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Abstract

We study a spiked Wigner problem with an inhomogeneous noise profile. Our
aim in this problem is to recover the signal passed through an inhomogeneous
low-rank matrix channel. While the information-theoretic performances are well-
known, we focus on the algorithmic problem. First, we derive an approximate
message-passing algorithm (AMP) for the inhomogeneous problem and show that
its rigorous state evolution coincides with the fixed-point equations satisfied by
the Bayes-optimal estimator. Second, we deduce a simple and efficient spectral
method that outperforms PCA and is shown to match the information-theoretic
transition.

Low-rank information extraction from a noisy data matrix is a crucial statistical challenge. The spiked
random matrix models have recently gained extensive interest in the fields of statistics, probability,
and machine learning, serving as a valuable platform for exploring this issue Donoho and Johnstone
[1995], Péché [2014], Baik et al. [2005]. A prominent example is the spiked Wigner model, where a
rank one matrix is observed through a component-wise homogeneous noise.

Here we consider the inhomogeneous version of the model which has been recently introduced in a
series of papers Barbier and Reeves [2020], Behne and Reeves [2022], Alberici et al. [2021a, 2022]
and naturally arises in different contexts such as community detection Behne and Reeves [2022],
deep Boltzmann machines Alberici et al. [2021b] etc. In particular, it corresponds to the dense limit
of the degree-corrected stochastic block model Karrer and Newman [2011] (see the explicit mapping
in Guionnet et al. [2022]). In this model the signal is observed through an inhomogeneous Gaussian
noise with block-constant variance profile. Such block-constant noise naturally arises in settings such
as community detection and stochastic-block models. The assumption for the noise to be Gaussian
is in no way restrictive as a universality result in Guionnet et al. [2022] shows that an entrywise
transformation of data generated from a general inhomogeneous inference problem reduces any
probabilistic noise to the spiked Wigner problem with Gaussian data. This generality is what makes
the model appealing.

We now define the model: Consider a partition {1, . . . , N}=[N ] into q disjoint groups CN
1 ∪ · · · ∪

CN
q = [N ]. This partition is encoded by a function g : [N ] 7→ [q] which maps each index i ∈ [N ]

into its group g(i)∈ [q]. Let ∆̃∈Rq×q be a symmetric matrix encoding a block-constant symmetric
matrix ∆∈RN×N

∆ij = ∆̃g(i)g(j). (1)

We assume both the noise profile ∆̃ and the partition function g to be known. This is often the case
in practical applications, such as the degree-corrected block model, Karrer and Newman [2011]
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Additionally, in practical applications where the noise profile is not known, one can often empirically
estimate the noise profile and assign group membership according to the empirical variances. Such
an approach is likely to yield good results but lies outside the scope of the present work.

We observe the signal x⋆ ∈ RN which is assumed to have independent identically distributed
coordinates generated from some prior distribution P0 (i.e. P(x⋆ = x) =

∏N
i=1 P0(x

⋆
i = xi))

through noisy measurements:

Y =

√
1

N
x⋆(x⋆)T +A⊙

√
∆. (2)

Here and throughout the article ⊙ denotes the Hadamard product,
√
∆ is the Hadamard square-root

of ∆ and A is a real-valued symmetric GOE matrix with off-diagonal elements of unit variance. The
Bayes-optimal performance of this model in the asymptotic limit N → ∞ was studied rigorously
in Guionnet et al. [2022], Behne and Reeves [2022], Chen and Xia [2022], Chen et al. [2021] who
characterized the fundamental information-theoretic limit of reconstruction in this model.

Here we focus instead on the algorithmic problem of reconstructing the (hidden) spike. Our
contributions are many-fold:

• We show how one can construct an Approximate Message Passing (AMP) algorithm for the
inhomogeneous Wigner problem, whose asymptotic performance can be tracked by a rigorous state
evolution, generalizing the homogeneous version of the algorithm for low-rank factorization [Bayati
and Montanari, 2011, Deshpande et al., 2015, Lesieur et al., 2017].
• We derive a fixed-point equation for AMP and show that it coincides with the fixed-point equation
for the Bayes-optimal estimator obtained in Guionnet et al. [2022]
• Finally, we present a linear version of AMP [Maillard et al., 2022], that is equivalent to a spectral
method. We conjecture it to be optimal in the sense that it can detect the presence of the spike in the
same region as AMP. This is quite remarkable since, as shown in [Guionnet et al., 2022, Section 2.4],
the standard spectral method (PCA) fails to do so.

Figure 1: Performance of the inhomoge-
neous AMP algorithm against the information-
theoretical optimal MMSE. The variance profile

is proportional to ∆̃=

[
1 3
3 2

]
with two equally

sized blocks with standard Gaussian prior when
N=500 at various snr.

Related work — The class of approximate
message passing algorithms (AMP) has attracted
a lot of attention in the high-dimensional statis-
tics and machine learning community, see e.g.
[Donoho et al., 2009, Bayati and Montanari,
2011, Rangan, 2011, Deshpande et al., 2015,
Lesieur et al., 2017, Gerbelot and Berthier, 2021,
Feng et al., 2022]. The ideas behind this al-
gorithm have roots in physics of spin glasses
Mézard et al. [1987], Bolthausen [2014], Zde-
borová and Krzakala [2016]. AMP algorithms
are optimal among first order methods [Ce-
lentano et al., 2020], thus their reconstruction
threshold provides a bound on the algorithmic
complexity in our model. Our approach to the
inhomogeneous version of AMP relies on sev-
eral refinements of AMP methods to handle the
full complexity of the problem, notably the spa-
tial coupling technique Krzakala et al. [2012],
Donoho et al. [2013], Javanmard and Montanari
[2013], Gerbelot and Berthier [2021], Rossetti
and Reeves [2023].

