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ABSTRACT

Sparsity-aware inference can dramatically shrink computation requirements by
reducing the number of parameters, and thus FLOPs, used in each forward pass.
Existing methods tend to be heuristic (zeroing activations below fixed thresholds,
retaining top K activations, etc.). These methods do not directly optimize individ-
ual thresholds using gradient-based methods and experience sharp performance
degradation beyond 50% sparsity. This paper describes CWIC (Compute Where it
Counts), a method that makes sparsity thresholds learnable and contextual. CWIC
is designed to enable conditional computation in models, allowing them to self-
distribute sparsity across each weight matrix. In addition, it enables models to
allocate different amounts of compute for each token and sequence. We also pro-
pose “granular sparsity” that decomposes matrix columns into smaller “stripes”
for more expressive sparsity patterns. We show that CWIC and granular spar-
sity can distill 2x to 6x compute-efficient sparse models from Llama 3.2-1B and
3B. We find that sparsifying Llama3.2-1B to 66% sparsity (3x active parameter
reduction) with CWIC achieves a 15% increase in aggregate benchmark scores
over doing the same with TEAL Liu et al. (2025) while speeding up inference
wall clock times by 2.5x in both GPU and CPU settings. CWIC shows promising
scaling behavior. A CWIC Llama3.2-3B at 66% sparsity outperforms Llama3.2-
1B (equal number of active parameters) on standard benchmarks by 1.6%, with
wall clock improvements of 2.7x in both GPU and CPU settings. Notably, CWIC
models are found to allocate little compute to filler or replicated text and more to
challenging benchmark questions.

1 INTRODUCTION

As large language models (LLMs) grow in parameter count to attain desired performance levels,
their inference compute requirements grow in lockstep. Consumer devices cannot support large
inference compute needs which now drive massive industry hardware expenses. This poses a bot-
tleneck for many applications, especially agentic ones, that require high-speed, low-cost options for
real-world deployment. Several methods have been proposed to improve LLM inference efficiency,
including sparse Mixture of Experts (MoE) (Shazeer et al., 2017), quantization (Jin et al., 2024),
ReLU-based sparsity (Mirzadeh et al., 2024), and activation sparsity (Lee et al., 2024; Liu et al.,
2025; Zhang et al., 2025).

Quantization casts weights into lower-precision types. This tends to be less expressive than sparsity
techniques as the same matrix is applied to all inputs. ReLU-based sparsity requires that the model
use ReLU activations; however, modern models have adopted SwiGLU (Shazeer, 2020a) and other
alternatives for superior performance. Activation sparsity methods such as CATS (Lee et al., 2024)
zero out non-salient, activations lower than a threshold. Although sparsity can be input-dependent,
no current activation sparsity method directly learns activation thresholds. Furthermore, these prior
works exhibit sharp performance degradation at sparsity exceeding 50% .

This work presents CWIC (Compute Where it Counts), a method to effectively train sparsity-aware
models. CWIC is inspired by sparse autoencoders (Rajamanoharan et al., 2024) and uses straight-
through-estimator (Bengio et al., 2013) to directly optimize activation thresholds (Lee et al., 2024).
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Figure 1: Average performance of CWIC and active-parameter equivalent models on standard LLM
benchmarks (described in subsection 4.2). Each trend line shows performance of a base model at
varying levels of sparsity (or active parameters) under CWIC and TEAL. The rightmost point of
each trendline corresponds to 0% sparsity.

This allows the model to (1) designate different levels of sparsity to different weight matrices and
(2) dynamically allocate compute to different tokens and sequences. It also gives us control over the
desired sparsity level using a loss function.

To complement CWIC, we introduce granular sparsity, which partitions matrix columns into smaller
stripes. This enables increased expressivity over the traditional approach of treating a matrix column
as the “unit” of sparsity that can be turned “on” or “off” (Lee et al., 2024). Picking a stripe size of
512 retains the hardware acceleration associated with these methods.

We distill 1B and 3B models from the Llama 3.2 family (Grattafiori et al., 2024) under the CWIC
framework into versions that use 2x-6x fewer Active Parameters (AP) per token. As in , we find that
CWIC outperforms TEAL (Liu et al., 2025) and exhibits a graceful performance tradeoff at higher
sparsity levels (lower AP) while other activation sparsity techniques tend to exhibit performance
collapse beyond 33% sparsity (3x reduction in AP). CWIC kernels match TEAL performance and
CWIC scales as a sparsification method.

Examining the FLOPs and Active Parameters assigned by CWIC models to benchmark tasks reveals
that they naturally allocate less compute to “easier” tokens (such as role tokens, filler words, system
prompt) and sequences (such as questions from ARC-Easy vs ARC-Challenge (Clark et al., 2018)).

