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ABSTRACT

Evaluation remains a fundamental challenge in multimodal learning. Existing
metrics such as CLIPScore, LPIPS, and FID reduce assessment to embedding
similarity or perceptual distance, which systematically fails to capture semantic
correctness or editing plausibility, while GPT-based scoring remains subjective
and inconsistent. We argue that the emergence of bottleneck-free unified multi-
modal models enables a new evaluation paradigm: their internal reasoning and
generative dynamics can serve as principled signals. Building on BAGEL, we
propose two complementary metrics. BagelScore focuses on image understand-
ing and image-text matching, outperforming traditional metrics like CLIPScore,
LPIPS, FID, and GPT-based heuristics by directly evaluating the semantic align-
ment between images and captions using the unified model’s reasoning capabili-
ties. EditingScore, the first evaluation metric specifically designed for assessing
image editing quality, quantifies the difficulty of learning the transformation in the
latent space of a generative model. EditingScore is validated on Edit-1K, the first
benchmark dataset specifically created for image editing quality evaluation. To-
gether, BagelScore and EditingScore provide a unified, reasoning-based paradigm
for multimodal evaluation.

1 INTRODUCTION

The rapid progress of foundation models has reshaped the multimodal landscape. Modern vision-
language models (VLMs) exhibit impressive reasoning and generation capabilities, suggesting that
evaluation should no longer be restricted to shallow similarity metrics. As models internalize rich
world knowledge and semantic structure, their own representations and learning dynamics present a
new opportunity: using foundation models themselves as reliable evaluators of multimodal quality.

Existing evaluation methods, however, remain limited. For image-text similarity, CLIPScore Hessel
et al. (2022) computes cosine similarity between embeddings. While effective for literal captioning,
this approach conflates geometric closeness with semantic correctness, failing on negations, substi-
tutions, and compositional errors. For image editing, LPIPS and FID are widely adopted but measure
only perceptual or distributional differences, leaving unanswered the central question of whether an
edit is reasonable. GPT-based scoring has been proposed to incorporate semantics, but judgments
are subjective, prompt-sensitive, and inconsistent across annotators. Together, these metrics fall
short of robust, principled evaluation.

A recent architectural breakthrough opens a new path. Bottleneck-free unified multimodal models
allow vision and language signals to interact within a single transformer, avoiding the projection
bottlenecks of CLIP-style systems that compress away semantic detail. BAGEL exemplifies this
class, integrating reasoning-oriented experts with flow-matching experts for generative modeling
through a Mixture-of-Experts design. This architecture equips BAGEL not only to generate, but
also to judge—preserving fine-grained semantics, supporting long-context reasoning, and enabling
evaluation tasks that traditional models cannot reliably perform.

Building on this foundation, we introduce BagelScore, a reasoning-based metric for image-text sim-
ilarity. Instead of relying on embedding similarity, BagelScore directly utilizes the BAGEL model’s
understanding capabilities to evaluate whether an image and a text describe the same content, de-
riving a compatibility score based on the model’s reasoning. This approach transforms similarity
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Figure 1: Overview of BagelScore and EditingScore Framework for Image-Text Alignment and
Editing Evaluation

assessment into semantic judgment, capturing fine-grained errors that traditional embedding-based
methods often miss.

For image editing, we propose EditingScore, the first principled metric designed to evaluate edit
quality. EditingScore quantifies the difficulty of learning the transformation from a source image to
an edited target in the latent space of a generative model. High-quality edits correspond to minimal
latent space shifts, while poor edits require large, arbitrary transformations. This metric provides
an objective measure of editing plausibility by operationalizing edit quality as the learnability of
transformations, offering a scalable and principled alternative to perceptual or heuristic-based eval-
uations.

Together, BagelScore and EditingScore establish a unified, reasoning-based paradigm for multi-
modal evaluation. BagelScore improves image-text alignment beyond methods like CLIPScore,
while EditingScore offers the first robust evaluation of image edits. Validated on standard bench-
marks and our newly introduced Edit-1K dataset, EditingScore achieve good alignment with human
judgment. More broadly, our findings highlight that as foundation models evolve, their internal rea-
soning and generative capabilities should serve as the foundation for future evaluation frameworks.

In this work, we make the following contributions:

• BagelScore for semantic alignment. We introduce BagelScore, a reasoning-based metric
that reframes image-text similarity as a semantic judgment task. By leveraging BAGEL’s
bottleneck-free unified architecture and reasoning perplexity, BagelScore overcomes the
limitations of CLIPScore and achieves stronger correlation with human judgment.

