CRF module doesn’t seem to be
helpful to model calibration either on source language
or on target language, regardless of model size. Bottom:
GPcalib is more effective in calibrating structured pre-
diction result regardless of underlying model structure.

observe that GPcalib achieves a significantly better547

calibration result when compared to temperature548

scaling (see fig. 6), while on POS we do not ob-549

serve such a gap. It could be that the structure for550

label-spans are more complex and usually involves551

multiple labeling predictions. Therefore, in order552

to calibrate these probability combinations, one553

will need a more complex function family, which554

is not included in temperature scaling.555

4.4 Evaluating on More Difficult Tasks556

We further experiment with two more IE tasks,557

ACE and BETTER, where the training resource558

is more limited and the ontologies are more com-559

plex. For labeling problems we follow the general560

setting in section 4.1. For tagging problems we cal-561

ibrate the label-wise probability for positive labels.562

In case of a linear chain CRF, we marginalize out563

all other positions to get the label-wise probability564

following Culotta and McCallum (2004) and Reich565

et al. (2020). For space limitation the result for566

ACE and Better can be find in A.567

Impact of Task Type and Difficulty Our results568

align with the discovery of Lauscher et al. (2020),569

where they showed that the transfer performance570

depends on a hypothetical "task level". Here we571

observe a larger ECE on ACE and BETTER as572

well as in "high level" semantic tasks like XNLI573

compared to "low level" sequence tagging tasks574

like POS, UDP, NER defined by Lauscher et al.575

(2020). 576

Internally, in general the structured prediction 577

components are less calibrated and remain so af- 578

ter temperature scaling, though for ACE there is 579

some irregularity given the sparse event/argument 580

span annotations on the English side on which our 581

model has very high accuracy. We also observe that 582

when trying to perform post-training calibration of 583

ACE and BETTER models with temperature scal- 584

ing, the scaling parameters are very large, even 585

reaching 38.45 while normally the scaling param- 586

eters are distributed among 1. 3̃. (see appendix A 587

for detailed scaling parameter values). 588

5 Conclusions 589

We explore model calibration of large language 590

models under the zero-shot cross-lingual transfer 591

scenario. Our results show that the extent of mis- 592

calibration varies according to a number of aspects 593

of the training configuration. First, training with 594

more data improves cross-lingual calibration. Sec- 595

ond, transferring from English to non-English in- 596

tensifies mis-calibration as the target language is 597

further from English. Also, larger models is likely 598

to be less mis-calibrated when zero-shot transferred 599

to a different target language. Moreover, our re- 600

sult shows that temperature scaling and Gaussian 601

Process calibration methods are among the top per- 602

forming methods, while temperature scaling is eas- 603

ily to implement and generalize well to distant lan- 604

guages, it’s less effective when applied to some 605

complex structured probabilites. Finally, models 606

are least calibrated on “high level” tasks like XNLI 607

and challenging-event-related span extraction, and 608

are most calibrated on simple “low level” tasks like 609

POS. 610

In general, our result demonstrate that looking 611

at model confidence scores is a useful way to un- 612

derstand model behavior, and differentiate between 613

different cross-lingual tasks. We encourage users to 614

calibrate their model before zero-shot deployment 615

to produce more reliable confidence estimation 616

and prevent the over-confidence for downstream 617

tasks. Further research should focus on develop- 618

ing stronger methods for robust zero-shot cross- 619

lingual models, and should explore different ways 620

to exploit model uncertainty estimation to achieve 621

optimal trade-offs on challenging zero-shot cross- 622

lingual tasks. 623
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Jindřich Libovickỳ, Rudolf Rosa, and Alexander Fraser. 834
2019. How language-neutral is multilingual bert? 835
arXiv preprint arXiv:1911.03310. 836

Ying Lin, Heng Ji, Fei Huang, and Lingfei Wu. 2020. 837
A joint neural model for information extraction with 838
global features. In Proceedings of the 58th Annual 839
Meeting of the Association for Computational Lin- 840
guistics, pages 7999–8009, Online. Association for 841
Computational Linguistics. 842

Patrick Littell, David R. Mortensen, Ke Lin, Katherine 843
Kairis, Carlisle Turner, and Lori Levin. 2017. URIEL 844
and lang2vec: Representing languages as typological, 845

10

https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/2020.acl-main.188
https://doi.org/10.18653/v1/2020.acl-main.188
https://doi.org/10.18653/v1/2020.acl-main.188
https://doi.org/10.18653/v1/2020.acl-main.188
https://doi.org/10.18653/v1/2020.acl-main.188
https://doi.org/10.18653/v1/2020.acl-main.242
https://doi.org/10.18653/v1/2020.acl-main.242
https://doi.org/10.18653/v1/2020.acl-main.242
https://doi.org/10.18653/v1/2020.acl-main.503
https://doi.org/10.18653/v1/2020.acl-main.503
https://doi.org/10.18653/v1/2020.acl-main.503
http://arxiv.org/abs/1703.04977
http://arxiv.org/abs/1703.04977
http://arxiv.org/abs/1703.04977
http://arxiv.org/abs/1703.04977
http://arxiv.org/abs/1703.04977
https://doi.org/10.18653/v1/2020.emnlp-main.102
https://doi.org/10.18653/v1/2020.emnlp-main.102
https://doi.org/10.18653/v1/2020.emnlp-main.102
https://doi.org/10.18653/v1/2020.emnlp-main.102
https://doi.org/10.18653/v1/2020.emnlp-main.102
https://doi.org/10.18653/v1/2021.findings-emnlp.423
https://doi.org/10.18653/v1/2021.findings-emnlp.423
https://doi.org/10.18653/v1/2021.findings-emnlp.423
https://proceedings.neurips.cc/paper/2015/file/52d2752b150f9c35ccb6869cbf074e48-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/52d2752b150f9c35ccb6869cbf074e48-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/52d2752b150f9c35ccb6869cbf074e48-Paper.pdf
http://arxiv.org/abs/1612.01474
http://arxiv.org/abs/1612.01474
http://arxiv.org/abs/1612.01474
https://doi.org/10.18653/v1/2020.emnlp-main.382
https://doi.org/10.18653/v1/2020.emnlp-main.382
https://doi.org/10.18653/v1/2020.emnlp-main.382
https://doi.org/10.18653/v1/2020.acl-main.713
https://doi.org/10.18653/v1/2020.acl-main.713
https://doi.org/10.18653/v1/2020.acl-main.713
https://aclanthology.org/E17-2002
https://aclanthology.org/E17-2002
https://aclanthology.org/E17-2002
https://aclanthology.org/E17-2002


geographical, and phylogenetic vectors. In Proceed-846
ings of the 15th Conference of the European Chap-847
ter of the Association for Computational Linguistics:848
Volume 2, Short Papers, pages 8–14, Valencia, Spain.849
Association for Computational Linguistics.850