2 RELATED WORK

Activation sparsity reduces computation requirements by zeroing small activations, allowing them
to be skipped during matrix multiplications. Relufication (Mirzadeh et al., 2024) replaces pretrained
LLM activation functions with ReLUs and inserts ReLUs elsewhere in the model to induce sparsity.
After finetuning to recover performance, Relufication can reduce FLOP counts by up to 50% with
almost no degradation. ProSparse (Song et al., 2025) builds on Relufication by adding an L1 penalty
to ReLU activations to further increase sparsity.

GRIFFIN, Dong et al. (2024) exploits sequence-level activation similarity to define adaptive
sequence-level sparsity patterns. Deja Vu (Liu et al., 2023) and ShadowLLM (Akhauri et al., 2024)
predict sparsity on the fly by training small auxiliary MLPs to determine which weights matter to
particular input sequences. Q-Sparse (Wang et al., 2024) discards all but the K largest channels of in-
put vectors when computing linear layers. Q-sparse improves performance over compute-equivalent
dense models and shows that sparsity degrades performance less on larger models.
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Most similar to our work are CATS (Lee et al., 2024), TEAL (Liu et al., 2025), and R-SPARSE
(Zhang et al., 2025), which zero all activations that are smaller than a threshold. However, un-
like our work, they do not directly optimize individual thresholds using gradient-based methods.
CATS targets the same activation frequency with every threshold, TEAL optimizes thresholds using
a greedy block-wise heuristic, and R-SPARSE uses a search algorithm in conjunction with singular
value analysis.

Mixture of Experts (MoE) activates certain sections of the neural network (“experts”) to reduce
active parameter counts. Unlike activation sparsity, MoE architectures typically use a learned routing
mechanism to choose which experts to activate. Sparsely-Gated Mixture-of-Experts (Shazeer et al.,
2017) proposed a gating network that incentivizes sparse, yet balanced, expert selection for language
modeling and translation. DeepSeekMoE (Dai et al., 2024) demonstrated that combinatorial expert
selection with more experts improves performance. Pham et al. (2024) demonstrate the selection of
experts with the largest output magnitude is an effective routing strategy. Zhou et al. (2022) find that
performance can improve if different tokens can receive different amounts of compute.

Sparse Autoencoders (SAEs) can faithfully reconstruct the hidden state of a neural network while
activating a very small percentage of their features. Variants include top-k SAEs (Gao et al., 2024)
that retain only the k largest activations, and JumpReLU (Rajamanoharan et al., 2024) SAEs that
retain only those ReLU activation that exceed a learned threshold. Notably, JumpReLU makes spar-
sity learnable, and allows different numbers of features to activate for different examples. Ayonrinde
(2024) showed reconstruction fidelity is improved when different numbers of features can be acti-
vated for different tokens.

3 METHODS

3.1 GRANULAR SPARSITY

Figure 2: Given a 4x4 matrix, using column spar-
sity results in 16 possible configurations. Parti-
tioning each column into 2 individually activated
stripes results in a significantly greater number of
achievable configurations.

Existing sparsity methods (Mirzadeh et al.,
2024; Wang et al., 2024; Lee et al., 2024) ex-
ploit column sparsity (sometimes transposed
and described as row sparsity) in matrix mul-
tiplications. When an input vector has a zero
element, the computation for the corresponding
matrix column can be skipped. Thus columns,
which are either entirely used or entirely un-
used, and can be considered the units of con-
ditional computation.

Inspired by the insight of DeepSeekMoE (Dai
et al., 2024) that smaller and more configurable
experts lead to better performance, we sought to
create a more expressive sparsity mechanism.
Termed “granular sparsity”, our method breaks
each column into a set of stripes - with each
stripe being activated individually. This greatly
increases the number of achievable sparsity
configurations (see Figure 2). We construct the
Granular Matrix Multiplication (GMM) opera-
tion to multiply only those stripes of the weight
matrix that are kept “active”. The GMM algo-
rithm is explained below.

The multiplication of a matrix W ∈ Rm×n with a vector x ∈ Rn, can be expressed as the sum of
W column vectors vi := W:,i weighted by the elements xi of x.

y := Wx =

n∑
i=1

xivi
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Column-wise sparse matrix multiplication, uses a binary mask M ∈ {0, 1}n to zero out certain
elements of x. The remaining components contribute to the multiplication.

ysparse :=

n∑
i=1

Mixivi =
∑

i∈SM

xivi where SM := {i ∈ {1, . . . , n} | Mi = 1}

In our method, we partition the output vector y and each column vector vi into k equally sized
stripes. We introduce

∥∥, a concatenation operator where y =
∥∥k
r=1

y(r).

y :=
∥∥k
r=1

n∑
i=1

xiv
(r)
i

Our granular sparsity operation, denoted GMM(x,W ,G), uses a binary mask G ∈ {0, 1}k×n that
zeroes out certain stripes in the matrix W , as shown in Figure 2. We define the set of active (non-
zeroed) stripe indices:

SG = {(r, i) ∈ {1, . . . , k} × {1, . . . , n} | Gr,i = 1}

Then the granular sparse output is given by:

ygranular = GMM(x,W ,G) :=
∥∥k
r=1

n∑
i=1

Gr,ixiv
(r)
i

=
∥∥k
r=1

∑
(r,i)∈SG

xiv
(r)
i

Note that when k = 1, granular matrix multiplication reduces to standard column-wise sparsity.