• EditingScore for edit quality. We introduce EditingScore, a principled metric for evalu-
ating image edits by quantifying the difficulty of learning the transformation in the latent
space of a generative model. EditingScore combines metrics like image cosine similarity,
latent shift, and text similarity to assess the plausibility and consistency of edits.

• Comprehensive validation. We establish Edit-1K, a benchmark dataset for edit quality,
and conduct extensive experiments showing that EditingScore achieve strong alignment
with human judgment.

2 RELATED WORK

Unified Multimodal Learning. Unified multimodal learning has attracted considerable attention
due to its goal of integrating diverse modalities, such as text, image, and video, into a single model.
Early models like CLIP (Radford et al., 2021) established shared embedding spaces for text and
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images, enabling zero-shot capabilities. Models like Flamingo (Alayrac et al., 2022) expanded this
concept to few-shot learning, leveraging large language models for multimodal tasks. Recent ad-
vancements focus on unifying both understanding and generation within a single framework. These
models can be broadly classified into three categories based on their backbone architectures: Diffu-
sion (Shi et al., 2025; Yang et al., 2025; Swerdlow et al., 2025), MLLM (AR) (Wang et al., 2025; Lin
et al., 2025; Wu et al., 2025c;b), and MLLM (AR + Diffusion) (Xie et al., 2025; Deng et al., 2025).
Each of these categories is further subdivided according to the encoding strategy used, including
Pixel Encoding (Wang et al., 2025; Xie et al., 2025; Zhou et al., 2024), Semantic Encoding (Wu
et al., 2025a), Learnable Query Encoding (Xu et al., 2025), and Hybrid Encoding (Deng et al., 2025;
Qu et al., 2025). BAGEL (Deng et al., 2025), a prominent open-source model, advances the field by
enabling seamless multimodal understanding and generation through its Mixture-of-Transformer-
Experts architecture. It achieves state-of-the-art performance across various tasks, including image
editing and text generation, surpassing existing models on multiple benchmarks. Innovations such
as Janus (Chen et al., 2025) have refined tokenization strategies and cross-modal attention mech-
anisms, addressing the challenges inherent in multimodal integration. Building on these develop-
ments, BagelScore aims to provide a comprehensive framework for evaluating multimodal tasks,
offering a robust method for assessing the effects of image and text generation edits.

Image Editing and Generation. Recent progress in image editing and generation has been pri-
marily propelled by diffusion-based frameworks and refined multimodal guidance, with two core
paradigms—content-aware editing and content-free customization—emerging as the backbone of
current research (Shuai et al., 2024; Huang et al., 2025). Content-aware editing focuses on modify-
ing images while preserving or leveraging existing content, encompassing key tasks: object/attribute
manipulation (addressed by models that integrate language and diffusion capabilities to follow edit-
ing instructions (Brooks et al., 2023) and strategies for precise attribute adjustment (Zhang et al.,
2025)), inpainting (enabled by exemplar-guided methods with self-supervised training for seman-
tically consistent region filling (Yang et al., 2022)), and cross-domain translation (facilitated by
frameworks for efficient multimodal knowledge transfer with minimal parameters (Huang et al.,
2021)). Methodologically, content-aware editing splits into training-free techniques—such as at-
tention control for region-specific manipulation and score distillation for subtle edits (Hertz et al.,
2022; Brack et al., 2024)—and training-based approaches that fine-tune models on task-specific
data (Huang et al., 2023). In contrast, content-free customization targets personalized genera-
tion, covering subject-driven tasks (which retain object identity in novel generations (Ruiz et al.,
2023)) and attribute-driven tasks (which control style attributes in generated content (Huang et al.,
2024)); this paradigm relies on training-free tools for efficient low-rank adaptation (Hu et al., 2021).
Collectively, these advancements reflect the field’s shift toward controllable, user-centric solutions,
and ongoing efforts to integrate advanced inversion and editing algorithms further address complex
real-world scenarios—underscoring the value of our proposed BagelScore (a multimodal scoring
method) for evaluating result quality and alignment in such contexts (Shuai et al., 2024; Gal et al.,
2022; Sohn et al., 2023).

3 UNIFY MODEL EVALUATION SCORE

We address two distinct evaluation challenges in multimodal systems: (1) improving image-text
similarity assessment beyond existing methods like CLIPScore through reasoning-based evaluation,
and (2) introducing a novel approach for evaluating image editing quality where no principled meth-
ods currently exist. Both tasks leverage BAGEL, a Scalable Generative Cognitive Model with 7B
active parameters trained on large-scale interleaved multimodal data, which enables complex reason-
ing over multimodal contexts through its Mixture-of-Transformer-Experts architecture with shared
self-attention across modalities.

