
Communication-Efficient Federated Group
Distributionally Robust Optimization

Zhishuai Guo, Tianbao Yang∗
Department of Computer Science and Engineering

Texas A&M University
zhishguo@tamu.edu,tianbao-yang@tamu.edu

Abstract

Federated learning faces challenges due to the heterogeneity in data volumes and
distributions at different clients, which can compromise model generalization ability
to various distributions. Existing approaches to address this issue based on group
distributionally robust optimization (GDRO) often lead to high communication
and sample complexity. To this end, this work introduces algorithms tailored for
communication-efficient Federated Group Distributionally Robust Optimization
(FGDRO). Our contributions are threefold: Firstly, we introduce the FGDRO-CVaR
algorithm, which optimizes the average top-K losses while reducing communication
complexity to O(1/ϵ4), where ϵ denotes the desired precision level. Secondly, our
FGDRO-KL algorithm is crafted to optimize KL regularized FGDRO, cutting
communication complexity to O(1/ϵ3). Lastly, we propose FGDRO-KL-Adam
to to utilize Adam-type local updates in FGDRO-KL, which not only maintains
a communication cost of O(1/ϵ3) but also shows potential to surpass SGD-type
local steps in practical applications. The effectiveness of our algorithms has
been demonstrated on a variety of real-world tasks, including natural language
processing and computer vision.

1 Introduction

Federated learning enables effective model training without the need to share raw data [38, 48]. It
is essential in contexts where data privacy and ownership are paramount, such as in inter-hospital
collaborations [54] and mobile device networks [20]. However, clients often have data of varying
volumes and distinct distributions, which poses notable challenges in maintaining generalization
behavior [50, 27]. Generalization here refers to the model’s ability to perform consistently across
different clients, including those that have not participated in the training [23, 79].

In this study, we tackle the issue using federated group distributionally robust optimization (FGDRO),
formulated as follows:

min
w

F (w) := max
p∈∆N

N∑
i=1

piℓi(w)− λϕ(p). (1)

Here, w denotes a machine learning model, and N represents the number of clients. For each client i,
Di represents its local data distribution, and ℓi(w) = Ez∼Di

ℓ(w; z) represents the loss calculated
from that local distribution. ∆N denotes a N -dimensional simplex, which constrains

∑
i pi = 1. The

vector p = [p1, ...,pN ] comprises the weights assigned to each of the N clients. The function ϕ(p)
acts as a regularization term, with λ > 0 being an adjustable parameter. This framework aims to
assign higher weights to machines with greater losses while discouraging substantial deviations of
these weights from a specified distribution.
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Our study concentrates on two particular forms of the regularization term ϕ, which are well-established
regularization techniques [11, 39], each suited to different tasks and data distributions. Specifically,
CVaR is defined as ϕ(p) = I[0,1/K](p). In this scenario, ϕ(p) is set to 0 if each weight pi falls within
the range of [0, 1/K], and is infinite otherwise. FGDRO-CVaR focuses on optimizing for worst-case
scenarios or the average of the worst-case losses, making it particularly effective in high-stakes
applications like healthcare and finance, where avoiding extreme losses is crucial. However, it can be
sensitive to outliers or malicious client attacks. FGDRO-KL, on the other hand, uses Kullback-Leibler
(KL) divergence,expressed as ϕ(p) =

∑N
i=1 pi log(Npi). This version of ϕ penalizes deviations of

the weight distribution p from a uniform distribution. Fundamentally, when ϕ(p) is strongly convex,
as in the case of KL divergence, F (w) can enjoy a smoothness property, while non-strongly convex
ϕ(p) would result in non-smooth F (w) [6]. In contrast to CVaR, KL is a softer regularizer to promote
smoother and more stable learning. Thus, it can be beneficial in scenarios where robustness to outliers
or malicious clients is needed. FGDRO-KL-Adam further enhances FGDRO-KL by incorporating
Adam-type updates.

Table 1: Comparison of communication cost and sample complexity on each machine to achieve
ϵ-stationary point or near to ϵ-stationary point, where ϵ-stationary point has a (sub-)gradient
∥∂F (w)∥2 ≤ ϵ2. NDP-SONT denotes the naive deployment of the SONT algorithm [22] in a
federated environment, communicating in all iterations.

FGDRO with a CVaR constraint FGDRO with a KL regularization
Communication Sample Communication Sample

Complexity Complexity Complexity Complexity
DRFA

O
(

1
ϵ12

)
O
(

1
ϵ16

)
O
(

1
ϵ12

)
O
(

1
ϵ16

)
[11]

DR-DSGD – – O( 1
ϵ3 ) O( 1

ϵ6 )[30]
NDP-SONT

O
(

1
ϵ6

)
O
(

1
ϵ6

)
O
(

1
ϵ6

)
O
(

1
ϵ6

)
[22]

This Work O
(

1
ϵ4

)
O
(

1
ϵ8

)
O
(

1
ϵ3

)
O
(

1
ϵ4

)
Previous research addressing these optimization problems in federated learning has struggled with
high communication and sample complexity issues, which are basically due to inefficient updates
of p on local machines. For example, Deng et al. [11] examined a particular case of the general
formula (1) using a CVaR constraint with K = 1, and developed an algorithm for KL regularization
as well. They update p only in global communication rounds, while local steps only optimize the
local loss function using stochastic gradient descent (SGD). To achieve a ϵ-stationary point or a point
near to an ϵ-stationary point, where an ϵ-stationary point has a (sub)gradient ∥∂F (w)∥2 ≤ ϵ2, their
methods required a communication cost of O(1/ϵ12) and a sample complexity of O(1/ϵ16) on each
client. For FGDRO with KL regularization, [30] achieves a communication cost of O(1/ϵ3), but it
requires the use of large data batches in local update steps in order to get good approximation for the
surrogate of p, resulting in a total sample complexity of O(1/ϵ6) per machine.

To overcome these limitations, this paper presents specialized algorithms FGDRO-CVaR and FGDRO-
KL for FGDRO with CVaR constraint and KL regularization, respectively. Instead of dealing with the
constrained primal-dual formulation in (1), we consider their equivalent forms with a compositional
structure that get rid of the high-dimensional constrained variable p. We summarize the complexity
results in Table 1.

For FGDRO with CVaR constraint, we are the first to consider a constraint-free equivalent form
and develop a communication-efficient algorithm for it, significantly reducing communication costs,
as shown in Table 1. In addition to sharing machine learning models, we only introduce an additional
scalar threshold to select participants in each round, minimizing additional costs. The equivalent
compositional form is a non-smooth two-level compositional function with one auxiliary variable s,
which works as a threshold. Only machines whose local losses are greater than s are supposed to
contribute to updating the model. In this way, we can simply update the constraint-free scalar variable
s locally in each client and average s in communication rounds. However, we do face challenges with
non-smooth compositional optimization problems. Our first algorithm FGDRO-CVaR effectively
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addresses this issues and achieves a communication cost of O(1/ϵ4) and a sample complexity of
O(1/ϵ8) on each machine.

For FGDRO with KL regularization, while previous literature has explored constraint-free compo-
sitional reformulations, they often require large batch sizes on each machine to estimate gradients,
making this approach impractical and leading to high sample complexity. In contrast, we utilize
moving averages that can work with smaller data batches while still providing accurate gradient
estimates, enhancing the efficiency of our method. The equivalent compositional form we consider
is a smooth three-level compositional function. In this case, the weights for the clients depend on
both local loss functions and global loss functions. We use moving average estimators of these
statistics and update the estimators locally. In communication rounds, in addition to averaging the
model w, the machines will average the estimator of the global loss function. We have reduced the
communication cost and the computation cost compared to the literature as presented in Table 1.

To further enhance our approach, we have developed an adaptive algorithm for solving FGDRO
with KL regularization, named FGDRO-KL-Adam. Stochastic adaptive methods apply variable step
sizes for each coordinate based on historical gradient information, often yielding better results than
non-adaptive techniques, as evidenced by a wealth of research [13, 36, 49, 69]. In federated learning,
while Reddi et al. [59] have developed a federated adaptive algorithm and shown its effectiveness in
various tasks. However, it limits adaptive steps to global updates on the server, with local updates
relying on standard SGD, which may lead to suboptimal results. Moreover, their method is primarily
designed for Empirical Risk Minimization (ERM) and is not applicable to address compositional
optimization problems. Our FGDRO-KL-Adam allows local updates to use Adam-type updates,
which introduces the challenge of handling unbiased gradients, further complicated by the use and
updating of the second-order moment. To this end, we update the first-order momentum and second-
order momentum locally and then average them globally during communication rounds. Moreover,
our analysis carefully manages the moving estimates of the first and second-order moments, ensuring
that the solution provably converges.

Our FGDRO-KL-Adam enables local updates with Adam-type methods, which raises the challenge
of maintaining unbiased gradients, especially with the adjustment of the second-order moment.
Our analysis meticulously handles the moving estimates of both first and second-order moments
to guarantee provable convergence. The first-order momentum and second-order momentum are
updated locally and then averaged during communication rounds.

In summary, our paper contributes in three main areas. First, our FGDRO-CVaR algorithm greatly
reduces both communication costs and sample complexity for FGDRO with CvaR constraint problems.
Second, our FGDRO-KL algorithm achieves a better sample complexity while maintaining the same
communication costs as the existing results. Third, our FGDRO-KL-Adam integrates adaptive step
sizes with Adam-type updates, which has the potential to surpass the performance of conventional
SGD-based approaches. Extensive testing on diverse real-world datasets has shown that our approach
achieves superior performance while substantially reducing communication overhead.

2 Related Work

Federated learning has gained significant attention due to its potential to train machine learning
models using data from various sources while ensuring data privacy [38, 48, 54]. Two central
challenges to this field are communication cost and client heterogeneity, which have been extensively
explored in the literature [63, 76, 77, 73, 62, 34, 64, 2, 31, 68, 4, 33, 35, 71, 70, 34, 18]. This section
will dive into the body of literature that focuses on these specific challenges.

Non-IID Clients in Federated Learning (FL) One of the key challenges in Federated Learning
(FL) is managing client heterogeneity, particularly the issue of non-IID (nonindependently and
identically distributed) data across client networks. Efforts to overcome the negative implications of
data diversity have led to the development of model personalization techniques [47, 10, 44, 82, 45,
43, 75, 19, 41]. However, these approaches face challenges when dealing with data from unseen or
unidentifiable groups. For a comprehensive examination of the challenges and strategies concerning
non-IID clients in federated learning, the readers are directed to [27].