3.2 SPARSITY THRESHOLDS

We use a different mask G for each input vector
x (a strategy known as contextual sparsity) (Liu
et al., 2023). To determine the G, we use the
magnitudes of each element in x. Specifically,
we learn a grid of thesholds θ ∈ Rk×n

+ such that
Gr,i is 1 if and only if xi has have a magnitude
of at least θr,i. We define this using a function
T (x, t) that given the absolute value of x gate
and the threshold returns an one or zero using the
Heaviside step function H(z).

Similarily, we denote granular matrix mul-
tiplication parameterized by thresholds with
GMM(x,W, θ).

Calculating G

H(z) :=

{
1 z ≥ 0

0 z < 0

T (x, t) = H(x, t)

Gr,i = T (|xi| − θr,i)

GMM parameterized by thresholds

ygranular = GMM(x,W ; θ)

:=
∥∥k
r=1

n∑
i=1

H(|xi| − θr,i) xiv
(r)
i

We initialize θ to zero at the start of training. To keep θ positive, we set θ = max(0, θ) after every
parameter update. We found that θ benefited from a significantly higher learning rate (LR) than other
parameters. We set the LR of θ to the base LR multiplied by ηθ

√
n, where ηθ is a hyperparameter.

3.3 LEARNING THRESHOLDS

Previous works that use thresholds to determine contextual sparsity masks often rely on heuristics
to determine threshold values (Lee et al., 2024). We seek better optimization by directly learning
the thresholds. Unfortunately, H(z) is not differentiable. We thus build on the ideas introduced in
JumpReLU (Rajamanoharan et al., 2024) to construct a straight-through-estimator (Bengio et al.,
2013) with a pseudo-derivative that approximates the true derivative. This pseudo-derivative is de-
fined as follows, with K representing a kernel function and ϵ representing a tunable bandwidth:

∂

∂z
H(z) :=

1

ϵ
K
(z
ϵ

)
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For our kernel function K, we use the rectangle function seen in JumpReLU:

K(z) := H
(
z − 1

2

)
−H

(
z +

1

2

)
When calculating either ∂

∂xi
Gr,i or ∂

∂θr,i
Gr,i we set the corresponding ϵi equal to the batch-wise

standard deviation of xi (which does not receive gradients), scaled by a constant uniform hyperpa-
rameter αϵ with ϵi := αϵstd(xi). For a more detailed analysis of this gradient estimator, we refer
readers to the JumpReLU paper (Rajamanoharan et al., 2024).

When backpropagating the AP loss grads on the AP mask T (x, t) we allow grads to flow to both x,
and t. When backpropagating the grads from Gr,ixi = T (|xi| − θr,i)xi we make two key changes.
First, we take xi’ grads straight through as if xi was unmasked. This was informed by our ablation
studies. Second, we stop the gradients from flowing to |xi|. This is needed because the scales of
grads going to xi through |xi| were dominating in practice due to the normalization step outlined in
subsection 3.4.

3.4 NORMALIZATION

When initializing from a pre-trained network, we found that the batch-wise scales and offsets of xi

values can vary throughout the network, making it difficult to tune hyperparameters. To remedy
this, we whiten x before it enters the matrix multiplication operation. For a batch of x vectors, we
calculate the batch-wise mean x̄ ∈ Rn and standard deviation σ(x) ∈ Rn.

Then, we then perform the following: ygranular = GMM
(
x− x̄,W ; θ ⊙ σ(x)

)
+Wx̄

Note that when θ is composed of zeroes, this whitening procedure does not effect ysparse. To increase
training stability, we track x̄ and σ(x) on a rolling basis. For this, the hyperparameter βdist is used to
compute an exponential moving average. At inference time the running x̄ and σ(x) values from the
last step of training are used.

