
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

COMPUTE WHERE IT COUNTS: EFFICIENT LARGE
LANGUAGE MODELS VIA LEARNED GRANULAR SPAR-
SITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Sparsity-aware inference can dramatically shrink computation requirements by
reducing the number of parameters, and thus FLOPs, used in each forward pass.
Existing methods tend to be heuristic (zeroing activations below fixed thresholds,
retaining top K activations, etc.). These methods do not directly optimize individ-
ual thresholds using gradient-based methods and experience sharp performance
degradation beyond 50% sparsity. This paper describes CWIC (Compute Where it
Counts), a method that makes sparsity thresholds learnable and contextual. CWIC
is designed to enable conditional computation in models, allowing them to self-
distribute sparsity across each weight matrix. In addition, it enables models to
allocate different amounts of compute for each token and sequence. We also pro-
pose “granular sparsity” that decomposes matrix columns into smaller “stripes”
for more expressive sparsity patterns. We show that CWIC and granular spar-
sity can distill 2x to 6x compute-efficient sparse models from Llama 3.2-1B and
3B. We find that sparsifying Llama3.2-1B to 66% sparsity (3x active parameter
reduction) with CWIC achieves a 15% increase in aggregate benchmark scores
over doing the same with TEAL Liu et al. (2025) while speeding up inference
wall clock times by 2.5x in both GPU and CPU settings. CWIC shows promising
scaling behavior. A CWIC Llama3.2-3B at 66% sparsity outperforms Llama3.2-
1B (equal number of active parameters) on standard benchmarks by 1.6%, with
wall clock improvements of 2.7x in both GPU and CPU settings. Notably, CWIC
models are found to allocate little compute to filler or replicated text and more to
challenging benchmark questions.

1 INTRODUCTION

As large language models (LLMs) grow in parameter count to attain desired performance levels,
their inference compute requirements grow in lockstep. Consumer devices cannot support large
inference compute needs which now drive massive industry hardware expenses. This poses a bot-
tleneck for many applications, especially agentic ones, that require high-speed, low-cost options for
real-world deployment. Several methods have been proposed to improve LLM inference efficiency,
including sparse Mixture of Experts (MoE) (Shazeer et al., 2017), quantization (Jin et al., 2024),
ReLU-based sparsity (Mirzadeh et al., 2024), and activation sparsity (Lee et al., 2024; Liu et al.,
2025; Zhang et al., 2025).

Quantization casts weights into lower-precision types. This tends to be less expressive than sparsity
techniques as the same matrix is applied to all inputs. ReLU-based sparsity requires that the model
use ReLU activations; however, modern models have adopted SwiGLU (Shazeer, 2020a) and other
alternatives for superior performance. Activation sparsity methods such as CATS (Lee et al., 2024)
zero out non-salient, activations lower than a threshold. Although sparsity can be input-dependent,
no current activation sparsity method directly learns activation thresholds. Furthermore, these prior
works exhibit sharp performance degradation at sparsity exceeding 50% .

This work presents CWIC (Compute Where it Counts), a method to effectively train sparsity-aware
models. CWIC is inspired by sparse autoencoders (Rajamanoharan et al., 2024) and uses straight-
through-estimator (Bengio et al., 2013) to directly optimize activation thresholds (Lee et al., 2024).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Average performance of CWIC and active-parameter equivalent models on standard LLM
benchmarks (described in subsection 4.2). Each trend line shows performance of a base model at
varying levels of sparsity (or active parameters) under CWIC and TEAL. The rightmost point of
each trendline corresponds to 0% sparsity.

This allows the model to (1) designate different levels of sparsity to different weight matrices and
(2) dynamically allocate compute to different tokens and sequences. It also gives us control over the
desired sparsity level using a loss function.

To complement CWIC, we introduce granular sparsity, which partitions matrix columns into smaller
stripes. This enables increased expressivity over the traditional approach of treating a matrix column
as the “unit” of sparsity that can be turned “on” or “off” (Lee et al., 2024). Picking a stripe size of
512 retains the hardware acceleration associated with these methods.

We distill 1B and 3B models from the Llama 3.2 family (Grattafiori et al., 2024) under the CWIC
framework into versions that use 2x-6x fewer Active Parameters (AP) per token. As in , we find that
CWIC outperforms TEAL (Liu et al., 2025) and exhibits a graceful performance tradeoff at higher
sparsity levels (lower AP) while other activation sparsity techniques tend to exhibit performance
collapse beyond 33% sparsity (3x reduction in AP). CWIC kernels match TEAL performance and
CWIC scales as a sparsification method.

Examining the FLOPs and Active Parameters assigned by CWIC models to benchmark tasks reveals
that they naturally allocate less compute to “easier” tokens (such as role tokens, filler words, system
prompt) and sequences (such as questions from ARC-Easy vs ARC-Challenge (Clark et al., 2018)).

2 RELATED WORK

Activation sparsity reduces computation requirements by zeroing small activations, allowing them
to be skipped during matrix multiplications. Relufication (Mirzadeh et al., 2024) replaces pretrained
LLM activation functions with ReLUs and inserts ReLUs elsewhere in the model to induce sparsity.
After finetuning to recover performance, Relufication can reduce FLOP counts by up to 50% with
almost no degradation. ProSparse (Song et al., 2025) builds on Relufication by adding an L1 penalty
to ReLU activations to further increase sparsity.

GRIFFIN, Dong et al. (2024) exploits sequence-level activation similarity to define adaptive
sequence-level sparsity patterns. Deja Vu (Liu et al., 2023) and ShadowLLM (Akhauri et al., 2024)
predict sparsity on the fly by training small auxiliary MLPs to determine which weights matter to
particular input sequences. Q-Sparse (Wang et al., 2024) discards all but the K largest channels of in-
put vectors when computing linear layers. Q-sparse improves performance over compute-equivalent
dense models and shows that sparsity degrades performance less on larger models.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Most similar to our work are CATS (Lee et al., 2024), TEAL (Liu et al., 2025), and R-SPARSE
(Zhang et al., 2025), which zero all activations that are smaller than a threshold. However, un-
like our work, they do not directly optimize individual thresholds using gradient-based methods.
CATS targets the same activation frequency with every threshold, TEAL optimizes thresholds using
a greedy block-wise heuristic, and R-SPARSE uses a search algorithm in conjunction with singular
value analysis.