Federated Group Distributionally Robust Optimization Since Group Distributionally Robust
Optimization has shown effectivenss in addressing non-iid data in centralized setting [14, 51, 12, 56],
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previous research has investigated Federated Group Distributionally Robust Optimization (FGDRO)
to address the challenges posed by non-IID clients in federated settings [50, 11]. The DRFA algorithm
[11] focuses on a specific instance of (2), applying a CVaR constraint on p with K = 1. It samples
machines based on updated probabilities to allow local updates, reducing the need for communication,
with these probabilities managed by a central server. However, this approach results in significant
communication costs of O(1/ϵ12) and sample complexity of O(1/ϵ16) per machine to achieve an
ϵ-stationary point. Recent developments in [22] introduced algorithms for handling Group DRO with
a CVaR constraint in centralized settings, but adapting these to federated learning entails substantial
communication overheads ofO(1/ϵ6). Moreover, [78] introduced the SCAFF-PD algorithm, which is
only applicable in convex scenarios and requires the use of the complete dataset in each training round.
Regarding KL regularization, [30] achieved a communication cost of O(1/ϵ3), but required the use
of large data batches, resulting in a total sample complexity of O(1/ϵ6) per machine. [80] has studied
FGDRO with KL regularization in a decentralized setting, which would incur a communication cost
of O(1/ϵ4) if directly applied to a centralized federated learning setting.

Federated Adaptive Algorithm Stochastic adaptive methods for minimization in non-convex
stochastic optimization have garnered significant interest in recent years [13, 36, 49, 69, 42, 84, 65,
7, 46, 25, 16, 81]. These methods, known for assigning unique step sizes to each coordinate, often
outperform their non-adaptive counterparts. In federated learning, Reddi et al. [59] have advanced the
field with an adaptive algorithm. However, their methodology predominantly applies adaptive steps
at the global server level, with local updates still dependent on SGD. This could lead to suboptimal
performance. Furthermore, their approach was tailored for Empirical Risk Minimization (ERM)
problems and could not be applied for problems considered in this work.

3 Preliminaries

A function f is C-Lipschitz if f(x)− f(y) ≤ C∥x− y∥. A differentiable function f is L-smooth
if ∥∇f(x) − ∇f(y)∥ ≤ L∥x − y∥, where ∇f(x) denotes the gradient. For a non-differentiable
function f , its subdifferential ∂f(x) is defined as a set of all subgradients as ∂f(x) = {v|f(y) ≥
f(x) + ⟨v,y − x⟩ + o(∥y − x∥)} as y → x. When the context is clear, we also overload the
notation ∂f(x) to denote one subgradient from the subdifferential set. We use ∇f(x; z) or ∂f(x; z)
to represent an unbiased estimator of gradient or subgradient with a randomly drawn sample z.
Additionally, a function f is ρ-weakly convex if f(x) ≥ f(y) + ⟨∂f(y),y − x⟩ − ρ

2∥y − x∥2.

For a smooth function f(x), x is an ϵ-stationary point if ∥∇f(x)∥2 ≤ ϵ2. For non-smooth functions,
x is an ϵ-stationary point if ∥dist(0, ∂f(x))∥2 ≤ ϵ2, where dist(x, S) = minx′∈S ∥x − x′∥2
measures the distance between a point x and a set S. For non-smooth functions, since it is usually
difficult or even impossible to find an ϵ-stationary point, we instead seek an ϵ-near stationary point.
Definition 3.1. x is an ϵ-near stationary point of f(·) if ∃x′ such that ∥x − x′∥2 ≤ ϵ and
dist(0, ∂f(x′)) ≤ ϵ.

4 FGDRO-CVaR

In this section, we present our algorithm designed to tackle Federated Group Distributionally Robust
Optimization (FGDRO) with a CVaR constraint. This problem poses substantial challenges due to
the complexity of both CVaR and simplex constraints. Typically, during local updates, individual
machines do not have access to adequate information to appropriately adjust the weight vector p.
Prior approaches, such as the one proposed by [11], mitigate this issue by updating p during global
communication rounds, but results in slower convergence rates. To this end, we reformulate the
problem into an equivalent two-level compositional optimization problem without constraints:

min
w

min
s
F (w, s) :=

1

N

N∑
i=1

f(gi(w)− s) +
K

N
s. (2)

where f(·) = (·)+ and gi(w) = Ez∼Di
ℓ(w, z) is a local loss and s is intended to serve as a threshold

value. With s = argmins′
1
N

∑N
i=1 f(gi(w)− s′) + K

N s
′, only the K clients with the highest losses

will have losses greater than s [53, 83]. During the training phase, K clients with the highest losses
are expected to predominantly influence the optimization process.
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The formulation (2) replaces the constrained high-dimensional vector p with a single unconstrained
scalar variable s. However, this adjustment introduces new challenges due to the compositional
structure and the non-smooth nature of the outer function f . As a result, it is biased to estimate
subgradient ∂f(gi(w)− s)∇gi(w) using a batch of samples. To address this, it is common practice
to create an accurate estimate of gi(w) [67, 24, 22, 66, 32, 55, 57]. Specifically, we employ a moving
average u as our accurate estimate:

uri,t = (1− β1)u
r
i,t−1 + β1ℓ(w; zri,t). (3)

And then the estimators for sub-gradient of w and s, namely m, v are computed using u. It is notable
that for s, it is updated locally using local data and averaged between clients in communication
rounds. It will converge alongside w to an ϵ-near stationaty point. This is a fundamental reason why
our method achieves a lower communication complexity compared to [11], as the latter can only
update the weight variables at the server node in the communication rounds.

Algorithm 1 FGDRO-CVaR
1: Initialization: w̄1, s̄1 = 0, u0i,t = 0,
2: for r = 1, ..., R do
3: wr

i,0 = w̄r, sri,0 = s̄r, uri,0 = ur−1
0,I

4: for t = 1, ..., I do
5: Each machine samples data zri,t
6: uri,t = (1− β1)u

r
i,t−1 + β1ℓ(w

r
i,t−1; z

r
i,t)

7: vri,t = −∂f(uri,t − sri,t−1) +
K
N , and sri,t = sri,t−1 − η2v

r
i,t

8: mr
i,t = ∂f(uri,t − sri,t−1)∇ℓ(wr

i,t−1, z
r
i,t), and wr

i,t = wr
i,t−1 − η1m

r
i,t

9: end for

10: w̄r+1 = 1
N

N∑
i=1

wr
i,I , s̄r+1 = 1

N

N∑
i=1

sri,I

11: end for

12: Output: w̃ = 1
N

N∑
i=1

wr′

i,t′ , where r′ and t′ are sampled from [1, R] and [1, I], respectively.

We present the formalization of our FGDRO-CVaR method in Algorithm 1. Next, we show the
convergence results of FGDRO-CVaR . We make the following assumptions regarding problem (2).
Assumption 4.1. (1) ∀i and ∀z ∈ Di, ℓ(·, z) is Cg-Lipschitz and Lg-smooth. (2) Ez∈Di∥∇ℓ(w; z)−
∇gi(w)∥2 ≤ σ2, Ez∈Di

∥ℓ(w; z)− gi(w)∥2 ≤ σ2.

Remark. The first assumption about Lipschitz continuity and smoothness of gi is standard in
compositional optimization [22, 66, 67]. The second assumption of bounded variance is also common.
Assumption 4.1 leads to F (w, s) being weakly convex, which is a key step in the analysis as shown
in Appendix A.2

The behavior of the estimator u is examined through the following lemma.
Lemma 4.2. Under Assumption 4.1, by setting η = O

(
1/(R)3/2

)
, β1 = O (1/R), I = O(R),

Algorithm 1 ensures that

E∥uri,t − gi(w̄
r
t )∥2 ≤ (1− β1)E∥uri,t−1 − gi(w̄

r
t−1)∥2 + 2β2

1σ
2 + 3β2η

2I2C2
g +

5

β1
C2

g∥w̄r
t − w̄r

t−1∥2.

The convergence result of FGDRO-CVaR is given in the following theorem.

Theorem 4.3. Under Assumption 4.1, by setting η = O
(
1/(R)3/2

)
, β1 = O (1/R), I = O(R) and

ρ̂ = 2Lg , the Algorithm 1 ensures that for the output (w̃, s̃), there exists (w′, s′) that

∥dist(0, F (w′, s′))∥2 ≤ 1/ρ̂(∥w̃ −w′∥22 + ∥s̃− s′∥22) ≤ O

(
1

R1/2

)
. (4)

Remark. The analysis has utilized Moreau envelop to address the nonsmooth issue [52, 9]. To
achieve an ϵ-near stationary point of F (·), we need to set R = O(1/ϵ4) and I = O(1/ϵ4), and thus
the sample complexity on each machine is RI = O(1/ϵ8). The total sample complexity of O(n/ϵ6)
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by [22] is achieved by the STORM estimator [8] which incurs additional memory and computational
costs due to the requirement of computing gradients using two models at each iteration. Without
the STORM estimator, [22] would exhibit a total sample complexity of O(n/ϵ8). When deployed in
a federated setting, the complexity for each machine would be O(1/ϵ8), aligning with our results
and demonstrating that our approach achieves a linear speed-up in terms of number of machines.
Additionally, although we aggregate certain scalar variables (in FGDRO-CVaR, the scalar variable s;
in FGDRO-KL and FGDRO-KL-Adam to be presented later, the scalar variable v), similar to the
technique in the Remark 3.1 of [61], we can aggregate these variables using homomorphic encryption,
ensuring that their exact values remain confidential.

5 FGDRO-KL

In this section, we present our FGDRO-KL algorithm for solving problem (1) with a KL regularization.
Unlike the CVaR constraints that focus on the top K clients, KL regularization takes into account all
clients, assigning them varying weights. Additionally, FGDRO with KL regularization is smooth,
and strongly concave with respect to p. Nevertheless, it is subject to the simplex constraint on p. To
address this, we use an equivalent form derived from the KKT conditions, as referenced in [56, 30]:

min
w

F (w) = λ log(
1

N

N∑
i=1

exp(Ez∼Diℓ(w; z)/λ)). (5)

This formulation eliminates the constrained vector p, and F (w) is smooth since KL regularization
is strongly concave [6]. However, this formulation has a three-level composition structure and
thus, using a batch of data in a three-level composition can result in biased gradient estimation.
Furthermore, the gradients on one machine are depend on other machines.

