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Abstract

Extreme compression, particularly ultra-low bit precision (binary/ternary) quanti-
zation, has been proposed to fit large NLP models on resource-constrained devices.
However, to preserve the accuracy for such aggressive compression schemes,
cutting-edge methods usually introduce complicated compression pipelines, e.g.,
multi-stage expensive knowledge distillation with extensive hyperparameter tuning.
Also, they oftentimes focus less on smaller transformer models that have already
been heavily compressed via knowledge distillation and lack a systematic study
to show the effectiveness of their methods. In this paper, we perform a very com-
prehensive systematic study to measure the impact of many key hyperparameters
and training strategies from previous works. As a result, we find out that previous
baselines for ultra-low bit precision quantization are significantly under-trained.
Based on our study, we propose a simple yet effective compression pipeline for
extreme compression, named XTC. XTC demonstrates that (1) we can skip the
pre-training knowledge distillation to obtain a 5-layer BERT while achieving better
performance than previous state-of-the-art methods, e.g., the 6-layer TinyBERT;
(2) extreme quantization plus layer reduction is able to reduce the model size by
50x, resulting in new state-of-the-art results on GLUE tasks.

1 Introduction

Over the past few years, we have witnessed the model size has grown at an unprecedented speed, from
a few hundred million parameters (e.g., BERT [10], RoBERTa [28], DeBERTA [15], T5 [37],GPT-
2 [36]) to a few hundreds of billions of parameters (e.g., 175B GPT-3 [6], 530B MT-NLT [46]),
showing outstanding results on a wide range of language processing tasks. Despite the remarkable
performance in accuracy, there have been huge challenges to deploying these models, especially on
resource-constrained edge or embedded devices. Many research efforts have been made to compress
these huge transformer models including knowledge distillation [20, 54, 53, 61], pruning [57, 43, 8],
and low-rank decomposition [30]. Orthogonally, quantization focuses on replacing the floating-
point weights of a pre-trained Transformer network with low-precision representation. This makes
quantization particularly appealing when compressing models that have already been optimized in
terms of network architecture.

Popular quantization methods include post-training quantization [45, 33, 29], quantization-aware
training (QAT) [23, 4, 31, 22], and their variations [44, 24, 12]. The former directly quantizes trained
model weights from floating-point values to low precision values using a scalar quantizer, which
is simple but can induce a significant drop in accuracy. To address this issue, quantization-aware
training directly quantizes a model during training by quantizing all the weights during the forward
and using a straight-through estimator (STE) [5] to compute the gradients for the quantizers.
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Figure 1: The left figure summarizes how to do 1-bit quantization for a layer-reduced model based
on [20, 3]. It involves expensive pretraining on an fp-32 small model, task-specific training on 32-bit
and 2-bit models, weight-splitting, and the final 1-bit model training. Along the way, it applies
multi-stage knowledge distillation with data augmentation, which needs considerable hyperparameter
tuning efforts. The right figure is our proposed method, XTC (see details in § 5), a simple while
effective pipeline (see Figure 2 for highlighted results). Better read with a computer screen.

Recently, several QAT works further push the limit of BERT quantization to the extreme via ternarized
(2-bit) ([62]) and binarized (1-bit) weights ([3]) together with 4-/8-bit quantized activation. These
compression methods have been referred to as extreme quantization since the limit of weight
quantization, in theory, can bring over an order of magnitude compression rates (e.g., 16-32 times).
One particular challenge identified in [3] was that it was highly difficult to perform binarization as
there exits a sharp performance drop from ternarized to binarized networks. To address this issue,
prior work proposed multiple optimizations where one first trains a ternarized DynaBert [17] and
then binarizes with weight splitting. In both phases, multi-stage distillation with multiple learning
rates tuning and data augmentation [20] are used. Prior works claim these optimizations are essential
for closing the accuracy gap from binary quantization.

While the above methodology is promising, several unanswered questions are related to these recent
extreme quantization methods. First, as multiple ad-hoc optimizations are applied at different stages,
the compression pipeline becomes very complex and expensive, limiting the applicability of extreme
quantization in practice. Moreover, a systematical evaluation and comparison of these optimizations
are missing, and the underlying question remains open for extreme quantization:

what are the necessities of ad-hoc optimizations to recover the accuracy loss?

Figure 2: The comparison between XTC with other SOTA
results.

Second, prior extreme quantization pri-
marily focused on reducing the precision
of the network. Meanwhile, several ad-
vancements have also been made in the
research direction of knowledge distil-
lation, where large teacher models are
used to guide the learning of a small stu-
dent model. Examples include Distil-
BERT [42], MiniLM [54, 53], Mobile-
BERT [49], which demonstrate 2-4×
model size reduction by reducing the
depth or width without much accuracy
loss through pre-training distillation with
an optional fine-tuning distillation. No-
tably, TinyBERT [20] proposes to per-
form deep distillation in both the pre-
training and fine-tuning stages and shows
that this strategy achieves state-of-the-art
results on GLUE tasks. However, most
of these were done without quantization, and there are few studies about the interplay of extreme
quantization with these heavily distilled models, which poses questions on

to what extent, a smaller distilled model benefits from extreme quantization?