Shichen Liu, Mingsheng Long, Jianmin Wang, and851
Michael I Jordan. 2018. Generalized zero-shot learn-852
ing with deep calibration network. Advances in Neu-853
ral Information Processing Systems, 31.854

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey855
Edunov, Marjan Ghazvininejad, Mike Lewis, and856
Luke Zettlemoyer. 2020. Multilingual denoising pre-857
training for neural machine translation. Transac-858
tions of the Association for Computational Linguis-859
tics, 8:726–742.860

Chaitanya Malaviya, Graham Neubig, and Patrick Lit-861
tell. 2017. Learning language representations for862
typology prediction. In Proceedings of the 2017 Con-863
ference on Empirical Methods in Natural Language864
Processing, pages 2529–2535, Copenhagen, Den-865
mark. Association for Computational Linguistics.866

Matthias Minderer, Josip Djolonga, Rob Romijnders,867
Frances Hubis, Xiaohua Zhai, Neil Houlsby, Dustin868
Tran, and Mario Lucic. 2021. Revisiting the calibra-869
tion of modern neural networks. Advances in Neural870
Information Processing Systems, 34.871

Jay Mohta and Colin Raffel. 2021. The impact of do-872
main shift on the calibration of fine-tuned models.873
In NeurIPS 2021 Workshop on Distribution Shifts:874
Connecting Methods and Applications.875

Mahdi Pakdaman Naeini, Gregory Cooper, and Milos876
Hauskrecht. 2015. Obtaining well calibrated prob-877
abilities using bayesian binning. In Twenty-Ninth878
AAAI Conference on Artificial Intelligence.879

Jeremy Nixon, Michael W Dusenberry, Linchuan Zhang,880
Ghassen Jerfel, and Dustin Tran. 2019. Measuring881
calibration in deep learning. In CVPR Workshops,882
volume 2.883

Myle Ott, Michael Auli, David Grangier, and884
Marc’Aurelio Ranzato. 2018. Analyzing uncer-885
tainty in neural machine translation. CoRR,886
abs/1803.00047.887

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado,888
D. Sculley, Sebastian Nowozin, Joshua V. Dillon,889
Balaji Lakshminarayanan, and Jasper Snoek. 2019a.890
Can You Trust Your Model’s Uncertainty? Evaluating891
Predictive Uncertainty under Dataset Shift. Curran892
Associates Inc., Red Hook, NY, USA.893

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado,894
David Sculley, Sebastian Nowozin, Joshua Dillon,895
Balaji Lakshminarayanan, and Jasper Snoek. 2019b.896
Can you trust your model’s uncertainty? evaluating897
predictive uncertainty under dataset shift. Advances898
in neural information processing systems, 32.899

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel Noth- 900
man, Kevin Knight, and Heng Ji. 2017. Cross-lingual 901
name tagging and linking for 282 languages. In Pro- 902
ceedings of the 55th Annual Meeting of the Associa- 903
tion for Computational Linguistics (Volume 1: Long 904
Papers), pages 1946–1958. 905

Rrubaa Panchendrarajan and Aravindh Amaresan. 2018. 906
Bidirectional lstm-crf for named entity recognition. 907
In Proceedings of the 32nd Pacific Asia Conference 908
on Language, Information and Computation. 909

Sangdon Park, Osbert Bastani, James Weimer, and Insup 910
Lee. 2020. Calibrated prediction with covariate shift 911
via unsupervised domain adaptation. In International 912
Conference on Artificial Intelligence and Statistics, 913
pages 3219–3229. PMLR. 914

Kanil Patel, William H. Beluch, Bin Yang, Michael 915
Pfeiffer, and Dan Zhang. 2021. Multi-class 916
uncertainty calibration via mutual information 917
maximization-based binning. In 9th International 918
Conference on Learning Representations, ICLR 2021, 919
Virtual Event, Austria, May 3-7, 2021. OpenRe- 920
view.net. 921

Tiago Pimentel, Maria Ryskina, Sabrina J. Mielke, 922
Shijie Wu, Eleanor Chodroff, Brian Leonard, Gar- 923
rett Nicolai, Yustinus Ghanggo Ate, Salam Khalifa, 924
Nizar Habash, Charbel El-Khaissi, Omer Goldman, 925
Michael Gasser, William Lane, Matt Coler, Arturo 926
Oncevay, Jaime Rafael Montoya Samame, Gema Ce- 927
leste Silva Villegas, Adam Ek, Jean-Philippe 928
Bernardy, Andrey Shcherbakov, Aziyana Bayyr-ool, 929
Karina Sheifer, Sofya Ganieva, Matvey Plugaryov, 930
Elena Klyachko, Ali Salehi, Andrew Krizhanovsky, 931
Natalia Krizhanovsky, Clara Vania, Sardana Ivanova, 932
Aelita Salchak, Christopher Straughn, Zoey Liu, 933
Jonathan North Washington, Duygu Ataman, Witold 934
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A Appendix 1128