Specifically, we denote gi(w) = exp(Ez∈Di
ℓ(w; z)/λ) and g(w) = 1

N

N∑
i=1

gi(w), with ℓ(w;Di) =

Ez∈Diℓ(w; z), then, the gradient of F (w) in (5) is given by:

∇F (w) =
1

N

N∑
i=1

gi(w)

g(w)
∇ℓ(w;Di). (6)

It is crucial to recognize that the gradient for machine i, i.e., ∇ℓ(w;Di), is scaled by gi(w)/g(w).
This scaling indicates that machines experiencing larger loss functions exert more influence over the
training process. To mitigate the biased gradient estimation, we approximate gi(w) and g(w) based
on moving average estimators u and v. On each machine, u serves as a moving average estimator
for the local loss function ℓ(w;Di), with exp(uri,t/λ) providing a local approximation of gi(w).
u is updated and maintained locally without need for averaging during communication rounds. v
estimates the global statistic g(w), and is updated locally but averaged during global communication
rounds. Subsequently, a moving average estimator of the gradient, denoted as m is constructed using
u and v. For specific update rules, please refer to Algorithm 2.

For analysis, we make the following assumptions regarding problem (1) with a KL regularization:
Assumption 5.1. (1) ∀i and ∀z ∈ Di, gi(·) is Cg-Lipschitz and Lg-smooth. (2) Ez∈Di∥∇ℓ(w; z)−
∇ℓ(w;Di)∥2 ≤ σ2, Ez∈Di

∥ℓ(w; z)− ℓ(w;Di)∥2 ≤ σ2. (3) f is Cf -Lipschitz and Lf -smooth. (4)
∀i and ∀z ∈ Di, 0 ≤ ℓ(·; z) ≤ C0, ℓ(·) is Cℓ-Lipschitz and Lℓ-smooth.

The behavior of the u and v estimators can be bounded similar to the previous section and are shown
in Appendix B. The estimator m for gradient can be bounded as

Lemma 5.2. Under Assumption 5.1, with proper constants C1 and G, by setting η = O
(

1√
RI

)
,

β1 = O
(

1√
RI

)
, the Algorithm 2 ensures that

∥m̄r
t −∇F (w̄r

t )∥2 ≤ (1− β3
2
)∥m̄r

t−1 −∇F (w̄r
t−1)∥2 + β3C

2
ℓC

2
1

1

N

N∑
i=1

∥uri,t−1 − ℓ(w̄r
t−1;Di)∥2

+ β3C∥v̄rt − g(w̄r
t )∥2 + 3η∥∇F (w̄r

t−1)∥2 + β2
3C

2
1

σ2

N
+ 2β3C

2
1L

2
ℓη

2I2G2.
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Algorithm 2 FGDRO-KL
1: Initialization: w̄1, u0i,I , v̄1, m̄1

2: for r = 1, ..., R do
3: wr

i,0 = w̄r, mr
i,0 = m̄r, uri,0 = ur−1

i,I , vri,0 = v̄r

4: for t = 1, ..., I do
5: Each machine samples data zri,t
6: uri,t = (1− β1)u

r
i,t−1 + β1ℓ(w

r
i,t−1; z

r
i,t), and vri,t = (1− β2)v

r
i,t−1 + β2 exp(u

r
i,t/λ)

7: hr
i,t =

exp(ur
i,t)

vr
i,t

∇ℓ(wr
i,t−1; z

r
i,t), and mr

i,t=(1−β3)mr
i,t−1 + β3h

r
i,t

8: wr
i,t = wr

i,t−1 − ηmr
i,t

9: end for

10: w̄r+1 = 1
N

N∑
i=1

wr
i,I , v̄r+1 = 1

N

N∑
i=1

vri,I , and m̄r+1 = 1
N

N∑
i=1

mr
i,I

11: end for

12: Output: w̃ = 1
N

N∑
i=1

wr′

i,t′ , where r′ and t′ are sampled from [1, R] and [1, I], respectively.

Algorithm 3 FGDRO-KL-Adam
1: Initialization: w̄1, u0i,I , v̄1, m̄1, q̄1

2: for r = 1, ..., R do
3: wr

i,0 = w̄r, mr
i,0 = m̄r, qr

i,0 = q̄r, uri,0 = ur−1
i,I , and vri,0 = v̄r

4: for t = 1, ..., I do
5: Each machine samples data zri,t
6: uri,t = (1− β1)u

r
i,t−1 + β1ℓ(w

r
i,t−1; z

r
i,t), and vri,t = (1− β2)v

r
i,t−1 + β2 exp(u

r
i,t/λ)

7: hr
i,t =

exp(ur
i,t)

vr
i,t

∇ℓ(wr
i,t−1; z

r
i,t)

8: mr
i,t=(1−β3)mr

i,t−1 + β3h
r
i,t, and qr

i,t = (1−β4)qr
i,t−1 + β4(h

r
i,t)

2

9: wr
i,t = wr

i,t−1 − η
mr

i,t√
qr
i,t+τ

10: end for

11: w̄r+1 = 1
N

N∑
i=1

wr
i,I , v̄r+1 = 1

N

N∑
i=1

vri,I , m̄r+1 = 1
N

N∑
i=1

mr
i,I and qr+1 = 1

N

N∑
i=1

qr
i,I

12: end for

13: Output: w̃ = 1
N

N∑
i=1

wr′

i,t′ , where r′ and t′ are sampled from [1, R] and [1, I], respectively.

The precisions of the u, v,m estimators depend on each other. The idea is to get E∥uri,t−ℓ(w̄r
t ;Di)∥2,

E∥v̄rt − g(w̄r
t )∥2, ∥m̄r

t −∇F (w̄r
t )∥2 and E∥∇F (w̃)∥2 jointly converge, and then we finally have

the following theorem to guarantee the convergence:

Theorem 5.3. Under Assumption 5.1, by setting η = O
(

1√
RI

)
, β1 = O

(
1√
RI

)
, I = R1/3,

Algorithm 2 ensures that

E∥∇F (w̃)∥2 ≤ O

(
1

R2/3

)
. (7)

Remark. To achieve an ϵ-stationary point, i.e., ∥∇F (w̃)∥2 ≤ ϵ2, we need to set R = O(1/ϵ3), I =
O(1/ϵ), η = O(ϵ2) and β1 = O(ϵ2). Compared to [30], our approach maintains a communication
complexity of O(1/ϵ3), but significantly reduces the sample complexity on each machine from
O(1/ϵ6) from O(1/ϵ4), requiring only a batch size of O(1) rather than a large batch size of O(1/ϵ2).
Our results match the communication and sample complexity in [17], which tackles a simpler two-
level compositional problem and achieved sample complexity of O(1/ϵ4) per machine. Considering
that the sample complexity for a two-level compositional problem in a centralized setting would be
O(n/ϵ4) [66], our approach realizes a linear speed-up proportional to the number of machines.
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6 FGDRO-KL-Adam

In this section, we introduce an adaptive algorithm, FGDRO-KL-Adam, to address the problem (5)
with KL regularization, as detailed in Algorithm 3. This algorithm incorporates Adam-type updates
at local steps, which have been shown to outperform SGD in centralized settings. While previous
studies [59] in federated settings have implemented Adam-type updates at the global step but retained
SGD for local updates, which may be sub-optimal.

Similar to Algorithm 2, u and v are used to estimate the local loss and the global function g(w),
respectively. The variables h and m are updated in a manner consistent with Algorithm 2. Under
Assumption 5.1, the behavior of the u, v,m estimators is addressed as previously discussed.

The primary distinction in Algorithm 3 lies in its adaptive updates for the local model wr
i,t. Here,

m serves a role akin to the first-order momentum in Adam, and we introduce qr
i,t to estimate the

second-order momentum:
qr
i,t = (1− β4)m

r
i,t−1 + β4h

r
i,t. (8)

Subsequently, the local models are updated adaptively using the formula:

wr
i,t = wr

i,t−1 − η
mr

i,t√
qr
i,t + τ

, (9)

where both the square root and division are performed element-wise.

A key step in the analysis is to address the coordinate-wise update, as in the following lemma.

Lemma 6.1. Using L-smooth of F , for some proper constants C and G, by setting η = O
(

1√
RI

)
,

β1 = O
(

1√
RI

)
, we have

F (w̄r
t ) ≤ F (w̄r

t−1) +
η

τ
∥∇F (w̄r

t−1)− m̄r
t−1∥2 +

η

τ
β2
3C − η

2(G+ τ)
∥∇F (w̄r

t−1)∥2. (10)

Finally, we show that FGDRO-KL-Adam has same convergence rate as FGDRO-KL.

Theorem 6.2. Under Assumption 5.1, by setting of η = O
(

1√
RI

)
, β1 = O

(
1√
RI

)
, and I = R1/3,

Algorithm 3 achieves:

E[∥∇F (w̃)∥2] ≤ O

(
1

R2/3

)
. (11)

Remark. To achieve an ϵ-stationary point, i.e., ∥∇F (w̃)∥2 ≤ ϵ2, we just need to set R = O(1/ϵ3),
I = O(1/ϵ), η = O(ϵ2) and β1 = O(ϵ2). The communication and sample complexities are the same
as in Theorem 5.3. Our analysis, following the framework in [16], requires

√
qr
i,t + τ to be both

upper and lower bounded. It is achieved by the upper bound assumption and choice of τ , ensuring
τ ≤

√
qr
i,t + τ ≤ G+ τ , which is utilized similarly in [59]. However, Guo et al. [16] did not cover

the federated learning scenario or the compositional problems. It is important to note that we have
not developed an Adam-type variant for FGDRO-CVaR. This is due to the need for accurate gradient
estimation in the analysis of Adam-type updates, which is achieved using the moving estimator m.
But in CVaR variant, the nonsmooth nature renders a moving average for subgradient ∂F (w) not
provably accurate.