Factorizing low-rank matrices is a ubiquitous problem with many applications in machine learning
and statistics, ranging from sparse PCA to community detection and sub-matrix localization. Many
variants of the homogeneous problem have been studied in the high-dimensional limit [Deshpande
et al., 2015, Lesieur et al., 2017, Barbier et al., 2018, Lesieur et al., 2017, Alaoui et al., 2020, Lelarge
and Miolane, 2019, Louart and Couillet, 2018, Barbier and Reeves, 2020]. The inhomogeneous
version was discussed in detail in Guionnet et al. [2022], Behne and Reeves [2022], Alberici et al.
[2021a]. Spectral methods are a very popular tool to solve rank-factorization problems [Donoho
and Johnstone, 1995, Péché, 2014, Baik et al., 2005]. Using AMP as an inspiration for deriving
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new spectral methods was discussed, for instance, in Saade et al. [2014], Lesieur et al. [2017],
Aubin et al. [2019], Mondelli and Montanari [2018], Mondelli et al. [2022], Maillard et al. [2022],
Venkataramanan et al. [2022].

1 Main results

Message passing algorithm — For each t ≥ 0, let (fat )a∈[q] be a collection of Lipschitz functions
from R → R, and define for t ∈ N ft : RN 7→ RN by

ft(x) := (f
g(i)
t (xi))i∈[N ] ∈ RN .

These functions are often called denoiser functions and can be chosen amongst several options, such
as the Bayes optimal denoisers for practical applications (see Section 2), or even linear denoisers (see
Section 3). We shall consider the following AMP recursion

xt+1 =

(
1√
N∆

⊙ Y

)
ft

(
xt

)
− bt ⊙ ft−1

(
xt−1

)
(3)

with the so-called Onsager term bt =
1

N∆f
′
t(x

t) ∈ RN where 1
∆ is the Hadamard inverse of ∆ and

f ′t is the vector of coordinate wise derivatives.

In practical implementations, we initialize the algorithm with some non-null x0 and let it run for a
certain number of iterations. One efficient way to do this is the spectral initialization [Mondelli and
Venkataramanan, 2021] with the method described in sec. 3. In Figure 1 we provide an example of
the performance of the AMP together with the Bayes-optimal estimator predicted by the asymptotic
theory. Even at very moderate sizes, the agreement between theory and simulation is clear.

State evolution — AMP was the basis of many works for the homogeneous case e.g. Deshpande
et al. [2015], Lesieur et al. [2017]. Our first contribution is the introduction of an AMP and of its
rigorous state evolution [Javanmard and Montanari, 2013, Theorem 1] in the inhomogeneous setting.
To state a well-defined limit of the AMP, we have the following assumptions.

Assumption 1.1. To ensure that our inhomogeneous AMP has a well-defined limit, we assume that

1. For each a ∈ [q], we have

lim
N→∞

|CN
a |
N

→ ca ∈ (0, 1).

2. For each t ∈ [N ] and a ∈ [q], both (fat ) and (fat )
′ are Lipschitz.

3. For each a ∈ [q], there exists
(
σ0
a

)2 ∈ R such that, in probability,

lim
N→∞

1

|CN
a |

∑
i∈CN

a

fa0 (x
0
i )f

a
0 (x

0
i ) =

(
σ0
a

)2
.

Our first result describes the distribution of the iterates in the limit. Our mode of convergence will be
with respect to L-pseudo-Lipschitz test functions ϕ : RM → R satisfying

|ϕ(x)− ϕ(y)| ≤ L(1 + ∥x∥+ ∥y∥)∥x− y∥ for all x, y ∈ RM . (4)

We define the following state evolution parameters µt
b and σt

b for b ∈ [q] through the recursion

µt+1
b =

∑
a∈[q]

ca

∆̃ab

Ex⋆
0 ,Z

[x⋆0f
a
t

(
µt
ax

⋆
0 + σt

aZ
)
] with x⋆0 ∼ P0, Z ∼ N (0, 1)

(σt+1
b )2 =

q∑
a=1

ca

∆̃ab

Ex⋆
0 ,Z

[
(fat (µ

t
ax

⋆
0 + σt

aZ))
2
]

with x⋆0 ∼ P0, Z ∼ N (0, 1),

(5)

where x⋆0 and Z are independent. We prove that the iterates xt
i are asymptotically equal in distribution

to µt
g(i)x

⋆
0 + σt

g(i)Z where x⋆0 ∼ P0 and Z is an independent standard Gaussian.
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Theorem 1.2 (State evolution of AMP iterates in the inhomogeneous setting). Suppose that Assump-
tion 1.1 holds, and that P0 has bounded second moment. Let ϕ : R2 → R be a 2-pseudo-Lipschitz
test functions satisfying (4). For any a ∈ [q], the following limit holds almost surely

lim
N→∞

1

|CN
a |

∑
i∈CN

a

ϕ(xti, x
⋆
i ) = Ex⋆

0 ,Z
ϕ(µt

ax
⋆
0 + σt

aZ, x
⋆
0)

where Z is a standard Gaussian independent from all other variables.