A.1 Detailed Task Descriptions 1129

We evaluate the model calibration for zero-shot 1130

cross-lingual transfer on a variety of classification 1131

and sequence-tagging tasks when used out-of-box 1132

and after post-training calibration. Our experiments 1133

largely follow the established settings by Yarmo- 1134

hammadi et al. (2021). For multi-lingual experi- 1135

ments, we consider Part-Of-Speech (POS) tagging, 1136

Universal Dependency Parsing (UDP), Named En- 1137

tity Recognition (NER) and Natural Language In- 1138

ference (NLI). For English-Arabic experiments, we 1139

additionally consider ACE3 and BETTER4as they 1140

are only available to limited languages. We use En- 1141

glish as the source language and 7 target languages 1142

that are diversed in their typology (Clark et al., 1143

2020; Pimentel et al., 2021). In case where alterna- 1144

tive English-side dev sets are available (NLI, POS, 1145

UDP) we directly use different dev sets for model 1146

selection and post-training calibration, otherwise 1147

we split the dev set. 1148

Part-of-speech (POS) Tagging We use the Univer- 1149

sal Dependencies (UD) Treebank (v2.9; Zeman et 1150

al, 2021).5 The UD Treebank consists of data from 1151

a variety of sources, such that there may be poten- 1152

tial domain mismatch across different treebanks 1153

(Sato et al., 2017). To overcome domain discrep- 1154

ancy across different languages, we use the New 1155

Parallel UD (PUD) (Zeman et al., 2017) treebank 1156

in the UD Treebanks, which is available to all our 1157

target languages. Similar to NER, we generate 1158

word representation by attention-weighting all sub- 1159

word token representations, and we use a linear 1160

classifier to predict corresponding POS tags. We 1161

evaluate performance by the accuracy of predicted 1162

POS tags. 1163

Universal Dependency Parsing (UDP) We use 1164

the same set of treebanks as in appendix A.1 for 1165

the POS tagging task. To predict the dependency 1166

heads and dependency labels, we use a biaffine at- 1167

tention layer (Dozat and Manning, 2016). As in 1168

POS and NER, we generate word-level represen- 1169

tations by attention-weighting the subword token 1170

representations. We evaluate the performance by 1171

labeled attachment score (LAS). For this task we 1172

3https://www.ldc.upenn.edu/
collaborations/past-projects/ace

4https://www.iarpa.gov/index.php/
research-programs/better

5We train on the following English treebanks: English-
Atis, English-EWT, English-GUM, English-LinES, English-
ParTUT and English-Pronouns.

13

https://doi.org/10.18653/v1/2021.emnlp-main.149
https://doi.org/10.18653/v1/2021.emnlp-main.149
https://doi.org/10.18653/v1/2021.emnlp-main.149
https://doi.org/10.18653/v1/2021.emnlp-main.149
https://doi.org/10.18653/v1/2021.emnlp-main.149
http://arxiv.org/abs/2110.07586
http://arxiv.org/abs/2110.07586
http://arxiv.org/abs/2110.07586
http://hdl.handle.net/11234/1-4611
http://arxiv.org/abs/2102.09690
http://arxiv.org/abs/2102.09690
http://arxiv.org/abs/2102.09690
https://doi.org/10.18653/v1/D19-1483
https://doi.org/10.18653/v1/D19-1483
https://doi.org/10.18653/v1/D19-1483
https://www.ldc.upenn.edu/collaborations/past-projects/ace
https://www.ldc.upenn.edu/collaborations/past-projects/ace
https://www.iarpa.gov/index.php/research-programs/better
https://www.iarpa.gov/index.php/research-programs/better