7 Experiments

Datasets and Neural Networks We use Pile [15], CivilComments [5], Camelyon17 [1], iWild-
Cam2020 [3], and Poverty [74]. For Pile, we preprocess it as [72], for the others, we use the
preprocessed version by [37]. We utilized natural data splits where data from the same hospital, web
source, location, or demographic group were placed on the same client machine. These experiments
have involved with highly imbalanced number of data on clients. Data statistics are presented in
the Appendix E. Additiona experiments on Cifar 10 with Dirichlet distributions over 100 clients are
reported in Appendix G.
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The Pile data set is a large language data set. We use the uncopyrighted version [29] which has
17 domains, and each domain is allocated to one machines. We use the GPT2 model [58] as
implemented by [28] with 12 hidden layers, 12 attention heads, and 768 embeddings and hidden
states. We measure the performance using worst log-perplexity and average log-perplexity of
testing groups. CivilComments is a toxicity classification of the online comment task in diversified
demographic identities. We train on four groups based on the presence of ’Black’ and toxicity labels,
deploying each on a separate machine, and use the DistilBERT base-uncased model [60] to predict
toxicity. We measure the performance using worst group accuracy and average accuracy of testing
groups. Camelyon17 focuses on tumor detection from lymph node images [1], with data from five
hospitals split into training (3), validation (1), and testing (1) sets. Training uses three machines, each
processing data from one hospital, using DenseNet-121 [26]. The iWildCam2020 dataset consists of
wildlife images from various camera traps [3], the dataset is split into training, validation, and testing
segments. We use ResNet50 [21] across all datasets and measure performance via Macro F1 score.
The Poverty dataset contains geographic data aimed at predicting regional poverty levels [74]. We
use ResNet50 [21] for our models and evaluate performance using both the Pearson correlation on
the worst-performing region and the average across regions.

Table 2: Experiments on Natural Language Task. PPL is abbrevation of perplexity.
Datasets Pile CivilComments
Metric Worst Log-PPL Average Log-PPL Worst Acc Average Acc
FedAvg 8.085(±0.0012) 6.785 (±0.0020) 0.6415 (±0.0007) 0.7635 (±0.0012)

SCAFFOLD 7.975 (±0.0024) 6.901 (±0.0031) 0.6436 (±0.0016) 0.7633 (±0.0019)
FedProx 8.079 (±0.0038) 6.724 (±0.0046) 0.6430 (±0.0021) 0.7692 (±0.0025)

FedAdam 7.242 (±0.0048) 6.479 (±0.0037) 0.6567 (±0.0023) 0.7664 (±0.0020)
DRFA 8.014 (±0.0053) 6.702 (±0.0062) 0.6327 (±0.0019) 0.7413 (±0.0022)

DR-DSGD 8.023 (±0.0033) 6.693 (±0.0030) 0.6272 (±0.0006) 0.7523 (±0.0011)
FGDRO-CVaR 8.145 (±0.0039) 6.907 (±0.0046) 0.6693 (±0.0015) 0.7571 (±0.0012)

FGDRO-KL 7.932 (±0.0048) 6.664 (±0.0051) 0.6921 (±0.0016) 0.7734 (±0.0020)
FGDRO-KL-Adam 3.608 (±0.0052) 2.653 (±0.0040) 0.6628 (±0.0007) 0.7614 (±0.0005)

Table 3: Experiments on Image Classification Task
Datasets Camelyon17 iWildCam2020 PovertyMap
Metric Acc Macro F1 Worst Pearson Average Pearson
FedAvg 0.8723 (±0.0074) 0.4964 (±0.0125) 0.7301 (±0.0064) 0.7782 (±0.0077)

SCAFFOLD 0.8851 (±0.0063) 0.4527 (±0.0331) 0.7229 (±0.0049) 0.7814 (±0.0042)
FedProx 0.8703 (±0.0157) 0.3925 (±0.0228) 0.7305 (±0.0063) 0.7641 (±0.0070)

FedAdam 0.9493 (±0.0122) 0.3570 (±0.0203) 0.7294 (±0.0058) 0.8273 (±0.0041)
DRFA 0.8301 (±0.0174) 0.4200 (±0.0149) 0.7071(±0.0026) 0.7665 (±0.0023)

DR-DSGD 0.9270 (±0.0095) 0.3157 (±0.0227) 0.7155 (±0.0063) 0.7770 (±0.0059)
FGDRO-CVaR 0.8667 (±0.0110) 0.5080 (±0.0174) 0.7443 (±0.0052) 0.7977 (±0.0051)

FGDRO-KL 0.9243 (±0.0129) 0.5201 (±0.0239) 0.7254 (±0.0066) 0.7829 (±0.0062)
FGDRO-KL-Adam 0.9399 (±0.0154) 0.4489(±0.0205) 0.7827 (±0.0071) 0.8225 (±0.0060)

Baselines We compare our algorithms FGDRO-CVaR, FGDRO-KL, and FGDRO-KL-Adam with
four baselines: FedAvg [48], SCAFFOLD [34], FedProx[40], FedAdam [59], DRFA[11], and DR-
DSGD [30].

We tune the initial step size in [1e-4, 1e-3, 1e-2, 1e-1]. All algorithms set the communication
interval I = 32 unless otherwise specified. The local mini-batch sizes are set to 32. Experiments
are run for 20K local iterations except for Pile, which runs for 200K iterations. The β parameters of
FGDRO-KL and FGDRO-KL-Adam are tuned in [0.01, 0.1, 0.2, 0.5]. For each algorithm, we repeat
the experiments 3 times with different random seeds and report the averaged performance. Following
[72], our FGDRO algorithms for Pile initially train for 20K iterations to obtain domain weights,
which are then fixed during subsequent training phases.

Results We report the experimental results for natural language processing in Table 2 and those for
computer vision in Table 3. We can see that our methods outperform the baselines in most tasks. Our
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approaches improve worst-case performance without hurting average case performance. Furthermore,
FGDRO-KL-Adam has demonstrated superior performance compared to FGDRO-KL in most cases.

Ablation Studies Here we present some ablation study to examine some aspects of our algorithm
design. First, in Figure 1(a), we vary the communication interval I in experiments on the Camelyon
dataset. We can see that both our FGDRO-CVaR and FGDRO-KL-Adam algorithms can tolerate
skipping a large number of communications without degrading the performance.

To demonstrate the effect of the local adaptive updates. We develop a LocalAdam algorithm (see
Appendix D), which optimizes ERM using our design of using Adam steps in local updates. The
results are plotted in Figure 1(b). We can see that the LocalAdam algorithm outperforms FedAdam,
which uses SGD in local steps and only uses adaptive steps in global communication rounds.

(a) Varying I (b) Effectiveness of Local Adam Steps

Figure 1: Ablation Experiments

8 Conclusions

Our algorithm provides a significant advantage in addressing federated group distributionally robust
optimization while maintaining low communication and computational complexity. Furthermore,
incorporating local adaptive steps has the potential to accelerate the training process beyond the
capabilities of traditional approaches that employ SGD in local steps. Various experiments on natural
lanugage processing and computer vision have confirmed our theoretical results and underscored the
effectiveness of our algorithms. It remains to develop a provable adaptive algorithm for FGDRO-
CVaR, which is currently absent due to the non-smoothness and compositional problem structure.

9 Impact Statements

This paper is meant to advance the field of federated machine learning. We do not see noticeable
negative impact.
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A Analysis of FGDRO-CVaR

For non-smooth functions, since it is usually difficult or even impossible to find an ϵ-stationary point,
we are interested in finding an ϵ-near stationary point. Following a common technique for finding
an ϵ-near stationary point for weakly convex function, we use the Moreau envelope of a general
non-smooth ρ-weakly-convex F (x) [9], defined as

ψ(1/ρ̂)(x) = min
x′

[F (x′) +
ρ̂

2
∥x′ − x∥2].

By the properties of Moreau envelop [52, 9], we have that if ρ̂ = 2ρ, then ψ1/ρ̂(·) is smooth and an
ϵ-stationary point of ψ1/ρ̂(·) is an ϵ-near stationary point of F (·).

Since F (w, s) is non-smooth, we investigate its Moreau envelop, which is

ψ(1/ρ̂)(w, s) = min
w′,s′

[F (w′, s′) +
ρ̂

2
(∥w′ −w∥2 + ∥s′ − s∥2)].

A.1 Proof of Lemma 4.2

Proof. By updating rule, we have

E∥uri,t − gi(w̄
r
t )∥2 = E

[
∥(1− β1)u

r
i,t−1 + β1ℓ(w

r
i,t−1, z

r
i,t)− gi(w̄

r
t )∥2

]
≤ E

[(
1 +

β1
2

)
∥(1− β1)u

r
i,t−1 + β1ℓ(w

r
i,t−1, z

r
i,t)− gi(w̄

r
t−1)∥2

]
+ (1 +

2

β1
)E∥gi(w̄r

t )− gi(w̄
r
t−1)∥2.

(12)

where
E∥(1− β1)u

r
i,t−1 + β1ℓ(w

r
i,t−1, z

r
i,t)− gi(w̄

r
t−1)∥2

≤ E∥(1− β1)(u
r
i,t−1 − gi(w̄

r
t−1)) + β1(ℓ(w̄

r
t−1, z

r
i,t)− gi(w̄

r
t−1)) + β1(ℓ(w

r
i,t−1, z

r
i,t)− ℓ(w̄r

t−1, z
r
i,t))∥2

≤ (1 +
β1
2
)E∥(1− β1)(u

r
i,t−1 − gi(w̄

r
t−1)) + β1(ℓ(w̄

r
t−1, z

r
i,t)− gi(w̄

r
t−1))∥2

+ (1 +
2

β1
)β2

1∥ℓ(wr
i,t−1, z

r
i,t)− ℓ(w̄r

t−1, z
r
i,t)∥2

= (1 +
β1
2
)E∥(1− β1)(u

r
i,t−1 − gi(w̄

r
t−1))∥2 + (1 +

β1
2
)β2

1∥ℓ(w̄r
t−1, z

r
i,t)− gi(w̄

r
t−1)∥2

+ (1 +
2

β1
)β2

1∥ℓ(wr
i,t−1, z

r
i,t)− ℓ(w̄r

t−1, z
r
i,t)∥2,

(13)

where the last equality uses Et−1[ℓ(w̄
r
t−1, z

r
i,t)− gi(w̄

r
t−1)] = 0.

Since f(·, z) and g(·, z) are Lipschitz and smooth, we know ∥mr
i,t∥2 ≤ C2

g . We also have

∥w̄r
t − w̄r

i,t∥2 = ∥(w̄r − η
1

N

N∑
i=1

t∑
t′=1

mr
i,t′)− (w̄r − η

t∑
t′=1

mr
i,t′)∥2

≤ 2∥ 1

N

N∑
i=1

t∑
t′=1

mr
i,t′∥2 + 2∥

t∑
t′=1

mr
i,t′∥2 ≤ 4η2I2C2

g .