3.1 REASONING PARADIGM FOR IMAGE-TEXT CONSISTENCY

CLIPScore Hessel et al. (2022) evaluates image-text similarity by computing cosine similarity be-
tween visual and textual embeddings:

SCLIP(x, y) = cos(fv(x), ft(y)), (1)
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where fv(x) and ft(y) denote the vision and text encoder outputs, respectively. While effective on
literal captioning tasks, this geometric matching approach conflates compositional similarity with
semantic correctness. For instance, “a dog sitting” and “a cat sitting” may receive high scores due
to similar visual arrangements, despite describing entirely different entities. As a result, CLIPScore
systematically fails to detect semantic errors such as negations (“no cat” vs. “cat”), entity substitu-
tions (“dog” vs. “cat”), and relational mistakes (“cat on table” vs. “table on cat”). Moreover, because
CLIPScore lacks contextual and world knowledge, it performs poorly in domains such as news cap-
tions that demand richer reasoning. Fundamentally, CLIPScore answers the question “how similar
are the features?” rather than “is the semantics correct?”.

BagelScore: A Reasoning-based Metric for Multimodal Understanding. The evaluation of
image-text similarity remains a challenge in multimodal learning. Traditional metrics like CLIP-
Score Hessel et al. (2022) and LPIPS Zhang et al. (2018) focus on embedding distances or perceptual
differences but often fail to capture semantic correctness, especially for complex relationships be-
tween modalities. We introduce BagelScore, a novel metric that leverages the reasoning capabilities
of the BAGEL model to assess the semantic alignment between images and captions.

The BagelScore is computed on a scale defined by the task, e.g., between 1 and 4 for the expert
dataset. This approach overcomes the limitations of traditional metrics by offering a finer, more
semantically grounded evaluation. The model’s reasoning captures subtle mismatches such as nega-
tions, entity substitutions, and relational errors.

In summary, BagelScore provides a more reliable and principled evaluation of image-text alignment,
leveraging the BAGEL model’s understanding mode to align more closely with human judgment.

Below is an example of the prompt used for evaluation:

Flickr8K-CF Prompt

Analyze how accurately this image matches the caption: “caption”
Evaluate the match on a precise scale with only these four possible values:

• 0.0: No match - The caption is completely unrelated to the image.
• 0.3: Poor match - The caption has minimal relevance with major inaccuracies.
• 0.6: Good match - The caption is mostly accurate with only minor omissions or

imprecisions.
• 1.0: Perfect match - The caption perfectly describes all important aspects of the

image.
Consider:

• Factual accuracy (are all statements true about the image?)
• Completeness (does the caption cover the main elements?)
• Precision (does the caption avoid vague descriptions?)
• Relevance (does the caption focus on important aspects?)

Provide ONLY a single decimal rating (0, 0.3, 0.6, or 1.0) without explanation:

3.2 IMAGE EDITING QUALITY ASSESSMENT

Unlike image-text similarity, where metrics like CLIPScore are well-established, image editing qual-
ity lacks principled evaluation methods. Existing perceptual metrics such as LPIPS and FID focus
on low-level similarities—LPIPS measures pixel-wise differences, and FID captures distributional
divergence. While effective for detecting distortions, these metrics overlook the critical question: is
the edit reasonable? Recent GPT-based scoring has attempted to assess semantic plausibility, but
such evaluations are subjective, prompt-sensitive, and inconsistent. Current methods fail to capture
high-quality editing criteria, including physical plausibility (adhering to real-world constraints), se-
mantic consistency (preserving core object properties), and causal coherence (ensuring logical trans-
formations). This underscores the need for evaluation approaches that consider the meaningfulness
of edits, beyond perceptual similarity.
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EditingScore: Achieving Intent with Minimal Latent Space Changes. We introduce Edit-
ingScore, a framework for evaluating image edits by quantifying the difficulty of learning trans-
formations in the latent space of generative models. High-quality edits require minimal latent space
changes, preserving the structure of the source image xs and aligning it with the target image xt.
Poor edits involve larger, arbitrary transformations, which deviate from the model’s learned priors
and are harder to generalize.

