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Abstract001

A key challenge in Multi-Document Summa-002
rization (MDS) is effectively integrating infor-003
mation from multiple sources while maintain-004
ing coherence and topical relevance. While005
Large Language Models (LLMs) have shown006
impressive results in single-document summa-007
rization, their performance on MDS still leaves008
room for improvement. In this paper, we pro-009
pose a topic-guided reinforcement learning ap-010
proach to improve content selection in MDS.011
We first show that explicitly prompting mod-012
els with topic labels enhances the informative-013
ness of the generated summaries. Building014
on this insight, we propose a novel topic re-015
ward within the Group Relative Policy Opti-016
mization (GRPO) framework to measure topic017
alignment between the generated summary and018
source documents. Experimental results on019
the Multi-News and Multi-XScience datasets020
demonstrate that our method consistently out-021
performs strong baselines, highlighting the ef-022
fectiveness of leveraging topical cues in MDS.023

1 Introduction024

Multi-Document Summarization (MDS) aims to025

generate a concise and coherent summary that026

captures the salient information from a collection027

of related documents. While recent advances in028

Large Language Models (LLMs) and prompting029

strategies have significantly improved the perfor-030

mance of abstractive summarization systems, exist-031

ing MDS methods still struggle to maintain content032

relevance, coherence (Belem et al., 2024), and topic033

consistency (Amar et al., 2023), especially when034

synthesizing information across multiple sources035

(Liu et al., 2024; Lior et al., 2024).036

One important yet relatively underexplored di-037

rection in MDS is the incorporation of high-level038

discourse information to guide the summarization039

process. Topics offer a global discourse structure040

that can help models identify salient content, re-041

solve ambiguity, and enhance coherence in the042

Figure 1: Performance on Multi-News (Fabbri et al.,
2019) using prompting (Base) and topic-incorporated
prompting (Tn; n means number of topic labels) with
Qwen2.5-series model (Qwen et al., 2025). The geomet-
ric mean of Rouge-1/2/L scores are reported. Topic key
words are previously generated using a teacher model:
Qwen2.5-7B. We see that topic-enhanced instruction
(T5 and T10) improves small LLMs’ (0.5B and 1.5B)
performances over standard prompt (Base).

generated summaries (Haghighi and Vanderwende, 043

2009; Ouyang et al., 2007). Early work incorpo- 044

rated topic distributions as auxiliary features to 045

enrich word and sentence representations, either 046

via topic models or graph-based approaches (Wei, 047

2012; Narayan et al., 2018; Wang et al., 2020). 048

However, these methods typically operate at the 049

token or sentence level and do not fully leverage 050

topic signals as explicit guidance. More recent ef- 051

forts have attempted to better align topic modeling 052

with the summarization objective—for example, by 053

using latent topics to pre-select salient sentences in 054

extractive settings (Cui et al., 2020), or by jointly 055

learning topic representations and summarization 056

(Cui and Hu, 2021). Related work has also ex- 057

plored creating intermediate plans to guide sum- 058

marization, such as creating Entity Chains as key 059

phrases (Narayan et al., 2021) or building question- 060

answering blueprints (Narayan et al., 2023). De- 061

spite these advances, the explicit use of topic labels 062

as prompts or rewards to guide multi-document 063

summarization remains largely unexplored. 064
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Figure 2: Multi-Document Summarization training (a) using our proposed Topic-Guided reward (b), with GRPO
(Shao et al., 2024). Every input data contains K source documents (doc1, . . . , docK ). For each document dock, we
use a topic model to extract n number of key topic phrases tt1, t2, . . . , tnu. Similarly, we extract m topic phrases
tt1

1, t
1
2, . . . , t

1
mu from each generated summary Sg . We construct a topic similarity matrix Mk

g by comparing the n
and m topic phrases from each source document-summary pair, from which we compute a topic alignment score
rkg ptopicq

. We average the alignment scores over all K document-summary pairs to derive the overall topic-guided
reward Rg ptopicq, which is then used to calculate the group advantage Ag for updating the policy model.