Mixture of Experts (MoE) activates certain sections of the neural network (“experts”) to reduce
active parameter counts. Unlike activation sparsity, MoE architectures typically use a learned routing
mechanism to choose which experts to activate. Sparsely-Gated Mixture-of-Experts (Shazeer et al.,
2017) proposed a gating network that incentivizes sparse, yet balanced, expert selection for language
modeling and translation. DeepSeekMoE (Dai et al., 2024) demonstrated that combinatorial expert
selection with more experts improves performance. Pham et al. (2024) demonstrate the selection of
experts with the largest output magnitude is an effective routing strategy. Zhou et al. (2022) find that
performance can improve if different tokens can receive different amounts of compute.

Sparse Autoencoders (SAEs) can faithfully reconstruct the hidden state of a neural network while
activating a very small percentage of their features. Variants include top-k SAEs (Gao et al., 2024)
that retain only the k largest activations, and JumpReLU (Rajamanoharan et al., 2024) SAEs that
retain only those ReLU activation that exceed a learned threshold. Notably, JumpReLU makes spar-
sity learnable, and allows different numbers of features to activate for different examples. Ayonrinde
(2024) showed reconstruction fidelity is improved when different numbers of features can be acti-
vated for different tokens.

3 METHODS

3.1 GRANULAR SPARSITY

Figure 2: Given a 4x4 matrix, using column spar-
sity results in 16 possible configurations. Parti-
tioning each column into 2 individually activated
stripes results in a significantly greater number of
achievable configurations.

Existing sparsity methods (Mirzadeh et al.,
2024; Wang et al., 2024; Lee et al., 2024) ex-
ploit column sparsity (sometimes transposed
and described as row sparsity) in matrix mul-
tiplications. When an input vector has a zero
element, the computation for the corresponding
matrix column can be skipped. Thus columns,
which are either entirely used or entirely un-
used, and can be considered the units of con-
ditional computation.

Inspired by the insight of DeepSeekMoE (Dai
et al., 2024) that smaller and more configurable
experts lead to better performance, we sought to
create a more expressive sparsity mechanism.
Termed “granular sparsity”, our method breaks
each column into a set of stripes - with each
stripe being activated individually. This greatly
increases the number of achievable sparsity
configurations (see Figure 2). We construct the
Granular Matrix Multiplication (GMM) opera-
tion to multiply only those stripes of the weight
matrix that are kept “active”. The GMM algo-
rithm is explained below.

The multiplication of a matrix W ∈ Rm×n with a vector x ∈ Rn, can be expressed as the sum of
W column vectors vi := W:,i weighted by the elements xi of x.

y := Wx =

n∑
i=1

xivi

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Column-wise sparse matrix multiplication, uses a binary mask M ∈ {0, 1}n to zero out certain
elements of x. The remaining components contribute to the multiplication.

ysparse :=

n∑
i=1

Mixivi =
∑

i∈SM

xivi where SM := {i ∈ {1, . . . , n} | Mi = 1}

In our method, we partition the output vector y and each column vector vi into k equally sized
stripes. We introduce

∥∥, a concatenation operator where y =
∥∥k
r=1

y(r).

y :=
∥∥k
r=1

n∑
i=1

xiv
(r)
i

Our granular sparsity operation, denoted GMM(x,W ,G), uses a binary mask G ∈ {0, 1}k×n that
zeroes out certain stripes in the matrix W , as shown in Figure 2. We define the set of active (non-
zeroed) stripe indices:

SG = {(r, i) ∈ {1, . . . , k} × {1, . . . , n} | Gr,i = 1}

Then the granular sparse output is given by:

ygranular = GMM(x,W ,G) :=
∥∥k
r=1

n∑
i=1

Gr,ixiv
(r)
i

=
∥∥k
r=1

∑
(r,i)∈SG

xiv
(r)
i

Note that when k = 1, granular matrix multiplication reduces to standard column-wise sparsity.

3.2 SPARSITY THRESHOLDS

We use a different mask G for each input vector
x (a strategy known as contextual sparsity) (Liu
et al., 2023). To determine the G, we use the
magnitudes of each element in x. Specifically,
we learn a grid of thesholds θ ∈ Rk×n

+ such that
Gr,i is 1 if and only if xi has have a magnitude
of at least θr,i. We define this using a function
T (x, t) that given the absolute value of x gate
and the threshold returns an one or zero using the
Heaviside step function H(z).

Similarily, we denote granular matrix mul-
tiplication parameterized by thresholds with
GMM(x,W, θ).

Calculating G

H(z) :=

{
1 z ≥ 0

0 z < 0

T (x, t) = H(x, t)

Gr,i = T (|xi| − θr,i)

GMM parameterized by thresholds

ygranular = GMM(x,W ; θ)

:=
∥∥k
r=1

n∑
i=1

H(|xi| − θr,i) xiv
(r)
i

We initialize θ to zero at the start of training. To keep θ positive, we set θ = max(0, θ) after every
parameter update. We found that θ benefited from a significantly higher learning rate (LR) than other
parameters. We set the LR of θ to the base LR multiplied by ηθ

√
n, where ηθ is a hyperparameter.