To quantify the transformation difficulty, we define three key metrics: image cosine similarity, image
relative latent shift, and text similarity. The first, image cosine similarity, measures the alignment
between the latent representations of the source image xs and the edited image x̂t. It is computed as
the cosine of the angle between their latent vectors, with higher values indicating better alignment.
The formula is:

cosine sim(xs, x̂t) =
⟨f(xs), f(x̂t)⟩
∥f(xs)∥∥f(x̂t)∥

where f(x) is the latent feature of image x and x̂t is the edited image.

The second metric, image relative latent shift (rls), quantifies the extent of transformation in latent
space. It is defined as the Euclidean distance between the latent vectors of the source and target
images, normalized by the latent space’s dimensionality d:

rls(xs, xt) =
∥zs − zt∥2√

d
,

where zs and zt are the latent vectors of the source and target images, respectively.

The final metric, text similarity, measures how well the generated image aligns with the input
prompt. It is computed as the cosine similarity between the text embedding p and the model’s
latent representation f̂(xt) of the target image:

sim text(p, f̂(xt)) =
⟨p, f̂(xt)⟩
∥p∥∥f̂(xt)∥

The final EditingScore is computed by combining these metrics:

EditingScore =
cosine sim(xs, x̂t) · sim text(p, f̂(xt))

rls(xs, xt)2 + ε

where ε is a small constant (e.g., 10−10) to prevent division by zero. The score is normalized to
the range [0, 1], with lower values indicating high-quality edits that maintain structural and semantic
alignment with the original, while higher values reflect more complex, less plausible edits.

4 DATASETS AND METRICS

4.1 DATASETS FOR IMAGE-TEXT SIMILARITY EVALUATION

We evaluate BagelScore on three established benchmarks for image-text similarity assessment:

Flickr8K-Expert. This dataset contains 8,000 images from Flickr8K with expert human annota-
tions for caption quality. Each image is paired with 5 reference captions and multiple candidate
captions scored by expert annotators on a 1-4 scale for semantic correctness. The dataset contains
40,000 image-caption pairs with expert ratings, making it ideal for evaluating fine-grained semantic
alignment.

Flickr8K-CF (Counterfactual). A challenging variant of Flickr8K specifically designed to test
robustness against semantic errors. This dataset includes 8,000 image-caption pairs where captions
contain deliberate semantic mistakes such as negations (“no cat” instead of “cat”), entity substitu-
tions (“dog” instead of “cat”), and compositional errors (“cat on table” instead of “table on cat”).
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Human annotators rated these counterfactual pairs, providing ground truth for semantic correctness
evaluation.

Composite. A large-scale benchmark combining multiple image-text datasets, including MSCOCO,
Flickr30K, and Visual Genome annotations. This dataset contains 150,000 image-caption pairs with
human judgments aggregated from multiple annotators. The diversity of image content and caption
styles makes it suitable for evaluating generalization across different domains.

4.2 EDIT-1K DATASET

To evaluate EditingScore, we introduce Edit-1K, a novel benchmark for image editing quality as-
sessment. The dataset construction follows a systematic pipeline:

Data Collection: We gathered 1,000 source images from diverse categories, including portraits,
landscapes, objects, and scenes from MSCOCO and Open Images. For each source image, we
generated 5-10 edited versions using state-of-the-art editing methods, including InstructPix2Pix,
SINE, and Ledits++, resulting in 7,500 source-target image pairs.

Annotation Process: Three expert annotators evaluated each edit based on five criteria: (1) Editing
Accuracy – how accurately the intended edit was applied, (2) Visual Quality – the aesthetic qual-
ity and clarity of the image after editing, (3) Content Preservation – whether the core content and
objects in the image are preserved, (4) Style Consistency – whether the style of the edit is consis-
tent with the original image, and (5) Overall Effect – a holistic assessment that combines all the
aforementioned factors. Annotations were made on a 0-1 scale, with detailed guidelines provided to
ensure consistency.

Quality Control: Inter-annotator agreement achieved Krippendorff’s α = 0.78 for overall quality
scores. Disagreements were resolved through discussion, and 10% of samples were re-annotated by
a fourth expert for validation.

Figure 2: Edit-1K dataset and corresponding score distribution.

4.3 EVALUATION METRICS

Kendall’s Tau (τ ). We use Kendall’s tau correlation coefficient to measure ranking correlation be-
tween model scores and human judgments. This metric is robust to outliers and captures monotonic
relationships, making it ideal for evaluating whether models can correctly rank image-text pairs or
edits according to human preferences.