(14)

Therefore,

E∥uri,t − gi(w̄
r
t )∥2 ≤ (1− β1)E∥uri,t−1 − gi(w̄

r
t−1)∥2

+ 2β2
1σ

2 + 4β1C
2
ℓ ∥w̄r

t−1 − w̄r
i,t−1∥2 + (1 +

2

β1
)∥gi(w̄r

t )− gi(w̄
r
t−1)∥2

≤ (1− β1)E∥uri,t−1 − gi(w̄
r
t−1)∥2 + 2β2

1σ
2 + 4β1η

2I2C2
g +

3

β1
C2

g∥w̄r
t − w̄r

t−1∥2
(15)
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A.2 Proof of Theorem 4.3

Proof. Since f(·) is 1-Lipschitz, convex and monitonically nondecreasing, while ℓ(·, z) is Cg-
Lipschitz and Lg-smooth, we know that F (w, s) is ρF := Lg-weakly convex by

f(g(w), s) ≥ f(g(w′), s′) + ⟨∂g(f(g(w′), s′)), g(w)− g(w′)⟩+ ⟨∇g(f(g(w
′), s′)), s− s′⟩

≥ f(g(w′), s′) + ⟨∇g(f(g(w
′), s′))∇g(w′),w −w′⟩ − Lg

2
∥w −w′∥2

+ ⟨∇g(f(g(w
′), s′)), s− s′⟩,

(16)

where the first inequality uses the convexity of f(·), and the second inequality uses that ∂f(·) ≥= 0
and the Lg-smoothness of g(·).
With ρ̂ = max 2ρF , 1, we define

ψ(1/ρ̂)(w̄
r
t , s̄

r
t ) = min

w′,s′
[F (w′, s′) +

ρ̂

2
(∥w′ − w̄r

t ∥2 + ∥s′ − s̄rt∥2)] (17)

and

(ŵr
t , ŝ

r
t ) = arg min

w′,s′
[F (w′, s′) +

ρ̂

2
(∥w′ − w̄r

t ∥2 + ∥s′ − s̄rt∥2)], (18)

then we have the following [9],

∥ŵr
t − w̄r

t ∥22 + ∥ŝrt − s̄rt∥2 =
1

ρ̂
∥∇ψ(1/ρ̂)(w̄

r
t , s̄

r
t )∥2. (19)

Then

E[ψ1/ρ̂(w̄
r
t , s̄

r
t )] = Emin

w′,s′

[
F (w′, s′) +

ρ̂

2
(∥w′ − w̄r

t ∥2 + ∥s′ − s̄rt∥2)
]

≤ E
[
F (ŵr

t−1, ŝ
r
t−1) +

ρ̂

2
(∥ŵr

t−1 − w̄r
t ∥2 + ∥ŝrt−1 − s̄rt∥2)

]
= E

[
F (ŵr

t−1, ŝ
r
t−1) +

ρ̂

2
(∥ŵr

t−1 − (w̄r
t−1 − η

1

N

N∑
i=1

mr
i,t)∥2 + ∥ŝrt−1 − (s̄rt−1 − η

1

N

N∑
i=1

vri,t)∥2)
]

≤ E
[
F (ŵr

t−1, ŝ
r
t−1) +

ρ̂

2
(∥ŵr

t−1 − w̄r
t−1∥2 + ∥ŝrt−1 − s̄rt−1∥2)

]
+ ρ̂E

[
η⟨ŵr

t−1 − w̄r
t−1,

1

N

N∑
i=1

mr
i,t⟩+ η⟨ŝrt−1 − s̄rt−1,

1

N

N∑
i=1

vri,t⟩
]
+ ρ̂η2C2

g ,

(20)

where we used ∥mr
i,t∥2 ≤ C2

g . Denote m̂r
t = 1

N

N∑
i=1

∂uf(u
r
i,t, s

r
i,t−1)∇ℓ(w̄r

i,t−1; z
r
i,t), v̂

r
t =

− 1
N

N∑
i=1

∂sf(u
r
i,t, s

r
i,t−1), where the sub-differential ∂uf(uri,t, s

r
i,t−1) and ∂sf(uri,t, s

r
i,t−1) are se-
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lected the same in mr
i,t and vri,t, respectively. Thus,

E[ψ1/ρ̂(w̄
r
t , s̄

r
t )]

≤ E
[
F (ŵr

t−1, ŝ
r
t−1) +

ρ̂

2
(∥ŵr

t−1 − w̄r
t−1∥2 + ∥ŝrt−1 − s̄rt−1∥2)

]
+ ρ̂E

[
η⟨ŵr

t−1 − w̄r
t−1, m̂

r
t ⟩+ η⟨ŝrt−1 − s̄rt−1, v̂

r
t ⟩
]

+ ρ̂E
[
η⟨ŵr

t−1 − w̄r
t−1, m̄

r
t − m̂r

t ⟩+ η⟨ŝrt−1 − s̄rt−1, v̄
r
t − v̂rt ⟩

]
+ ρ̂η2C2

g

≤ E
[
F (ŵr

t−1, ŝ
r
t−1) +

ρ̂

2
(∥ŵr

t−1 − w̄r
t−1∥2 + ∥ŝrt−1 − s̄rt−1∥2)

]
+ ρ̂E

[
η⟨ŵr

t−1 − w̄r
t−1, m̂

r
t ⟩+ η⟨ŝrt−1 − s̄rt−1, v̂

r
t ⟩
]

+
ηρ̂

2
∥ŵr

t−1 − w̄r
r−1∥2 +

ηρ̂

2
∥ŝrt−1 − s̄rr−1∥2 +

ηρ̂

2
∥m̂r

t − m̄r
t∥2 +

ηρ̂

2
∥v̂rt − v̄rt ∥2 + ρ̂η2C2

g

(21)

Since f is convex, ∂uf ≥ 0 and gi is ρg := Lg-weakly convex, we have

f(gi(ŵ
r
t−1), ŝ

r
t−1)− f(uri,t, s

r
i,t−1)

≥ ∂uf(u
r
i,t, s

r
i,t−1)(gi(ŵ

r
t−1)− uri,t) + ∂sf(u

r
i,t, s̄

r
t−1)(ŝ

r
t−1 − sri,t−1)

≥ ∂uf(u
r
i,t, s

r
i,t−1)

[
gi(w̄

r
t−1)− uri,t + ⟨∇gi(w̄r

t−1), ŵ
r
t−1 − w̄r

t−1⟩ −
ρg
2
∥ŵr

t−1 − w̄r
t−1∥2

]
+ ∂sf(u

r
i,t, s

r
i,t−1)(ŝ

r
t−1 − sri,t−1).

(22)

Noting ∂uf ≤ 1, (22) yields

⟨m̂r
t , ŵ

r
t−1 − w̄r

t−1⟩+ ⟨v̂rt , ŝrt−1 − s̄rt−1⟩

=
1

N

N∑
i=1

⟨∂uf(uri,t, sri,t−1)∇gi(w̄r
t−1), ŵ

r
t−1 − w̄r

t−1⟩+
1

N

N∑
i=1

∂sf(u
r
i,t, s

r
i,t−1)(ŝ

r
t−1 − sri,t−1)

≤ 1

N

N∑
i=1

[
f(gi(ŵ

r
t−1), ŝ

r
t−1)− f(uri,t, s

r
i,t−1)− ∂uf(u

r
i,t, s

r
i,t−1)[gi(w̄

r
t−1)− uri,t]

]
+
ρg
2
∥ŵr

t−1 − w̄r
t−1∥2

(23)

Putting (21) and (23) together, we obtain

E[ψ1/ρ̂(w̄
r
t , s̄

r
t )]

≤ E[ψ1/ρ̂(w̄
r
t−1, s̄

r
t−1) +

ηρ̂

2
∥ŵr

t−1 − w̄r
r−1∥2 +

ηρ̂

2
∥ŝrt−1 − s̄rr−1∥2 +

ηρ̂

2
∥m̂r

t − m̄r
t∥2 +

ηρ̂

2
∥v̂rt − v̄rt ∥2]

+ ρ̂η2C2
g + ηρ̂

1

N

N∑
i=1

E
[
f(gi(ŵ

r
t−1), ŝ

r
t−1)− f(uri,t, s

r
i,t−1)− ∂uf(u

r
i,t, s

r
i,t−1)[gi(w̄

r
t−1)− uri,t]

+
ρg
2
∥ŵr

t−1 − w̄r
t−1∥2

]
= E[ψ1/ρ̂(w̄

r
t−1, s̄

r
t−1) +

ηρ̂

2
∥ŵr

t−1 − w̄r
r−1∥2 +

ηρ̂

2
∥ŝrt−1 − s̄rr−1∥2 +

ηρ̂

2
∥m̂r

t − m̄r
t∥2 +

ηρ̂

2
∥v̂rt − v̄rt ∥2]

+ ρ̂η2C2
g + ηρ̂

1

N

N∑
i=1

E
[
f(gi(ŵ

r
t−1), ŝ

r
t−1)− f(gi(w̄

r
t−1), s

r
i,t−1) + f(gi(w̄

r
t−1), s

r
i,t−1)− f(uri,t, s

r
i,t−1)

− ∂uf(u
r
i,t, s

r
i,t−1)[gi(w̄

r
t−1)− uri,t] +

ρg
2
∥ŵr

t−1 − w̄r
t−1∥2

]
(24)
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Since f(gi(w), s) is ρF -weakly convex in w, s, f(gi(w), s) + ρ̂
2 (∥w − w̄r

t−1∥2 + ∥s− s̄rt−1∥2) is
ρ̂− ρF -strongly convex in w, s. Therefore, we get

f(gi(ŵ
r
t−1), ŝ

r
t−1)− f(gi(w̄

r
t−1), s

r
i,t−1)

= [f(gi(ŵ
r
t−1), ŝ

r
t−1) +

ρ̂

2
(∥ŵr

t−1 − w̄r
t−1∥2 + ∥ŝrt−1 − s̄rt−1∥2)]

− [f(gi(w̄
r
t−1), s

r
i,t−1) +

ρ̂

2
(∥w̄r

t−1 − w̄r
t−1∥2 + ∥sri,t−1 − s̄rt−1∥2)]

− ρ̂

2
(∥ŵr

t−1 − w̄r
t−1∥2 + ∥ŝrt−1 − sri,t−1∥2) +

ρ̂

2
∥sri,t−1 − s̄rt−1∥2

≤ (
ρF
2

− ρ̂)(∥ŵr
t−1 − w̄r

t−1∥2 + ∥ŝrt−1 − sri,t−1∥2) +
ρ̂

2
∥sri,t−1 − s̄rt−1∥2

≤ −ρF
2
(∥ŵr

t−1 − w̄r
t−1∥2 + ∥ŝrt−1 − s̄rt−1∥2) + (ρ̂+ ρF )∥sri,t−1 − s̄rt−1∥2.