3.3 LEARNING THRESHOLDS

Previous works that use thresholds to determine contextual sparsity masks often rely on heuristics
to determine threshold values (Lee et al., 2024). We seek better optimization by directly learning
the thresholds. Unfortunately, H(z) is not differentiable. We thus build on the ideas introduced in
JumpReLU (Rajamanoharan et al., 2024) to construct a straight-through-estimator (Bengio et al.,
2013) with a pseudo-derivative that approximates the true derivative. This pseudo-derivative is de-
fined as follows, with K representing a kernel function and ϵ representing a tunable bandwidth:

∂

∂z
H(z) :=

1

ϵ
K
(z
ϵ

)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

For our kernel function K, we use the rectangle function seen in JumpReLU:

K(z) := H
(
z − 1

2

)
−H

(
z +

1

2

)
When calculating either ∂

∂xi
Gr,i or ∂

∂θr,i
Gr,i we set the corresponding ϵi equal to the batch-wise

standard deviation of xi (which does not receive gradients), scaled by a constant uniform hyperpa-
rameter αϵ with ϵi := αϵstd(xi). For a more detailed analysis of this gradient estimator, we refer
readers to the JumpReLU paper (Rajamanoharan et al., 2024).

When backpropagating the AP loss grads on the AP mask T (x, t) we allow grads to flow to both x,
and t. When backpropagating the grads from Gr,ixi = T (|xi| − θr,i)xi we make two key changes.
First, we take xi’ grads straight through as if xi was unmasked. This was informed by our ablation
studies. Second, we stop the gradients from flowing to |xi|. This is needed because the scales of
grads going to xi through |xi| were dominating in practice due to the normalization step outlined in
subsection 3.4.

3.4 NORMALIZATION

When initializing from a pre-trained network, we found that the batch-wise scales and offsets of xi

values can vary throughout the network, making it difficult to tune hyperparameters. To remedy
this, we whiten x before it enters the matrix multiplication operation. For a batch of x vectors, we
calculate the batch-wise mean x̄ ∈ Rn and standard deviation σ(x) ∈ Rn.

Then, we then perform the following: ygranular = GMM
(
x− x̄,W ; θ ⊙ σ(x)

)
+Wx̄

Note that when θ is composed of zeroes, this whitening procedure does not effect ysparse. To increase
training stability, we track x̄ and σ(x) on a rolling basis. For this, the hyperparameter βdist is used to
compute an exponential moving average. At inference time the running x̄ and σ(x) values from the
last step of training are used.

3.5 STRAIGHT-THROUGH ESTIMATION

Previous work (Wang et al., 2024) shows that sparse models can benefit from using straight-through
estimators during training. In our case, that means taking the gradients of x as if there was no
sparsity. Specifically, we use the following definition for the gradients of x: ∇x ygranular := W⊤

Although this modification obviously leads to biased gradients, we theorize that this estimator im-
proves performance by removing the variance imparted on the grads when the values of G are chang-
ing frequently. The STE could also fix the vanishing gradients associated with high sparsity, as
postulated by Q-Sparse (Wang et al., 2024). The gradients of θ and W are left unchanged.

3.6 CONTROLLING SPARSITY

A key advantage of the learnable threshold is that we can control the sparsity of the model using a
loss function. The number of parameters to compute GMM(x,W ; θ), is:

APs(x,W,G) := m

k
||G||1

We define APs(B) to represent the number of active parameters required by the entire model to
operate on a batch B, APsbase(B) to represent the number of active parameters required if we did
not have sparsity, and APstarget(B) to represent the desired Active Parameter count. We then define
the Active Parameter Reduction (APR) as the ratio between the base FLOP count and the sparse
FLOP count and our loss function:

APR(B) :=
APsbase(B)

APs(B)
APRtarget(B) :=

APsbase(B)

APstarget(B)

LAPs :=
[
min

(
APR(B)− APRtarget(B), 0

)]2
5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

This loss was chosen as it gives us control over the desired compute costs, and stable performance
during training. We found it important to include a warmup phase where APstarget(B) is incremen-
tally lowered. We linearly increase APRtarget(B) from 1.05, to our final target value + 0.05.

3.7 FEED-FORWARD NETWORK MODIFICATIONS

Previous works have found that intermediate activations of the feed-forward blocks exhibit natural
sparsity (Mirzadeh et al., 2024). To leverage this, we slightly modify our granular sparsity
system for use in the feed-forward blocks. The Llama 3 suite of models uses gated linear units
(GLU) (Shazeer, 2020b) as their feedforward design. These are parameterized by a gate matrix
Wgate ∈ Rn×d, an up matrix Wup ∈ Rn×d, and a down matrix Wdown ∈ Rd×n.

We compute Wgatex with the standard granular
sparsity method. Then, we use our learned threshold
method to compute M ∈ {0, 1}d based on the
magnitudes of silu(Wgatex).

a = M⊙ silu
(
GMM(x,Wgate,G)

)
yGLU, granular = Wdown

(
Wup ⊙ a

)
When the operations rendered unnecessary by the
mask are filtered out, we arrive at the FLOP cost of
this operation.

APs(G,M) =
d

k
||G||1 + 2n||M||1

3.8 MODEL DISTILLATION

To efficiently train our sparse models, we use knowl-
edge distillation (Hinton et al., 2015) with a teacher
network (usually the one that was used to initialize
the sparse model).
For our distillation loss, over a sequence of length
T , we use a combination of the forward (FKL) and
reverse KL divergence (RKL), which has been shown
to work better than either divergence individually
(Wu et al., 2024).

Our total loss is a weighted combination of our distil-
lation loss and our Active Parameter loss described in
subsection 3.6:

FKL :=

T∑
t=1

KL
(
pt(yt|y<t), ps(yt|y<t)

)
RKL :=

T∑
t=1

KL
(
ps(yt|y<t), pt(yt|y<t)

)
Ldistill :=

1

2

(
FKL + RKL

)
L = Ldistill + λAPsLAPs

4 EXPERIMENTS

4.1 SETUP

We tested our methods with the Llama-3.2-1B 1 and Llama-3.2-3B 2 models for both the teacher
and the initialization of the student. We used the AdamW optimizer. Details of our hyperparameters
can be found in Appendix B and details of our training set in Appendix C.