evaluate the model calibration for both the head1173

prediction and the label prediction.1174

Named Entity Recognition (NER) We rely on1175

WikiAnn (Pan et al., 2017) for named entity recog-1176

nition. We use the Hugging Face Datasets version61177

which corresponds to the balanced train, dev, and1178

test splits in Rahimi et al. (2019). Labels of the1179

dataset consists of 3 types of named entities: PER,1180

LOC and ORG. We use an additional linear layer1181

to predict word-level labels over word represen-1182

tation aggregated through an attention layer over1183

the subword-level representation generated by the1184

encoder. We evaluate the NER performance by F11185

score of the predicted entity.1186

Natural Language Inference (NLI) We evalu-1187

ate cross-lingual natural language inference per-1188

formance with XNLI (Conneau et al., 2018). We1189

train on the MultiNLI (Williams et al., 2018) train-1190

ing set. For a given instance we concatenate the1191

premise p and the hypothesis h as joint input to our1192

model. To predict the entailment label, we apply a1193

linear classification head over the pooled sentence1194

representation. We evaluate model performance by1195

prediction accuracy.1196

ACE We use the English and Arabic subset of Au-1197

tomatic Content Extraction (ACE) 2005 (Walker1198

et al., 2006) following Yarmohammadi et al. (2021).1199

We evaluate on the trigger extraction and the argu-1200

ment extraction subtasks, and utilize the event ex-1201

traction model of Xia et al. (2021), which consists1202

of a BiLSTM-CRF BIO tagger (Panchendrarajan1203

and Amaresan, 2018) and a type-classifier trained1204

to predict child spans conditioned on parent spans1205

and labels. This model structure yields compara-1206

ble performance to the state-of-the-art OneIE (Lin1207

et al., 2020) on trigger and argument identification.1208

Here sharing model structure with other tasks as1209

in BETTER enables us with direct performance1210

comparison. We use the same English split as in1211

Lin et al. (2020), and for the Arabic split we follow1212

Lan et al. (2020).1213

BETTER The Better Extraction from Text To-1214

wards Enhanced Retrieval (BETTER) Program1215

aims to "develop enhanced methods for personal-1216

ized, multilingual semantic extraction and retrieval1217

from text", given gold annotations only in English.1218

Unlike in Yarmohammadi et al. (2021) which fo-1219

cused on "Abstract" event extraction, here we fo-1220

cus the richer "Basic" task. Basic event extraction,1221

6https://huggingface.co/datasets/
wikiann

structurally related to FrameNet parsing, requires a 1222

model to identify a finer-grained set of event types 1223

than Abstract, along with their respective agent, 1224

patient or event references. The documents come 1225

from the news-specific portion of Common Crawl. 1226

Performance on BETTER Basic is evaluated ac- 1227

cording to a program-defined "combined F1" met- 1228

ric, which is the product of "event match F1" and 1229

"argument match F1", calculated based on best- 1230

effort alignment of predicted and reference event 1231

structures. We use the same model structure as in 1232

ACE. We run the model for multiple passes to pro- 1233

duce level-wise predictions in parallel at inference 1234

time. 1235

A.2 Multilingual Experiment Result 1236

In this section we present additional results for 1237

the multilingual experiment setting for all three 1238

encoders and all training data size configurations. 1239

Results are shown in table 1 to appendix A.2 1240

A.3 English Arabic Experiment Result 1241

For completeness, we include the tables for scal- 1242

ing parameters as shown in table 11 and table 12. 1243

In general, these results conform to our observa- 1244

tion that the scaling parameter for more basic-level 1245

tagging tasks like POS are smaller and for more 1246

difficult tagging tasks, like BETTER-finding, are 1247

greater. To contrast the calibration efficiency for 1248

classification and tagging tasks, we showcase the 1249

XNLI scaling parameter in a separated table 13. 1250

Notice that XNLI is a “high level” task (Lauscher 1251

et al., 2020), we expect to see greater out-of-the- 1252

box mis-calibration and hence larger scaling param- 1253

eter for temperature scaling. Similarly complete 1254

ECE and performance statistics can be found in 1255

table 14 and table 15. 1256
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Task Metric(%) en de fr es ru hi ar zh

POS Acc 96.47 91.60 90.98 91.17 91.21 82.29 84.59 74.36
ECE 3.16 7.15 6.97 7.50 7.70 13.39 12.42 18.56
TS 1.98 5.15 5.30 5.43 4.41 10.02 6.54 10.75

Beta 1.66 4.24 4.18 4.16 3.90 8.40 5.64 13.18
GPcalib 1.36 3.81 3.43 3.83 4.35 7.57 7.25 13.93
HIST 1.32 4.85 4.81 4.92 4.99 9.89 8.09 12.97

UDP LAS 88.10 84.45 82.34 79.43 78.73 50.76 65.51 48.38
l-ECE 2.48 5.87 5.50 8.61 7.18 16.20 15.71 19.36
l-TS 1.65 3.66 3.72 5.84 4.50 9.25 10.60 11.82

l-Beta 1.02 2.76 2.78 5.12 3.59 9.55 10.15 13.17
l-GPcalib 0.71 2.76 2.49 5.03 3.36 9.21 9.79 13.30
l-HIST 0.81 3.46 3.40 6.09 4.49 12.04 11.84 15.08
h-ECE 7.17 6.43 9.40 10.06 9.49 26.14 14.23 29.96
h-TS 2.18 2.35 3.20 3.30 2.75 11.07 4.11 18.29

h-Beta 2.03 1.90 2.95 3.28 2.41 12.82 4.41 19.19
h-GPcalib 1.78 2.87 2.86 2.74 2.88 9.87 3.64 17.31
h-HIST 2.12 1.97 4.13 4.43 3.93 15.70 6.93 21.20

NER F-1 87.69 85.01 81.12 80.35 77.31 81.62 68.72 58.85
ECE 5.04 4.16 9.17 10.52 8.76 8.86 17.04 13.33
TS 0.86 1.12 3.85 3.60 2.57 3.18 6.29 3.51

Beta 0.96 0.93 4.21 3.92 3.24 3.11 8.81 5.71
GPcalib 0.85 0.74 4.08 3.88 2.86 3.15 7.22 4.38
HIST 1.17 1.59 4.88 5.13 4.12 3.53 10.44 7.61

XNLI Acc 87.86 81.80 82.44 83.51 79.12 75.71 77.94 78.36
ECE 6.55 10.44 11.19 9.60 12.54 14.66 12.73 11.92
TS 4.52 3.81 4.22 3.74 4.73 5.59 4.14 4.62

Beta 3.36 3.87 4.62 3.86 5.18 6.47 5.11 4.56
GPcalib 3.73 3.95 4.46 3.70 5.06 6.30 4.50 4.37
HIST 3.89 3.67 4.18 3.42 4.66 6.47 5.02 4.27

Table 1: Experiment result with xlm-roberta-large on full-data setting, shaded cells indicate significant
improvements in calibration decided by a bootstrap from dataset and an independent t-test with p < .05.
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Task Metric(%) en de fr es ru hi ar zh

POS Acc 96.33 91.93 85.74 90.42 90.96 79.78 85.10 67.22
ECE 3.26 6.74 7.57 9.90 7.32 15.27 10.55 20.34
TS 1.62 6.79 6.63 10.50 3.02 13.39 4.85 6.49

Beta 1.45 6.42 5.00 8.24 2.78 10.97 4.42 8.19
GPcalib 1.15 2.47 3.87 4.60 2.46 7.34 3.82 13.46
HIST 0.52 6.40 6.23 7.99 3.62 11.33 6.61 10.53

UDP LAS 88.27 78.38 77.15 74.92 71.00 45.77 58.25 44.35
l-ECE 3.04 6.99 7.07 9.86 9.24 20.36 18.42 21.58
l-TS 3.55 6.08 5.63 7.90 7.27 12.73 13.16 13.87

l-Beta 1.57 2.94 2.71 4.98 4.27 10.94 10.60 12.22
l-GPcalib 1.58 1.79 3.11 3.53 2.88 8.40 7.68 11.32
l-HIST 1.90 4.34 5.88 7.47 7.24 18.53 16.37 20.39
h-ECE 7.11 12.28 14.28 14.13 16.05 33.06 20.41 35.48
h-TS 4.25 4.46 6.26 5.28 4.33 8.84 6.24 14.46

h-Beta 3.95 2.39 3.15 3.07 3.23 15.15 5.38 19.62
h-GPcalib 5.46 5.95 6.68 5.87 5.41 6.43 7.35 10.79
h-HIST 3.65 1.66 3.87 3.37 4.37 16.52 7.09 21.03

NER F-1 82.91 83.62 80.40 79.18 71.73 77.76 69.78 55.61
ECE 7.51 4.56 8.76 11.21 10.66 11.62 15.63 14.76
TS 1.41 3.03 2.20 3.39 2.56 3.79 2.91 3.97

Beta 1.26 2.18 1.66 2.76 2.49 3.19 3.25 3.92
GPcalib 0.83 1.84 1.34 2.94 2.10 3.35 3.34 4.36
HIST 1.31 2.97 2.04 3.09 3.09 3.85 6.00 5.87