Remark 1.3. The notion of convergence under the L-pseudo-Lipschitz test functions induces a
topology that is equivalent to the one generated by the L-Wasserstein topology [Feng et al., 2022,
Remark 7.18]. We can strengthen the second moment assumption on P0 to finite kth moment, but the
induced topology will then change to the k-Wasserstein topology, see [Javanmard and Montanari,
2013, Theorem 1].

Even though the theoretical result above applies in the high-dimensional limit, numerical simulations
show that even for medium-sized N (around 500), the behaviour of the iterates is well described by
the state evolution parameters. Through the state evolution equations (5) we are able to track the
iterates of the AMP iteration with just two vectors of parameters obeying the state evolution recursion:
the overlap with the true signal (µt

a)a∈[q] and its variance (σt
a)a∈[q]. We next obtain the following

necessary and sufficient condition for the overlaps of a fixed point of the iteration (2):

Theorem 1.4 (Bayes-Optimal fixed point). Assume AMP satisfies Assumption 1.1 and let the denois-
ing functions be the Bayes ones (32). Then the overlaps µ = (µa)a∈[q] in (5) satisfy the following
fixed point equation

µb =
∑
a∈[q]

ca

∆̃ab

Ex⋆
0 ,Z

[x⋆0Eposterior[x
⋆
0|µax

⋆
0 +

√
µaZ]]. (6)

Remark 1.5. The state evolution fixed point equation above coincides with the fixed point equation
satisfied by the Bayes optimal estimator in [Guionnet et al., 2022, Equation 2.14].

A spectral method — Given the matrix Y defined in (2) we consider the transformed matrix

Ỹ :=
Ex⋆

0
[(x⋆0)

2]
√
N∆

⊙ Y − Ex⋆
0
[(x⋆0)

2]2 diag

 1

N∆

1...
1


 . (7)

Let c = (ca)a∈[q]. We define the inhomogeneous signal-to-noise (SNR) ratio of such a model by

SNR(∆) := λ(∆) = Ex⋆
0
[(x⋆0)

2]2
∥∥∥∥diag(√c)

1

∆̃
diag(

√
c)

∥∥∥∥
op

. (8)

Conjecture 1.6. The top eigenvalue of Ỹ separates from the bulk if and only if the signal to noise
ratio λ(∆) > 1. In particular, if x̂ is the top eigenvector of Ỹ , then if and only if λ(∆) < 1 we have:

lim
N→∞

|x̂ · x⋆|
∥x̂∥∥x⋆∥

= 0 .

The conjecture is based on heuristic arguments identifying the fixed point of AMP with a spectral
method. This matches precisely the recovery transition in [Guionnet et al., 2022, Lemma 2.15 Part
(b)]. In this paper, we rigorously show that with SNR(∆) < 1 our proposed spectral method fails to
recover the signal. We illustrate the eigenvalue BBP-like transition in Fig.2.

2 The inhomogeneous AMP algorithm

In this section, we derive the formula for the inhomogeneous AMP iteration (25). We first recall the
general matrix framework of AMP from [Javanmard and Montanari, 2013]:
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Figure 2: Illustration of the spectrum of Ỹ ∈ R103×103 evaluated at noise profiles with snr λ(∆) =
0.7 (left, before the transition) and 1.8 (right, after the transition), with the outlying eigenvector
correlated with the spike arises at eigenvalue one.

Matrix AMP — In the matrix setting an AMP algorithm operates on the vector space Vq,N ≡
(Rq)

N ≃ RN×q. Each element of v = (v1, . . . , vN ) ∈ Vq,N will be regarded as N -vector with
entries vi ∈ Rq .
Definition 2.1 (AMP). A matrix AMP acting on this space is represented by (A,F ,v0), where:

1. A = G+GT, where G ∈ RN×N has iid entries Gij ∼ N(0, 12 ).
2. F is a family of N Lipschitz functions f it : Rq 7→ Rq , i ∈ [N ] indexed by time t ∈ N. The family
F encodes a function ft : Vq,N → Vq,N that acts separately on each coordinate vj ∈ Rq ,

ft(v) = (f1t (v1), . . . , f
N
t (vN ) ∈ Vq,N . (9)

3. v0 ∈ Vq,N is a starting condition.

The algorithm itself is a sequence of iterates generated by:

vt+1 =
A√
N
ft

(
vt
)
− ft−1

(
vt−1

)
BT

t (10)

where Bt is the q × q Onsager matrix given by

Bt =
1

N

N∑
j=1

∂f jt (v
t
j). (11)

where ∂f jt denotes the Jacobian matrix of f jt . The limiting properties of the AMP sequences are well
known and can be found in [Javanmard and Montanari, 2013, Theorem 1].