Training was carried out over approximately 1B tokens for both 1B and 3B parameter experiments,
with our 1B model requiring 52 hours on 1 H100 GPU (for a total of 52 GPU hours). This com-
pute equates to only 0.015% of the 370K H100 hours originally used to train Llama-3.2-1B 3. Our
training implementation used only Python-level Pytorch operations. We believe that a lower level
implementation of the GMM operation, akin to Flash Attention (Dao et al., 2022), could accelerate
training considerably.

As a baseline, we applied TEAL (Liu et al., 2025), the current state of the art activation sparsity
method, to the base model using default settings. To generate activations for threshold optimization,
we used 1000 sequences from our training dataset.

1meta-llama/Llama-3.2-1B
2meta-llama/Llama-3.2-3B
3meta-llama/Llama-3.2-1B

6

https://huggingface.co/meta-llama/Llama-3.2-1B
https://huggingface.co/meta-llama/Llama-3.2-3B
https://huggingface.co/meta-llama/Llama-3.2-1B

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

We measure model performance on standard LLM benchmarks. Specificaly, we aggregate perfor-
mance over MMLU (Hendrycks et al., 2021), WinoGrande (Sakaguchi et al., 2019), ARC (Easy
and Challenge) (Clark et al., 2018), HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2019) and
OpenBookQA (Mihaylov et al., 2018).

4.2 RESULTS

4.2.1 CWIC OUTPERFORMS TEAL

We find that CWIC outperforms TEAL (Liu et al., 2025) across all sparsity levels. CWIC shows
a gradual performance tradeoff as sparsity levels are increased (lower AP). This is explained by
the increasing KL divergence we observe between high APR models and the original model. In
contrast, TEAL tends to exhibit performance collapse beyond 33% sparsity (3x reduction in AP). We
find that sparsifying Llama3.2-1B to 66% sparsity with CWIC achieves a 15% increase in aggregate
benchmark scores over doing the same with TEAL. This performance gap between TEAL and CWIC
grows as the sparsity levels increase. The full set of results can be found in subsection A.1.

4.2.2 CWIC SPARSIFICATION OUTPERFORMS ACTIVE PARAMETER EQUIVALENTS

Table 1 compares our 3x APR models to dense transformer models in their compute classes that
have been trained from scratch. We see that they marginally outperform the dense model with
matching AP on the benchmark aggregate. In Figure 1, a 3x AP reduction of Llama3.2-3B using
TEAL underperforms Llama3.2-1B (an AP equivalent model) by roughly 16%. In contrast, doing
the same with CWIC outperforms Llama3.2-1B by 1.6%.

Model Type (Active Params) ALL MMLU WG* Arc-C HS* Arc-E OBQA* PIQA
Llama3B CWIC 3.05x APR (1053M) 54.7 38.3 58.3 39.5 64.3 69.4 39.4 73.9
Llama1B (1236M) 53.1 38.6 57.9 36.9 64.2 61.7 37.2 74.9
Llama1B CWIC 3.05x APR (245M) 44.2 25.2 51.6 29.2 48.3 52.8 33.4 68.8
Gemma-3-270M 43.6 24.3 52.7 27.6 43.8 57.5 30.6 68.9

Table 1: Comparison of 3x APR models to compute-equivalent models. WG, HS and OBQA are
the WinoGrande, HellaSwag and OpenbookQA datasets respectively.

4.2.3 CWIC ABLATION FINDINGS

We construct two ablations to test CWIC design choices and run them on Llama-3.2-1B. Our first
ablation tests the utility of “granular sparsity” by reverting to column sparsity instead of stripe spar-
sity. In the second ablation, we including MSE on the last hidden states in the distillation loss. At
APR 3.05x on Llama-3.2-1B, we observe a 1.7% performance hit using column sparsity and a 1.6%
performance drop with MSE on the last hidden states (see Table 2). The full set of ablation results
are provided in Appendix A.2.

Version Step Multiplier all mmlu wg arc:c HS arc:e obqa piqa
Full CWIC 6000 3.05x 47.5 26.7 55.7 33.1 53.6 58.0 34.8 70.4
No Stripes 6000 3.05x 45.8 26.2 54.1 30.9 51.4 56.3 32.6 69.1
No MSE 6000 3.05x 45.9 24.7 52.2 30.7 51.4 57.4 34.4 70.5

Table 2: Model performance under CWIC ablations

4.2.4 CWIC SCALING LAWS

Given budget constraints, we sparsified 1B and 3B models. We observed CWIC versions of both
outperform their respective TEAL sparsified and dense active-parameter-equivialents across sparsity
levels (full results in

Modern LLMs can have 10-100x more parameters. Q-Sparse (Wang et al., 2024) studied the scaling
laws of sparsely activated models and found that the performance gap between dense and sparsely-
activated models diminishes as model size increases. TEAL Liu et al. (2025) shows that at 65%

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

sparsity, Llama-3-8B4 sees an average downstream task performance reduction of 22% while Llama-
3-70B5 (70B parameters) only sees a performance reduction of 9%. Since our method and TEAL
both calculate sparsity based on activation thresholds, we expect to see similar scaling trends where
CWIC will work as well, if not better, at larger scales

4.2.5 WALL CLOCK SPEEDUPS

We implemented a triton kernel based on TEAL (Liu et al., 2025). Keeping the stripe size a multiple
of the kernel block size along the output dimension maintains the efficiency of TEAL’s triton kernel.
In the GPU setting we matched the TEAL procedure. For testing on CPU we implemented a Rust
version and compared to OpenBlas, taking precautions to evict the matrix from cache before each
timed operation. At 66% sparsity, CWIC kernels speed up inference by 2.5x in both GPU and CPU
settings for Llama3.2-1B and 2.7x for LLama3.2-3B.