Contribution. To investigate the above questions, we make the following contributions:
(1) We present a systematic study of extreme quantization methods by fine-tuning ≥1000 pre-trained
Transformer models, which includes a careful evaluation of the effects of hyperparameters and several
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methods introduced in extreme quantization.
(2) We find that previous extreme quantization studies overlooked certain design choices, which lead
to under-trained binarized networks and unnecessarily complex optimizations. Instead, we derive a
celebrating recipe for extreme quantization, which is not only simpler but also allows us to achieve
an even larger compression ratio and higher accuracy than existing methods (see Figure 1, right).
(3) We find that extreme quantization can be effectively combined with lightweight layer reduction,
which allows us to achieve greater compression rates for pre-trained Transformers with better accuracy
than prior methods while enjoying the additional benefits of flexibly adjusting the size of the student
model for each use-case individually, without the expensive pre-training distillation.

Our evaluation results, as illustrated in Figure 2, show that our simple yet effective method can:
(1) compress BERTbase to a 5-layer BERTbase while achieving better performance than previous state-
of-the-art distillation methods, e.g., the 6-layer TinyBERT [20], without incurring the computationally
expensive pre-training distillation;
(2) reduce the model size by 50× via performing robust extreme quantization on lightweight layer
reduced models while obtaining better accuracy than prior extreme quantization methods, e.g., the
12-layer 1-bit BERTbase, resulting in new state-of-the-art results on GLUE tasks.

2 Related Work

Quantization becomes practically appealing as it not only reduces memory bandwidth consumption
but also brings the additional benefit of further accelerating inference on supporting hardware [44, 24,
12]. Most quantization works focus on INT8 quantization [21] or mixed INT8/INT4 quantization [44].
Our work differs from those in that we investigate extreme quantization where the weight values are
represented with only 1-bit or 2-bit at most. There are prior works that show the feasibility of using
only ternary or even binary weights [62, 3]. Unlike those work, which uses multiple optimizations
with complex pipelines, our investigation leads us to introduce a simple yet more efficient method for
extreme compression with more excellent compression rates.

On a separate line of research, reducing the number of parameters of deep neural networks models
with full precision (no quantization) has been an active research area by applying the powerful
knowleadge distillation (KD) [16, 54], where a stronger teacher model guides the learning of another
small student model to minimize the discrepancy between the teacher and student outputs. Please
see Appendix A for a comprehensive literature review on KD. Instead of proposing a more advanced
distillation method, we perform a well-rounded comparative study on the effectiveness of the recently
proposed multiple-stage distillation [20].

3 Extreme Compression Procedure Analysis

This section presents several studies that have guided the proposed method introduced in Section 5.
All these evaluations are performed with the General Language Understanding Evaluation (GLUE)
benchmark [51], which is a collection of datasets for evaluating natural language understanding
systems. For the subsequent studies, we report results on the development sets after compressing a
pre-trained model (e.g., BERTbase and TinyBERT) using the corresponding single-task training data.

Previous works [62, 3] on extreme quantization of transformer models state three hypotheses for
what can be related to the difficulty of performing extreme quantization:

• Directly training a binarized BERT is complicated due to its irregular loss landscape, so it is
better to first to train a ternarized model to initialize the binarized network.

• Specialized distillation that transfers knowledge at different layers (e.g., intermediate layer)
and multiple stages is required to improve accuracy.

• Small training data sizes make extreme compression difficult.

3.1 Is staged ternary-binary training necessary to mitigate the sharp performance drop?

Previous works demonstrate that binary networks have more irregular loss surface than ternary models
using curvature analysis. However, given that rough loss surface is a prevalent issue when training
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Figure 3: Performance of quantized BERTbase with different weight bits and 8-bit activation on the
GLUE Benchmarks. The results for orange and blue curves respectively represent the costs: (limited)
Budget-A and (sufficient) Budget-C. The fp32-teacher scores are shown by black square marker.

neural networks, we question whether all of them have a causal relationship with the difficulty in
extreme compression.

We are first interested in the observation from previous work [3] that shows directly training a
binarized network leads to a significant accuracy drop (e.g., up to 3.8%) on GLUE in comparison to
the accuracy loss from training a ternary network (e.g., up to 0.6%). They suggest that this is because
binary networks have a higher training loss and overall more complex loss surface. To overcome this
sharp accuracy drop, they propose a staged ternary-binary training strategy in which one needs first
to train a ternarized network and use a technique called weight splitting to use the trained ternary
weights to initialize the binary model.