The inhomogeneous AMP — We now define an inhomogeneous AMP iteration which takes into
account the block-constant structure of the noise:
Definition 2.2. An inhomogeneous AMP on V1,N = RN is represented by (A,F ,x0,∆), where
the terms A, F , x0 are defined in Definition 2.1 and ∆ is the N ×N variance profile encoded by
∆̃ ∈ Rq×q and grouping g : [N ] → [q] defined by (1). We further assume that the family of functions
F is encoded by functions fat : R 7→ R for a ∈ [q] which define the group dependent function

ft(x) = (f
g(1)
t (x1), . . . , f

g(N)
t (xN )) ∈ RN . (12)

The sequence of iterates xt ∈ RN of the (A,F ,v0,∆) are defined as follows:

xt+1 =

(
1√

N
√
∆

⊙A

)
ft

(
xt

)
− bt ⊙ ft−1

(
xt−1

)
, (13)
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where 1√
∆

is the Hadamard inverse square root of the noise, and the Onsager term bt has the
following form

bt =
1

N


1

∆11
(f

g(1)
t )′(xt1) + . . . + 1

∆1N
(f

g(N)
t )′(xtN )

...
...

...
1

∆N1
(f

g(1)
t )′(xt1) + . . . + 1

∆NN
(f

g(N)
t )′(xtN )

 =
1

N∆
f

′

t (x
t) ∈ RN . (14)

State evolution of the inhomogeneous AMP — Through a continuous embedding, we will reduce
our inhomogeneous AMP to the matrix AMP framework, and recover the state evolution of the
inhomogeneous AMP. We define the diagonal matrix operator blockdiag : RN 7→ Vq,N which
outputs a block diagonal matrix according to the block structure of our discretization of [N ]:

blockdiag(v) = M where Mij =

{
vj g(j) = i

0 otherwise.

Likewise, we define the projection operator blockproj : Vq,N 7→ RN which extracts a vector of size
N from a N × q according to the block structure of [N ] by

blockproj(M) = (Mig(i))i≤N ∈ RN .

Under these changes of variables, we define

rt = blockdiag(xt) ∈ Vq,N for t ≥ 0

and f̃t: (Rq)N 7→ (Rq)N by(
f̃t(r

t)
)
ij
=

1√
∆̃g(i)j

f
g(i)
t (xti) for i, j ∈ [N ]× [q]. (15)

We encode the family of functions f̃t by F̃(∆).

Lemma 2.3. Let xt be iterates from the AMP (A,F ,v0,∆). Then the iterates rt := blockdiag(xt)

follow the generalized matrix AMP (A, F̃(∆), r0).

Proof. We will show that the projection of the iterates rt from (A, F̃(∆), r0) are the iterates from
(A,F ,v0,∆). It is easy to check that

A√
N
√
∆
ft(x

t) = blockproj

(
A√
N
f̃t(r

t)

)
. (16)

Next, notice that Jacobian is given by

∂f̃ it (r
t
i) =


0 · · · 1√

∆̃g(i)1

(f
g(i)
t )′(xti) · · · 0

...
. . .

...
. . .

...
0 · · · 1√

∆̃g(i)q

(f
g(i)
t )′(xti) · · · 0

 ,
which is a matrix where only the column number g(i) has non-zero elements. Applying (11), we thus
get for a, b ∈ [q]× [q]

(Bt)ab =
1

N
√

∆̃ab

∑
i:g(i)=a

(fat )
′(xti). (17)

It follows that
bt ⊙ ft−1(x

t−1) = blockproj
(
f̃t−1(r

t−1)BT
t

)
.
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As a consequence, the inhomogeneous state evolution equations in Theorem 1.2 follow immediately
from the state evolution equations of (A, F̃(∆), r0) discussed in [Javanmard and Montanari, 2013,
Section 2.1]. This follows from the observation that given the law of rt in the high dimensional limit,
the law of xt = blockproj(rt) is straightforward to compute. We define

(σt+1
b )2 :=

q∑
a=1

ca

∆̃ab

E
[
(f bt (Z

t
b))

2
]
. (18)

We will show that the distribution of the iterate xt
i is asymptotically normal with mean 0 and variance

(σt
g(i))

2.

Lemma 2.4 (Behavior of the inhomogeneous AMP iterates). Suppose that Assumption 1.1 holds,
and that P0 has a bounded second moment. Let ϕ : R2 → R be a L-pseudo-Lipschitz test function
satisfying (4). For any a ∈ [q], then the following limit holds almost surely

lim
N→∞

1

|CN
a |

∑
i∈CN

a

ϕ(xti, x
⋆
i ) = Ex⋆

0 ,Z
ϕ(σt

aZ, x
⋆
0)

where Z is an independent standard Gaussian.

Proof. In matrix-AMP [Javanmard and Montanari, 2013, Th. 1], the marginals of the iterates rt from
(A, F̃(∆), r0) are approximately Gaussian and encoded by the positive definite matrices

Σ̂t
a = E

[
f̃ it

(
Zt

)
f̃ it

(
Zt

)⊤]
for all i ∈ CN

a , (19)

with Zt ∼ N(0,Σt) and Σt+1 =

q∑
a=1

caΣ̂
t
a. (20)

We now show that a ∈ [q] and i ∈ CN
a , Σ̂t

a depends only on (σt
a)

2 = Σt
aa. Indeed, by the definition

of f̃ it we have

Σ̂t
a(k, l) = E

[
(f̃ it

(
Zt

)
)k(f̃

i
t

(
Zt

)
)l

]
= E

[
1√
∆̃ak

1√
∆̃al

(fat (Z
t
a))

2

]
, (21)

where Zt
a ∼ N(0, (σt

a)
2) is the ath component of the Gaussian vector Zt. The key observation

here is that by construction our function f̃ it ,Rq 7→ Rq depends only on the ith component Zt
i of the