Figure 3: GPU and CPU speedups where hidden width: 4096, stripe size: 512

5 DISCUSSION

5.1 SPARSITY PATTERNS

Analyzing the activation frequencies reveals sev-
eral insights about the model’s structure of cir-
cuits and sparsity. First, we observe that some
channels in the residual stream activate for al-
most every input across layers (Figure 7). They
emerge very early (100 steps), and stay almost
unchanged for the entirety of training. We be-
lieve that these channels may capture common
knowledge, and serve a similar purpose to the
shared experts used by DeepSeekMoE (Dai et al.,
2024). An example of this behavior can be found
in Figure D.
Second, we find striking patterns (see Figure D)
in the O attention matrix. Individual atten-
tion heads have consistently high/low activa-
tions across channels. We hypothesize that the
model is learning to “prune” unhelpful atten-
tion heads, similar to previous work that reduces
compute cost by explicitly removing attention
heads (Mugnaini et al., 2025).

Figure 4: Activation frequency of different
matrix types across layers from the 6x APR
checkpoint of Llama-3.2-3B. FFN and FN
GATE represent the Wup / Wdown matrices and
Wgate respectively.

Unlike the QKV, UP, GATE layers there are no patterns across layers as the input to O is not the
residual stream. We have provided an example of this sparsity pattern in Appendix D.

We also find that stripes in the language modeling head corresponding to earlier vocabulary tokens
have higher activation frequencies. This is because the vocabulary of Llama models is implicitly
sorted from high to low token frequency, so frequent tokens have more compute designated to them

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

than infrequent ones. This effect is so pronounced that without regularization, the network will
eventually put nearly zero compute towards infrequent tokens, leading to representation collapse.

Finally, among the Q, K, and V attention matrices, activation of the V matrix is the most dense,
followed by K and O (Figure 4). Note the dip in activation frequencies across matrices from layers
8-14 followed by a slight rise in layers 15 and 16.

5.2 VARIABLE COMPUTE BUDGETS

Figure 5 uses text thickness to indicate compute allocated to different tokens in a prompt-response
pair on a CWIC model based off Llama-3.2-1B-Instruct. We observe three common trends in
compute allocation in general.

Figure 5: Active parameter count allocation of a
6x APR model across tokens.

Figure 6: Active parameters allocated to
each question of ARC-Easy and ARC-
Challenge. We ignore the system prompt
and only consider the question and option
tokens. Active parameters are averaged per-
question.

Semantically quoting sections of the user prompt such as “(5,8) and (9,9)” in the response uses fewer
active parameters. Punctuation, prepositions and filler words such as “the” and “and” are allocated
lower budgets. Behavior on system prompt and system/user/assistant role tokens gets distilled into
very few active parameters and thus receives a very low compute allocation. We provide more
visualizations of variable compute allocation in Appendix D.

Sparsity thresholds allows different tokens and different sequences to use different amounts of com-
pute. Figure 6 shows that the average Active parameters dedicated by the 6x APR model to running
ARC-Easy and ARC-Challenge benchmarks follow similar distributions, but with the Arc-E taking
5% less compute on average. A significant number of the ARC-E questions were allocated less
compute than ARC-C questions. As evidenced by the scores of the 6x APR model (subsection A.1),
ARC-Easy questions are indeed easier for the model!

6 FUTURE WORK

Our striping method groups output channels based on their order. However, outside of attention
heads, there is no guarantee that adjacent channels are functionally similar. When initializing a
sparse model from a pretrained one, it may be beneficial to reorder channels to form semantic group-
ings. This idea has seen success in mixture-of-expert conversions (Elazar & Taylor, 2022).

We observed that the KL divergence between the base and APR models remains stable between
2x-4.5x APR. It curves up beyond 4.5x APR. Performance improvements could be realized by mod-
ifying the APR warm-up to use a non-linear schedule.

We believe that several further optimizations can be made to the GPU CWIC kernel to unlock further
speed gains from Active Parameter reductions.

Finally, we observed that longer training in tokens improves quality (as seen with the continued 6x
training). It is natural to ask how far can this be pushed, and what are the scaling laws.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

LIMITATIONS

The primary limitation of our work concerns the scale of our experiments. We did not train models
larger than 3B parameters, and we did not train for longer than 1B tokens. We believe that signifi-
cantly better benchmark performance could be achieved with more training. Previous work (Wang
et al., 2024) has also indicated that sparsity leads to less performance degradation at larger scales,
so our method may be more suitable for larger models than those tested here.

Furthermore, we only tested our method on transformer architectures and language modeling. The
application to other models such as vision transformers (Dosovitskiy et al., 2021) has not been
explored.

REPRODUCIBILITY STATEMENT

We are committed to publishing reproducible research. We will open source our code (codebase
already ready and version tracked on GitHub) and training data (already uploaded to HuggingFace).
We will also be releasing model checkpoints for the research community to use and test out of
the box (already uploaded to HuggingFace). We will link these resources in the paper after the
review session during which anonymity is required. As a starting measure, we have provided all
hyperparameter settings in Appendix B and the training data recipe in Appendix C.

REFERENCES

Yash Akhauri, Ahmed F AbouElhamayed, Jordan Dotzel, Zhiru Zhang, Alexander M Rush, Safeen
Huda, and Mohamed S Abdelfattah. Shadowllm: Predictor-based contextual sparsity for large
language models, 2024. URL https://arxiv.org/abs/2406.16635.

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martı́n Blázquez, Guilherme Penedo,
Lewis Tunstall, Andrés Marafioti, Hynek Kydlı́ček, Agustı́n Piqueres Lajarı́n, Vaibhav Srivastav,
Joshua Lochner, Caleb Fahlgren, Xuan-Son Nguyen, Clémentine Fourrier, Ben Burtenshaw, Hugo
Larcher, Haojun Zhao, Cyril Zakka, Mathieu Morlon, Colin Raffel, Leandro von Werra, and
Thomas Wolf. Smollm2: When smol goes big – data-centric training of a small language model,
2025. URL https://arxiv.org/abs/2502.02737.

Guoqing Zheng Shweti Mahajan Dany Rouhana Andres Codas Yadong Lu Wei-ge Chen
Olga Vrousgos Corby Rosset Fillipe Silva Hamed Khanpour Yash Lara Ahmed Awadallah
Arindam Mitra, Luciano Del Corro. Agentinstruct: Toward generative teaching with agentic
flows, 2024.