In this work, we investigate the role of explicit065

topic guidance in enhancing generic MDS. Differ-066

ent from previous studies that incorporate topic dis-067

tributions or learns latent topics via neural topic068

modeling, we propose a more direct and inter-069

pretable strategy: guiding summarization models070

using topic phrases explicitly extracted from the071

source documents. We begin with a simple yet in-072

sightful observation: prompting LLMs with extra073

topic information improves MDS quality in terms074

of informativeness. Figure 1 shows that when small075

LLMs (Qwen2.5-0.5B and 1.5B) are applied to076

summarization tasks, they show notable improve-077

ments if prompted with topic labels (“T5” and078

“T10”), compared to using standard summarization079

prompt (“Base”). This motivates us to go beyond080

static prompting and incorporate topic awareness081

more directly into the training objective.082

To this end, we introduce a novel reference-free083

topic-reward function that quantifies how well a084

generated summary aligns with its intended topics085

derived from each source document, see Figure 2086

for an overview. Our key assumption is that in-087

creasing the topical similarity between the gener-088

ated summary and source documents will in turn089

improve the quality of summary generations. Ac-090

cordingly, our reward is defined with respect to the091

improvements from (1) coverage: how well the gen-092

erated summary covers important topics in source093

documents, and (2) precision: how relevant the top-094

ics in summary are to the source documents. The095

final reward signal is a harmonic mean, which is 096

then integrated into the Group Relative Policy Op- 097

timization framework (Shao et al., 2024) to enable 098

reinforcement learning with topic-guided feedback. 099

Specifically, we employ Qwen2.5-7B (Qwen 100

et al., 2025) within the reward model to gen- 101

erate topic labels for a given document–either 102

a source article or a summary–while using the 103

smaller Qwen2.5-0.5B model as the policy model. 104

This setup also mirrors a knowledge distillation 105

paradigm where the larger language model trans- 106

fers topic-related knowledge to the smaller model 107

to guide its learning process. We evaluate our 108

method on two widely-used datasets: Multi-News 109

(Fabbri et al., 2019) and Multi-XScience (Lu et al., 110

2020), and demonstrate that our topic-aware train- 111

ing strategy leads to consistent improvements over 112

standard and Reinforcement Learning from Human 113

Feedback (RLHF)-guided baselines, as measured 114

by both informativeness metrics (e.g., ROUGE, 115

LLM score) and topic alignment evaluation. 116

In summary, (1) we show that using topic in- 117

formation improves MDS performance, both via 118

prompting and LLM-based RL; (2) we introduce a 119

novel topic reward to measure source-summary dis- 120

course alignment, which is integrated into GRPO to 121

perform topic-guided summarization; (3) empirical 122

results indicate that topic-level signals represent a 123

valuable yet underexploited form of supervision, 124

yielding even stronger performance when com- 125

bined with reference-based rewards like ROUGE. 126
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2 Related Work127

Multi-Document Summarization (MDS) Early128

approaches for MDS relies on extractive methods129

that rank and select salient sentences across doc-130

uments (Nenkova and Vanderwende, 2005; Erkan131

and Radev, 2004). More recent work has shifted132

toward neural abstractive models that can generate133

coherent and fluent summaries from scratch (Liu134

and Lapata, 2019; Zhang et al., 2020; Ma et al.,135

2022). However, these models often face chal-136

lenges in maintaining factual accuracy and topical137

consistency due to the complexity of aggregating138

information from multiple sources. Several tech-139

niques have been proposed to address this, such as140

hierarchical encoding (Liu et al., 2018), guided de-141

coding strategies (Pasunuru et al., 2021), and multi-142

granularity control over an extract-then-summarize143

pipeline (Zhang et al., 2024). Despite these ad-144

vances, the integration of high-level discourse in-145

formation such as topics remains underexplored.146

Discourse-Guided Summarization Although147

topic modeling has been widely used for document-148

level content understanding, its application to sum-149

marization has been relatively limited (Cui and Hu,150

2021). Haghighi and Vanderwende (2009) used151

LDA-style probabilistic topic models (Blei et al.,152

2003) to select topic-relevant sentences and showed153

improvement in terms of redundancy; Cohan et al.154

(2018) and Wang et al. (2020) introduced discourse-155

level and topic-aware attention mechanisms to en-156

hance long document summarization.157

Another line of work involves discourse-level158

planning, where models generate summaries con-159

ditioned on given keywords (He et al., 2022; Dou160

et al., 2021), entities (Narayan et al., 2021), or161

high-level concept (Zhong et al., 2021). These162

approaches aim to control the focus of the sum-163

mary based on user intent or query, while our work164

focuses on generic summaries that holistically rep-165

resent the source content using topical information.166

Reinforcement learning (RL) for Summariza-167

tion RL methods has been applied to summariza-168

tion more broadly to optimize non-differentiable169

objectives, such as ROUGE (Ranzato et al., 2016;170

Paulus et al., 2018; Narayan et al., 2018) or human171

preferences (Ziegler et al., 2019; Stiennon et al.,172

2020; Ouyang et al., 2022), addressing the inherent173

mismatch between training objectives and evalu-174

ation criteria. Other approaches incorporate task-175

specific rewards, e.g., Wu and Hu (2018) learned176

models of coherence from existing text and used 177

them as RL rewards for summarization; Gao et al. 178

(2019) built an interactive summarization tool by 179

applying reward learning to one article at a time; Pa- 180

sunuru and Bansal (2018) incorporated entailment- 181

based consistency rewards to improve the saliency 182

of a good summary. Our work builds on this line 183

by introducing a novel topic-level reward that ex- 184

plicitly encourages topical alignment between gen- 185

erated summaries and source documents–a dimen- 186

sion not adequately addressed by existing metrics. 187

3 Incorporating Topic Labels into MDS 188

via Prompting 189

Topic phrases succinctly capture essential informa- 190

tion from source documents, providing effective 191

high-level guidance for summarization–our mo- 192

tivation aligns with prior work on Entity Chains 193

(Narayan et al., 2021), which utilized ordered se- 194

quences of entities as intermediate representations 195

to plan and ground abstractive summary genera- 196

tion. However, unlike the controlled entity sets 197

used in entity chains, we treat our topics as open- 198

ended keywords and phrases. Additionally, rather 199

than incorporating entity generation directly into 200

conditional summarization, we adopt a two-step 201

framework where the topic extraction model is sep- 202

arate from the summarization model. This modular 203

design enables independent analysis of topic ex- 204

traction’s impact on summarization quality (see 205

§6.4), and provides the flexibility to incorporate 206

more advanced topic models in future experiments. 207

In this section, we conduct experiments in a zero- 208

shot setting, carefully designing prompts and con- 209

figurations to best leverage topic-augmented MDS. 210

Prompting with Topics Formally, given a set of 211

source documents with corresponding topic labels, 212

we prompt a LLM for summarization as follows: 213

P pS|doc1, Tdoc1 , . . . , doc
K , TdocK ; θq, (1) 214

where Tdock denotes topic labels for document k, 215

and θ represents the LLM parameters. We append 216

each set of topic labels immediately after its corre- 217

sponding document, providing explicit topical guid- 218

ance to assist the summarization model. This re- 219

sembles the summary-level entity plans introduced 220

in Narayan et al. (2021), but extends naturally to 221

multiple document-topic pairs, a format we found 222

consistently more effective than an aggregated- 223

topic version in pilot experiments. Detailed prompt 224

examples are provided in Appendix A. 225
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Teacher-Supervision Mode We examine LLM226