XNLI Acc 76.79 70.86 71.98 73.25 68.84 65.23 66.83 67.60
ECE 22.00 27.62 26.60 25.33 29.43 32.87 31.35 30.47
TS 7.20 10.71 10.14 9.26 12.00 14.46 13.23 12.41

Beta 5.71 8.66 8.07 7.29 9.49 11.83 11.08 10.17
GPcalib 4.30 6.65 6.40 6.20 7.93 9.66 9.16 7.99
HIST 1.51 6.68 5.64 4.66 8.63 12.00 10.24 9.32

Table 2: Experiment result with xlm-roberta-large under low-data setting, color scheme same as above.
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Task Metric(%) en de fr es ru hi ar zh

POS Acc 95.45 91.46 84.00 89.96 90.39 79.60 84.55 64.80
ECE 3.27 6.76 6.44 10.74 5.71 12.95 7.76 15.42
TS 1.70 7.06 6.58 11.13 3.07 11.75 4.02 5.65

Beta 1.48 6.08 4.81 8.74 2.87 9.03 3.20 6.67
GPcalib 1.28 3.26 3.59 7.16 2.17 7.67 2.49 12.19
HIST 0.92 5.78 5.18 7.84 3.59 9.15 3.76 8.83

UDP LAS 77.62 66.92 65.18 63.55 61.19 36.31 47.84 34.03
l-ECE 4.30 7.48 7.33 10.36 8.99 20.49 16.10 19.97
l-TS 4.54 5.50 5.89 6.33 6.97 9.37 9.11 9.30

l-Beta 2.28 2.69 2.34 4.54 3.59 11.87 8.07 11.77
l-GPcalib 2.77 2.30 3.80 3.59 3.45 7.98 4.62 8.97
l-HIST 2.82 3.44 4.53 5.87 5.28 15.88 10.97 15.69
h-ECE 9.96 13.82 15.14 14.60 17.13 31.44 20.18 35.51
h-TS 2.43 3.73 4.81 5.22 4.45 13.12 5.54 18.43

h-Beta 4.40 3.31 3.82 4.41 2.61 13.47 4.14 17.81
h-GPcalib 6.00 9.00 9.64 10.20 6.65 6.09 10.26 9.48
h-HIST 4.34 2.83 4.16 4.75 4.01 15.63 6.52 19.84

NER F-1 70.90 72.46 68.69 69.97 52.60 69.35 55.34 35.75
ECE 14.17 8.51 15.69 17.32 20.54 18.81 26.45 32.04
TS 2.90 4.33 2.96 3.55 6.88 4.69 7.95 14.16

Beta 2.16 3.61 2.20 3.34 6.09 3.66 7.65 12.98
GPcalib 1.33 3.51 2.10 3.64 5.06 4.48 6.78 12.30
HIST 1.79 4.65 1.99 4.41 6.96 5.03 10.55 15.19

XNLI Acc 40.54 38.08 40.32 39.38 35.99 39.04 38.92 37.98
ECE 33.31 33.14 24.96 32.19 37.99 31.07 28.90 30.82
TS 2.75 3.68 4.64 2.95 4.87 3.79 3.51 3.54

Beta 2.19 4.76 3.02 3.39 6.90 3.54 2.88 3.70
GPcalib 2.33 3.87 3.08 2.68 5.40 3.38 2.52 3.35
HIST 3.99 5.28 5.02 4.20 7.03 5.53 3.98 5.18

Table 3: Experiment result with xlm-roberta-large under low-low data setting, color scheme same as above.
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Task Metric(%) en de fr es ru hi ar zh

POS Acc 96.39 91.53 90.31 90.81 91.09 74.48 82.87 77.70
ECE 2.27 5.52 5.03 5.64 6.18 15.82 10.31 14.20
TS 1.42 3.72 3.16 4.02 4.42 13.38 7.00 10.41

Beta 0.91 2.94 2.54 3.01 3.80 11.70 5.96 10.54
GPcalib 1.02 3.42 3.45 3.92 4.53 13.42 7.75 12.45
HIST 1.17 3.64 3.64 4.01 4.39 13.92 7.52 11.42

UDP LAS 87.74 81.23 79.48 76.29 75.78 46.25 58.62 42.22
l-ECE 2.03 5.99 5.25 8.09 6.54 15.11 14.69 17.02
l-TS 1.07 3.25 3.02 4.64 3.16 6.74 7.97 7.75

l-Beta 0.98 3.04 2.57 4.92 3.07 9.06 9.52 10.56
l-GPcalib 0.73 3.23 2.65 4.79 2.95 8.77 9.31 10.92
l-HIST 1.10 4.74 4.26 6.52 4.95 14.60 13.24 16.80
h-ECE 5.70 5.92 8.74 9.37 9.35 22.56 14.26 24.42
h-TS 1.19 2.72 2.87 2.56 2.64 8.75 4.15 8.55

h-Beta 1.29 2.05 2.75 2.76 2.58 11.59 4.87 12.87
h-GPcalib 1.29 2.90 2.81 2.59 2.71 8.26 4.41 6.82
h-HIST 1.22 2.61 3.88 3.93 3.83 14.33 7.11 15.33

NER F-1 86.99 79.84 78.38 78.56 68.02 70.11 58.42 40.23
ECE 3.86 4.77 8.40 8.63 11.26 13.17 16.97 19.15
TS 0.72 1.91 4.11 3.59 6.75 8.24 9.52 13.13

Beta 0.68 1.69 3.59 3.10 6.62 7.59 9.81 13.71
GPcalib 0.51 1.46 3.62 3.04 6.10 7.47 8.50 12.32
HIST 1.53 2.50 4.31 4.35 7.33 8.70 11.69 14.72

XNLI Acc 83.97 76.01 77.23 78.10 74.59 68.52 71.42 73.13
ECE 10.83 17.20 17.08 15.58 18.71 22.74 20.12 18.16
TS 3.98 7.52 7.82 6.15 8.60 11.74 9.06 7.38