Kola Ayonrinde. Adaptive sparse allocation with mutual choice feature choice sparse autoencoders,
2024. URL https://arxiv.org/abs/2411.02124.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: reasoning
about physical commonsense in natural language. CoRR, abs/1911.11641, 2019. URL http:
//arxiv.org/abs/1911.11641.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
2018. URL https://arxiv.org/abs/1803.05457.

Damai Dai, Chengqi Deng, Chenggang Zhao, R. X. Xu, Huazuo Gao, Deli Chen, Jiashi Li,
Wangding Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li, Panpan Huang, Fuli Luo, Chong
Ruan, Zhifang Sui, and Wenfeng Liang. Deepseekmoe: Towards ultimate expert specializa-
tion in mixture-of-experts language models, 2024. URL https://arxiv.org/abs/2401.
06066.

10

https://arxiv.org/abs/2406.16635
https://arxiv.org/abs/2502.02737
https://arxiv.org/abs/2411.02124
http://arxiv.org/abs/1911.11641
http://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
memory-efficient exact attention with IO-awareness. In Advances in Neural Information Process-
ing Systems (NeurIPS), 2022.

Harry Dong, Beidi Chen, and Yuejie Chi. Prompt-prompted adaptive structured pruning for efficient
llm generation, 2024. URL https://arxiv.org/abs/2404.01365.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale, 2021. URL https://arxiv.org/abs/2010.11929.

Nathan Elazar and Kerry Taylor. Implicit mixture of interpretable experts for global and local inter-
pretability, 2022. URL https://arxiv.org/abs/2212.00471.

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya Sutskever,
Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders, 2024. URL https:
//arxiv.org/abs/2406.04093.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
soo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,
Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng
Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vı́tor Albiero, Vladan Petrovic, Weiwei
Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,

11

https://arxiv.org/abs/2404.01365
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2212.00471
https://arxiv.org/abs/2406.04093
https://arxiv.org/abs/2406.04093

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smoth-
ers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
son Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
driguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
mar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,
Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-
duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
cob Steinhardt. Measuring massive multitask language understanding, 2021. URL https:
//arxiv.org/abs/2009.03300.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.
URL https://arxiv.org/abs/1503.02531.

12

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/1503.02531

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Renren Jin, Jiangcun Du, Wuwei Huang, Wei Liu, Jian Luan, Bin Wang, and Deyi Xiong. A
comprehensive evaluation of quantization strategies for large language models, 2024. URL
https://arxiv.org/abs/2402.16775.

Donghyun Lee, Je-Yong Lee, Genghan Zhang, Mo Tiwari, and Azalia Mirhoseini. Cats:
Contextually-aware thresholding for sparsity in large language models, 2024. URL https:
//arxiv.org/abs/2404.08763.

James Liu, Pragaash Ponnusamy, Tianle Cai, Han Guo, Yoon Kim, and Ben Athiwaratkun. Training-
free activation sparsity in large language models, 2025. URL https://arxiv.org/abs/
2408.14690.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,
Ce Zhang, Yuandong Tian, Christopher Re, and Beidi Chen. Deja vu: Contextual sparsity for
efficient llms at inference time, 2023. URL https://arxiv.org/abs/2310.17157.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? A new dataset for open book question answering. CoRR, abs/1809.02789, 2018.
URL http://arxiv.org/abs/1809.02789.

Seyed Iman Mirzadeh, Keivan Alizadeh-Vahid, Sachin Mehta, Carlo C del Mundo, Oncel Tuzel,
Golnoosh Samei, Mohammad Rastegari, and Mehrdad Farajtabar. ReLU strikes back: Exploiting
activation sparsity in large language models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=osoWxY8q2E.

Leandro Giusti Mugnaini, Bruno Lopes Yamamoto, Lucas Lauton de Alcantara, Victor Zacarias,
Edson Bollis, Lucas Pellicer, Anna Helena Reali Costa, and Artur Jordao. Efficient llms with amp:
Attention heads and mlp pruning, 2025. URL https://arxiv.org/abs/2504.21174.

Quang Pham, Giang Do, Huy Nguyen, TrungTin Nguyen, Chenghao Liu, Mina Sartipi, Binh T.
Nguyen, Savitha Ramasamy, Xiaoli Li, Steven Hoi, and Nhat Ho. Competesmoe – effective
training of sparse mixture of experts via competition, 2024. URL https://arxiv.org/
abs/2402.02526.

Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, János
Kramár, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu sparse
autoencoders, 2024. URL https://arxiv.org/abs/2407.14435.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale, 2019. URL https://arxiv.org/abs/1907.
10641.

Noam Shazeer. GLU variants improve transformer. CoRR, abs/2002.05202, 2020a. URL https:
//arxiv.org/abs/2002.05202.

Noam Shazeer. Glu variants improve transformer, 2020b. URL https://arxiv.org/abs/
2002.05202.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer,
2017. URL https://arxiv.org/abs/1701.06538.

Chenyang Song, Xu Han, Zhengyan Zhang, Shengding Hu, Xiyu Shi, Kuai Li, Chen Chen, Zhiyuan
Liu, Guangli Li, Tao Yang, and Maosong Sun. Prosparse: Introducing and enhancing intrinsic
activation sparsity within large language models, 2025. URL https://arxiv.org/abs/
2402.13516.

Teknium. Openhermes 2.5: An open dataset of synthetic data for generalist llm assistants, 2023.
URL https://huggingface.co/datasets/teknium/OpenHermes-2.5.

Hongyu Wang, Shuming Ma, Ruiping Wang, and Furu Wei. Q-sparse: All large language models
can be fully sparsely-activated, 2024. URL https://arxiv.org/abs/2407.10969.