3.5 STRAIGHT-THROUGH ESTIMATION

Previous work (Wang et al., 2024) shows that sparse models can benefit from using straight-through
estimators during training. In our case, that means taking the gradients of x as if there was no
sparsity. Specifically, we use the following definition for the gradients of x: ∇x ygranular := W⊤

Although this modification obviously leads to biased gradients, we theorize that this estimator im-
proves performance by removing the variance imparted on the grads when the values of G are chang-
ing frequently. The STE could also fix the vanishing gradients associated with high sparsity, as
postulated by Q-Sparse (Wang et al., 2024). The gradients of θ and W are left unchanged.

3.6 CONTROLLING SPARSITY

A key advantage of the learnable threshold is that we can control the sparsity of the model using a
loss function. The number of parameters to compute GMM(x,W ; θ), is:

APs(x,W,G) := m

k
||G||1

We define APs(B) to represent the number of active parameters required by the entire model to
operate on a batch B, APsbase(B) to represent the number of active parameters required if we did
not have sparsity, and APstarget(B) to represent the desired Active Parameter count. We then define
the Active Parameter Reduction (APR) as the ratio between the base FLOP count and the sparse
FLOP count and our loss function:

APR(B) :=
APsbase(B)

APs(B)
APRtarget(B) :=

APsbase(B)

APstarget(B)

LAPs :=
[
min

(
APR(B)− APRtarget(B), 0

)]2
5
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This loss was chosen as it gives us control over the desired compute costs, and stable performance
during training. We found it important to include a warmup phase where APstarget(B) is incremen-
tally lowered. We linearly increase APRtarget(B) from 1.05, to our final target value + 0.05.

3.7 FEED-FORWARD NETWORK MODIFICATIONS

Previous works have found that intermediate activations of the feed-forward blocks exhibit natural
sparsity (Mirzadeh et al., 2024). To leverage this, we slightly modify our granular sparsity
system for use in the feed-forward blocks. The Llama 3 suite of models uses gated linear units
(GLU) (Shazeer, 2020b) as their feedforward design. These are parameterized by a gate matrix
Wgate ∈ Rn×d, an up matrix Wup ∈ Rn×d, and a down matrix Wdown ∈ Rd×n.

We compute Wgatex with the standard granular
sparsity method. Then, we use our learned threshold
method to compute M ∈ {0, 1}d based on the
magnitudes of silu(Wgatex).

a = M⊙ silu
(
GMM(x,Wgate,G)

)
yGLU, granular = Wdown

(
Wup ⊙ a

)
When the operations rendered unnecessary by the
mask are filtered out, we arrive at the FLOP cost of
this operation.

APs(G,M) =
d

k
||G||1 + 2n||M||1

3.8 MODEL DISTILLATION

To efficiently train our sparse models, we use knowl-
edge distillation (Hinton et al., 2015) with a teacher
network (usually the one that was used to initialize
the sparse model).
For our distillation loss, over a sequence of length
T , we use a combination of the forward (FKL) and
reverse KL divergence (RKL), which has been shown
to work better than either divergence individually
(Wu et al., 2024).

Our total loss is a weighted combination of our distil-
lation loss and our Active Parameter loss described in
subsection 3.6:

FKL :=

T∑
t=1

KL
(
pt(yt|y<t), ps(yt|y<t)

)
RKL :=

T∑
t=1

KL
(
ps(yt|y<t), pt(yt|y<t)

)
Ldistill :=

1

2

(
FKL + RKL

)
L = Ldistill + λAPsLAPs

4 EXPERIMENTS

4.1 SETUP

We tested our methods with the Llama-3.2-1B 1 and Llama-3.2-3B 2 models for both the teacher
and the initialization of the student. We used the AdamW optimizer. Details of our hyperparameters
can be found in Appendix B and details of our training set in Appendix C.

Training was carried out over approximately 1B tokens for both 1B and 3B parameter experiments,
with our 1B model requiring 52 hours on 1 H100 GPU (for a total of 52 GPU hours). This com-
pute equates to only 0.015% of the 370K H100 hours originally used to train Llama-3.2-1B 3. Our
training implementation used only Python-level Pytorch operations. We believe that a lower level
implementation of the GMM operation, akin to Flash Attention (Dao et al., 2022), could accelerate
training considerably.

As a baseline, we applied TEAL (Liu et al., 2025), the current state of the art activation sparsity
method, to the base model using default settings. To generate activations for threshold optimization,
we used 1000 sequences from our training dataset.

1meta-llama/Llama-3.2-1B
2meta-llama/Llama-3.2-3B
3meta-llama/Llama-3.2-1B

6
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We measure model performance on standard LLM benchmarks. Specificaly, we aggregate perfor-
mance over MMLU (Hendrycks et al., 2021), WinoGrande (Sakaguchi et al., 2019), ARC (Easy
and Challenge) (Clark et al., 2018), HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2019) and
OpenBookQA (Mihaylov et al., 2018).