Beta 3.55 6.29 6.15 4.70 7.03 9.70 7.59 5.71
GPcalib 3.59 6.38 6.35 5.08 7.44 10.23 7.66 5.93
HIST 2.80 5.48 5.34 4.07 6.22 9.71 6.89 5.03

Table 4: Experiment result with xlm-roberta-base under full-data setting, color scheme same as above.
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Task Metric(%) en de fr es ru hi ar zh

POS Acc 96.05 89.68 87.55 89.46 89.84 73.84 80.93 75.42
ECE 3.49 8.55 9.77 8.98 8.41 19.74 14.50 15.88
TS 2.27 4.07 5.29 5.09 3.76 11.09 7.64 5.88

Beta 2.07 3.37 4.45 4.44 3.55 9.71 6.25 4.91
GPcalib 1.20 2.29 4.51 3.65 2.82 11.04 5.83 8.16
HIST 0.77 3.45 4.83 4.01 4.06 11.70 7.65 8.32

UDP LAS 80.68 75.34 72.81 71.62 67.19 35.68 52.74 34.89
l-ECE 3.88 7.71 8.61 11.18 10.22 21.92 21.45 25.98
l-TS 3.31 5.20 5.77 7.71 7.01 12.25 13.49 16.21

l-Beta 1.65 2.45 2.89 5.07 3.90 11.44 12.38 15.37
l-GPcalib 1.65 1.50 2.75 3.29 2.67 6.80 8.47 11.04
l-HIST 2.48 5.01 6.97 9.17 8.71 23.50 21.20 27.30
h-ECE 12.69 13.46 15.26 14.95 18.29 40.68 21.83 39.58
h-TS 3.71 6.86 7.51 6.94 5.33 11.58 7.01 10.52

h-Beta 4.61 6.96 6.61 6.39 4.57 14.35 5.24 13.69
h-GPcalib 3.99 7.39 8.25 7.06 5.99 10.13 7.96 8.10
h-HIST 4.85 4.79 3.30 3.33 3.53 17.50 6.27 17.19

NER F-1 80.42 76.31 77.43 78.28 66.52 69.54 69.92 39.04
ECE 7.91 6.93 9.66 10.44 12.04 16.01 14.79 31.51
TS 2.00 3.37 2.44 2.59 5.43 7.27 4.21 20.70

Beta 1.53 2.45 1.98 1.91 4.47 6.59 3.83 20.48
GPcalib 1.09 2.12 1.46 1.81 4.20 6.23 3.30 19.93
HIST 1.56 3.39 2.13 2.51 4.79 6.94 4.99 21.57

XNLI Acc 60.10 57.43 57.56 58.76 54.47 53.53 54.63 55.73
ECE 30.40 32.16 32.57 31.58 35.92 35.57 34.45 33.57
TS 4.17 5.10 5.25 4.71 7.72 7.10 7.10 6.02

Beta 4.33 4.20 4.89 4.93 7.31 6.60 6.47 5.58
GPcalib 4.30 4.41 4.62 4.08 7.56 6.45 6.18 5.44
HIST 4.07 4.92 5.05 5.20 8.00 8.34 7.01 6.15

Table 5: Experiment result with xlm-roberta-base under low-data setting, color scheme same as above.
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Task Metric(%) en de fr es ru hi ar zh

POS Acc 95.26 89.99 88.98 89.84 90.24 74.38 82.37 76.36
ECE 3.55 7.24 7.28 7.48 6.62 14.29 11.64 11.84
TS 2.68 3.23 4.81 3.92 3.30 9.20 5.85 6.54

Beta 2.30 2.10 3.83 2.45 3.70 7.21 4.56 5.74
GPcalib 1.73 1.63 2.65 2.43 2.38 6.58 3.40 4.69
HIST 1.09 2.48 3.89 2.72 3.48 11.12 5.68 7.48

UDP LAS 76.06 66.31 64.30 63.97 59.64 32.11 45.39 27.93
l-ECE 4.62 8.11 9.71 12.01 10.76 23.95 20.90 25.38
l-TS 4.55 5.09 5.43 7.35 6.99 12.04 12.22 13.69

l-Beta 2.71 2.95 3.11 5.14 3.72 13.64 11.55 15.17
l-GPcalib 2.80 2.06 3.00 3.75 2.96 8.99 7.67 10.31
l-HIST 6.63 7.43 10.01 11.96 11.75 29.34 22.97 33.68
h-ECE 10.98 15.14 15.20 14.68 19.24 37.07 24.39 36.01
h-TS 2.61 3.06 5.17 5.19 5.29 17.11 7.62 14.46

h-Beta 5.30 3.19 4.60 4.84 3.40 17.22 6.25 16.17
h-GPcalib 7.59 8.62 11.49 10.37 7.08 7.84 6.98 4.61
h-HIST 5.56 2.74 3.66 3.92 3.25 17.66 6.70 16.69

NER F-1 70.09 69.02 67.81 67.07 55.29 64.94 53.13 30.55
ECE 13.06 7.81 14.51 16.65 16.43 17.86 25.96 36.34
TS 2.30 5.71 2.10 4.40 3.31 5.00 10.49 21.82

Beta 2.14 5.18 2.11 4.45 2.77 5.06 10.80 21.70
GPcalib 1.86 5.33 2.27 4.11 2.97 5.52 10.68 22.12
HIST 1.85 5.67 2.93 5.13 4.26 5.99 12.80 22.74

XNLI Acc 39.34 39.28 38.56 38.86 39.12 39.54 37.70 39.66
ECE 58.11 57.91 58.69 58.17 58.09 56.93 59.33 57.34
TS 2.92 3.40 3.23 3.20 3.22 2.54 4.00 2.76

Beta 2.23 1.79 1.82 1.49 1.41 1.75 1.87 2.46
GPcalib 2.66 2.31 2.24 2.04 1.95 2.63 2.34 1.99
HIST 2.01 2.36 3.12 2.64 2.85 2.78 3.95 2.14

Table 6: Experiment result with xlm-roberta-base under very-low-data setting, color scheme same as above.
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Task Metric(%) en de fr es ru hi ar zh