Human Evaluation Studies. Beyond automatic metrics, we conduct human evaluation studies
where annotators compare model rankings with their own preferences, reporting agreement rates
and preference scores to validate that our metrics align with human perception of quality.

6
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5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

All experiments were conducted on a system equipped with four NVIDIA A100 GPUs, each with
40GB of VRAM. The total system RAM is 256GB, providing ample memory for the large-scale
processing required by the multimodal tasks. We used the PyTorch framework (version 1.10) for
model implementation and training, utilizing the CUDA toolkit to leverage GPU acceleration. The
models were trained using mixed-precision training with the torch.cuda.amp module, which
helped optimize memory usage and computational efficiency.

5.2 MAIN RESULTS

Table 1 presents the correlation results of various image-text similarity metrics against human judg-
ment, evaluated on the Flickr8K-Expert and Flickr8K-CF datasets. Notably, the performance of
BagelScore stands out, achieving the highest correlation with human ratings across both datasets,
surpassing traditional methods such as BLEU, METEOR, and CLIPScore. This demonstrates the
advantages of leveraging modality merging through BagelScore, as opposed to the contrastive ap-
proach of CLIPScore.

In the Flickr8K-Expert dataset, which contains professionally annotated captions, BagelScore
achieves a correlation of 53.2 (τc), outperforming the best previous methods, RefCLIPScore (53.0)
and ViLBERTScore-F (50.1). Similarly, for the more challenging Flickr8K-CF dataset, which in-
cludes counterfactual and semantically erroneous captions, BagelScore leads with a τb of 38.0, again
surpassing RefCLIPScore (36.4) and CLIPScore (34.4). These results highlight that BagelScore,
leveraging an integrated multimodal approach, effectively captures fine-grained semantic alignment,
providing more reliable performance in both clean and error-prone settings.

Metric τc

BLEU-1 32.3
BLEU-4 30.8
ROUGE-L 32.3
BERTScore (RoBERTa-F) 39.2
METEOR 41.8
CIDEr 43.9
SPICE 44.9
ViLBERTScore-F 50.1
CLIPScore (no refs) 51.2
RefCLIPScore 53.0
BAGELScore 53.2

(a) Flickr8K-Expert

Metric τb

BLEU-4 16.9
CIDEr 24.6
METEOR 22.2
ROUGE-L 19.9
SPICE 24.4
BERTScore (RoBERTa-F) 22.8
LEIC* 29.5
CLIPScore (no refs) 34.4
RefCLIPScore 36.4
BAGELScore 38.0

(b) Flickr8K-CF

Metric τc

BLEU-1 31.3
BLEU-4 30.6
ROUGE-L 32.4
BERT-S (RoBERTa-F) 30.1
METEOR 38.9
CIDEr 37.7
SPICE 40.3
BERT-S++ * 44.9
TIGEr 45.4
ViLBERTScore-F 52.4
CLIP-S (no refs) 53.8
RefCLIP-S 55.4
BAGELScore 55.9

(c) Composite

Table 1: Correlations with human judgment on three datasets (Flickr8K-Expert, Flickr8K-CF and
Composite). All metrics use 4–5 references, except CLIPScore which uses none. * indicates a result
reported in prior work.

Table 2 presents the Pearson correlation coefficients between various evaluation metrics, including
EditScore, Image RLS, Image Cosine Similarity, Text Similarity, Human Score, and GPT-based
scoring for image editing. The Kendall Tau-b (0.258872) and Tau-c (0.253286) values reflect a
moderate alignment between EditScore and human judgment, suggesting that EditScore captures
relevant aspects of image edits, though there is still room for refinement. The higher correlation
between EditScore and Image Cosine Similarity (τc = 0.78) indicates that EditScore effectively
captures the structural and semantic similarity between images.

Figures 3 (a) and (b) further demonstrate the consistency of EditScore with human ratings. Figure
3a shows a strong rank consistency between EditScore and Human Score, while Figure 3b illustrates
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how EditScore aligns with Image Cosine Similarity, Text Similarity, and Image RLS in a 3D space.
This visualization reinforces the idea that EditScore is most closely related to image structural sim-
ilarity, supporting its effectiveness as an evaluation metric for image edits.

Table 2: Pearson Correlation Coefficients Between Evaluation Metrics

Metric EditScore Image RLS Image Cosine Text Sim. Human Score
EditScore 1.00 -0.78 0.78 0.05 0.14
Image RLS -0.78 1.00 -0.74 0.00 -0.12
Image Cosine Sim. 0.78 -0.74 1.00 0.01 0.09
Text Similarity 0.05 0.00 0.01 1.00 0.05
Human Score 0.14 -0.12 0.09 0.05 1.00

(a) Rank Consistency between Edit Score and Human
Score.