Gaussian vector Zt. To characterize the limiting distribution of xt = blockproj(rt), we only need
to keep track of the variances (σt

j)
2, j ∈ [N ]. Using (21), for a given a ∈ [q] and i ∈ CN

a we write

Σ̂t
a(g(j), g(j)) = E

[
(f̃ it

(
Zt

)
)g(j)(f̃

i
t

(
Zt

)
)g(j)

]
=

1

∆̃ag(j)

E
[
(f it (Z

t
i ))

2
]
. (22)

Finally, with (20) we get that for any b ∈ [q] and any j ∈ CN
b , using Zt

a ∼ N(0, (σt
a)

2),

(σt+1
j )2 = (σt+1

b )2 = Σt+1
bb =

q∑
a=1

caΣ̂
t
a(g(j), g(j)) =

q∑
a=1

ca

∆̃ag(j)

E
[
(fat (Z

t
a))

2
]

(23)

The inhomogeneous spiked Wigner model in the light of the AMP approach — We now
generalize the state evolution equations from Lemma 2.4 to spiked matrices with an inhomogenous
noise profile as was stated in Theorem 1.2. This reduction via a change of variables is standard, see
for example [Deshpande et al., 2015, Lemma 4.4]. Remember that in the inhomogeneous version of
the spiked Wigner model we observe the signal x⋆ through an inhomogeneous channel:

Y =

√
1

N
x⋆(x⋆)T +A⊙

√
∆. (24)
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Our AMP algorithm is defined with the following recursion:

xt+1 =

(
1√
N∆

⊙ Y

)
ft

(
xt

)
− bt ⊙ ft−1

(
xt−1

)
(25)

where bt = 1
N∆f

′

t (x
t) and f is encoded by the family of functions in Definition 2.2. The main

difference in contrast to the iteration (13) is that our data matrix Y is no longer a centered matrix,
while 1√

∆
⊙A is. We would like to reduce (25) to an iteration of the form (13) with respect to a

different parameter st which is uniquely determined by xt

st+1 =

(
1√

N
√
∆

⊙A

)
ft

(
st
)
− bt ⊙ ft−1

(
st−1

)
.

Doing so will allow us to recover the limiting laws of the iterates from Lemma 2.4. This is done via a
standard change of variables to recenter Y . We will sketch the argument in this section, and defer the
full proof of Theorem 1.2 to the Appendix A in the Supplementary Material.

To simplify notation,let us denote ft(xt) := x̂t. We proceed following the approach of [Deshpande
et al., 2015, Lemma 4.4]. We rewrite (25) using the definition of Y to get

xt+1 =

(
1√
N∆

⊙ Y

)
x̂t − bt ⊙ x̂t−1

=

(
1

N∆
⊙ x⋆(x⋆)T

)
x̂t +

(
1√

N
√
∆

⊙A

)
x̂t − bt ⊙ x̂t−1.

(26)

If indices are independent, then by the strong law of large numbers one would expect that((
1

N∆
⊙ x⋆(x⋆)T

)
x̂t

)
j

= x⋆j
∑
a∈[q]

∑
i∈CN

a

1

N

x⋆i x̂
t
i

∆ji
→ x⋆j

∑
a∈[q]

ca
∆jia

E[x⋆0x̂tia ], (27)

where ia is some index belonging to the group CN
a and x⋆0 is a random variable distributed according

to the prior distribution P0. For b ∈ [q] and i ∈ CN
b , we define the block overlap µt

b using the
recursion

µt+1
i = µt+1

b =
∑
a∈[q]

ca

∆̃ab

Ex⋆
0 ,Z

[x⋆0f
a
t

(
µt
ax

⋆
0 + σt

aZ
)
], (28)

where Z is a standard Gaussian random variable independent from all others sources of randomness.
Notice that (28) is precisely the asymptotic behavior of the summation appearing in (27).

We now make a change of variables and track the iterates

s0 = x0 − µ0 ⊙ x⋆ st = xt − µt ⊙ x⋆, t ≥ 1 (29)

where µ0 is the vector of block overlaps of the initial condition x0 with the truth. We reduced the
(25) iteration to the following iteration in which we easily recognize a version of (13):

st+1 =

(
1√

N
√
∆

⊙A

)
ft

(
st + µt ⊙ x⋆

)
− bt ⊙ ft−1

(
st−1 + µt−1 ⊙ x⋆

)
(30)

with the initial condition s0 = x0 − µ0 ⊙ x⋆ and the Onsager term taken from (14) is given by

bt =
1

N∆
f

′

t (s
t + µt ⊙ x⋆). (31)

Using Lemma 2.4, we can recover the asymptotic behavior of the iterates xt given in (25) by
computing the iterates st +µt ⊙ x⋆ where st follows (30) and µt satisfies (28). From this reduction
we obtain the following state evolution equations describing the behaviour of (25):

1. xtj ≊ µt
g(j)x

⋆
0 + σt

g(j)Z for j ∈ [N ], where Z ∼ N (0, 1)

2. µt+1
b =

∑
a∈[q]

ca
∆̃ab

Ex⋆
0 ,Z

[x⋆0f
a
t (µt

ax
⋆
0 + σt

aZ)] with x⋆0 ∼ P0, Z ∼ N (0, 1)

3. (σt+1
b )2 =

∑q
a=1

ca
∆̃ab

Ex⋆
0 ,Z

[
(fat (µ

t
ax

⋆
0 + σt

aZ))
2
]

with x⋆0 ∼ P0, Z ∼ N (0, 1).