(25)

Thus,

E[ψ1/ρ̂(w̄
r
t , s̄

r
t )]

≤ ψ1/ρ̂(w̄
r
t−1, s̄

r
t−1) +

ηρ̂

2
∥ŵr

t−1 − w̄r
r−1∥2 +

ηρ̂

2
∥ŝrt−1 − s̄rr−1∥2 +

ηρ̂

2
∥m̂r

t − m̄r
t∥2 +

ηρ̂

2
∥v̂rt − v̄rt ∥2

+ ρ̂η2C2
g + ηρ̂

1

N

∑
i

[
f(gi(ŵ

r
t−1), ŝ

r
t−1)− f(gi(w̄

r
t−1), s

r
i,t−1) + f(gi(w̄

r
t−1), s

r
i,t−1)− f(uri,t, s

r
i,t−1)

− ∂uf(u
r
i,t, s

r
i,t−1)[gi(w̄

r
t−1)− uri,t] +

ρg
2
∥ŵr

t−1 − w̄r
t−1∥2

]
≤ ψ1/ρ̂(w̄

r
t−1, s̄

r
t−1) +

ηρ̂

2
∥ŵr

t−1 − w̄r
r−1∥2 +

ηρ̂

2
∥ŝrt−1 − s̄rr−1∥2 +

ηρ̂

2
∥m̂r

t − m̄r
t∥2 +

ηρ̂

2
∥v̂rt − v̄rt ∥2

+ ρ̂η2C2
g + ηρ̂(

ρF
2

− ρ̂)(∥ŵr
t−1 − w̄r

t−1∥2 + ∥ŝrt−1 − s̄rt−1∥2) + ηρ̂(ρ̂+ ρF )
1

N

N∑
i=1

∥sri,t−1 − s̄rt−1∥2

+ ηρ̂Cf
1

N

∑
i

∥gi(w̄r
t−1)− uri,t∥+ ηρ̂ρg∥ŵr

t−1 − w̄r
t−1∥2

(26)

It follows that

E[ψ1/ρ̂(w̄
r
t , s̄

r
t )]

≤ ψ1/ρ̂(w̄
r
t−1, s̄

r
t−1)−

ρ̂

4
ηρ̂(∥ŵr

t−1 − w̄r
t−1∥2 + ∥ŝrt−1 − s̄rt−1∥2)

+ ρ̂η2C2
g + ηρ̂Cf

1

N

∑
i

∥gi(w̄r
t−1)− uri,t∥+

ηρ̂

2
∥m̂r

t−1 − m̄r
t−1∥2 +

ηρ̂

2
∥v̂rt−1 − v̄rt−1∥2

≤ ψ1/ρ̂(w̄
r
t−1, s̄

r
t−1)−

η

4
∥∇ψ1/ρ̂(w̄

r
t−1, s̄

r
s−1)∥2 + ρ̂η2C2

g

+ ηρ̂Cf
1

N

∑
i

∥gi(w̄r
t−1)− uri,t∥+

ηρ̂

2
η2I2C2

g .

(27)

1

RI

R∑
r=1

I∑
t=1

E∥∇ψ1/ρ̂(w̄
r
t−1, s̄

r
s−1)∥2 ≤

ψ1/ρ̂(w̄
r
0, s̄

r
0)

ηRI
+ ηρ̂C2

g +
1

NRI

R∑
r=1

I∑
t=1

N∑
i=1

E∥gi(w̄r
t−1)− uri,t∥+ η2I2C2

g .

(28)
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Hence, taking telescoping sum over Lemma 4.2 sum we have

1

RIN

R∑
r=1

I∑
t=1

N∑
i=1

E∥(uri,t−1 − gi(w̄
r
t−1))∥2

≤ 1

β1RIN

N∑
i=1

E∥(u0i,0 − gi(w̄
0
0))∥2) + 2β1σ

2 + η2I2C2
g +

η2

β2
1

C2
g .

(29)

Thus,

E∥∇ψ1/ρ̂(w̃, s̃)∥2 =
1

RI

R∑
r=1

I∑
t=1

E∥∇ψ1/ρ̂(w̃, s̃)∥2 ≤ O

(
1

ηRI
+ η +

1

β1RI
+
√
β1 + ηI +

η

β1

)
.

(30)

With

(ŵ, ŝ) = arg min
w′,s′

[F (w′, s′) +
ρ̂

2
(∥w′ − w̃∥2 + ∥s′ − s̃∥2)], (31)

We also have that ∥ŵ − w̃∥2 + ∥ŝ − s̃∥2 = ρ̂∥∇ψ1/ρ̂(w̃, s̃)∥2, |dist(0, ∂F (ŵ, ŝ))|2 ≤
∥∇ψ1/ρ̂(w̃, s̃)∥2 [9]. We can conclude by setting parameters as in the theorem.

B Analysis of FGDRO-KL

B.1 Lemmas

The behavior of u, which is an estimator of ∇gi(w)’s, is given in the following lemma.

Lemma B.1. Under Assumption 5.1, with some constant G, by setting η = O
(

1√
RI

)
, β1 =

O
(

1√
RI

)
, Algorithm 2 ensures that

E∥uri,t − ℓ(w̄r
t ;Di)∥2 ≤ (1− β1

2
)E∥uri,t−1 − ℓ(w̄r

t−1;Di)∥2 + 3β1η
2β2

3I
4

+ 12β1C
2
ℓ η

2I

t−1∑
τ=0

E∥m̄r
τ∥2 + β2

1σ
2 +

3

β1
C2

ℓ η
2E∥m̄r

t∥2.
(32)

The behavior of v, which is an estimator of 1
N

∑
i gi(w), is given in the following lemma.

Lemma B.2. Under Assumption 5.1, with some constant C1, by setting η = O
(

1√
RI

)
, β1 =

O
(

1√
RI

)
, Algorithm 2 ensures that

E∥v̄rt − g(w̄r
t )∥2 ≤ (1− β2)E∥v̄rt−1 − g(w̄r

t−1)∥2

+ 3β2
1

N

N∑
i=1

C1E∥uri,t − ℓ(w;Di)∥2 +
3

β2
C2

gE∥w̄r
t − w̄r

t−1∥2.
(33)
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B.2 Proof of Lemma B.1

Proof. Denoting w̄r
t = 1

N

N∑
i=1

w̄r
i,t, we have w̄r

t = w̄r
t−1 − ηm̄r

t , and

E∥uri,t − ℓ(w̄r
t ;Di)∥2 = E∥(1− β1)u

r
i,t−1 + β1ℓ(w

r
i,t−1; z

r
i,t)− ℓ(w̄r

t ;Di)∥2

= E∥(1− β1)(u
r
i,t−1 − ℓ(w̄r

t−1;Di)) + β1(ℓ(w
r
i,t−1; z

r
i,t)− ℓ(w̄r

t−1;Di)) + (ℓ(w̄r
t−1;Di)− ℓ(w̄r

t ;Di))∥2

≤ E
(
1 +

β1
2

)
∥(1− β1)(u

r
i,t−1 − ℓ(w̄r

t−1;Di)) + β1(ℓ(w
r
i,t−1; z

r
i,t)− ℓ(w̄r

t−1;Di))∥2

+ E
(
1 +

2

β1

)
∥ℓ(w̄r

t−1;Di)− ℓ(w̄r
t ;Di)∥2

≤
(
1 +

β1
2

)
∥(1− β1)(u

r
i,t−1 − ℓ(w̄r

t−1;Di)) + β1(ℓ(w
r
i,t−1; z

r
i,t)− ℓ(wr

i,t−1;Di))

+ β1(ℓ(w
r
i,t−1;Di)− ℓ(w̄r

t−1;Di))∥2 +
3

β1
C2

ℓ ∥w̄r
t−1 − w̄r

t ∥2

(a)
=

(
1 +

β1
2

)
E∥(1− β1)(u

r
i,t−1 − ℓ(w̄r

t−1;Di)) + β1(ℓ(w
r
i,t−1;Di)− ℓ(w̄r

t−1;Di))∥2

+ β2
1E∥ℓ(wr

i,t−1; z
r
i,t)− ℓ(wr

i,t−1;Di)∥2 +
3

β1
C2

ℓE∥w̄r
t−1 − w̄r

t ∥2

≤
(
1 +

β1
2

)2

(1− β1)
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t−1;Di)∥2 +
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(34)

where (a) holds due to the fact that Et−1[ℓ(w
r
i,t; z

r
i,t)− ℓ(wr

i,t;Di)] = 0. Moreover, we have

E∥ℓ(wr
i,t−1;Di)− ℓ(w̄r

t−1;Di)∥2

≤ C2
ℓE∥wr

i,t−1 − w̄r
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i,τ∥2 + 2C2

ℓ η
2E∥ 1

N

N∑
k=1

t−1∑
τ=1

mr
k,τ∥2
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(35)

and

E∥mr
i,τ − m̄r

τ∥2 = E
∥∥∥∥
(
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τ−1β3

1
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r
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0

)

−
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t∑
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1

N
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1
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r
k,t) + (1− β3)

τm̄r
0
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1
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r
τ,t)∥2

+ 2E∥
t∑

τ=1

(1− β3)
τ−1β3

1

N

N∑
k=1

1

vrk,t
g(urk,t)∇ℓ(wr
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r
k,t)∥2,

(36)
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which yields

E∥mr
i,τ − m̄r

τ∥2

≤ 2t

t∑
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3E[∥

1

vri,τ
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r
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1

N
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r
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)
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3C
2
1 (σ

2 + C2
ℓ ),

(37)

with C1 = exp(C0/λ). Thus,

E∥uri,t − ℓ(w̄r
t ;Di)∥2 ≤ (1− β1

2
)E∥uri,t−1 − ℓ(w̄r

t−1;Di)∥2 + 3β1η
2β2

3I
4
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t∥2,
(38)

with C2 = 288(C2
ℓC

2
1 (σ

2 + C2
ℓ )).