capabilities by comparing their performance of227

varying scales (Qwen2.5-0.5B, 1.5B, and 7B). Un-228

surprisingly, the largest summarization model (7B)229

achieves the highest baseline performance (aver-230

age ROUGE 19.9), significantly surpassing smaller231

models (see “Base” in Figure 1). We employ a232

teacher-supervision mode, where the larger 7B233

model explicitly provides topic guidance for the234

smaller models (0.5B and 1.5B). Under this set-235

ting, smaller LLMs clearly benefit from improved236

topical information provided by the teacher model.237

However, the 7B model itself, which inherently238

possesses strong topical modeling capabilities, ex-239

periences no gains from self-generated topic labels.240

Number of Topic Labels We also explore how241

the number of topic labels impacts summarization242

effectiveness, comparing summaries guided by 1,243

5, or 10 topics. A single topic label overly con-244

strains summarization, leading to poorer perfor-245

mance across all models (“T1” in Figure 1). On246

the other hand, summarization quality notably im-247

proves when using more labels (“T5” and “T10”),248

particularly for smaller models.249

These findings together suggest that employing250

richer topic signals through teacher-supervised ex-251

traction is beneficial, motivating us to incorporate252

topic information into the learning process.253

4 LLM Reinforcement Learning for MDS254

Based on the above observations, we propose a255

novel topic-guided reward (§4.1) designed to maxi-256

mize semantic similarity between generated sum-257

maries and source documents, coupled with a258

length penalty (§4.2) to better control the gener-259

ation length. We implement these rewards using an260

inverse standard deviation weighting strategy (§4.3)261

through the recent Group Relative Policy Optimiza-262

tion (GRPO) framework (§4.4). See Figure 2 for263

the overview of our pipeline.264

4.1 Topic-Guided Reward265

A key contribution of our approach is a Topic-F1266

reward metric that can effectively capture the se-267

mantic alignment between summaries and their re-268

spective source documents. We utilize a two-step269

embedding and matching procedure to quantify270

coverage and precision of topics.271

For one data input d “ tdoc1, doc2, . . . , docKu,272

we first apply the Qwen2.5-7B model to extract a273

set of topic labels Tdoc “ tt1, t2, . . . , tnu from274

each source document dock. Specifically, we 275

set topic number n “ |Tdoc| “ 10 for Multi- 276

News (Fabbri et al., 2019) and n “ |Tdoc| “ 277

5 topics for Multi-XScience (Lu et al., 2020). 278

These values are defined to align with the av- 279

erage number of sentences per summary in the 280

training data (Table 1). Each topic label–may 281

be a single word or a short phrase–is converted 282

into a dense embedding using the SentenceTrans- 283

former model all-mpnet-base-v2 (Reimers and 284

Gurevych, 2019). We select this model due to its 285

compact size and proven effectiveness in gener- 286

ating high-quality sentence embeddings, adding 287

minimal computational overhead in training. 288

Given a generated summary Sg, we similarly ex- 289

tract and embed its topics Tsum “ tt1, t2, . . . , tmu. 290

We construct a similarity matrix M , whose entries 291

Mij represent the cosine similarity between topic 292

embeddings of each pair of topic phrases from 293

source document and generated summary: 294

Mij “
edoc,i ¨ esum,j

|edoc,i||esum,j|
, (2) 295

where edoc,i and esum,j represent embeddings for 296

the ith document topic and jth summary topic, re- 297

spectively. Note that the number of extracted topics 298

from the source document and the generated sum- 299

mary may differ, as summaries are typically much 300

shorter than source documents. We set the number 301

of topics m “ |Tsum| “ 5 for both datasets. 302

Then, we define Coverage as the average of the 303

maximum similarity scores between each source 304

topic and its most similar summary topic. Con- 305

versely, Precision is defined as the average of the 306

maximum similarity scores between each summary 307

topic and its most similar source topic: 308

Coverage “
1

n

n
ÿ

i“1

max
j“1,2,...,m

pMijq, (3) 309

310

Precision “
1

m

m
ÿ

j“1

max
i“1,2,...,n

pMijq. (4) 311

Finally, we calculate the harmonic mean of cov- 312

erage and precision to derive our topic-guided re- 313

ward rtopic. This metric is computed pairwise for 314

every source document-summary pair, encouraging 315

generation of generic summaries that consistently 316

capture key semantic elements across multiple doc- 317

uments. The final reward score Rtopic is obtained 318

by averaging the rtopic values across all document- 319

summary pairs of one data point. Preliminary ex- 320

periments revealed that computing topic rewards 321
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on a pairwise basis consistently outperformed ap-322

