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Abstract. Capturing Long-Distance Dependencies (LDDs) is crucial for 
NLP applications. However, the longest relation evaluated in early stud-
ies is only around 50 words, which is not sufficient to evaluate a model’s 
ability in capturing Very-Long-Distance (VLD) dependencies. Recent 
work on capturing LDDs either is affected by the instruction-following 
ability of language models or requires training on synthetic tasks unre-
lated to natural languages. In this paper, we present an approach to 
automatically constructing LDD test instances (as opposed to training 
examples) for any distance by mentioning an antecedent with singular 
number and a specific grammatical gender at the start of the first sen-
tence, building the first sentence of arbitrary length by sampling plural
nouns, and asking the pre-trained language model to predict a singu-
lar pronoun with the correct gender at the start of the next sentence.
We evaluate the performance of LLMs and neural language models with
different settings.

Keywords: Long-distance dependency · Language model · 
Grammatical gender consistency

1 Introduction 

Capturing Long-Distance Dependencies (LDDs) is crucial for the good p erfor-
mance of NLP applications [1– 9] based on Large Language Models (LLMs) [10– 
20]. 

[ 21] builds the contrastive Lingeval97 test set for the subject-verb agreement 
task by swapping the grammatical numb er of a verb to introduce an agreement
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Fig. 1. Auto-regressive neural language model training and gender consistency evalu-
ation.

error. But quite a large proportion of distances in Lingeval97 are within 15 
tokens, and cannot support the Very-Long-Distance (VLD) dependency evalu-
ation (e.g., more than 100 tokens). Recently, [22] evaluate the performance of 
question answering, summarization, and co de completion on long documents.
[23] ask LLMs to retrieve random facts inserted into a long document. [24] train 
the model to generate the value tokens of corresponding key tokens in long key-
value pair input sequences. These evaluations either depend on the i nstruction-
following ability of LLMs, which can significantly impact performance (as stud-
ied in Sect. 3.1)  [  22,23], or require to train models on task-specific synthetic 
datasets which do not have any relation to natural languages [24]. They also 
lack a focus on the real distances b etween dependencies despite offering long
inputs.

We present a template-based method to build large-scale sentences and test 
(not train) LDDs based on grammatical gender consistency in language mod-
eling. Our evaluation does not rely on instruction following, but tests
on grammatical sentences and focuses on the dependency distance.

Our main contributions are as follows:

– We present an automatic LDD evaluation method based on purely language 
modeling by evaluating the grammatical gender agreement between singular 
words marked for grammatical gender, controlling VLD length by adding
plural nouns after the verb.

– We evaluate the performance of LLMs, test the effects of various settings 
and provide valuable empirical results and references for the design of neural
language models.
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2 VLD Evaluation via Grammatical Gender Consistency 

In natural languages, the grammatical gender of the pronoun in the following sen-
tences should be consistent with the co-referring subject in a previous sentence,
as shown in Fig. 1 (a). We build test sentences where we control the grammat-
ical gender of singular subjects (e.g., “the boy”/“the girl”, etc.) and singular 
co-referring pronouns (“he” or “she”), and control the dependency length using
only plural intervening nouns, as shown in Fig. 1(b). The language model shall 
assign a higher probability to a co-referring pronoun of the same gender as the 
subject than to a pronoun with another grammatical gender when decoding the 
first token (i.e., the singular pronoun) of the next sentence. As none of plural
nouns (by design) can function as antecedent to s/he, the prediction is
expected to be consistent with the grammatical gender of the subject.

We measure the VLD distance by the number of intervening plural nouns, 
and build a balanced test set across the two classes. The subject set S contains 10 
singular words with clear grammatical gender ({“boy”, “girl”, “man”, “woman”, 
“father”, “mother”, “sir”, “madam”, “gentleman”, “lady”}), the verb set V has 
4 verbs ({“likes”, “hates”, “dislikes”, “knows”}), while the plural noun set N 
has 6204 plural nouns (for animals (noun.animal), artifacts (noun.artifact), food 
(noun.food) and plants (noun.plant) extracted from Wordnet). Our choice of 
intervening plural nouns between singular antecedent (reference) and 
singular anaphor is to make sure that s/he is an unambiguous binary 
choice and t o be able to vary dependency length via intervening plural
nouns, where none of the plural nouns (by design) can function as
antecedent to s/he. Human filtering of plural nouns can in principle make
the generated test set more reasonable, but here we want to avoid such human
efforts to make the test set construction method fully automatic and scalable.

For each distance d, we automatically build 5k test instances, and this already 
leads to 1.28M test instances in total for 256 distances, and we think this is 
sufficient to provide a reliable ev aluation result. But at the same time it is also
easy to produce more test instances and for longer distances with the method.