B.3 Proof of Lemma B.2

Proof. We have

∥v̄rt − g(w̄r
t )∥2 = ∥(1− β2)v̄

r
t−1 + β2

1

N

N∑
i=1

exp(uri,t/λ)− g(w̄r
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=

∥∥∥∥(1− β2)(v̄
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)∥∥∥∥∥
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∥∥∥∥∥ 1
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(39)

where C1 = exp(C0/λ).
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B.4 Proof of Lemma 5.2

Proof. Here we analyze the m̄, which is the moving average estimator of the gradient,

∥m̄r
t −∇F (w̄r

t )∥2 =

∥∥∥∥(1− β3)m̄
r
t−1 + β3

1

N

N∑
i=1

1

vri,t
g(uri,t)∇ℓ(wr

i,t−1; z
r
i,t)−∇F (w̄r

t )

∥∥∥∥2
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r
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N
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1

vri,t
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i,t−1; z
r
i,t)−∇F (w̄r

t−1))

+∇F (w̄r
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∥∥∥∥2
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2
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r
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N
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1

vri,t
exp(uri,t/λ)∇ℓ(wr

i,t−1; z
r
i,t)−∇F (w̄r

t−1))

∥∥∥∥∥
2

︸ ︷︷ ︸
(A)

+

(
1 +

2

β3

)
∥∇F (w̄r

t−1)−∇F (w̄r
t )∥2,

(40)
where

(A) =

∥∥∥∥(1− β3)(m̄
r
t−1 −∇F (w̄r

t−1))

+ β3

(
1

N

N∑
i=1

1

vri,t
exp(uri,t/λ)∇ℓ(wr

i,t−1; z
r
i,t)−

1

N

N∑
i=1

1

vri,t
exp(uri,t−1/λ)∇ℓ(wr

i,t−1; z
r
i,t)

)

+ β3

(
1

N

N∑
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1

vri,t
exp(uri,t−1/λ)∇ℓ(wr

i,t−1; z
r
i,t)−

1

N

N∑
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1

vri,t
exp(uri,t−1/λ)∇ℓ(wr

i,t−1;Di)

)
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(
1

N

N∑
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1

vri,t
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i,t−1;Di)−
1

N

N∑
i=1

1

vri,t
exp(ℓ(w̄r

t−1;Di)/λ)∇ℓ(wr
i,t−1;Di)

)

+ β3

(
1

N

N∑
i=1

1

vri,t
exp(ℓ(w̄r

t−1;Di)/λ)∇ℓ(wr
i,t−1;Di)−

1

N

N∑
i=1

1
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t−1;Di)/λ)∇ℓ(w̄r
t−1;Di)

)
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(
1

N

N∑
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1

v̄rt
exp(ℓ(w̄r

t−1;Di)/λ)∇ℓ(w̄r
t−1;Di)−∇F (w̄r

t−1)

)∥∥∥∥2,
≤
(
1 +

β3
2

)∥∥∥∥(1− β3)(m̄
r
t−1 −∇F (w̄r

t−1))

+ β3

(
1

N

N∑
i=1

1

vri,t
exp(uri,t−1/λ)∇ℓ(wr

i,t−1; z
r
i,t)−

1

N

N∑
i=1

1

vri,t
exp(uri,t−1/λ)∇ℓ(wr

i,t−1;Di)

)

+ β3

(
1

N

N∑
i=1

1

vri,t
exp(uri,t−1/λ)∇ℓ(wr

i,t−1;Di)−
1

N

N∑
i=1

1

vri,t
exp(ℓ(w̄r

t−1;Di)/λ)∇ℓ(wr
i,t−1;Di)

)

+ β3

(
1

N

N∑
i=1

1

vri,t
exp(ℓ(w̄r

t−1;Di)/λ)∇ℓ(wr
i,t−1;Di)−

1

N

N∑
i=1

1

v̄rt
exp(ℓ(w̄r

t−1;Di)/λ)∇ℓ(w̄r
t−1;Di)

)

+ β3

(
1

N

N∑
i=1

1

v̄rt
exp(ℓ(w̄r

t−1;Di)/λ)∇ℓ(w̄r
t−1;Di)−∇F (w̄r

t−1)

)∥∥∥∥2,
+ (1 +

2

β3
)β2

3

∥∥∥∥∥ 1

N

N∑
i=1

1

vri,t
exp(uri,t/λ)∇ℓ(wr

i,t−1; z
r
i,t)−

1

N

N∑
i=1

1

vri,t
exp(uri,t−1/λ)∇ℓ(wr

i,t−1; z
r
i,t)

∥∥∥∥∥
2

,

(41)
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which is followed by

(A) ≤
(
1 +

β3

2

)∥∥∥∥(1− β3)(m̄
r
t−1 −∇F (w̄r

t−1))

+ β3

(
1

N

N∑
i=1

1

vri,t
exp(ur

i,t−1/λ)∇ℓ(wr
i,t−1;Di)−

1

N

N∑
i=1

1

vri,t
exp(ℓ(w̄r

t−1;Di)/λ)∇ℓ(wr
i,t−1;Di)

)

+ β3

(
1

N

N∑
i=1

1

vri,t
exp(ℓ(w̄r

t−1;Di)/λ)∇ℓ(wr
i,t−1;Di)−

1

N

N∑
i=1

1

v̄rt
exp(ℓ(w̄r

t−1;Di)/λ)∇ℓ(w̄r
t−1;Di)

)

+ β3

(
1

N

N∑
i=1

1

v̄rt
exp(ℓ(w̄r

t−1;Di)/λ)∇ℓ(w̄r
t−1;Di)−∇F (w̄r

t−1)

)∥∥∥∥2,
+

(
1 +

β3

2

)∥∥∥∥∥β3

(
1

N

N∑
i=1

1

vri,t
exp(ur

i,t−1/λ)∇ℓ(wr
i,t−1; z

r
i,t)−

1

N

N∑
i=1

1

vri,t
exp(ur

i,t−1/λ)∇ℓ(wr
i,t−1;Di)

)∥∥∥∥∥
2

+ (1 +
2

β3
)β3

∥∥∥∥∥ 1

N

N∑
i=1

1

vri,t
exp(ur

i,t/λ)∇ℓ(wr
i,t−1; z

r
i,t)−

1

N

N∑
i=1

1

vri,t
exp(ur

i,t−1/λ)∇ℓ(wr
i,t−1; z

r
i,t)

∥∥∥∥∥
2

.

(42)

Then it leads to

∥m̄r
t −∇F (w̄r

t )∥2

≤
(
1 +

β3
2

)2 ∥∥∥∥(1− β3)(m̄
r
t−1 −∇F (w̄r

t−1))

+ β3

(
1

N

N∑
i=1

1

vri,t
exp(uri,t−1/λ)∇ℓ(wr

i,t−1;Di)−
1

N

N∑
i=1

1

vri,t
exp(ℓ(w̄r

t−1;Di)/λ)∇ℓ(wr
i,t−1;Di)

)

+ β3

(
1

N

N∑
i=1

1

vri,t
exp(ℓ(w̄r

t−1;Di)/λ)∇ℓ(wr
i,t−1;Di)−

1

N

N∑
i=1

1

v̄rt
exp(ℓ(w̄r

t−1;Di)/λ)∇ℓ(w̄r
t−1;Di)

)

+ β3

(
1

N

N∑
i=1

1

v̄rt
exp(ℓ(w̄r

t−1;Di)/λ)∇ℓ(w̄r
t−1;Di)−∇F (w̄r

t−1)

)∥∥∥∥2

+ (1 +
β3
2
)2β2

3

∥∥∥∥∥ 1

N

N∑
i=1

1

vri,t
exp(uri,t−1/λ)∇ℓ(wr

i,t−1; z
r
i,t)−

1

N

N∑
i=1

1

vri,t
exp(uri,t−1/λ)∇ℓ(wr

i,t−1;Di)

∥∥∥∥∥
2

+
6

β3
β2
3

∥∥∥∥∥ 1

N

N∑
i=1

1

vri,t
exp(uri,t/λ)∇ℓ(wr

i,t−1; z
r
i,t)−

1

N

N∑
i=1

1

vri,t
exp(uri,t−1/λ)∇ℓ(wr

i,t−1; z
r
i,t)

∥∥∥∥∥
2

+

(
1 +

2

β3

)
∥∇F (w̄r

t−1)−∇F (w̄r
t )∥2.

(43)
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Thus, it follows that

∥m̄r
t −∇F (w̄r

t )∥2 ≤
(
1 +

β3
2

)2

(1− β3)
3∥m̄r

t−1 −∇F (w̄r
t−1)∥2

+
8

β3
β2
3

∥∥∥∥∥ 1

N

N∑
i=1

1

vri,t
exp(uri,t−1/λ)∇ℓ(wr

i,t−1;Di)−
1

N

N∑
i=1

1

vri,t
exp(ℓ(w̄r

t−1;Di)/λ)∇ℓ(wr
i,t−1;Di)

∥∥∥∥∥
2

1⃝

+
8

β3
β2
3

∥∥∥∥∥ 1

N

N∑
i=1

1

vri,t
exp(ℓ(w̄r

t−1;Di)/λ)∇ℓ(wr
i,t−1;Di)−

1

N

N∑
i=1

1

v̄rt
exp(ℓ(w̄r

t ;Di)/λ)∇ℓ(w̄r
t−1;Di)

∥∥∥∥∥
2

2⃝

+
8

β3
β2
3

∥∥∥∥∥ 1

N

N∑
i=1

1

v̄rt
exp(ℓ(w̄r

t−1;Di)/λ)∇ℓ(wr
i,t−1;Di)−∇F (w̄r

t−1)

∥∥∥∥∥
2

3⃝

+ β2
3

∥∥∥∥∥ 1

N

N∑
i=1

1

vri,t
exp(uri,t−1/λ)∇ℓ(wr

i,t−1; z
r
i,t)−

1

N

N∑
i=1

1

vri,t
exp(uri,t−1/λ)∇ℓ(wr

i,t−1;Di)

∥∥∥∥∥
2

4⃝

+
8

β3
β2
3

∥∥∥∥∥ 1

N

N∑
i=1

1

vri,t
exp(uri,t/λ)∇ℓ(wr

i,t−1; z
r
i,t)−

1

N

N∑
i=1

1

vri,t
exp(uri,t−1/λ)∇ℓ(wr

i,t−1; z
r
i,t)

∥∥∥∥∥
2

5⃝

+

(
1 +

2

β3

)
∥∇F (w̄r

t−1)−∇F (w̄r
t )∥2 6⃝.

(44)

We address each term as follows. 1⃝ can be bounded as

E

8β3
∥∥∥∥∥ 1

N

N∑
i=1

1

vri,t
exp(uri,t−1/λ)∇ℓ(wr

i,t−1;Di)−
1

N

N∑
i=1

1

vri,t
exp(ℓ(w̄r

t−1;Di)/λ)∇ℓ(wr
i,t−1;Di)

∥∥∥∥∥
2


≤ β3
1

N

N∑
i=1
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ℓC

2
1∥uri,t−1 − ℓ(w̄r

t−1;Di)∥2.