It is not surprising that binarization leads to further accuracy drop as prior studies from computer
vision also observe similar phenomenon [18, 50]. However, prior works also identified that the
difficulty of training binarized networks mostly resides in training with insufficient number of
iterations or having too large learning rates, which can lead to frequent sign changes of the weights
that make the learning of binarized networks unstable [50]. Therefore, training a binarized network
the same way as training a full precision network consistently achieves poor accuracy. Would
increasing the training iterations and let the binarized network train longer under smaller learning
rates help mitigate the performance drop from binarization?

To investigate this, we perform the following experiment: We remove the TernaryBERT training stage
and weight splitting and directly train a binarized network. We use the same quantization schemes
as in [3], e.g., a binary quantizer to quantize the weights: wi = α · sign(wi), α = 1

n ||w||1, and a
uniform symmetric INT8 quantizer to quantize the activations. We apply the One-Stage quantization-
aware KD that will be explained in § 3.2 to train the model. Nevertheless, without introducing the
details of KD here, it does not affect our purpose of understanding the phenomena of a sharp perfor-
mance drop since we only change the training iteration and learning rates while fixing other setups.

Table 1: Training budgets for the GLUE tasks.

Dataset Data Training epochs:
Aug. Budget-A Budget-B Budget-C

QQP/MNLI ✗ 3 9 18 or 36
QNLI ✓ 1 3 6 or 9
SST-2/STS-B/RTE ✓ 1 3 12
CoLA/MRPC ✓ 1 3 12 or 18

We consider three budgets listed in Ta-
ble 1, which cover the practical scenar-
ios of short, standard, and long train-
ing time, where Budget-A and Budget-B
take into account the training details that
appeared in BinaryBERT [3], Ternary-
BERT [62]. Budget-C has a consider-
ably larger training budget but smaller
than TinyBERT [3]. Meanwhile, we also
perform a grid search of peak learning rates {2e-5, 1e-4, 5e-4}. For more training details on iterations
and batch size per iteration, please see Table C.1.

Table 2: 1-bit quantization for BERTbase with various Budget-A, Budget-B and Budget-C.
# Cost CoLA MNLI-m/-mm MRPC QNLI QQP RTE SST-2 STS-B Avg. Acc

Mcc Acc/Acc F1/Acc Acc F1/Acc Acc Acc Pear/Spea Drop

0 Teacher 59.7 84.9/85.6 90.6/86.3 92.1 88.6/91.5 72.2 93.2 90.1/89.6 83.95 -
1 Budget-A 50.4 83.7/84.6 90.0/85.8 91.3 88.0/91.1 72.9 92.8 88.8/88.4 82.38 1.57
2 Budget-B 55.6 84.1/84.4 90.4/86.0 90.8 88.3/91.3 72.6 93.1 88.9/88.5 82.98 0.97
3 Budget-C 57.3 84.2/84.4 90.7/86.5 91.0 88.3/91.3 74.0 93.1 89.2/88.8 83.44 0.51
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We present our main results in Table 2 and Figure 3 (see Table C.2 a full detailed results including
three learning rates). We observe that although training binarized BERT with more iterations does
not fully close the accuracy gap to the uncompressed full-precision model, the sharp accuracy drop
from ternarization to binarization (the blue curve v.s. the orange curve in Figure 3) has largely been
mitigated, leaving a much smaller accuracy gap to close. For example, when increasing the training
time from Budget-A to Budget-C, the performance of CoLA boosts from 50.4 to 57.3, and the average
score improves from 82.38 to 83.44 (Table 2). These results indicate that previous studies [3] on
binarized BERT were significantly under-trained. It also suggests that the observed sharp accuracy
drop from binarization is primarily an optimization problem. We note that in the context of fine-tuning
BERT models, Mosbach et al. [32] also observe that fine-tuning BERT can suffer from vanishing
gradients, which causes the training converges to a "bad" valley with sub-optimal training loss. As a
result, the authors also suggest increasing the number of iterations to train the BERT model to have
stable and robust results.

Finding 1. A longer training iterations with learning rate decay is highly preferred for closing
the accuracy gap of extreme quantization.

The above claim seems natural. However, we argue that special considerations need to be taken for
effectively doing extreme quantization before resorting to more complex solutions.

3.2 The role of multi-stage knowledge distillation

The above analysis shows that the previous binarized BERT models were severely undertrained. In
this section, we further investigate the necessity of multi-stage knowledge distillation, which is quite
complex because each stage has its own set of hyperparameters. Still, prior works claim multi-stage
knowledge distillation to be crucial for improving the accuracy of extreme quantization. Investigating
this problem is interesting because it can potentially admit a more straightforward solution with a
cheaper cost.