4.2 RESULTS

4.2.1 CWIC OUTPERFORMS TEAL

We find that CWIC outperforms TEAL (Liu et al., 2025) across all sparsity levels. CWIC shows
a gradual performance tradeoff as sparsity levels are increased (lower AP). This is explained by
the increasing KL divergence we observe between high APR models and the original model. In
contrast, TEAL tends to exhibit performance collapse beyond 33% sparsity (3x reduction in AP). We
find that sparsifying Llama3.2-1B to 66% sparsity with CWIC achieves a 15% increase in aggregate
benchmark scores over doing the same with TEAL. This performance gap between TEAL and CWIC
grows as the sparsity levels increase. The full set of results can be found in subsection A.1.

4.2.2 CWIC SPARSIFICATION OUTPERFORMS ACTIVE PARAMETER EQUIVALENTS

Table 1 compares our 3x APR models to dense transformer models in their compute classes that
have been trained from scratch. We see that they marginally outperform the dense model with
matching AP on the benchmark aggregate. In Figure 1, a 3x AP reduction of Llama3.2-3B using
TEAL underperforms Llama3.2-1B (an AP equivalent model) by roughly 16%. In contrast, doing
the same with CWIC outperforms Llama3.2-1B by 1.6%.

Model Type (Active Params) ALL MMLU WG* Arc-C HS* Arc-E OBQA* PIQA
Llama3B CWIC 3.05x APR (1053M) 54.7 38.3 58.3 39.5 64.3 69.4 39.4 73.9
Llama1B (1236M) 53.1 38.6 57.9 36.9 64.2 61.7 37.2 74.9
Llama1B CWIC 3.05x APR (245M) 44.2 25.2 51.6 29.2 48.3 52.8 33.4 68.8
Gemma-3-270M 43.6 24.3 52.7 27.6 43.8 57.5 30.6 68.9

Table 1: Comparison of 3x APR models to compute-equivalent models. WG, HS and OBQA are
the WinoGrande, HellaSwag and OpenbookQA datasets respectively.

4.2.3 CWIC ABLATION FINDINGS

We construct two ablations to test CWIC design choices and run them on Llama-3.2-1B. Our first
ablation tests the utility of “granular sparsity” by reverting to column sparsity instead of stripe spar-
sity. In the second ablation, we including MSE on the last hidden states in the distillation loss. At
APR 3.05x on Llama-3.2-1B, we observe a 1.7% performance hit using column sparsity and a 1.6%
performance drop with MSE on the last hidden states (see Table 2). The full set of ablation results
are provided in Appendix A.2.

Version Step Multiplier all mmlu wg arc:c HS arc:e obqa piqa
Full CWIC 6000 3.05x 47.5 26.7 55.7 33.1 53.6 58.0 34.8 70.4
No Stripes 6000 3.05x 45.8 26.2 54.1 30.9 51.4 56.3 32.6 69.1
No MSE 6000 3.05x 45.9 24.7 52.2 30.7 51.4 57.4 34.4 70.5

Table 2: Model performance under CWIC ablations

4.2.4 CWIC SCALING LAWS

Given budget constraints, we sparsified 1B and 3B models. We observed CWIC versions of both
outperform their respective TEAL sparsified and dense active-parameter-equivialents across sparsity
levels (full results in

Modern LLMs can have 10-100x more parameters. Q-Sparse (Wang et al., 2024) studied the scaling
laws of sparsely activated models and found that the performance gap between dense and sparsely-
activated models diminishes as model size increases. TEAL Liu et al. (2025) shows that at 65%

7
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sparsity, Llama-3-8B4 sees an average downstream task performance reduction of 22% while Llama-
3-70B5 (70B parameters) only sees a performance reduction of 9%. Since our method and TEAL
both calculate sparsity based on activation thresholds, we expect to see similar scaling trends where
CWIC will work as well, if not better, at larger scales

4.2.5 WALL CLOCK SPEEDUPS

We implemented a triton kernel based on TEAL (Liu et al., 2025). Keeping the stripe size a multiple
of the kernel block size along the output dimension maintains the efficiency of TEAL’s triton kernel.
In the GPU setting we matched the TEAL procedure. For testing on CPU we implemented a Rust
version and compared to OpenBlas, taking precautions to evict the matrix from cache before each
timed operation. At 66% sparsity, CWIC kernels speed up inference by 2.5x in both GPU and CPU
settings for Llama3.2-1B and 2.7x for LLama3.2-3B.