This (informally) characterizes the limiting distribution of the state evolution of the iterates from the
inhomogeneous AMP stated in Theorem 1.2.
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Fixed-point equation of state evolution in the Bayes-optimal setting — Suppose that we know
the prior distribution P0 of x⋆0. The Bayes-optimal choice for the denoising functions f jt , j ∈ [N ] is
simply the expectation of x⋆0 with respect to the posterior distribution,

f jt (r) = f
g(j)
t (r) = Eposterior[x

⋆
0|µt

g(j)x
⋆
0 + σt

g(j)Z = r]. (32)

Under this Bayes-optimal setting, we can simplify the equations obtained in the previous section and
see that AMP estimator is indeed an optimal one by studying its fixed point.

Proof of Theorem 1.4. For this choice of f jt the Nishimori identity (see for example [Lelarge and
Miolane, 2019, Proposition 16]) states that for a ∈ [q] and j ∈ CN

a ,

µ̃t
a := Ex⋆

0 ,Z
[x⋆0f

a
t (µ

t
ax

⋆
0 + σt

aZ)] = E
[
(fat (µ

t
ax

⋆
0 + σt

aZ))
2
]
. (33)

In this setting, the state evolution equations from Theorem 1.2 reduce to
µ̃t
a = Ex⋆

0 ,Z
[x⋆0f

a
t (µ

t
ax

⋆
0 + σt

aZ)]

µt+1
b =

∑
a∈[q]

ca
∆̃ab

µ̃t
a, b ∈ [q]

(σt+1
b )2 =

∑
a∈[q]

ca
∆̃ab

µ̃t
a, b ∈ [q].

(34)

Remarkably with the Bayes-optimal choice of the denoising functions we have that for t ≥ 1 for each
block b ∈ [q], µt+1

b = (σt+1
b )2. Therefore a necessary and sufficient condition for an estimator to be

a fixed point of the state evolution is to simply have its overlaps µt
b unchanged by an iteration of the

state evolution. This translates into the following equation for the overlaps µb, b ∈ [q]

µb =
∑
a∈[q]

ca

∆̃ab

Ex⋆
0 ,Z

[x⋆0Eposterior[x
⋆
0|µax

⋆
0 +

√
µaZ]]. (35)

The result of Theorem 1.4 now follows immediately.

3 A spectral method adapted to the inhomogeneous spiked Wigner model

From AMP to a spectral method — Remarkably, AMP and the state evolution machinery
associated with it can help us design a simple spectral algorithm that matches the information-
theoretic phase transition [Guionnet et al., 2022, Remark 2.16]. Recall that Theorem 1.2 does not
require the denoising functions ft to be Bayes-optimal, but can be applied to any Lipschitz family
of functions. In this section, we analyze the state evolution for the family of identity functions,
ft(x) = x. We can gain some intuition motivating such a choice by considering simple priors,
such as the Rademacher prior. In the case of the Rademacher prior a simple computation shows
that the Bayes-optimal choice of the denoising functions yields f jt (⋆) = tanh(⋆). In the first order
approximation we have tanh(x) ≈ x. Thus, at least for the Rademacher prior, the choice of identity
functions as denoising functions corresponds to the first order approximation of the Bayes-optimal
choice. By Remark 3.1, we can assume that the entries of x⋆ have unit variance. With this choice of
denoising functions the AMP iteration will simply become:

xt+1 =

(
1√
N∆

⊙ Y

)
xt − bt ⊙ xt−1 where bt =

1

N∆
f

′

t =
1

N∆

1...
1

 . (36)

If we denote Bt = diag(bt), it is easy to see that the fixed point of this iteration yields

x =

(
1√
N∆

⊙ Y

)
x−Btx (37)

so any x fixed by the AMP iteration (36) must be an eigenvector of the matrix

Ỹ =

(
1√
N∆

⊙ Y

)
−Bt =

(
1√
N∆

⊙ Y

)
− diag

 1

N∆

1...
1


 . (38)

A simple spectral method consists in taking the principal eigenvector (associated to the largest
eigenvalue) of the matrix Ỹ = Y√

N∆
−Bt.
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Analysis of the spectral method using state evolution — The spectral algorithm described above
behaves like the AMP iteration with identity denoising functions around its fixed point. Therefore we
can analyze this spectral algorithm using state evolution machinery for the AMP iteration. In the case
of identity functions we have fat (x) = x for all a ∈ [q], so

Ex⋆
0 ,Z

[x⋆0f
a
t (µ

t
ax

⋆
0 + σt

aZ)] = Ex⋆
0 ,Z

[x⋆0(µ
t
ax

⋆
0 + σt

aZ)] = µt
a (39)

Ex⋆
0 ,Z

[(fat (µ
t
ax

⋆
0 + σt

aZ))
2] = Ex⋆

0 ,Z
[(µt

ax
⋆
0 + σt

aZ)
2] = (µt

a)
2 + (σt

a)
2 (40)

which transforms state evolution equations (5) into the following simple form:

µt+1
b =

∑
a∈[q]

ca
∆ba

µt
a and (σt+1

b )2 =
∑
a∈[q]

ca
∆ba

((µt
a)

2 + (σt
a)