Prior work proposes an interesting knowledge distillation (KD), and here we call it Two-Stage KD
(2S-KD) [20], which has been applied for extreme quantization [3]. The 2S-KD minimizes the losses
of hidden states Lhidden and attention maps Latt and losses of prediction logits Llogit in two separate
steps, where different learning rates are used in these two stages, e.g., a 2.5× larger learning rate
is used for Stage-I than that for Stage-II. However, how to decide the learning rates and training
epochs for these two stages is not well explained and will add additional hyperparameter tuning
costs. We note that this strategy is very different from the deep knowledge distillation strategy used
in [48, 53, 49], where knowledge distillation is performed with a single stage that minimizes the sum
of the losses from prediction logits, hidden states, and attention maps. Despite the promising results
in [3], the mechanism for why multi-stage KD improves accuracy is not well understood.

Generally, the knowledge distillation for transformer models can be formulated as minimizing the
following objective:

min
θ

Ex∼D[γLlogit(x; θ) + β(Latt(x; θ) + Lhidden(x; θ))] (1)

where Llogit denote the loss (e.g., KL divergence or mean square error) between student’s and
teacher’s prediction logits, and Lhidden and Latt) measures the loss of hidden states and attention
maps. γ ∈ {0, 1}, β ∈ {0, 1} are hyperparameters. See the detailed mathematical definition in § B.
To investigate the effectiveness of multi-stage, we compare three configurations (shown in Figure 4
in the appendix):

(1) 1S-KD (One-stage KD): (γ, β) = (1, 1) for t ≤ T ;

(2) 2S-KD (Two-stage KD): (γ, β) = (0, 1) if t < T /2; (γ, β) = (1, 0) if T /2 ≤ t ≤ T ;

(3) 3S-KD (Three-stage KD): (γ, β) = (0, 1) if t < T /3; (γ, β) = (1, 1) if T /3 ≤ t ≤ 2T /3;
(γ, β) = (1, 0) if 2T /3 ≤ t ≤ T .

where T presents the total training budget and t represents the training iterations.

Notably, we created the 3S-KD, where we add a transition stage: Lhidden + Latt + Llogit in between
the first and second stage of the 2S-KD. The idea is to make the transition of the training objective

5



smoother in comparison to the 2S-KD. In this case, the learning rate schedules will be correspondingly
repeated in three times, and the peak learning rate of Stage-I is ×2.5 higher than that of Stage-II
and Stage-III. We apply all three KD methods independently (under a fixed random seed) for binary
quantization across different learning rates {2e-5, 1e-4, 5e-4} under the same training budget. We do
not tune any other hyperparameters.

Table 3 shows the results under Budget-A (see Table C.2 for Budget-B/C). We note that when the
learning rate is fixed to 2e-5 (i.e., Rows 1, 4, and 7), the previously proposed 2S-KD [20] (81.46)
does show performance benefits over 1S-KD (80.33). Our newly created 3S-KD (81.57) obtains even
better accuracy under the same learning rate. However, multi-stage makes the extreme compression
procedure complex and inefficient because it needs to set the peak learning rates differently for
different stages. Surprisingly, the simple 1S-KD easily outperforms both 2S-KD and 3S-KD when
we slightly increase the search space of the learning rates (e.g., 1e-4 and 5e-4). This means we can
largely omit the burden of tuning learning rates and training epochs for each stage in multi-stage by
using single-stage but with the same training iteration budget.

Finding 2. Single-stage knowledge distillation with more training budgets and search of
learning rates is sufficient to match or even exceed accuracy from multi-stage ones.

Table 3: 1-bit quantization for BERTbase with three different KD under the training Budget-A.
# Stages learning CoLA MNLI-m/-mm MRPC QNLI QQP RTE SST-2 STS-B Avg. Avg.

rate Mcc Acc/Acc F1/Acc Acc F1/Acc Acc Acc Pear/Spea a row the best

1
One-Stage

2e-5 44.6 83.1/83.7 88.8/83.1 91.1 87.4/90.7 66.1 92.8 87.8/87.5 80.33
82.382 1e-4 50.4 83.7/84.6 90.1/85.3 91.3 88.0/91.1 71.5 92.7 88.8/88.4 82.16

3 5e-4 42.3 83.3/84.1 90.0/85.8 89.5 87.8/90.9 72.9 92.5 88.1/87.8 81.04

4

Two-Stage

2e-5 48.2 83.3/83.8 89.3/84.6 90.7 87.7/90.9 70.4 92.5 88.7/88.4 81.46
81.595 1e-4 48.5 83.3/83.4 90.0/85.5 90.4 87.4/90.7 70.4 92.4 88.6/88.2 81.47