Figure 3: GPU and CPU speedups where hidden width: 4096, stripe size: 512

5 DISCUSSION

5.1 SPARSITY PATTERNS

Analyzing the activation frequencies reveals sev-
eral insights about the model’s structure of cir-
cuits and sparsity. First, we observe that some
channels in the residual stream activate for al-
most every input across layers (Figure 7). They
emerge very early (100 steps), and stay almost
unchanged for the entirety of training. We be-
lieve that these channels may capture common
knowledge, and serve a similar purpose to the
shared experts used by DeepSeekMoE (Dai et al.,
2024). An example of this behavior can be found
in Figure D.
Second, we find striking patterns (see Figure D)
in the O attention matrix. Individual atten-
tion heads have consistently high/low activa-
tions across channels. We hypothesize that the
model is learning to “prune” unhelpful atten-
tion heads, similar to previous work that reduces
compute cost by explicitly removing attention
heads (Mugnaini et al., 2025).

Figure 4: Activation frequency of different
matrix types across layers from the 6x APR
checkpoint of Llama-3.2-3B. FFN and FN
GATE represent the Wup / Wdown matrices and
Wgate respectively.

Unlike the QKV, UP, GATE layers there are no patterns across layers as the input to O is not the
residual stream. We have provided an example of this sparsity pattern in Appendix D.

We also find that stripes in the language modeling head corresponding to earlier vocabulary tokens
have higher activation frequencies. This is because the vocabulary of Llama models is implicitly
sorted from high to low token frequency, so frequent tokens have more compute designated to them
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than infrequent ones. This effect is so pronounced that without regularization, the network will
eventually put nearly zero compute towards infrequent tokens, leading to representation collapse.

Finally, among the Q, K, and V attention matrices, activation of the V matrix is the most dense,
followed by K and O (Figure 4). Note the dip in activation frequencies across matrices from layers
8-14 followed by a slight rise in layers 15 and 16.

5.2 VARIABLE COMPUTE BUDGETS

Figure 5 uses text thickness to indicate compute allocated to different tokens in a prompt-response
pair on a CWIC model based off Llama-3.2-1B-Instruct. We observe three common trends in
compute allocation in general.

Figure 5: Active parameter count allocation of a
6x APR model across tokens.

Figure 6: Active parameters allocated to
each question of ARC-Easy and ARC-
Challenge. We ignore the system prompt
and only consider the question and option
tokens. Active parameters are averaged per-
question.

Semantically quoting sections of the user prompt such as “(5,8) and (9,9)” in the response uses fewer
active parameters. Punctuation, prepositions and filler words such as “the” and “and” are allocated
lower budgets. Behavior on system prompt and system/user/assistant role tokens gets distilled into
very few active parameters and thus receives a very low compute allocation. We provide more
visualizations of variable compute allocation in Appendix D.

Sparsity thresholds allows different tokens and different sequences to use different amounts of com-
pute. Figure 6 shows that the average Active parameters dedicated by the 6x APR model to running
ARC-Easy and ARC-Challenge benchmarks follow similar distributions, but with the Arc-E taking
5% less compute on average. A significant number of the ARC-E questions were allocated less
compute than ARC-C questions. As evidenced by the scores of the 6x APR model (subsection A.1),
ARC-Easy questions are indeed easier for the model!

6 FUTURE WORK

Our striping method groups output channels based on their order. However, outside of attention
heads, there is no guarantee that adjacent channels are functionally similar. When initializing a
sparse model from a pretrained one, it may be beneficial to reorder channels to form semantic group-
ings. This idea has seen success in mixture-of-expert conversions (Elazar & Taylor, 2022).

We observed that the KL divergence between the base and APR models remains stable between
2x-4.5x APR. It curves up beyond 4.5x APR. Performance improvements could be realized by mod-
ifying the APR warm-up to use a non-linear schedule.

We believe that several further optimizations can be made to the GPU CWIC kernel to unlock further
speed gains from Active Parameter reductions.

Finally, we observed that longer training in tokens improves quality (as seen with the continued 6x
training). It is natural to ask how far can this be pushed, and what are the scaling laws.
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LIMITATIONS

The primary limitation of our work concerns the scale of our experiments. We did not train models
larger than 3B parameters, and we did not train for longer than 1B tokens. We believe that signifi-
cantly better benchmark performance could be achieved with more training. Previous work (Wang
et al., 2024) has also indicated that sparsity leads to less performance degradation at larger scales,
so our method may be more suitable for larger models than those tested here.

Furthermore, we only tested our method on transformer architectures and language modeling. The
application to other models such as vision transformers (Dosovitskiy et al., 2021) has not been
explored.