2). (41)

Rewriting the overlap state evolution in a matrix form we get for c = (ca)a∈[q] that

diag(
√
c)µt+1 = diag(

√
c)

1

∆
diag(

√
c)

(
diag(

√
c)µt

)
. (42)

The special form of state evolution above is rather informative and we can interpret it as follows. First
of all, in the regime where λ(∆) =

∥∥diag(√c) 1
∆ diag(

√
c)
∥∥
op
< 1, we can see from (42) that any

iteration of the AMP recursion (36) contracts the vector overlap (multiplying it by a matrix with the
operator norm smaller than 1). Thus the only possible overlap of a fixed point of (36) is 0. Moreover,
we have defined the matrix Ỹ in a way that any eigenvector of this matrix is a fixed point of the AMP
recursion (36). Thus any eigenvector of Ỹ must have zero expected overlap with the signal, meaning
that the spectral method is uninformative in the regime λ(∆) < 1.

Second of all, even though we cannot say anything rigorous in the regime λ(∆) > 1, looking at state
evolution equations of the AMP recursion (36), we see instability (overlap blows up but so does the
variance). We conjecture that the principal eigenvector of Ỹ correlates with the signal exactly in the
regime λ(∆) > 1 which would imply that the BBP transition happens precisely at λ(∆) = 1.
Remark 3.1. In general, we can let γ = Ex⋆

0
[(x⋆0)

2] and consider the normalized matrix

Ȳ =
Y

γ
=

√
1

N

x⋆(x⋆)T

γ
+A⊙

√
∆

γ
=

√
1

N
x̄⋆(x̄⋆)T +A⊙

√
∆̄

for x̄ = x√
γ and ∆̄ = ∆

γ2 . Notice that the entries of x̄ now have unit variance. Under this setting,

the transition of the transformation in (38) applied to Ȳ , which appears in (7), has transition at

λ(∆̄) =

∥∥∥∥diag(√c)
1

∆̄
diag(

√
c)

∥∥∥∥
op

= Ex⋆
0
[(x⋆0)

2]2
∥∥∥∥diag(√c)

1

∆
diag(

√
c)

∥∥∥∥
op

< 1

which is the generalized SNR defined in (8).
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A Proof of Theorem 1.2

We now provide a rigorous proof of the result that was sketched in Section 2. This proof is essentially
identical to [Deshpande et al., 2015, Lemma 4.4]. Recall the iterates (30) given by s0 = x0−µ0⊙x⋆

and

st+1 =

(
1√

N
√
∆

⊙A

)
ft

(
st + µt ⊙ x⋆

)
− bt ⊙ ft−1

(
st−1 + µt−1 ⊙ x⋆

)
, (43)

where µt = (µt
i)i≤N is given by the recursion

µt+1
i = µt+1

g(i) =
∑
a∈[q]

ca

∆̃ag(i)

Ex⋆
0 ,Z

[x⋆0f
a
t

(
µt
ax

⋆
0 + σt

aZ
)
]

and x⋆ = (x⋆i )i∈[N ] is a vector with independent coordinates distributed according to P0. By
Lemma 2.4, for each a ∈ [q], and any pseudo-Lipschitz function ϕ : R → R 7→ R we have that
almost surely

lim
N→∞

1

|CN
a |

∑
i∈CN

a

ϕ(sti, x
⋆
i ) = Ex⋆

0 ,Z
ϕ(σt

aZ, x
⋆
0) (44)

where

(σt+1
b )2 :=

q∑
a=1

ca

∆̃ab

EZ

[
(f bt (Z

t
b))

2
]
.

as was defined in (18). For any pseudo-Lipschitz function ψ : R → R, we have ϕ(x, y) = ϕ(x−µt
ay)

is also pseudo-Lipschitz, so (44) implies that

lim
N→∞

1

|CN
a |

∑
i∈CN

a

ψ(sti + µt
ax

⋆
i ) = Ex⋆

0 ,Z
ψ(σt

aZ + µt
ax

⋆
0) (45)

almost surely.

Now let xt be the iterates from the spiked AMP iteration for the inhomogeneous Wigner matrix (24)
we derived in (26)

xt+1 =

(
1

N∆
⊙ x⋆(x⋆)T

)
x̂t +

(
1√

N
√
∆

⊙A

)
x̂t − bt ⊙ x̂t−1. (46)

It now suffices to show that for fixed t and all a ∈ [q] that

lim
N→∞

1

|CN
a |

∑
i∈CN

a

(ψ(sti + µt
ax

⋆
i )− ψ(xti)) = 0 (47)

almost surely. This will imply that sti + µt
ax

⋆
i and xti have the same asymptotic distribution which

finish the proof of Theorem 1.2 by (45).

We now prove (47). Since ψ is L-pseudo-Lipschitz we have

|ψ(sti + µt
ax

⋆
i )− ψ(xti)| ≤ L(1 + |sti + µt

ax
⋆
i |+ |xti|)|sti + µt

ax
⋆
i − xti|

≤ 2L|sti + µt
ax

⋆
i − xti|(1 + |sti + µt

ax
⋆
i |+ |sti + µt

ax
⋆
i − xti|).