6 5e-4 16.2 74.9/76.4 89.7/84.8 87.8 85.0/89.0 68.2 91.6 86.2/86.5 75.01

7

Three-Stage

2e-5 49.3 83.1/83.6 89.5/84.3 91.0 87.6/90.9 70.8 92.4 88.7/88.3 81.57
81.938 1e-4 49.0 83.2/83.4 89.7/84.8 90.9 87.6/90.7 73.6 92.2 88.8/88.5 81.84

9 5e-4 29.5 81.3/81.9 89.1/83.6 88.4 85.0/89.3 66.1 91.9 84.1/83.9 77.34

3.3 The importance of data augmentation

Prior works augment the task-specific datasets using a text-editing technique by randomly replacing
words in a sentence with their synonyms, based on their similarity measure on GloVe embeddings [20].
They then use the augmented dataset for task-specific compression of BERT models, observing
improved accuracy for extreme quantization [62, 3]. They hypothesized that data augmentation
(DA) is vital for compressing transformer models. However, as we have observed that the binarized
networks were largely under-trained and had no clear advantage of multi-stage versus single-stage
under a larger training budget, it raises the question of the necessity of DA.

To better understand the importance of DA for extreme compression, we compare the end-task
performance of both 1-bit quantized BERTbase models with and without data augmentation, based on
previous findings in this paper that make extreme compression more robust. Table 4 shows results
for the comparison of the 1-bit BERTbase model under two different training budgets. Note that
MNLI /QQP does not use DA; we repeat the results. We find that regardless of whether shorter or
longer iterations, removing DA leads to an average of 0.66 and 0.77 points drop in average GLUE
score. Notably, the accuracy drops more than 1 point on smaller tasks such as CoLA, MPRC, RTE,
STS-B. Furthermore, similar performance degradation is observed when removing DA from training
an FP32 half-sized BERT model (more details will be introduced in § 4), regardless of whether
using 1S-KD or 2S-KD. These results indicate that DA is helpful, especially for extreme compressed
models; DA significantly benefits from learning more diverse/small data to mitigate accuracy drops.

Finding 3. Training without DA hurts performance on downstream tasks for various com-
pression tasks, especially on smaller tasks.

We remark that although our conclusion for DA is consistent with the finding in [3], we have
performed a far more well-through experiment than [3] where they consider a single budget and
2S-KD only.
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Table 4: The Comparison between the results with and without data augmentation (DA). Row
1-4 is for BERTbase under 1-bit quantization using 1S-KD. Row 5-8 is for a layer-reduced BERTbase
(six-layer) under Budget-C without quantization (please see § 4 for more details).

# Cost or Data CoLA MNLI-m/-mm MRPC QNLI QQP RTE SST-2 STS-B Avg. DIFFStages Aug. Mcc Acc/Acc F1/Acc Acc F1/Acc Acc Acc Pear/Spea all

1 Budget-A ✓ 50.4 83.7/84.6 90.0/85.8 91.3 88.0/91.1 72.9 92.8 88.8/88.4 82.38 -0.772 ✗ 48.9 83.7/84.6 89.0/83.6 91.0 88.0/91.1 71.5 92.5 87.6/87.5 81.61
3 Budget-C ✓ 57.3 84.2/84.4 90.7/86.5 91.0 88.3/91.3 74.0 93.1 89.2/88.8 83.44 -0.664 ✗ 55.0 84.2/84.4 90.0/85.0 90.7 88.3/91.3 73.3 92.9 88.2/87.9 82.78

5 One-stage ✓ 56.9 84.5/84.9 89.7/84.8 91.7 88.5/91.5 71.8 93.5 89.8/89.4 83.27 -2.186 ✗ 52.2 84.5/84.9 88.4/82.4 91.4 88.5/91.5 63.9 92.9 86.5/86.3 81.09
7 Two-stage ✓ 56.0 84.1/84.2 89.7/84.8 91.5 88.2/91.3 71.8 93.3 89.4/89.1 82.93 -2.038 ✗ 50.2 84.1/84.2 88.7/83.1 90.8 88.2/91.3 64.6 92.9 86.9/86.7 80.90

4 Interplay of KD, Long Training, Data Augmentation and Layer Reduction

In the previous section, we found strong evidence for statistically significant benefits from 1S-KD
compared to 2S-KD and 3S-KD. Moreover, a considerable long training can greatly lift the score to the
level same as the full precision teacher model. Although 1-bit BERTbase already achieves ×32 smaller
size than its full-precision counterpart, a separate line of research focuses on changing the model
architecture to reduce the model size. Notably, one of the promising methods – reducing model sizes
via knowledge distillation – has long been studied and shown good performances [13, 60, 42, 53, 49].

While many works focus on innovating better knowledge distillation (KD) pretraining methods
for higher compression ratio and better accuracy, given our observations in Section 3 that extreme
quantization with long training and data augmentation can effectively reduce the model size, we are
interested in to what extent can a layer-reduced model benefits from the pretraining with KD?