POS Acc 96.31 90.26 89.19 89.12 89.35 72.33 79.15 70.13
ECE 2.86 7.47 7.45 7.89 8.02 18.31 14.78 21.84
TS 1.88 4.57 3.86 4.46 4.59 12.26 9.11 14.91

Beta 1.22 3.37 2.81 3.10 3.76 9.96 7.07 13.28
GPcalib 0.99 3.05 2.51 2.83 3.65 9.64 7.08 13.22
HIST 0.96 4.38 4.20 4.34 4.73 12.57 8.67 14.44

UDP LAS 87.30 77.51 79.65 75.70 72.77 34.30 58.40 41.04
l-ECE 2.37 7.16 5.54 8.61 7.66 19.22 14.97 18.92
l-TS 1.31 3.46 2.67 4.74 3.59 9.52 7.41 11.02

l-Beta 0.84 3.22 2.30 4.77 3.18 12.49 8.77 12.66
l-GPcalib 0.78 3.41 2.23 4.76 3.45 11.64 8.65 12.26
l-HIST 1.57 6.63 5.18 8.25 7.66 24.50 17.37 23.27
h-ECE 6.25 7.34 9.10 10.10 11.46 31.07 14.63 29.57
h-TS 1.56 3.34 2.57 2.38 2.28 12.51 3.46 13.68

h-Beta 1.53 2.66 2.37 2.58 2.17 16.72 3.22 16.41
h-GPcalib 1.57 3.76 2.61 2.30 2.07 11.24 3.51 12.56
h-HIST 1.56 2.95 3.47 3.37 3.32 17.99 5.28 17.75

NER F-1 87.71 85.16 79.88 80.88 71.68 75.19 57.67 56.46
ECE 3.95 3.07 8.80 8.19 9.06 9.72 20.08 17.72
TS 1.14 1.10 5.09 3.75 4.54 4.46 12.53 11.44

Beta 0.93 0.82 4.60 3.47 4.24 4.41 12.23 11.06
GPcalib 0.91 0.95 4.73 3.49 4.28 4.57 12.67 11.41
HIST 1.21 1.35 5.08 4.28 4.79 5.01 13.01 12.23

XNLI Acc 81.90 70.24 73.61 73.73 67.03 59.42 64.21 68.84
ECE 10.90 18.51 17.29 16.68 22.75 27.82 22.82 20.40
TS 3.20 7.53 7.05 6.18 11.36 15.74 10.66 9.02

Beta 2.85 6.32 5.82 4.88 10.02 14.42 9.46 7.91
GPcalib 3.46 6.01 5.86 4.80 9.87 14.39 9.32 7.72
HIST 3.59 6.41 5.70 4.99 9.86 14.59 9.28 7.79

Table 7: Experiment result with bert-base-multilingual-cased under full-data setting, color scheme
same as above.
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Task Metric(%) en de fr es ru hi ar zh

POS Acc 95.52 89.55 88.22 88.57 87.43 69.59 78.09 69.44
ECE 3.50 7.90 9.27 8.95 8.95 19.42 14.45 20.13
TS 2.29 4.12 5.02 5.84 3.93 13.72 7.96 12.45

Beta 1.85 2.44 3.58 4.32 2.54 10.04 5.32 10.77
GPcalib 1.45 2.22 3.75 4.11 2.28 9.30 5.22 10.65
HIST 0.59 2.93 4.45 4.23 4.00 12.13 6.42 12.32

UDP LAS 81.61 71.18 72.07 70.90 65.23 25.92 50.87 36.01
l-ECE 3.78 8.34 7.87 10.99 11.28 26.63 20.55 22.99
l-TS 3.68 5.06 4.90 7.51 7.44 14.84 11.58 13.93

l-Beta 2.14 2.18 3.57 4.23 3.40 14.56 9.68 12.02
l-GPcalib 2.22 2.53 4.56 3.31 2.74 9.90 6.54 8.51
l-HIST 3.43 6.56 7.09 9.21 10.17 31.69 21.06 26.81
h-ECE 11.16 13.98 14.73 14.39 17.39 44.02 21.94 38.38
h-TS 5.24 10.22 12.40 10.17 7.70 9.53 8.64 9.68

h-Beta 6.55 9.54 9.86 8.74 6.49 15.95 6.06 12.28
h-GPcalib 6.23 13.03 14.97 11.79 10.03 5.29 10.79 8.00
h-HIST 6.53 7.01 6.17 5.39 4.13 18.28 6.68 15.03

NER F-1 83.09 83.26 82.10 82.19 65.62 71.29 58.79 57.56
ECE 7.69 4.61 8.69 8.95 13.52 14.18 22.22 18.80
TS 2.66 4.02 2.97 3.71 5.30 5.34 9.48 8.93

Beta 2.29 2.74 2.33 2.91 4.96 5.28 10.34 9.24
GPcalib 2.03 2.42 2.34 3.03 4.46 4.83 9.50 8.93
HIST 1.04 3.29 1.38 2.10 5.38 6.12 11.42 10.18

XNLI Acc 59.36 55.91 56.05 55.83 54.65 52.85 54.59 54.23
ECE 26.37 27.20 27.72 28.04 26.66 26.95 26.99 27.54
TS 6.78 7.44 7.43 6.70 5.64 4.51 5.32 6.43

Beta 5.80 6.11 6.28 5.75 4.68 3.93 4.18 5.52
GPcalib 6.58 6.74 6.70 6.14 5.52 4.80 4.67 5.99
HIST 5.23 5.64 5.42 4.55 5.80 5.53 4.96 5.45

Table 8: Experiment result with bert-base-multilingual-cased under low-data setting, color scheme
same as above.
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Task Metric(%) en de fr es ru hi ar zh

POS Acc 94.49 91.40 89.16 90.17 88.44 74.31 78.68 69.05
ECE 4.13 5.70 7.65 6.93 7.54 16.03 13.07 20.31
TS 3.16 2.83 3.07 4.02 2.18 11.75 5.98 10.90

Beta 2.45 2.62 2.59 2.66 2.40 9.57 5.83 9.47
GPcalib 1.87 3.23 2.09 2.37 2.66 7.53 3.91 8.25
HIST 1.93 2.40 1.86 1.88 3.00 9.52 5.81 10.92