(45)

2⃝ can be bounded as

E

8β3
∥∥∥∥∥ 1

N

N∑
i=1

1

vri,t
exp(ℓ(w̄r

t−1;Di)/λ)∇ℓ(wr
i,t−1;Di)−

1

N

N∑
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1
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3⃝ can be bounded as
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where (a) follows from (35). 4⃝ can be bounded as
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as machines are independent conditioned on iteration t− 1.

5⃝ can be bounded as
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where the first inequality uses vri,t ≥ 1 as ℓ(·) ≥ 0.
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F (w) is LF := CfLg + C2
gLf -smooth. With η ≤ β3/(3L

2
F ), 6⃝ can be bounded as
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We conclude the proof by setting the parameters as in the Lemma.

Proof of Theorem 5.3. Using Lemma 5.2, with β2 = O(β3), we have
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Using LF -smooth of F , we have
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We conclude the proof by setting the parameters as the theorem.

C Analysis of FGDRO-KL-Adam

Proof of Theorem 6.2. Lemma B.1, Lemma B.2 and Lemma 5.2 still hold. Specifically, denoting
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where C1 = exp(C0/λ).

Moreover, we have

1

RI

R∑
r=1

I∑
t=1

β3
2
E∥m̄r

t−1 −∇F (w̄r
t−1)∥2 ≤ O

(
E∥m̄r

0 −∇F (w̄r
0)∥2

RI
+ 2β3

3I
2G2 + β2

3C2
σ2

N

+
1

RKN

N∑
i=1

E∥u0i,0 −∇F (w̄0
0)∥2 +

1

RI

R∑
r=1

I∑
t=1

ηE∥∇F (w̄r
t−1)∥2 + β2

1σ
2

)
.

(58)

28



Using LF -smooth of F , we have
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We conclude the proof by setting the parameters as the theorem.

D LocalAdam Algorithm

In this section, we present Algorithm 4, which uses Adam type updates in local steps to solve an
ERM problem.

Algorithm 4 LocalAdam
1: Initialization: w̄1, m̄1, q̄1

2: for r = 1, ..., R do
3: wr

i,0 = w̄r, mr
i,0 = m̄r, qr

i,0 = q̄r

4: for t = 1, ..., I do
5: Each machine samples data zri,t
6: hr

i,t = ∇ℓ(wr
i,t−1; z

r
i,t)

7: mr
i,t=(1−β3)mr

i,t−1 + β3h
r
i,t, q

r
i,t = (1−β4)qr

i,t−1 + β4(h
r
i,t)

2

8: wr
i,t = wr

i,t−1 − η
mr

i,t√
qr
i,t+τ

9: end for

10: w̄r+1 = 1
N

N∑
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wr
i,I , m̄r+1 = 1

N

N∑
i=1

mr
i,I and q̄r+1 = 1

N

N∑
i=1

qr
i,I

11: end for

E Statistics of Datasets

Table 4 summarizes the sizes of the datasets used. Table 5 summarizes the client imbalance ratio
and the class imbalance ratio. The client imbalance ratio represents the ratio between the number
of training samples on the client with the most data and the client with the least data, and the class
imbalance ratio reflects the ratio of training data in the largest to the smallest classes in classification
tasks.

F Running Time

Running time is reported in Tabel 6. Each algorithm was run on a high performance cluster where
each machine uses a NVIDIA A100 GPU.
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Table 4: Number of data for each split, with the number of training domains in the brackets. Number
of training clients in the last column, with data from the same training domain to be on the same
client.

Train Validation Test Num of Clients
Pile 192,912,246 (17) 193,105 (17) 193,105 (17) 17

Civilcomments 269,038 (4) 45,180 (16) 133,782 (16) 4
PovertyMap 9,792 (13) 3,936 (5) 3,968 (5) 13
iWildsCam 129,809 (243) 7,314 (243) 8,154 (243) 8
Camelyon 302,436 (3) 34,904 (1) 85,054 (1) 3

Table 5: Imbalance Ratio
Datasets Pile CivilComments Camelyon17 iWildCam2020 PovertyMap

Client Imbalance Ratio 258 36.2 1 1.7 5.9
Class Imbalance Ratio N/A 4.6 1 48021 N/A

G Experiments on Cifar 10

We create an imbalance dataset by reducing the data of 5 classes by 80% and then distributed the
data across 100 clients according to two different Dirichlet distributions: Dirichlet (0.3) and Dirichlet
(10), using code released by [61]. We use a two layer CNN as the model. Results of algorithms
are summarized in Table 7. Figure 2 and Figure 2 illustrate the communication complexity of each
method by comparing the worst-case testing accuracy against the number of local updates and the
communicated data sizes.

(a) (b) (c)

Figure 2: Convergence on Imbalanced Cifar10 with Dirichlet(0.3)

H On the Statistical Significance of Proposed Algorithms

In Table 8, 9 and 10, we evaluate the statistical significance of our algorithms’ advantages over the
baselines. In each cell, the three letters (representing FGDRO-CVaR, FGDRO-KL, and FGDRO-KL-
Adam, respectively) indicate whether each of our algorithms has outperformed the corresponding
baseline in that row with a confidence level greater than 95% (p-value less than 0.05). ‘Y’ indicates
Yes, and ‘N’ indicates No.
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Table 6: Average running time of federated algorithms. We report running (in hours) for each
algorithm to finish (200K iterations for Pile data and 20K for others).

Pile CivilComments Camelyon17 iWildCam2020 PovertyMap
FedAvg 29.77 3.05 4.59 12.90 1.77

FedAdam 35.39 3.13 6.01 12.91 3.22
DRFA 34.12 3.27 4.94 12.95 2.25

DR-DSGD 25.26 4.01 6.26 13.02 4.71
FGDRO-CVAR 34.07 4.03 7.19 13.01 5.02

FGDRO-KL 34.92 3.65 7.23 14.57 5.42
FGDRO-KL-Adam 35.98 3.80 7.54 14.82 5.50

Table 7: Imbalanced Cifar10, data alloacted to clients accoring to Dirichlet distributions
Datasets Cifar10, Dirichlet(0.3) Cifar10, Dirichlet(10)
Metric Worst Acc Average Acc Worst Acc Average Acc
FedAvg 0.3140 (±0.0027) 0.6236 (±0.0019) 0.3620 (±0.0032) 0.6742 (±0.0020)

SCAFFOLD 0.3245 (±0.0032) 0.6337 (±0.0038) 0.3821 (±0.0022) 0.6816 (±0.0025)
FedProx 0.3102 (±0.0027) 0.6189 (±0.0036) 0.3757 (±0.0041) 0.6925 (±0.0053)

FedAdam 0.4860 (±0.0047) 0.7147 (±0.0058) 0.4460 (±0.0039) 0.7042 (±0.0043)
DRFA 0.3215 (±0.0129) 0.6381 (±0.0131) 0.3752 (±0.0053) 0.6739 (±0.0048)

DR-DSGD 0.3277 (±0.0074) 0.6403 (±0.0058) 0.3700 (±0.0063) 0.6792 (±0.0088)
FGDRO-CVaR 0.4100 (±0.0032) 0.6606 (±0.0039) 0.4010 (±0.0022) 0.6882 (±0.0027)

FGDRO-KL 0.3560 (±0.0018) 0.6369 (±0.0029) 0.4110 (±0.0035) 0.6951 (±0.0042)
FGDRO-KL-Adam 0.5280 (±0.0101) 0.7057 (±0.0133) 0.5110 (±0.0072) 0.7286 (±0.0063)

(a) (b) (c)

Figure 3: Convergence on Imbalanced Cifar10 with Dirichlet(10)

Table 8: Statistical Confidence on Imbalanced Cifar10
Datasets Cifar10, Dirichlet(0.3) Cifar10, Dirichlet(10)
Metric Worst Acc Average Acc Worst Acc Average Acc
FedAvg Y|Y|Y Y|Y|Y Y|Y|Y Y|Y|Y

SCAFFOLD Y|Y|Y Y|N|Y Y|Y|Y Y|Y|Y
FedProx Y|Y|Y Y|Y|Y Y|Y|Y N|N|Y

FedAdam N|N|Y N|N|N N|N|Y N|N|Y
DRFA Y|Y|Y Y|N|Y Y|Y|Y Y|Y|Y

DR-DSGD Y|Y|Y Y|N|Y Y|Y|Y Y|Y|Y

Table 9: Statistical Confidence on Piles and CivilComments
Datasets Pile CivilComments
Metric Worst Log-PPL Average Log-PPL Worst Acc Average Acc
FedAvg N|Y|Y N|Y|Y Y|Y|Y N|Y|N

SCAFFOLD N|Y|Y N|Y|Y Y|Y|Y N|Y|N
FedProx N|Y|Y N|Y|Y Y|Y|Y N|Y|Y

FedAdam N|N|Y N|N|Y Y|Y|Y N|Y|N
DRFA N|Y|Y N|Y|Y Y|Y|Y Y|Y|Y

DR-DSGD N|Y|Y N|Y|Y Y|Y|Y Y|Y|Y
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Table 10: Statistical Confidence on Camelyon17, iWildCam2020, and PovertyMap
Datasets Camelyon17 iWildCam2020 CivilComments
Metric Acc Macro F1 Worst Pearson Average Pearson
FedAvg N|Y|Y Y|Y|N Y|N|Y Y|Y|Y

SCAFFOLD N|Y|Y Y|Y|N Y|N|Y Y|N|Y
FedProx N|Y|Y Y|Y|Y Y|N|Y Y|Y|Y

FedAdam N|N|N Y|Y|Y Y|N|Y N|N|N
DRFA Y|Y|Y Y|Y|Y Y|Y|Y Y|Y|Y

DR-DSGD Y|Y|Y Y|Y|Y Y|Y|Y Y|Y|Y
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction are accurate summary of the paper and well
supported by other sections of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Section 8.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Assumptions are discussed in Section 3,4,5,6. Theorems are presented in
Section 4,5,6. Proofs are shown in details in Appendix A, B, C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The setting and parameter tuning scope are discussed in Section 7.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: All used data are publicly available. Code will be released later.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: These details are shown in Section 7.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Experiments are repeated for multiple times with different random seed, and
error bars are reported in experimental results in Section 7.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Computing resource and time of execution are reported in Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The broader impacts have been discussed in Section 9

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not release any new data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The assets we use are all publicly available and properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: No new assets are introduced in this paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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