proaches that first merged topics across all docu-323

ments before comparison, motivating our choice of324

topic alignment calculation.325

4.2 Length-Penalty Reward326

As recent research shows, LLMs often fail to327

respect desired length constraints specified in328

prompts (Stiennon et al., 2020; Wang et al., 2024).329

To mitigate excessive long (or short) output, we330

introduce a token-level length reward designed to331

penalize deviations from the target length. To de-332

termine the number of tokens, we use the tokenizer333

associated with the reference model–specifically,334

the Qwen2.5-0.5B model in our case.335

Formally, the length reward Rlen is defined as:336

Rlen “ exp

ˆ

´
|Lexp ´ Lsum|

Lexp

˙

, (5)337

where Lexp represents the desired summary length338

and Lsum the generated summary length. We com-339

pute Lexp on a small validation set, with its size340

tunable to reflect user preferences.341

In our pilot experiments, we evaluated both342

sentence-level and token-level approaches for343

length penalty. The results showed that token-344

level control led to significantly better adherence to345

the target length, effectively preventing summaries346

from becoming excessively long (up to five times347

the target length observed in initial trials).348

4.3 Reward Weighting349

Our reward formulation can be viewed within the350

broader Multi-Objective Reinforcement Learning351

(MORL) framework, where multiple objectives–352

topic precision, coverage, and length constraints–353

must be simultaneously balanced. Inspired by the354

MORL literature (Roijers et al., 2013; Van Seijen355

et al., 2017) and adaptive weighting strategies such356

as leveraging reward variance (Kendall et al., 2018),357

we adopt an inverse standard deviation weighting358

scheme to stabilize training signals. Given reward359

signals Rr with standard deviations σr which we360

obtain from a mini-batch (approx. 5% of training361

set), where r refers to the reward type, the initial362

weights are defined as:363

wr “ 1{σr (6)364

Additionally, following common practice (Sti-365

ennon et al., 2020), we apply an emphasis factor366

of 2 to the topic-guided reward to reflect domain-367

specific priorities. This factor is a tunable hyperpa-368

rameter, selected based on development set perfor- 369

mance. The final weights are normalized across all 370

reward types: 371

wnorm
r “

wr ˆ factorr
ř

kpwk ˆ factorkq
, (7) 372

where factortopic “ 2 and factorlen “ 1. In further 373

experiments, we incorporate the reference-based 374

ROUGE reward alongside our reference-free topic- 375

F1 reward, assigning equal weighting to both. This 376

strategy efficiently balances multiple reward com- 377

ponents and dynamically emphasizes key metrics. 378

4.4 GRPO Training 379

To integrate our weighted reward into GRPO train- 380

ing (Shao et al., 2024), we construct a scalar value 381

Rtotal which combines topic-F1 and length rewards: 382

RtotalpSgq “
ÿ

r

wnorm
r RrpSgq. (8) 383

The GRPO algorithm computes relative advan- 384

tages of Rtotal within a group of G sampled com- 385

pletions, i.e., generated summaries: 386

AGRPO
g “

RtotalpSgq ´ 1
G

řG
g“1RtotalpSgq

stdg“1,2,...,GpRtotalpSgqq
. (9) 387

Given this advantage estimation, the training objec- 388

tive is to optimize the policy (π) parameters θ by 389

maximizing a clipped surrogate objective: 390

LGRPO
pθq “ ESg„πθold

” 1

G

G
ÿ

g“1

min
´

rgpθqAg,

clipprgpθq, 1 ´ ϵ, 1 ` ϵqAg

¯ı

´ β ¨ DKLpπθ}πrefq

(10) 391

with probability ratio rgpθq “
πθpSg|dq

πθold pSg|dq
and a KL 392

penalty to regularize policy updates. Note however 393

that our reward design is agnostic to specific RL 394

algorithms, we adopt the GRPO framework due 395

to its recent success (Shao et al., 2024; Guo et al., 396

2025) and computational efficiency by removing 397

the value model. 398

5 Experimental Setup 399

5.1 Datasets 400

We choose two popular MDS datasets whose 401

source documents and summaries different along 402

multiple facets such as length and abstractiveness. 403

The key statistics of datasets are shown in Table 1. 404

(1) Multi-News (Fabbri et al., 2019) is one of the 405

most widely used MDS datasets in news domain. It 406
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Multi-News Multi-XSci

Nb. train data 44, 972 30, 369
Nb. test data 5, 622 5, 093
Nb. refs per summ 2.8 4.4
Avg. words / sents in docs 2, 103 / 28 942 / 33
Avg. words / sents in summ 263 / 10 116 / 5
% novel unigrams 17.8 57.1
% novel bigrams 42.3 81.8

Table 1: Key statistics of Multi-News (Fabbri et al.,
2019) and Multi-XScience (Lu et al., 2020). These
numbers show variance in the size of source documents
(references per summary, avg. words and sentences) and
difference in gold summary properties (novel n-grams).