13

https://arxiv.org/abs/2402.16775
https://arxiv.org/abs/2404.08763
https://arxiv.org/abs/2404.08763
https://arxiv.org/abs/2408.14690
https://arxiv.org/abs/2408.14690
https://arxiv.org/abs/2310.17157
http://arxiv.org/abs/1809.02789
https://openreview.net/forum?id=osoWxY8q2E
https://arxiv.org/abs/2504.21174
https://arxiv.org/abs/2402.02526
https://arxiv.org/abs/2402.02526
https://arxiv.org/abs/2407.14435
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/2402.13516
https://arxiv.org/abs/2402.13516
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://arxiv.org/abs/2407.10969

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Taiqiang Wu, Chaofan Tao, Jiahao Wang, Runming Yang, Zhe Zhao, and Ngai Wong. Rethink-
ing kullback-leibler divergence in knowledge distillation for large language models, 2024. URL
https://arxiv.org/abs/2404.02657.

Weizhe Yuan, Jane Yu, Song Jiang, Karthik Padthe, Yang Li, Dong Wang, Ilia Kulikov, Kyunghyun
Cho, Yuandong Tian, Jason E Weston, and Xian Li. Naturalreasoning: Reasoning in the wild with
2.8m challenging questions, 2025. URL https://arxiv.org/abs/2502.13124.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence?, 2019. URL https://arxiv.org/abs/1905.07830.

Zhenyu Zhang, Zechun Liu, Yuandong Tian, Harshit Khaitan, Zhangyang Wang, and Steven Li.
R-sparse: Rank-aware activation sparsity for efficient llm inference, 2025. URL https://
arxiv.org/abs/2504.19449.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Tianle Li, Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zhuohan Li, Zi Lin, Eric. P Xing, Joseph E. Gonzalez, Ion Stoica, and Hao Zhang.
Lmsys-chat-1m: A large-scale real-world llm conversation dataset, 2023.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew Dai, Zhifeng
Chen, Quoc Le, and James Laudon. Mixture-of-experts with expert choice routing, 2022. URL
https://arxiv.org/abs/2202.09368.

A EVALUATIONS RESULTS

A.1 COMPARISON TO COMPUTE EQUIVALENT MODELS

Model Technique Step Multiplier all mmlu wg arc:c HS arc:e obqa piqa
Gemma270M — — — 43.6 24.3 52.7 27.6 43.8 57.5 30.6 68.9
llama-3.2-1B — — — 53.1 38.6 57.9 36.9 64.2 61.7 37.2 74.9
llama-3.2-1B CWIC 3000 2.05x 49.2 27.7 56.0 33.5 58.4 60.2 35.8 72.9
llama-3.2-1B CWIC 6000 3.05x 47.5 26.7 55.7 33.1 53.6 58.0 34.8 70.4
llama-3.2-1B CWIC 9000 4.05x 46.1 26.4 53.3 30.2 50.3 56.9 36.2 69.2
llama-3.2-1B CWIC 12000 5.05x 44.2 25.2 51.6 29.2 48.3 52.8 33.4 68.8
llama-3.2-1B CWIC 15000 6.05x 43.8 24.9 52.2 30.6 46.6 53.4 30.8 68.1
llama-3.2-1B CWIC 18000 6.05x 44.5 26.0 53.4 31.0 48.0 53.9 31.4 68.0
llama-3.2-3B — — — 61.7 55.2 65.1 46.3 74.1 72.1 40.8 78.1
llama-3.2-3B CWIC 3000 2.05x 57.2 47.4 60.1 42.2 68.3 69.1 38.0 75.6
llama-3.2-3B CWIC 6000 3.05x 54.7 38.3 58.3 39.5 64.3 69.4 39.4 73.9
llama-3.2-3B CWIC 9000 4.05x 52.5 32.3 57.0 38.6 61.5 67.1 37.0 74.3
llama-3.2-3B CWIC 12000 5.05x 49.8 28.8 53.6 35.2 59.1 62.6 37.4 71.7
llama-3.2-3B CWIC 15000 6.05x 49.4 27.6 53.8 34.3 57.7 62.2 38.2 72.0
llama-3.2-1B TEAL — 1.65x 48.1 28.1 55.3 34.0 55.2 56.6 35.6 71.7
llama-3.2-1B TEAL — 2.11x 39.1 24.1 51.3 24.7 39.0 43.0 30.0 61.9
llama-3.2-1B TEAL — 2.44x 34.0 22.9 48.0 22.7 28.9 32.8 28.0 55.0
llama-3.2-1B TEAL — 2.70x 33.2 22.9 48.5 24.9 26.3 29.0 28.4 52.0
llama-3.2-1B TEAL — 2.91x 32.8 23.0 49.4 25.1 26.0 26.6 29.8 50.1
llama-3.2-3B TEAL — 1.78x 57.4 48.3 58.6 42.4 69.8 69.1 38.4 75.6
llama-3.2-3B TEAL — 2.41x 48.5 30.7 54.5 35.2 55.4 58.3 36.0 69.4
llama-3.2-3B TEAL — 2.92x 37.6 23.2 50.1 26.6 34.5 41.7 26.0 61.3
llama-3.2-3B TEAL — 3.35x 32.4 23.0 50.4 23.6 26.4 26.4 26.6 50.7
llama-3.2-3B TEAL — 3.71x 32.2 23.1 49.4 24.1 26.4 26.6 24.6 51.5

Table 3: Model Performance Comparison (acc norm)

14

https://arxiv.org/abs/2404.02657
https://arxiv.org/abs/2502.13124
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/2504.19449
https://arxiv.org/abs/2504.19449
https://arxiv.org/abs/2202.09368

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2 CWIC ABLATIONS PERFORMANCE