UDP LAS 76.99 60.45 66.59 64.60 56.21 22.45 41.67 30.93
l-ECE 4.76 10.30 9.68 12.74 14.05 26.13 22.90 23.64
l-TS 4.63 5.25 5.55 7.62 8.19 8.74 11.02 10.25

l-Beta 2.62 3.14 2.94 5.38 5.23 14.45 12.05 12.70
l-GPcalib 3.02 2.12 2.79 3.75 3.29 9.76 8.84 9.14
l-HIST 6.87 10.60 9.62 12.11 15.44 35.66 27.01 30.90
h-ECE 11.80 19.07 15.30 15.18 19.72 43.00 25.54 38.62
h-TS 8.14 7.76 11.40 11.17 7.50 9.21 6.51 8.86

h-Beta 5.73 2.86 5.22 5.50 2.36 20.42 5.23 17.14
h-GPcalib 7.16 8.03 10.94 10.77 8.28 7.26 7.13 7.29
h-HIST 5.61 2.40 3.82 3.81 2.93 21.62 6.31 18.20

NER F-1 72.56 73.71 71.47 70.56 50.96 62.88 54.51 41.96
ECE 11.00 5.23 12.18 15.33 17.79 18.86 25.29 33.03
TS 2.63 7.07 2.48 3.58 5.90 4.65 9.29 19.58

Beta 2.57 6.36 2.50 3.73 5.65 5.06 10.24 19.53
GPcalib 2.36 5.98 2.72 4.18 6.07 5.97 10.51 19.53
HIST 1.53 6.02 3.16 4.21 6.36 5.63 11.61 20.43

XNLI Acc 45.51 43.81 44.85 45.53 44.87 41.58 43.93 45.79
ECE 45.87 45.91 45.04 44.66 44.37 47.20 45.54 43.91
TS 5.40 4.92 4.11 6.01 4.18 5.32 4.88 4.86

Beta 2.90 2.36 2.88 3.31 2.75 2.43 2.35 2.77
GPcalib 4.72 3.56 4.31 3.88 3.71 4.29 3.82 3.42
HIST 3.45 4.38 4.12 3.67 3.85 7.34 4.89 4.64

Table 9: Experiment result with bert-base-multilingual-cased under very-low-data setting, color
scheme same as above.
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Source en de fr es ru hi ar zh

full

ori 3.07 6.81 7.52 6.63 5.80 13.06 10.36 34.08
TS 1.58 4.25 3.96 3.80 3.00 8.44 5.89 25.41

GPcalib 1.17 3.79 4.54 3.48 2.47 7.49 4.84 27.89
TS 3.32 7.38 8.06 7.10 6.72 14.14 12.02 28.79

-crf TS 2.11 5.19 4.94 4.80 4.36 9.75 7.59 17.71
GPcalib 1.63 4.09 3.47 3.84 3.36 9.43 6.83 9.74

low-data

ori 3.29 6.89 8.82 6.65 6.78 14.37 10.66 25.84
TS 1.79 2.88 3.37 3.18 2.64 8.21 5.83 12.14

GPcalib 1.01 2.03 3.78 1.75 1.52 5.82 3.00 15.83
ori 3.31 6.64 8.45 6.37 6.68 14.04 11.59 39.26

-crf TS 1.66 2.75 3.46 3.26 2.11 8.02 4.46 27.48
GPcalib 1.42 5.39 7.25 6.44 2.72 10.25 6.04 21.25

very-low-data

ori 3.65 5.88 8.50 4.93 6.07 11.91 10.94 35.32
TS 1.94 2.56 4.80 1.82 2.73 7.82 5.53 28.19

GPcalib 1.66 2.06 4.59 1.46 2.04 7.41 5.88 30.15
ori 4.23 7.17 9.22 6.30 7.42 13.45 13.34 43.21

-crf TS 2.11 2.66 4.26 1.88 2.88 7.63 5.66 36.80
GPcalib 1.57 2.33 2.85 1.58 2.59 7.76 3.91 34.24

Table 10: structured prediction experiments: POS, comparing different calibration methods with statistical significant
tests.

POS UDP-label UDP-head NER ACE-t ACE-f BETTER-t BETTER-f

full 1.5 1.58 1.85 1.9 3.32 1.11 3.00 10.94
l-data 1.42 1.77 3.23 1.97 - - - -
ll-data 1.47 2.12 2.96 1.88 - - - -

Table 11: Temperature scaling parameter for mBERT.

POS UDP-label UDP-head NER ACE-t ACE-f BETTER-t BETTER-f

full 1.30 1.51 1.72 1.47 1.01 1.12 3.80 38.45
l-data 1.66 1.80 3.39 1.79 - - - -
ll-data 1.43 2.10 2.09 2.01 - - - -

Table 12: Temperature scaling parameter for XLM-R, from one run.

mBERT XLMR

full 1.98 2.02
l-data 2.67 2.73
ll-data 6.7 12.48

Table 13: Temperature scaling parameter for both mBERT and XLM-R on XNLI, from one run each.
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Task F-1 t-ECE f-ECE

mBERT

ACE
raw 58.57 12.67 21.42
cal. - 10.73 21.89

BETTER
raw 35.26 17.85 32.87
cal. - 12.98 22.37

XLM-R

ACE
raw 58.19 11.30 36.76
cal. - 11.45 32.56

BETTER
raw 36.24 14.60 39.83
cal. - 10.70 18.69

Table 14: Results for En-Ar transference (English). raw
row corresponds to out-of-the-box model and cal. row
shows the calibration error reduction by temperature
scaling.

Task F-1 t-ECE f-ECE

mBERT

ACE
raw 19.13 20.49 72.59
cal. - 12.68 71.76

BETTER
raw 18.45 23.68 58.37
cal. - 9.5 27.00

XLM-R

ACE
raw 26.74 13.84 67.40
cal. - 13.36 62.40

BETTER
raw 23.68 21.05 57.26
cal. - 9.96 8.29

Table 15: Results for En-Ar transference (Arabic). raw
row corresponds to out-of-the-box model and cal. row
shows the calibration error reduction by temperature
scaling.
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