contains in average 2.7 source documents per sum-407

mary with relatively long documents. (2) Multi-408

XScience (Lu et al., 2020) comprises the abstract409

of a query paper and those of its cited papers as410

input, with the goal of generating a related work411

paragraph. On average, it includes 4.4 source doc-412

uments and has highly abstractive summaries, mak-413

ing it particularly challenging for MDS models.414

5.2 Evaluation Metrics415

We report several complementary metrics that ex-416

amine different aspects of the generated summaries.417

To assess summary informativeness, we use lexi-418

cal overlap metrics (e.g., ROUGE; (Lin, 2004)),419

along with embedding-based semantic similarity420

measures including BERTSCORE (short in BERT;421

Zhang et al., 2019) and LLM2VEC SCORE (short in422

LLM2V; BehnamGhader et al., 2024). The LLM2V423

metric we use is built upon the Meta-LLaMA-3-8B424

model fine-tuned (Grattafiori et al., 2024) with un-425

supervised contrastive learning (Gao et al., 2021).426

Additionally, we examine topical alignment via427

COVRATIO and PRERATIO, reflecting respectively428

the coverage and precision of extracted topics be-429

tween the summary and source documents.430

5.3 Model Comparisons431

We primarily use Qwen series for our experiments432

(Qwen et al., 2025). For all model variants, Qwen-433

2.5 0.5B-Instruct is used as the policy model in RL434

training. For reward calculation, we compare dif-435

ferent sizes and types of reward model. For all RL-436

training, we include the length penalty described437

in §4.2. We compare the following variants:438

(1) RL-Trained, Topic-reward: Our proposed439

method, training a policy model (0.5B) with topic-440

F1 reward and GRPO. We include RLTOPIC-7B441

which leverages Qwen-2.5 7B-Instruct model as442

topic extractor, and explore a smaller variant 443

RLTOPIC-0.5B with 0.5B model for topic extraction. 444

(2) RL-Trained, Human-feedback: We com- 445

pare against a reward model trained to pre- 446

dict human preference from OpenAssistant1 447

(deberta-v3-large-v2): RLHUMAN-FEEDBACK. 448

(3) Base: We also compare against Qwen2.5 449

0.5B model evaluated in a zero-shot setting, both 450

with topic labels provided by Qwen 7B in the 451

prompt (BASETOPIC-7B) and without any topic in- 452

formation (BASE). BASETOPIC-7B approximates the 453

Entity Chains (Narayan et al., 2021) within LLM. 454

(4) Supervised Fine-Tuning (SFT): We fine- 455

tune Qwen2.5-0.5B-Instruct model for summary 456

generation with the SFT objective. 457

(5) RL-Trained, Reference-based: Finally, 458

we implement ROUGE-reward using the mean of 459

ROUGE-1/2/L within GRPO: RLROUGE, and bench- 460

mark with our model which uses a combination of 461

topic and ROUGE rewards: RLTOPIC-7B+ROUGE. 462

5.4 Implementation Details 463

We adapt the TRL library (von Werra et al., 2020) 464

for GRPO training. Most of our experiments are 465

conducted using 8 x NVIDIA A100 40GB GPUs, 466

where one GPU is dedicated for rollout, one for 467

topic generation, and the rest for GRPO training. 468

We set the number of generations to 8, per-device 469

train batch size to 4, gradient accumulation steps 470

to 21, and KL coefficient to 0.04. For rollout and 471

topic generation, we using vLLM2 for accelerated 472

inference, with more details in the Appendix B. 473

6 Results 474

6.1 Main Results 475

In Table 2, we report results comparing our 476

methods with baselines. Across both datasets, 477

our method consistently outperforms all baselines 478

in terms of summary informativeness. Specifi- 479

cally, on Multi-News, RLTOPIC-7B achieves supe- 480

rior embedding-based similarity scores (.845 for 481

BERTSCORE and .798 for LLM score) compared 482

to RLHUMAN-FEEDBACK (.819 BERTSCORE and .706 483

LLM score). Even our smaller topic-guided variant, 484

RLTOPIC-0.5B, notably surpasses this baseline in all 485

metrics, illustrating the robustness and scalability 486

of our topic-guided reward framework. A similar 487

trend is observed for Multi-XScience. 488

1https://huggingface.co/OpenAssistant/
reward-model-deberta-v3-large-v2.

2https://github.com/vllm-project/vllm
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Overlap-Based Similarity-Based Topic Alignment

Model RM˚ Rouge-1 Rouge-2 Rouge-L Rouge-M BERT LLM2V COVRATIO PRERATIO

N
ew

s

BASE - 27.22 7.28 15.03 14.31 .842 .721 .513 .622
BASETOPIC-7B 7B 28.62 8.60 15.83 15.73 .844 .733 .521 .632
RLHUMAN-FEEDBACK 0.3B 33.07 6.99 17.29 15.58 .819 .706 .492 .583
RLTOPIC-0.5B (ours) 0.5B 38.63 10.72 18.81 19.82 .845 .793 .536 .672
RLTOPIC-7B (ours) 7B 39.62 10.97 18.97 20.20 .845 .798 .540 .676

X
Sc

ie
nc

e

BASE - 25.05 4.16 13.47 11.19 .822 .637 .490 .480
BASETOPIC-7B 7B 25.62 4.09 13.93 11.34 .828 .655 .482 .479
RLHUMAN-FEEDBACK 0.3B 26.78 2.90 13.87 10.25 .832 .622 .506 .507
RLTOPIC-0.5B (ours) 0.5B 29.47 4.79 15.90 13.09 .835 .721 .548 .549
RLTOPIC-7B (ours) 7B 30.45 5.38 16.26 13.86 .847 .741 .554 .560

Table 2: Model performance on two MDS datasets. We report ROUGE scores (Rouge-1/2/L/Mean) (Lin, 2004),
BERTSCORE (Zhang et al., 2019), and LLM2V score (BehnamGhader et al., 2024), computed against gold summary.
We assess topic alignment using coverage ratio (COVRATIO) and precision (PRERATIO). Best score per column is
in bold and second best underlined. All models used for summary generation are of size 0.5B. RM˚ shows the size
of reward model in RL settings and topic extraction model in zero-shot setting.