The Cauchy–Schwarz inequality implies that∣∣∣∣ 1

|CN
a |

∑
i∈CN

a

(ψ(sti + µt
ax

⋆
i )− ψ(xti))

∣∣∣∣
≤ 2L

CN
a

(
√
CN

a ∥sta + µt
ax

⋆
a − xt

a∥2 + ∥sta + µt
ax

⋆
a∥2∥sta + µt

ax
⋆
a − xt

a∥2 + ∥sta + µt
ax

⋆
a − xt

a∥22)

where sta = (sti)i∈CN
a

∈ R|CN
a | , xt

a = (xti)i∈CN
a

∈ R|CN
a |. Therefore, to prove (47) it suffices to

prove that for all t ≥ 0,

lim
N→∞

1

|CN
a |

∥sta + µt
ax

⋆
a − xt

a∥22 → 0 (48)

lim sup
N→∞

1

|CN
a |

∥sta + µt
ax

⋆
a∥22 → 0 (49)
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Clearly, if we initialize x0, s0 at zero then (48) and (49) are satisfied by our state evolution equations
(5). Notice that (49) follows directly from (45) applied to the square function. We use here that we
assumed that the second moment of x⋆ is finite.

We now focus on proving (48) through strong induction. By definition of the iterates (43) and (46),
(sta + µt

ax
⋆
a − xt

a)

=

[(
1√

N
√
∆

⊙A

)
ft−1

(
st−1 + µt−1 ⊙ x⋆

)
−
(

1√
N
√
∆

⊙A

)
ft−1(x

t−1)

+ µt ⊙ x⋆ −
(

1

N∆
⊙ x⋆(x⋆)T

)
ft−1(x

t−1)

+ bx
t−1 ⊙ ft−2(x

t−2)− bs
t−1 ⊙ ft−2

(
st−2 + µt−2 ⊙ x⋆

) ]
i∈CN

a

where [·]i corresponds to the ith row of a vector and bx
t−1 and bs

t are the Onsager terms defined
in (14) with respect to xt−1 and st−1 respectively. The Cauchy–Schwarz inequality and Jensen’s
inequality imply that there exists some universal constant C such that

1

|CN
a |

∥sta + µt
ax

⋆
a − xt

a∥22

≤ C

|CN
a |

∑
i∈CN

a

1

N

∥∥∥∥[ 1√
∆

⊙A

]
i

∥∥∥∥2
2

∥[ft−1

(
st−1 + µt−1 ⊙ x⋆

)
− ft−1(x

t−1)]i∥22

+
C

|CN
a |

∑
i∈CN

a

(
µt
a −

[
1

N∆
(ft−1(x

t−1)⊙ x⋆)

]
i

)2

(x⋆i )
2

+
C

|CN
a |

∑
i∈CN

a

([bxt−1]i − [bst−1]i)
2[ft−2(s

t−2 + µt−2 ⊙ x⋆)]2i

+
C

|CN
a |

∑
i∈CN

a

[bx
t−1]

2
i ([ft−2(x

t−2)]i − [ft−2(s
t−2 + µt−2 ⊙ x⋆)]i)

2

We now control each term separately.

1. To control the first term, notice that the matrix 1
N

[
1√
∆

⊙A

]
has iid entries within blocks

and the sizes of the blocks diverge with the dimension, so we can control the sums of the
squares of within each block using standard operator norm bounds Anderson et al. [2010].
The first term vanishes in the limit because f is pseudo-Lipschitz so we can apply the
induction hypothesis bound which controls (48) at time t− 1.

2. To control the second term, notice that for i ∈ CN
a by Lemma 2.4 applied to the pseudo-

Lipschitz function yft−1(x) that[
1

N∆
(ft−1(x

t−1)⊙ x⋆)

]
i

→ µa

almost surely. This implies that the average of such terms vanishes since we assumed that
the second moment E[x⋆0]2 is finite.

3. To control the third and fourth terms, we can expand the definition of the Onsager terms
and use the assumption that f ′ is pseudo-Lipschitz and almost surely bounded. Both terms
vanish because our strong induction hypothesis gives us control of (48) at time t− 2.

Since all terms vanish in the limit, we have proven (48) for all a ∈ [q], which finishes the proof of
statement (47) and the proof of Theorem 1.2.

B Comparison with a naive PCA spectral method

In this appendix, we wish to show how the spectral method we propose differs, in practice, from a
naive PCA. We provide an example of the spectrums of Y and Ỹ before and after the transition at
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Figure 3: Illustration of the spectrum of Y ∈ R2500×2500 evaluated at noise profiles with snr
λ(∆) = 0.7 (left, before the transition) and on the left and 1.8 on the right (after the transition).
There is no outlying eigenvalue in contrast to the transformed matrix: the transition for a naive
spectral method is sub-optimal.

Figure 4: Illustration of the spectrum of Ỹ ∈ R2500×2500 evaluated at noise profiles with snr
λ(∆) = 0.7 (left, before the transition) and on the left and 1.8 on the right (after the transition),
with the outlying eigenvector correlated with the spike arises at eigenvalue one. This is at variance
with the results of the naive method in Fig.3

SNR(∆) = 1. In Figure 3 there is no clear separation of the extremal eigenvalue of Y from the bulk
around this transition. This is in contrast to Figure 4 where there is an extremal eigenvalue of Ỹ
appearing at value one.

16


	Main results
	The inhomogeneous AMP algorithm
	A spectral method adapted to the inhomogeneous spiked Wigner model
	Proof of Theorem 1.2
	Comparison with a naive PCA spectral method