(b) 3D Visualization of Edit Score with Image Cosine
Similarity, Text Similarity, and Image RLS.

Figure 3: Comparison of Edit Score Consistency and 3D Visualization of Edit Score.

We compare EditScore with GPT-based scoring for image edits. As shown in Table 3, GPT-based
scores generally show lower correlation with human judgment compared to EditScore. This high-
lights the advantage of EditScore in providing a more consistent and principled evaluation of image
edits.

Table 3: Comparison of Kendall Tau Correlations between Human Judgment, EditScore, and GPT-
based Scores

Metric Kendall Tau-b Kendall Tau-c
Human Score 1.000 1.000
EditScore 0.259 0.253
GPT-based Score 0.192 0.189

To assess the contribution of each component in EditingScore, we conducted an ablation study by
removing one of the three key metrics: image cosine similarity, image relative latent shift, and text
similarity. The results, shown in Table 4, reveal that removing either the image cosine similarity
or image relative latent shift notably decreases alignment with human judgment, highlighting their
importance in capturing structural and semantic consistency in edits. However, removing the text
similarity metric results in only a minor decrease in performance, indicating that it plays a supple-
mentary role in enhancing evaluation accuracy.
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Table 4: Ablation Study on the Impact of Each Component in EditingScore

Metric Removed Kendall Tau-b Kendall Tau-c
None (Full EditingScore) 0.259 0.253
Image Cosine Similarity 0.203 0.190
Image RLS 0.214 0.198
Text Similarity 0.238 0.229

6 DISCUSSION

Our study and results demonstrate several key implications for the future of multimodal learning.

Advancing beyond shallow similarity metrics. Traditional approaches, such as CLIPScore,
LPIPS, and FID, have reduced multimodal evaluation to geometric or perceptual similarity, often
missing semantic correctness or edit plausibility. BagelScore offers a fundamental shift by refram-
ing image–text alignment as a semantic judgment task, leveraging the reasoning capabilities of uni-
fied multimodal models. Similarly, EditingScore provides the first principled metric for evaluating
image edits by operationalizing the plausibility of transformations in latent space. These findings
underscore the importance of using foundation models not only as generators but also as evaluators.

Alignment with human judgment.

Across multiple benchmarks, BagelScore consistently outperforms prior metrics, capturing fine-
grained semantic errors such as negation and entity substitution. EditingScore, validated on the
newly introduced Edit-1K dataset, achieves moderate yet meaningful correlation with human rat-
ings, surpassing GPT-based heuristics in reliability. Notably, the ablation study (Table 4, p. 9)
highlights the central role of structural similarity (cosine similarity and latent shift) in aligning with
human perception, while text similarity contributes more marginally. This suggests that evaluation
of edits relies more heavily on structural coherence than on textual alignment.

7 LIMITATION AND FUTURE WORK

A potential limitation of this work is the focus on static image datasets, which limits the scope of
our evaluation metrics to image-text and image editing tasks. Extending our framework to include
video and audio modalities is a natural next step, enabling a more comprehensive evaluation across
multimodal content. Additionally, while our experiments utilize well-established datasets, exploring
more diverse and challenging datasets will further assess the robustness of our metrics. Future work
will also investigate the applicability of our evaluation metrics to other types of content transfor-
mation, such as text generation and multimodal synthesis, to enhance their versatility and broader
applicability in multimodal AI tasks.

8 CONCLUSION

In this work, we introduce two novel evaluation metrics, BagelScore and EditingScore, as part of
an effective attempt to leverage unified multimodal models for multimodal evaluation. BagelScore
utilizes the reasoning capabilities of the unified BAGEL model to assess image-text similarity, out-
performing traditional metrics such as CLIPScore by focusing on semantic alignment rather than
embedding similarity. EditingScore, the first principled metric for evaluating image editing quality,
quantifies the difficulty of learning transformations in the latent space of generative models, offering
a more objective and scalable approach to evaluate editing plausibility. BagelScore is validated on
established benchmarks, while EditingScore is validated on the newly introduced Edit-1K dataset,
specifically designed to evaluate image editing quality. Both metrics demonstrate strong alignment
with human judgment, establishing a unified, reasoning-based framework. These contributions un-
derscore the promise of utilizing foundation models’ internal reasoning to enhance the reliability
and sophistication of evaluation methods across a wide range of multimodal tasks.
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