In addition to informativeness metrics, we in-489

troduce a novel topic alignment assessment that490

directly evaluates the semantic alignment between491

generated summaries and source documents, in-492

dependently of gold reference summaries. Our493

topic-guided models demonstrate significant im-494

provements on both datasets, achieving increases of495

2-7 points in Coverage and 4-8 points in Precision496

compared to baseline models. These consistent en-497

hancements highlight the value of integrating direct498

topical guidance into the summarization process.499

6.2 Results with SFT and Rouge-Based RL500

We further evaluate our combined reward strat-501

egy (RLTOPIC-7B+ROUGE) against reference-based ap-502

proaches, specifically supervised fine-tuning (SFT)503

and RL with ROUGE rewards. As shown in Table 3,504

our model consistently surpasses these baselines in505

both similarity metrics and topic alignment scores.506

On Multi-News, while SFT achieves slightly507

higher ROUGE scores due to its direct token-508

prediction training, our method notably excels in509

capturing semantic similarity. In the more chal-510

lenging Multi-XScience dataset–characterized by511

a larger number of source documents and highly512

abstractive summaries, as shown in Table 1–our513

RL model demonstrates clear superiority across all514

evaluated metrics. This highlights RL’s capacity515

to develop comprehensive summarization strate-516

gies beyond simple token imitation. Interestingly,517

the RL approach using solely ROUGE as reward518

(RLROUGE) also surpasses SFT. Arguably, this im-519

provement can be attributed to RL’s enhanced ex-520

ploration and generalization capabilities, which in521

a reference-based instantiation also help to discover522

more effective generation patterns and mitigate ex- 523

posure bias (Paulus et al., 2018). 524

6.3 Results on Varying Source Documents 525

It is worth exploring how the number of source doc- 526

uments influences model performance. We display 527

the performance across different document number 528

groups (distribution in Appendix C) of News and 529

XScience datasets in Figures 3 and 4, respectively. 530

We report the geometric mean of ROUGE scores 531

for comparison among BASE, RLHF, SFT, and our 532

two models: RLTOPIC-7B and RLTOPIC+ROUGE. 533

For Multi-News, ROUGE-M scores decline as 534

document number increases, confirming the chal- 535

lenge posed by multiple long documents. Although 536

SFT achieves top performance on two-source doc- 537

uments, it exhibits significant instability and per- 538

formance degradation with additional source doc- 539

uments. In contrast, our approaches exhibit more 540

stable performance compared to all competitors. 541

Multi-XScience reveals a contrasting trend: en- 542

couragingly, our models steadily improve perfor- 543

mance with increasing numbers of source docu- 544

ments, a trend not observed with BASE or RL-HF. 545

Although SFT also shows improvement with more 546

documents, its results fluctuate significantly, mak- 547

ing it less reliable. Our RL-trained models, en- 548

hanced by topical information aligned with each 549

source document, deliver the most consistent and 550

superior performance, demonstrating clear advan- 551

tages in practical multi-document scenarios. 552

6.4 Qualitative Analysis 553

Human Evaluation on Topic Quality To ver- 554

ify our hypothesis that explicitly extracted topic 555
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Overlap-Based Similarity-Based Topic Alignment

Model Rouge-1 Rouge-2 Rouge-L Rouge-M BERT LLM2V COVRATIO PRERATIO

N
ew

s SFT 43.43 14.36 20.76 23.28 .854 .815 .530 .665
RLROUGE 41.43 12.70 19.19 21.61 .849 .802 .533 .670
RLTOPIC-7B+ROUGE (ours) 43.05 13.66 21.06 23.14 .856 .827 .543 .686

X
Sc

ie
nc

e SFT 33.21 9.28 18.03 17.71 .847 .749 .479 .503
RLROUGE 35.20 8.32 18.07 17.43 .849 .755 .542 .543
RLTOPIC-7B+ROUGE (ours) 35.61 8.80 18.04 17.81 .851 .763 .555 .561

Table 3: On Mutli-News and Multi-XScience datasets, we compare our RL-trained models with topic and rouge
rewards (ours) against supervised fine-tuning (SFT) and RL-trained with solely ROUGE reward.

Figure 3: Model performance under different number
of source document groups on Multi-News test set.

phrases can effectively guide MDS, we conduct556

a human evaluation assessing the quality of top-557

ics generated by Qwen 7B and Qwen 0.5B models.558

Specifically, we evaluated four criteria—Relevance,559

Coverage, Specificity, and Redundancy—using a560

5-point Likert scale. Detailed evaluation guidelines561

and results are provided in Appendix D.562

In brief, evaluation results indicate that the 7B563

model consistently produces precise and concep-564

tually rich topic phrases, often comprising multi-565

word expressions. In contrast, the 0.5B model566

tends to generate topic that, while relevant, lack567

sufficient coverage and specificity, and with se-568

mantic redundancy. These findings support the569

benefits of teacher-supervised framework, where570

larger models with superior topic-modeling capa-571

bilities effectively guide smaller models through572

topic distillation, thereby improving summariza-573

tion performance.574

Failure Cases in Generation During evaluation,575

we observe that models occasionally produce ex-576

cessively long and repetitive outputs at inference577

time. We quantify the frequency of such failure578

cases across all model variants (see Appendix E)579

and find that the SFT model is most prone to this580

issue, with over 3% of instances failing to gener-581

Figure 4: Model performance under different number
of source document groups on Multi-XScience test set.

ate coherent sentences. This partly accounts for 582

the high variance observed in its performance. In 583

contrast, the RL-trained model with human prefer- 584

ence rewards, as well as our proposed models with 585

topic cues, exhibit greater stability, with minimal 586

occurrence of such degenerate outputs (ă 0.2%). 587

7 Conclusion 588

We introduce an interpretable, reference-free topic- 589

guided RL approach for MDS, leveraging a novel 590

topic-F1 reward that aligns summary topics with 591

source documents. Integrated within the GRPO 592

framework, our method consistently outperformed 593

strong baselines, demonstrating the value of ex- 594

plicit topic guidance. Looking forward, we aim to 595

enrich our framework by exploring advanced neu- 596

ral topic modeling techniques (Bianchi et al., 2021; 597

Fang et al., 2024) for more refined topical guidance. 598

Moreover, incorporating innovative reward signals, 599

such as LLM-as-a-judge evaluation (Zheng et al., 600

2023; Liusie et al., 2024), could further align sum- 601

maries with human preferences and enhance self- 602

consistency. Extending our topic-guided approach 603

to interactive, query-based scenarios–where users 604

specify key points to summarize–also presents an 605

exciting future direction. 606
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Limitations607