To investigate this issue, we perform the following experiments: We prepare five student models,
all having 6 layers with the same hidden dimension 768: (1) a pretrained TinyBERT6 [20]2; (2)
MiniLMv26 [53]3; (3) Top-BERT6: using the top 6 layers of the fine-tuned BERTbase model to
initialize the student model; (4) Bottom-BERT6: using the bottom six layers of the fine-tuned
BERTbase model to initialize the student; (5) Skip-BERT6: using every other layer of the fine-tuned
BERTbase model to initialize the student. In all cases, we fine-tune BERTbase for each task as the
teacher model (see the teachers’ performance in Table 5, Row 1). We choose TinyBERT and MiniLM
because they are the state-of-the-art for knowledge distillation of BERT models. We choose the
other three configurations because prior work [48, 34] also suggested that layer pruning is also a
practical approach for task-specific compression. For the initialization of the student model, both
TinyBERT6 and MiniLM6 are initialized with weights distilled from BERTbase through pretraining
distillation, and the other three students (e.g., top, bottom, skip) are obtained from the fine-tuned
teacher model without incurring any pretraining training cost. We apply 1S-KD as we also verify

Table 5: Pre-training does not show benefits for layer reduction. Row 3 (rep.*) is a reproduced result
by following the training recipe in [20].

# Model size CoLA MNLI-m/-mm MRPC QNLI QQP RTE SST-2 STS-B Avg. Acc.
Mcc Acc/Acc F1/Acc Acc F1/Acc Acc Acc Pear/Spea all Drop

1 fp32 BERTbase (teacher) 417.2 59.7 84.9/85.6 90.6/86.3 92.1 88.6/91.5 72.2 93.2 90.1/89.6 83.95 -

Training cost: greater than Budget-C (see [20] or § B)
2 Pretrained TinyBERT6 ([20]) 255.2 (×1.6) 54.0 84.5/84.5 90.6/86.3 91.1 88.0/91.1 73.4 93.0 90.1/89.6 83.11 -0.84
3 Pretrained TinyBERT6 (rep.*) 255.2 (×1.6) 56.9 84.4/84.8 90.1/85.5 91.3 88.4/91.4 72.2 93.2 90.3/90.0 83.33 -0.62

Training cost: Budget-C
4 Pretrained TinyBERT6 255.2 (×1.6) 54.4 84.6/84.3 90.4/86.3 91.5 88.5/91.5 69.7 93.3 89.2/89.0 82.76 -1.19
5 Pretrained MiniLM6-v2 255.2 (×1.6) 55.4 84.4/84.5 90.7/86.5 91.4 88.5/91.5 71.8 93.3 89.4/89.0 83.13 -0.82
6 Skip-BERT6 (ours) 255.2 (×1.6) 56.9 84.6/84.9 90.4/85.8 91.8 88.6/91.6 72.6 93.5 89.8/89.4 83.50 -0.45
7 Skip-BERT5 (ours) 228.2 (×1.8) 57.9 84.3/85.1 90.1/85.5 91.4 88.5/91.5 72.2 93.3 89.2/88.9 83.38 -0.57
8 Skip-BERT4 (ours) 201.2 (×2.1) 53.3 83.2/83.4 90.0/85.3 90.8 88.2/91.3 70.0 93.5 88.8/88.4 82.18 -1.77

that 2S-KD and 3S-KD are under-performed (See Table C.7 in the appendix). We set Budget-C
as our training cost because the training budget in reproducing the results for TinyBERT is greatly
larger than Budget-C illustrated above. We report their best validation performances in Table 5 across
the three learning rate {5e-5, 1e-4, 5e-4}. We apply 1S-KD and budget-C for this experiment. We

2The checkpoint of TinyBERT is downloaded from their uploaded huggingface.co.
3The checkpoint of miniLMv2 is from their github.
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report their best validation performances in Table 5 across three learning rates {5e-5, 1e-4, 5e-4}. For
complete statistics with these learning rates, please refer to Table C.5. We make a few observations:

First, perhaps a bit surprisingly, the results in Table 5 show that there are no significant improve-
ments from using the more computationally expensive pre-pretraining distillation in comparison to
lightweight layer reduction: Skip-BERT6 (Row 7) achieves the highest average score 83.50. This
scheme achieves the highest score on larger and more robust tasks such as MNLI/QQP/QNLI/SST-2.

One noticeable fact in Table 5 is that under the same budget (Budget-C), the accuracy drop of
Skip-BERT6 is about 0.74 (0.37) higher than TinyBERT6 in Row 5 (MINILM6-v2 in Row 6). Note
that layer reduction without pretraining has also been addressed in [41]. However, their KD is limited
to logits without DA, and the performance is not better the pretrained DistillBERT, which shows
pretraining was useful (if only logits are used in KD).