All test instances are grammatically correct. We compared average 
per token loss between the Lingeval97 (4.2) and our synthetic dataset 
(4.5) using a Transformer LM. This s hows that it is reasonable to use
the synthetic test set for the evaluation at varying distances.

3 Evaluation 

In addition to Large Language Models (LLMs), we also trained Transformer and 
RNN models t o examine the effects of various settings on VLD.

As training on long sequences is likely to be crucial for the model’s ability in 
capturing VLD dependency, we trained autoregressive neural language mo dels
on the document-split version of the English News Crawl dataset from WMT
[25]. The datasets were lower cased, and tokenized into subwords by the BART
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Fig. 2. The computation graph of the mod el layer.

tokenizer [ 26] using Byte-Pair Encoding models [27,28]. We concatenated con-
secutive sentences in documents into one sequence until adding the next sentence 
increases the sequence length to more than j tokens, where j was defaulted to
768.

Following the settings of [29], we used a batch size of 25k tokens. All the 
base, deep and big models were trained for 100k steps unless otherwise stated.
The number of warm-up steps was set to 8k.

As for the model architectures, we employed the pre-norm computation order 
of the Transformer, which computes the layer normalization before the multi-
head attention/position-wise feed-forward layer, and applies dropout and resid-
ual connection in the end, and used the absolute positional encoding unless 
indicated otherwise. For RNN models, we replaced the self-attention sub-layer 
in the Transformer by the LSTM/GRU sub-layers instead of purely stacking
LSTM/GRU layers to minimize differences between the models. The computa-
tion graph of the model layer is shown in Fig. 2. We used the base setting by 
default, and the original absolute positional encoding for the Transformer.

In Figs. 3 and 5, 6 and 7, the x-axis and y-axis are the number of intervening 
plural nouns and the VLD accuracy respectively.

3.1 Performance of LLMs

For LLMs, we evaluated the performance of LLaMa 3.1–8B [30], Qwen 2.5–7B 
[31], GLM 4 9B 0414 [32] and Mamba - 2.8B [33] on the VLD test set. We 
evaluated the model in both language modeling (LM) and instruction following
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Fig. 3. Results of LLMs.

(Instruction) for LLaMa, Qwen and GLM. We only reported the LM evaluation 
performance of Mamba as its instruction performance is significantly poorer. For 
language modeling, we regard the model as a language model, feed the test input 
sequence into the model, and get the prediction probabilities of “ he” and “she”
at the last position. For instruction following, we ask the model to continue
the input sentence starting with either “he” or “she”, providing 4 examples as
demonstrations.

Results in Fig. 3 show that evaluation with instruction following leads 
to generally worse performances than with language modeling for both 
LLaMa and Qwen on the same testset with increasing distances. Qwen 
outperforms LLaMa in the LM evaluation but LLaMa performs better
than Qwen in the Instruction evaluation, showing that instruction
following can have a large impact on the long-distance evaluation.

3.2 Self-attention vs. RNNs

We compare the performance of self-attentional Transformer, LSTM and GRU. 
When training on the dataset with a maximum sequence length of 768 tokens, 
we found that the LSTM model has difficulty in convergence even with residual 
connections. We conjecture the potential reason of the convergence issue is that
LSTM may have problems when propagating gradients through the very long
sequences.

We verified the convergence issue by training the LSTM model on the training 
data with a maximum sequence length of 256 (instead of 768) tokens and found 
that the model (LSTM 256) can c onverge. The per-token training loss averaged
over ∼ 56M tokens reported during training is shown in Fig. 4.
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Fig. 4. Per-token  training  loss  of  LSTM  models  aver  aged over ∼56M tokens.

Fig. 5. Results of architecture differences and w ide/deep Transformers.

Figure 4 shows that the per-token training loss of LSTM 768 saturates at a 
high level while LSTM 256 achieves a much lower and reasonable training loss,
demonstrating the convergence issue of LSTMs on very long sequences.

We employ a 2-stage training method for LSTM. The first stage trains the 
LSTM with a maximum sequence length of 256 tokens until the averaged per-
token training loss is less than 4 (∼10k training steps), and the second stage con-
tinues the training on sequences with a maximum length of 768 for the remaining
steps. GRU does not suffer from the convergence issue like LSTM when training
on long sequences (of at most 768 tokens).

Results in Fig. 5a show that LSTM unexpectedly outperforms Trans-
former for VLD (d  >  128), suggesting that recurrent architectures may still 
ha ve the upper hand in VLD resolution worth further exploration.