REPRODUCIBILITY STATEMENT

We are committed to publishing reproducible research. We will open source our code (codebase
already ready and version tracked on GitHub) and training data (already uploaded to HuggingFace).
We will also be releasing model checkpoints for the research community to use and test out of
the box (already uploaded to HuggingFace). We will link these resources in the paper after the
review session during which anonymity is required. As a starting measure, we have provided all
hyperparameter settings in Appendix B and the training data recipe in Appendix C.
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A EVALUATIONS RESULTS

A.1 COMPARISON TO COMPUTE EQUIVALENT MODELS

Model Technique Step Multiplier all mmlu wg arc:c HS arc:e obqa piqa
Gemma270M — — — 43.6 24.3 52.7 27.6 43.8 57.5 30.6 68.9
llama-3.2-1B — — — 53.1 38.6 57.9 36.9 64.2 61.7 37.2 74.9
llama-3.2-1B CWIC 3000 2.05x 49.2 27.7 56.0 33.5 58.4 60.2 35.8 72.9
llama-3.2-1B CWIC 6000 3.05x 47.5 26.7 55.7 33.1 53.6 58.0 34.8 70.4
llama-3.2-1B CWIC 9000 4.05x 46.1 26.4 53.3 30.2 50.3 56.9 36.2 69.2
llama-3.2-1B CWIC 12000 5.05x 44.2 25.2 51.6 29.2 48.3 52.8 33.4 68.8
llama-3.2-1B CWIC 15000 6.05x 43.8 24.9 52.2 30.6 46.6 53.4 30.8 68.1
llama-3.2-1B CWIC 18000 6.05x 44.5 26.0 53.4 31.0 48.0 53.9 31.4 68.0
llama-3.2-3B — — — 61.7 55.2 65.1 46.3 74.1 72.1 40.8 78.1
llama-3.2-3B CWIC 3000 2.05x 57.2 47.4 60.1 42.2 68.3 69.1 38.0 75.6
llama-3.2-3B CWIC 6000 3.05x 54.7 38.3 58.3 39.5 64.3 69.4 39.4 73.9
llama-3.2-3B CWIC 9000 4.05x 52.5 32.3 57.0 38.6 61.5 67.1 37.0 74.3
llama-3.2-3B CWIC 12000 5.05x 49.8 28.8 53.6 35.2 59.1 62.6 37.4 71.7
llama-3.2-3B CWIC 15000 6.05x 49.4 27.6 53.8 34.3 57.7 62.2 38.2 72.0
llama-3.2-1B TEAL — 1.65x 48.1 28.1 55.3 34.0 55.2 56.6 35.6 71.7
llama-3.2-1B TEAL — 2.11x 39.1 24.1 51.3 24.7 39.0 43.0 30.0 61.9
llama-3.2-1B TEAL — 2.44x 34.0 22.9 48.0 22.7 28.9 32.8 28.0 55.0
llama-3.2-1B TEAL — 2.70x 33.2 22.9 48.5 24.9 26.3 29.0 28.4 52.0
llama-3.2-1B TEAL — 2.91x 32.8 23.0 49.4 25.1 26.0 26.6 29.8 50.1
llama-3.2-3B TEAL — 1.78x 57.4 48.3 58.6 42.4 69.8 69.1 38.4 75.6
llama-3.2-3B TEAL — 2.41x 48.5 30.7 54.5 35.2 55.4 58.3 36.0 69.4
llama-3.2-3B TEAL — 2.92x 37.6 23.2 50.1 26.6 34.5 41.7 26.0 61.3
llama-3.2-3B TEAL — 3.35x 32.4 23.0 50.4 23.6 26.4 26.4 26.6 50.7
llama-3.2-3B TEAL — 3.71x 32.2 23.1 49.4 24.1 26.4 26.6 24.6 51.5

Table 3: Model Performance Comparison (acc norm)
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A.2 CWIC ABLATIONS PERFORMANCE

Model Technique Step Multiplier all mmlu wg arc:c HS arc:e obqa piqa
llama-3.2-1B No Stripes 3000 2.05x 48.0 27.3 54.8 30.7 56.9 57.1 35.8 73.3
llama-3.2-1B No Stripes 6000 3.05x 45.8 26.2 54.1 30.9 51.4 56.3 32.6 69.1
llama-3.2-1B No Stripes 9000 4.05x 45.2 26.5 53.1 30.2 49.5 55.7 33.2 68.3
llama-3.2-1B No Stripes 12000 5.05x 43.9 26.9 51.9 30.7 46.6 52.0 31.6 67.7
llama-3.2-1B No Stripes 15000 6.05x 42.4 23.6 51.4 28.7 44.6 50.0 31.6 66.7
llama-3.2-1B No MSE 3000 2.05x 48.3 26.8 54.4 34.0 56.3 59.8 35.2 71.8
llama-3.2-1B No MSE 6000 3.05x 45.9 24.7 52.2 30.7 51.4 57.4 34.4 70.5
llama-3.2-1B No MSE 9000 4.05x 45.6 25.8 53.5 29.8 48.9 57.2 35.8 68.1
llama-3.2-1B No MSE 12000 5.05x 45.0 26.3 56.3 29.2 46.6 53.8 34.0 68.8
llama-3.2-1B No MSE 15000 6.05x 44.4 24.9 53.2 29.7 46.5 55.1 33.4 68.2