In our experiments, we focus primarily on mod-608

els from the Qwen series, selected for their strong609

performance across diverse NLP tasks and the avail-610

ability of multiple model sizes. This choice enables611

us to highlight and isolate the impact of topic align-612

ment, avoiding potential confounding factors from613

different architectures across different LLM fam-614

ilies. Furthermore, the policy model employed615

in our current setup is a 0.5B parameter model.616

Though exploring larger models is promising, the617

substantial computational cost limits such experi-618

ments in the current study. Nonetheless, our results619

clearly demonstrate the effectiveness of the topic re-620

ward approach even with this modestly sized model,621

laying a solid foundation for future studies that may622

scale to more powerful models.623

Evaluating text summarization continues to be624

challenging due to the multifaceted aspects in-625

volved in assessing summary quality (Kryscinski626

et al., 2019; Fabbri et al., 2021; Goyal et al., 2022).627

In our work, we employ a range of automatic628

metrics, including traditional methods (ROUGE),629

embedding-based approaches, and our newly pro-630

posed topic alignment metrics, which notably do631

not require reference summaries.632

Although we acknowledge the availability of633

other reference-free metrics, integrating them ef-634

fectively into our task–summarization of multiple635

lengthy source documents–is nontrivial. For exam-636

ple, our preliminary analysis with an entailment-637

based metric revealed that factual scores assigned638

to gold-standard summaries were sometimes lower639

than those assigned to zero-shot prompted sum-640

maries. Upon careful inspection, we discovered641

this occurred because certain prompted summaries642

heavily mirrored the first paragraph of source643

texts, resulting in disproportionately high entail-644

ment scores at the sentence level. This scoring pat-645

tern, however, does not accurately reflect compre-646

hensive summary quality, as a good summary must647

synthesize information distributed across multiple648

documents. Thus, we propose our topic coverage649

and precision scores as a more balanced evaluation650

approach tailored for this task.651

Ethical Statement652

We have taken proactive steps to address ethical653

concerns related to our research. Our corpora were654

carefully selected to minimize potential issues with655

biased or hateful content. For human evaluation,656

we clearly instructed annotators to remain vigilant 657

and identify any biased or inappropriate language 658

within the data. The annotators participated vol- 659

untarily without specific compensation; however, 660

they were encouraged to use the results of their 661

evaluation work for their academic studies. 662
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A Prompt Template for MDS and Topic 991

Modeling 992

We present various prompts used in our work, both 993

in zero-shot setting (Table 4), and RL training (Ta- 994

ble 5, 6, and 7): 995

MDS with Topic Labels Prompt in Zero-shot

A conversation between User and Assistant. The user
provides news articles and topic labels, and the As-
sistant produces a short summary. The summary con-
tains no more than **ten sentences** and **only**
based on information from the provided articles and
topic labels.
Documents: {Doc 1 text}, {Doc 1 topics}, {Doc
2 text}, {Doc 2 topics}, . . . , {Doc K text},
{Doc K topics}.
Assistant:

Table 4: Prompt template used by the Qwen2.5-0.5B /
1.5B / 7B in preliminary zero-shot experiments to test
the performance with integrated topic labels (See §3).

MDS Prompt in RL training (Multi-News)

A conversation between User and Assistant. The user
provides news articles, and the Assistant produces a
short summary. The summary contains no more than
**ten sentences** and **only** based on informa-
tion from the provided articles.
Documents: {Doc 1 text}, {Doc 2 text}, . . . ,
{Doc K text}
Assistant:

Table 5: Prompt template used by Qwen2.5-0.5B to
generate summary (rollout) from Multi-News during
RL training.

MDS Prompt in RL training (Multi-XScience)

The user provides scientific articles, and the Assis-
tant generates a related work paragraph based on the
query paper’s abstract and the abstracts of its refer-
enced papers. The answer includes citations for all
referenced papers (@cite_id) and be approximately
**five sentences long**.
Documents: {Doc 1 text}, {Doc 2 text}, . . . ,
{Doc K text}
Assistant:

Table 6: Prompt template used by Qwen2.5-0.5B to
generate summary (rollout) from Multi-XScience during
RL training.

B Training Details 996

Hyper-Parameters Table 8 lists the hyper- 997

parameters for GRPO training. Our training is 998
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Topic Modeling Prompt in RL training

A conversation between User and Assistant. The user
provides a news article, and the Assistant produces
**five** key words or phrases as **topic labels**.
The answer should be in the form of a list, with each
item separated by a comma. Do not give any expla-
nation or additional information.
Document: {Doc text}
Assistant:

Table 7: Prompt template used by the Qwen2.5-7B
model to extract topic labels from the generated sum-
maries (during reward calculation). Note that we pre-
extract and store topic labels from the source documents
before training, thus avoiding redundant topic extraction
computations during the training process.

based on TRL (von Werra et al., 2020), adapted999

to our datasets and compute constraints. The best-1000

performing checkpoint is selected based on valida-1001

tion reward improvements.1002

Due to the significant computational demands1003

of our experiments, extensive hyperparameter opti-1004

mization was impractical. Instead, we conducted1005

pilot small-scale tests, as described in the methods1006

section (§4), to inform our experimental setup.1007

For example, we observed that GRPO training1008

is highly sensitive to learning rate adjustments.1009

Although previous literature suggests using moder-1010

ately higher temperatures to facilitate exploration,1011

we found that temperatures of 1e ´ 5 or higher1012

caused considerable fluctuations during training,1013

leading to gradient explosions. Consequently, we1014

maintained a low learning rate of 1e ´ 6.1015

Another important observation relates to the1016

number of completions per input sample. We1017

noted that increasing the number of generated sam-1018

ples per input improved performance, aligning with1019

findings reported in Open-r1 (Face, 2025). How-1020

ever, due to the long input length, increasing the1021

number of completions further required enlarging1022

the training batch size, resulting in out-of-memory1023

(OOM) errors. Therefore, we selected a sample1024

size of 8, balancing performance gains and compu-1025

tational constraints.1026

Implementation with RLHF Reward The1027

RLHUMAN-FEEDBACK reward model is designed to pre-1028

dict a preference score between generated answers1029

given a specific question. During our implemen-1030

tation, we observed that including full source doc-1031

uments and generated summary as input signifi-1032

cantly increased the computation time for calcu-1033

GRPO Hyperparameters Value

Training epoch 2
Number of processes 6
Max prompt length 8092
Max completion length 1024
Gradient accumulation steps 21
Number of generations 8
Per device train batch size 4
Learning rate 1e ´ 6
KL Coefficient 0.04
Epsilon 0.2
Warm-up ratio 0.1
Temperature 0.7

Table 8: Hyperparameters for GRPO training.