Second, with the above encouraging results from a half-size model (Skip-BERT6), we squeeze the
depths into five and four layers. The five-/four-layer student is initialized from ℓ-layer of teacher
with ℓ ∈ {3, 5, 7, 9, 11} or ℓ ∈ {3, 6, 9, 12}. We apply the same training recipe as Skip-BERT6 and
report the results in Row 8 and 9 in Table 5. There is little performance degradation in our five-layer
model (83.28) compared to its six-layer counterpart (83.50); Interestingly, CoLA and MNLI-mm
even achieve higher accuracy with smaller model sizes. Meanwhile, when we perform even more
aggressive compression by reducing the depth to 4, the result is less positive as the average accuracy
drop is around 1.3 points.

Third, among three lightweight layer reduction methods, we confirm that a Skip-# student performs
better than those using Top-# and Bottom-#. We report the full results of this comparison in the
Appendix Table C.6. This observation is consistent with [20]. However, their layerwise distillation
method is not the same as ours, e.g, they use the non-adapted pretrained BERT model to initialize
the student, whereas we use the fine-tuned BERT weights. We remark that our finding is in contrast
to [41] which is perhaps because the KD in [41] only uses logits distillation without layerwise
distillation.

Finding 4. Lightweight layer reduction matches or even exceeds expensive pre-training
distillation for task-specific compression.

5 Proposed Method for Further Pushing the Limit of Extreme Compression

Based on our studies, we propose a simple yet effective method tailored for extreme compression.
Figure 1 (right) or Figure 7 illustrates our proposed method: XTC, which consists of 2 steps:

Step I: Lightweight layer reduction. Unlike the common layer reduction method where the layer-
reduced model is obtained through computationally expensive pre-training distillation, we select a
subset of the fine-tuned teacher weights as a lightweight layer reduction method (e.g., either through
simple heuristics as described in Section 4 or search-based algorithm as described in [34]) to initialize
the layer-reduced model. When together with the other training strategies identified in this paper,
we find that such a lightweight scheme allows for achieving a much larger compression ratio while
setting a new state-of-the-art result compared to other existing methods.

Step II: 1-bit quantization by applying 1S-KD with DA and long training. Once we obtain
the layer-reduced model, we apply the quantize-aware 1S-KD, proven to be the most effective
in § 3.2. To be concrete, we use an ultra-low bit (1-bit/2-bit) quantizer to compress the layer-
reduced model weights for a forward pass and then use STE during the backward pass for passing
gradients. Meanwhile, we minimize the single-stage deep knowledge distillation objective with data
augmentation enabled and longer training Budget-C (such that the training loss is close to zero).

Evaluation Results. The results of our approach are presented in Table 6, which we include multiple
layer-reduced models with both 1-bit and 2-bit quantization. We make the following observations:
(1) For the 2-bit + 6L model (Row 1 and Row 2), XTC achieves 0.63 points higher accuracy than
2-bit quantized model TernaryBERT [62]. This remarkable improvement consists of two factors:
(a) our fp-32 layer-reduced model is better, and (b) the 1-bit model is trained under larger budget
and three learning rate searches. To understand how much the factor-(b) benefits, we may refer to
the accuracy drop from their fp32 counterparts (last col.) where ours only drops 0.44 points and
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Table 6: 1-/2-bit quantization of the layer-reduced model. The last column (Acc. drop) is the accuracy
drop from their own fp-32 models. See full details in Table C.8.

bit size CoLA MNLI-m/-mm MRPC QNLI QQP RTE SST-2 STS-B Avg. Acc.
# Method (#-layer) (MB) Mcc Acc/Acc F1/Acc Acc F1/Acc Acc Acc Pear/Spea all drop

1 [62] 2 (6L) 16.0 (×26.2) 53.0 83.4/83.8 91.5/88.0 89.9 87.2/90.5 71.8 93.0 86.9/86.5 82.26 -0.76

2

Ours

2 (6L) 16.0 (×26.2) 53.8 83.6/84.2 90.5/86.3 90.6 88.2/91.3 73.6 93.6 89.0/88.7 82.89 -0.44
3 2 (5L) 14.2 (×29.3) 53.9 83.3/84.1 90.4/86.0 90.4 88.2/91.2 71.8 93.0 88.4/88.0 82.46 -0.72
4 2 (4L) 12.6 (×33.2) 50.3 82.5/83.0 90.0/85.3 89.2 87.8/91.0 69.0 92.8 87.9/87.4 81.22 -0.90
5 1 (6L) 8.0 (×52.3) 52.3 83.4/83.8 90.0/85.3 89.4 87.9/91.1 68.6 93.1 88.4/88.0 81.71 -1.51
6 1 (5L) 7.1 (×58.5) 52.2 82.9/83.2 89.9/85.0 88.5 87.6/90.8 69.3 92.9 87.3/87.0 81.34 -1.84
7 1 (4L) 6.3 (×66.4) 48.3 82.0/82.3 89.9/85.5 87.7 86.9/90.4 63.9 92.4 87.1/86.7 79.96 -2.01