Table 4: Model performance under CWIC ablations

B HYPERPARAMETERS

B.1 SETTINGS

Setting 1B 1B noStripes 1B noSTE 3B
Base model Llama-3.2-1B Llama-3.2-1B Llama-3.2-1B Llama-3.2-3B

Max sequence length 1024 1024 1024 1024
Sequences per step 64 64 64 64

Reduction final 6.05 6.05 6.05 6.05
Reduction warmup length 15,000 steps 15,000 steps 15,000 steps 15,000 steps

Learning rate schedule 1,000,000 steps 1,000,000 steps 1,000,000 steps 1,000,000 steps
Learning rate warmup 500 steps 500 steps 500 steps 500 steps

Learning rate max 0.00005 0.00005 0.00005 0.00003
Optimizer AdamW AdamW AdamW AdamW

Beta1 0.9 0.9 0.9 0.9
Beta2 0.95 0.95 0.95 0.95

Weight Decay 0.01 0.01 0.01 0.01
βdist 0.99
αϵ 0.1 0.1 0.1 0.1
ηθ 1.0 1.0 1.0 1.0
λAPs 10.0 10.0 10.0 10.0

Stripe Size 512 FULL 512 512

Table 5: Hyperparameter settings for the default model

The hyperparameters for our training run are presented in Table 4. Note that the default training
mode had a APR target warmup, normalization, stripe size of 512, and x ste enabled.

B.2 EFFECTS OF HYPERPARAMETERS

With respect to the bandwidth scale αϵ, performance was stable within a range of about 0.05 to 0.25.
Values outside of this range caused significant training instability. The choice momentum parameter
of running batch statistics βdist (range of 0.9 to 0.99) had very little impact on performance. When
calculating pseudo-derivatives, we found that other kernel functions besides the rectangle kernel
described in subsection 3.3 gave similar performance.

C TRAINING DATA

The training data used in our distillation process is listed below:

• OpenHermes-2.5 Training Data4 (Teknium, 2023)

4teknium/OpenHermes-2.5
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• NaturalReasoning Dataset5 (Yuan et al., 2025)

• SmolTalk Dataset6 (Allal et al., 2025)

• Orca AgentInstruct-1M-v17 (Arindam Mitra, 2024)

• LMSYS-Chat-1M Dataset8 (Zheng et al., 2023)

• MMLU training split (repeated 5×) (Hendrycks et al., 2021)

• ARC training split (repeated 5×) (Clark et al., 2018)

• WinoGrande training split (repeated 5×) (Sakaguchi et al., 2019)

All data sequences were converted to the standard chat format used by Llama-3.2-1B-Instruct, then
filtered for a maximum total sequence length of 1024. We also packed shorter sequences together
to increase training efficiency, and used attention masking to prevent interactions between packed
sequences.

D OBSERVED SPARSITY PATTERNS

Figure 7: Activation frequencies of Wgate at 2x and 6x APR. Rows correspond to weight stripes.
Column intensity represents the frequency at which an input position passes the column thresh-
old (darker column indicates lower frequency). The green boxes highlight how important features
(brighter columns) emerge early and are magnified in relative importance over training.

5facebook/natural reasoning
6HuggingFaceTB/smoltalk
7microsoft/orca-agentinstruct-1M-v1
8lmsys/lmsys-chat-1m
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Figure 8: The sparsity levels within O heads (each white-outlined cell is a head) tend to be similar
across channels. Sometimes entire heads will be always on or always off. Unlike the QKV, UP,
GATE, there are no patterns across layers as the input to O is not the residual stream.

E OBSERVED COMPUTE ALLOCATION

Figure 9: Visualizationx of FLOPs allocated to different tokens during inference for three outut
sequences.

17


	Introduction
	Related Work
	Methods
	Granular Sparsity
	Sparsity Thresholds
	Learning Thresholds
	Normalization
	Straight-Through Estimation
	Controlling Sparsity
	Feed-Forward Network Modifications
	Model Distillation

	Experiments
	Setup
	Results
	CWIC outperforms TEAL
	CWIC Sparsification outperforms Active Parameter Equivalents
	CWIC Ablation Findings
	CWIC Scaling Laws
	Wall Clock Speedups


	Discussion
	Sparsity Patterns
	Variable Compute Budgets

	Future Work
	Evaluations Results
	Comparison to Compute Equivalent Models
	CWIC Ablations Performance

	Hyperparameters
	Settings
	Effects of Hyperparameters

	Training Data
	Observed Sparsity Patterns
	Observed Compute Allocation