lating preference scores (ą 20 seconds per data 1034

point), rendering it impractical for RL training. 1035

To address this issue, we utilized key topic 1036

phrases as a concise proxy for the original doc- 1037

uments. This approach substantially reduced com- 1038

putation time while effectively preserving relevant 1039

source content. This experience also highlights that 1040

using RLHF trained rewards directly with lengthy 1041

documents is computationally prohibitive, whereas 1042

our proposed method introduces minimal computa- 1043

tional overhead for evaluating topic alignment. 1044

C Statistics of Number of Source 1045

Documents 1046

As shown in Table 9: Multi-News primarily fea- 1047

tures two-source documents, while Multi-XScience 1048

has a more balanced distribution, with 2-, 3-, and 1049

4-source inputs together making up 52% of test set. 1050

D Human Evaluation on Topic Quality 1051

We conducted a human evaluation to assess the 1052

quality of topic phrases generated by the Qwen2.5- 1053

7B and Qwen2.5-0.5B models. Two graduate-level 1054

annotators independently evaluated the outputs for 1055

ten randomly selected documents from the Multi- 1056

XScience training set. The evaluation was guided 1057

by four criteria–Relevance, Coverage, Specificity, 1058

and Redundancy–rated on a 5-point Likert scale 1059

(1 = poor, 5 = excellent). The detailed annotation 1060

instructions are provided in Table 10. 1061

Annotators were first asked to read the source 1062

documents and were free to highlight or mark key 1063

phrases they considered important. Subsequently, 1064

they were presented with anonymized and ran- 1065

domly ordered topic lists generated by the two 1066

models. For each list, annotators assigned scores 1067

based on the four evaluation criteria. 1068

The aggregated evaluation results for twenty 1069
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Datasets 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

News 54.6 27.8 10.9 3.9 1.7 0.7 0.2 0.2 - - - - - - - - - - -
XScience 23.9 13.3 15.5 10.6 6.6 6.0 4.3 2.9 4.1 2.9 2.9 1.8 1.4 1.3 0.7 0.6 0.6 0.3 0.3

Table 9: Distribution of the number of source documents in Multi-News (News) and Multi-XScience (Science)
datasets, both in the test subset.

Criterion Guiding Question

Relevance Do the phrases reflect the central themes
or key ideas of the document?

Coverage Do the phrases collectively represent di-
verse and important parts?

Specificity Are the phrases informative and precise,
not vague or overly general?

Redundancy Are any phrases repeated or semanti-
cally overlapping?

Table 10: Evaluation criteria instructions.

Model Relevance Coverage Specificity Redundancy

7B 5.0 5.0 5.0 5.0
0.5B 3.8 2.8 2.4 3.2

Table 11: Model topic evaluation summary.

topic sets (ten documents, two models) are sum-1070

marized in Table 11. The findings indicate that1071

Qwen2.5-7B consistently outperforms Qwen2.5-1072

0.5B, producing more precise, accurate, and com-1073

prehensive topic phrases. In contrast, the 0.5B1074

model exhibits notable deficiencies in coverage and1075

specificity. Table 12 presents several representative1076

examples to illustrate the qualitative differences1077

between the models. In these examples, topics1078

highlighted in red were identified by annotators as1079

inappropriate, typically due to being overly generic1080

or lacking clarity.1081

E Qualitative Results1082

Table 13 presents the percentage of failure cases in1083

which the model produces excessively long and in-1084

coherent outputs. Notably, the SFT model exhibits1085

the highest failure rate, whereas models trained1086

with reinforcement learning show the lowest. Be-1087

low, we provide an example of a failure case gen-1088

erated by the SFT model, corresponding to test1089

example #21 in the Multi-XScience dataset:1090

“ In recent years, many new methods have been1091

developed to solve the blind image denoising prob-1092

lem. First, the mixture of Gaussian distribution1093

@cite_21 @cite_8 @cite_13 @cite_30 @cite_401094

@cite_10 @cite_19 @cite_23 @cite_9 @cite_321095

@cite_6 @cite_25 @cite_18 @cite_23 @cite_321096

@cite_18 @cite_18 @cite_13 ...” – the model con-1097

Qwen-7B topics Qwen-0.5B topics

Communication strategies,
collaborative problem solv-
ing, resource limitations,
task requirements, experi-
mental simulations

Effective, problem solv-
ing, resource bounded,
communication, collabora-
tive

Principle of Parsimony,
Task-Oriented Dialogue,
Recovery Strategies, Infor-
mation Transfer, HCRC
Map Task

Parsimonious, task-
oriented, information,
recovery, dialogue

Automatic Text Catego-
rization, WordNet, Vector
Space Model, Rocchio
Algorithm, Widrow-Hoff
Algorithm

WordNet, Rocchio,
Widrow-Hoff, category,
low frequency

Natural Language Process-
ing, TextTiling, TileBars,
Cougar, Topic Labeling

Contextual, text, topic, re-
trieval, display

Text categorization, Word-
Net, lexical databases,
training collections, perfor-
mance comparison

Auto text categorization,
lexical databases, train-
ing collections, WordNet,
WordNet-based

Table 12: Examples of generated topics from Qwen2.5-
7B and Qwen2.5-0.5B models. Topics highlighted in
red are considered as inappropriate topics.

tinues repeating content until it exhausts the maxi- 1098

mum output length defined by vLLM. 1099

Model Multi-News (%) Multi-XScience (%)

BASE 1.37 0.04
BASETOPIC 2.41 0.14
SFT 3.92 3.14
RLHF 0.07 0.00
RLROUGE 0.52 0.02
RLTOPIC-0.5B (ours) 0.18 0.00
RLTOPIC-7B (ours) 0.12 0.00
RLTOPIC+ROUGE (ours) 0.14 0.08

Table 13: Percentage of failure cases where model gen-
erates repetitive and long output (e.g., ą 2, 500 tokens).
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