Model Technique Step Multiplier all mmlu wg arc:c HS arc:e obqa piqa
llama-3.2-1B No Stripes 3000 2.05x 48.0 27.3 54.8 30.7 56.9 57.1 35.8 73.3
llama-3.2-1B No Stripes 6000 3.05x 45.8 26.2 54.1 30.9 51.4 56.3 32.6 69.1
llama-3.2-1B No Stripes 9000 4.05x 45.2 26.5 53.1 30.2 49.5 55.7 33.2 68.3
llama-3.2-1B No Stripes 12000 5.05x 43.9 26.9 51.9 30.7 46.6 52.0 31.6 67.7
llama-3.2-1B No Stripes 15000 6.05x 42.4 23.6 51.4 28.7 44.6 50.0 31.6 66.7
llama-3.2-1B No MSE 3000 2.05x 48.3 26.8 54.4 34.0 56.3 59.8 35.2 71.8
llama-3.2-1B No MSE 6000 3.05x 45.9 24.7 52.2 30.7 51.4 57.4 34.4 70.5
llama-3.2-1B No MSE 9000 4.05x 45.6 25.8 53.5 29.8 48.9 57.2 35.8 68.1
llama-3.2-1B No MSE 12000 5.05x 45.0 26.3 56.3 29.2 46.6 53.8 34.0 68.8
llama-3.2-1B No MSE 15000 6.05x 44.4 24.9 53.2 29.7 46.5 55.1 33.4 68.2

Table 4: Model performance under CWIC ablations

B HYPERPARAMETERS

B.1 SETTINGS

Setting 1B 1B noStripes 1B noSTE 3B
Base model Llama-3.2-1B Llama-3.2-1B Llama-3.2-1B Llama-3.2-3B

Max sequence length 1024 1024 1024 1024
Sequences per step 64 64 64 64

Reduction final 6.05 6.05 6.05 6.05
Reduction warmup length 15,000 steps 15,000 steps 15,000 steps 15,000 steps

Learning rate schedule 1,000,000 steps 1,000,000 steps 1,000,000 steps 1,000,000 steps
Learning rate warmup 500 steps 500 steps 500 steps 500 steps

Learning rate max 0.00005 0.00005 0.00005 0.00003
Optimizer AdamW AdamW AdamW AdamW

Beta1 0.9 0.9 0.9 0.9
Beta2 0.95 0.95 0.95 0.95

Weight Decay 0.01 0.01 0.01 0.01
βdist 0.99
αϵ 0.1 0.1 0.1 0.1
ηθ 1.0 1.0 1.0 1.0
λAPs 10.0 10.0 10.0 10.0

Stripe Size 512 FULL 512 512

Table 5: Hyperparameter settings for the default model

The hyperparameters for our training run are presented in Table 4. Note that the default training
mode had a APR target warmup, normalization, stripe size of 512, and x ste enabled.

B.2 EFFECTS OF HYPERPARAMETERS

With respect to the bandwidth scale αϵ, performance was stable within a range of about 0.05 to 0.25.
Values outside of this range caused significant training instability. The choice momentum parameter
of running batch statistics βdist (range of 0.9 to 0.99) had very little impact on performance. When
calculating pseudo-derivatives, we found that other kernel functions besides the rectangle kernel
described in subsection 3.3 gave similar performance.

C TRAINING DATA

The training data used in our distillation process is listed below:

• OpenHermes-2.5 Training Data4 (Teknium, 2023)

4teknium/OpenHermes-2.5

15

https://huggingface.co/datasets/teknium/OpenHermes-2.5

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• NaturalReasoning Dataset5 (Yuan et al., 2025)

• SmolTalk Dataset6 (Allal et al., 2025)

• Orca AgentInstruct-1M-v17 (Arindam Mitra, 2024)

• LMSYS-Chat-1M Dataset8 (Zheng et al., 2023)

• MMLU training split (repeated 5×) (Hendrycks et al., 2021)

• ARC training split (repeated 5×) (Clark et al., 2018)

• WinoGrande training split (repeated 5×) (Sakaguchi et al., 2019)

All data sequences were converted to the standard chat format used by Llama-3.2-1B-Instruct, then
filtered for a maximum total sequence length of 1024. We also packed shorter sequences together
to increase training efficiency, and used attention masking to prevent interactions between packed
sequences.

D OBSERVED SPARSITY PATTERNS

Figure 7: Activation frequencies of Wgate at 2x and 6x APR. Rows correspond to weight stripes.
Column intensity represents the frequency at which an input position passes the column thresh-
old (darker column indicates lower frequency). The green boxes highlight how important features
(brighter columns) emerge early and are magnified in relative importance over training.

5facebook/natural reasoning
6HuggingFaceTB/smoltalk
7microsoft/orca-agentinstruct-1M-v1
8lmsys/lmsys-chat-1m

16

https://huggingface.co/datasets/facebook/natural_reasoning
https://huggingface.co/datasets/HuggingFaceTB/smoltalk
https://huggingface.co/datasets/microsoft/orca-agentinstruct-1M-v1
https://huggingface.co/datasets/lmsys/lmsys-chat-1m

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 8: The sparsity levels within O heads (each white-outlined cell is a head) tend to be similar
across channels. Sometimes entire heads will be always on or always off. Unlike the QKV, UP,
GATE, there are no patterns across layers as the input to O is not the residual stream.

E OBSERVED COMPUTE ALLOCATION

Figure 9: Visualizationx of FLOPs allocated to different tokens during inference for three outut
sequences.

17

	Introduction
	Related Work
	Methods
	Granular Sparsity
	Sparsity Thresholds
	Learning Thresholds
	Normalization
	Straight-Through Estimation
	Controlling Sparsity
	Feed-Forward Network Modifications
	Model Distillation

	Experiments
	Setup
	Results
	CWIC outperforms TEAL
	CWIC Sparsification outperforms Active Parameter Equivalents
	CWIC Ablation Findings
	CWIC Scaling Laws
	Wall Clock Speedups

	Discussion
	Sparsity Patterns
	Variable Compute Budgets

	Future Work
	Evaluations Results
	Comparison to Compute Equivalent Models
	CWIC Ablations Performance

	Hyperparameters
	Settings
	Effects of Hyperparameters

	Training Data
	Observed Sparsity Patterns
	Observed Compute Allocation