TinyBERT6 drops 0.76. (2) When checking between our 2-bit five-layer (Row 3, 82.46) in Table 6
and 2-bit TinyBERT6 (Row 1, 82.26), our quantization is much better, while our model size is 12.5%
smaller, setting a new state-of-the-art result for 2-bit quantization with this size. (3) Let us take a
further look at accuracy drops (last column) for six/five/four layers, which are 0.44 (1.51), 0.72 (1.84),
and 0.9 (2.01) respectively. It is clear that smaller models become much more brittle for extreme
quantization than BERTbase, especially the 1-bit compression as the degradation is ×3 or ×4 higher
than the 2-bit quantization.

Besides the reported results above, we have also done a well-thorough investigation on the effec-
tiveness of adding a low-rank (LoRa) full-precision weight matrices to see if it will further push the
accuracy for the 1-bit layer-reduced models. However, we found a negative conclusion on using
LoRa. Interestingly, if we repeat another training with the 1-bit quantization after the single-stage
long training, there is another 0.3 increase in the average GLUE score (see Table C.14). Finally, we
also verify that prominent teachers can indeed help to improve the results (see appendix).

6 Conclusions

We carefully design and perform extensive experiments to investigate the contemporary existing
extreme quantization methods [20, 3] by fine-tuning pre-trained BERTbase models with various
training budgets and learning rate search. Unlike [3], we find that there is no sharp accuracy drop if
long training with data augmentation is used and that multi-stage KD and pretraining introduced in
[20] is not a must in our setup. Based on the finding, we derive a user-friendly celebrating recipe for
extreme quantization (see Figure 1, right), which allows us to achieve a larger compression ratio and
higher accuracy. See our summarized results in Table 7.4

Table 7: Summary of task-specific performance of MNLI
and GLUE scores. Also see Figure 2.

# Model (8-bit activation) size (MB) MNLI-m/-mm GLUE Score

1 BERTbase (Teacher) 417.2 (×1.0) 84.9/85.6 83.95

2 TinyBERT6 (rep*) 255.2 (×1.6) 84.4/84.8 83.33
3 XTC-BERT6 (ours) 255.2 (×1.6) 84.6/84.9 83.50
4 XTC-BERT5 (ours) 228.2 (×1.8) 84.3/85.1 83.38
5 2-bit BERT [62] 26.8 (×16.0) 83.3/83.3 82.73
6 2-bit XTC-BERT (ours) 26.8 (×16.0) 84.6/84.7 84.10
7 1-bit BERT (TWN) [3] 16.5 (×25.3) 84.2/ 84.7 82.49
8 1-bit BERT (BWN) [3] 13.4 (×32.0) 84.2/84.0 82.29
9 1-bit XTC-BERT (ours) 13.4 (×32.0) 84.2/84.4 83.44
10 2-bit TinyBERT6 [62] 16.0 (×26.2) 83.4/83.8 82.26
11 2-bit XTC-BERT6 (ours) 16.0 (×26.2) 83.6/84.2 82.89
12 2-bit XTC-BERT5 (ours) 14.2 (×29.3) 83.3/84.1 82.46
13 1-bit XTC-BERT6 (ours) 8.0 (×52.3) 83.4/83.8 81.71
14 1-bit XTC-BERT5 (ours) 7.1 (×58.5) 82.9/83.2 81.34

Discussion and future work. Despite
our encouraging results, we note that
there is a caveat in our Step I when
naively applying our method (i.e., ini-
tializing the student model as a subset of
the teacher) to reduce the width of the
model as the weight matrices dimension
of teacher do not fit into that of students.
We found that the accuracy drop is con-
siderably sharp. Thus, in this domain,
perhaps pertaining distillation [20] could
be indeed useful, or Neural Architec-
ture Search (AutoTinyBERT [58]) could
be another promising direction. We ac-
knowledge that, in order to make a fair
comparison with [62, 3], our investiga-
tions are based on the classical 1-bit [39]
and 2-bit [27] algorithms and without quantization on layernorm [2].

Exploring the benefits of long training on an augmented dataset with different 1-/2-bit algorithms
(with or without quantization on layer norm) would be of potential interests [24, 35]. Finally, as
our experiments focus on BERTbase model, future work can be understanding how our conclusion
transfers to decoder models such as GPT-2/3 [36, 6].

4We decide not to include many other great works [26, 59, 42, 35] since they do not use data augmentation
or their setups are not close.
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