3.3 Increasing Depth vs. Width

We test the effects of increasing model depth and width by comparing the Trans-
former Big (increasing the embedding dimension to 1024) with 12-layer and
32-layer deep Transformers (increasing the depth) trained for 100k steps. The



VLD Dependency Evaluation via Gender Consistency 33

Fig. 6. Results of attention head numbers and position e ncoding methods.

12-layer Transformer has the same number of attention heads as the 6-layer 
Transformer Big, and the 32-layer model has a comparable amount of parame-
ters as the Transformer Big.

Results in Fig. 5b show that increasing the width is more effective in 
improving the performance on v ery long distances (d > 221) compared
to increasing the depth.

3.4 Effects of Attention Head Num bers

We verify the effects of the number of attention heads by comparing the 8-head 
Transformer Big model with the standard T ransformer Big with 16 heads in each
multi-head attention layer.

Results in Fig. 6a show that the 16-head Transformer Big model consistently 
outperforms the 8-head Transformer Big model in all distances, and it is impor-
tant for wide models to have sufficient number of attention heads.

3.5 Absolute Positional Encoding vs. Relative P ositional Encoding

We test the effects of absolute position encoding [29], and relative position encod-
ing methods, including: [34] (Relative PE), [35] (Logarithmic relative PE), [36] 
(ALiBi) and [37] (RoPE). We explore different windows sizes (in paren theses)
for Relative PE.

Results in Fig. 6b show that: 1) absolute position encoding performs 
best for most distances, and 2) Relative PE (8) performs better than absolute
position encoding for very long distances (d > 225).

3.6 Effects of Training S equence Lengths

To test the effects of training sequence lengths, we trained the Transformer Base 
models on sequences that contain at most 768 (Transformer Base (768)) and 256
(Transformer Base (256)) tokens respectively.
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Fig. 7. Results of training sequence lengths and steps.

Results in Fig. 7a show that the Transformer Base (256) model consistently 
underperforms Transformer Base (768), and its performance drops sharply after 
a certain distance. This further pro ves that it is important to train on long
sequences for good VLD performance.

3.7 Effects of Training Step Num bers

To test the effects of training step numbers on VLD dependency capturing ability, 
we trained the Transformer Big mo dels for 100k (Transformer Big (100k)) and
300k (Transformer Big (300k)) steps respectively.

Results in Fig. 7b show that Transformer Big (100k) outperforms Trans-
former Big (300k) for almost all distances, especially with increasing dis-
tances, suggesting that longer training may hinder VLD performance.

4 Related Work 

[ 38] test whether the verb form is consistent with subject number (singular or
plural). [21] build the contrastive Lingeval97 test set for the subject-verb agree-
ment task by swapping the grammatical number of a verb. [39] present Dis-
tilLingEval based on machine-generated references. [40,41] explore automatic 
discourse phenomena tagging methods for context-aware machine translation. 
These studies cannot meet the requirements to assess the model’s ability in
capturing Very-Long-Distance (VLD) dependencies. Recently, [22] evaluate the 
performance of question answering, summarization, and co de completion on long
documents. [23] ask LLMs to retrieve random facts inserted into a long docu-
ment. [24] ask the model to generate the values of corresponding keys in the long 
key-value pair input sequences. They either are affected by the i nstruction fol-
lowing ability of LLMs which can have a huge impact [22,23], or require to train 
models on synthetic tasks which have no relation to natural languages [24]. They 
also lack a focus on the real distances between dependencies despite offering long
inputs.



VLD Dependency Evaluation via Gender Consistency 35

[ 42] evaluate the performance of the Transformer, LSTM and CNN. [43] study 
the effects of phrase-level modeling, and [44] test Average Attention Net work
[45], Addition-subtraction Twin-gated Recurrent network [46], and MHPLSTM. 
But all these tests on the Lingeval97 test set are not for LDDs, and lack an
investigation on the impacts of different settings.

5 Conclusion 

To mitigate the effects of varying instruction-following abilities of LLMs on Very-
Long-Distance (VLD) dependency evaluation and synthetic evaluation unrelated 
to natural languages, we present a template-based approach to automatically
constructing large testsets for arbitrary distances based on grammatical gender
consistency.

We evaluate the VLD performance of LLMs and popular neural language 
models with different settings, and find that: 1) instruction following ability has 
a huge impact on the VLD evaluation, 2) 2-stage training can address the con-
vergence issue of LSTM on very long sequences and lead to better performance 
than Transformer on very-long distances, 3) increasing the width improves VLD 
performance while increasing depth hampers performance, and 4) longer training 
tends to hamper the VLD performance. 
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