Under review as a conference paper at ICLR 2026

CoOMPUTE WHERE IT COUNTS: EFFICIENT LARGE
LLANGUAGE MODELS VIA LEARNED GRANULAR SPAR-
SITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Sparsity-aware inference can dramatically shrink computation requirements by
reducing the number of parameters, and thus FLOPs, used in each forward pass.
Existing methods tend to be heuristic (zeroing activations below fixed thresholds,
retaining top K activations, etc.). These methods do not directly optimize individ-
ual thresholds using gradient-based methods and experience sharp performance
degradation beyond 50% sparsity. This paper describes CWIC (Compute Where it
Counts), a method that makes sparsity thresholds learnable and contextual. CWIC
is designed to enable conditional computation in models, allowing them to self-
distribute sparsity across each weight matrix. In addition, it enables models to
allocate different amounts of compute for each token and sequence. We also pro-
pose “granular sparsity” that decomposes matrix columns into smaller “stripes”
for more expressive sparsity patterns. We show that CWIC and granular spar-
sity can distill 2x to 6x compute-efficient sparse models from Llama 3.2-1B and
3B. We find that sparsifying Llama3.2-1B to 66% sparsity (3x active parameter
reduction) with CWIC achieves a 15% increase in aggregate benchmark scores
over doing the same with TEAL |Liu et al| (2025) while speeding up inference
wall clock times by 2.5x in both GPU and CPU settings. CWIC shows promising
scaling behavior. A CWIC Llama3.2-3B at 66% sparsity outperforms Llama3.2-
1B (equal number of active parameters) on standard benchmarks by 1.6%, with
wall clock improvements of 2.7x in both GPU and CPU settings. Notably, CWIC
models are found to allocate little compute to filler or replicated text and more to
challenging benchmark questions.

1 INTRODUCTION

As large language models (LLMs) grow in parameter count to attain desired performance levels,
their inference compute requirements grow in lockstep. Consumer devices cannot support large
inference compute needs which now drive massive industry hardware expenses. This poses a bot-
tleneck for many applications, especially agentic ones, that require high-speed, low-cost options for
real-world deployment. Several methods have been proposed to improve LLM inference efficiency,
including sparse Mixture of Experts (MoE) (Shazeer et al., [2017), quantization (Jin et al., [2024),
ReLU-based sparsity (Mirzadeh et al.| 2024), and activation sparsity (Lee et al., 2024; [Liu et al.,
2025} Zhang et al., |2025)).

Quantization casts weights into lower-precision types. This tends to be less expressive than sparsity
techniques as the same matrix is applied to all inputs. ReLU-based sparsity requires that the model
use ReLU activations; however, modern models have adopted SwiGLU (Shazeer, 2020a)) and other
alternatives for superior performance. Activation sparsity methods such as CATS (Lee et al., 2024)
zero out non-salient, activations lower than a threshold. Although sparsity can be input-dependent,
no current activation sparsity method directly learns activation thresholds. Furthermore, these prior
works exhibit sharp performance degradation at sparsity exceeding 50% .

This work presents CWIC (Compute Where it Counts), a method to effectively train sparsity-aware
models. CWIC is inspired by sparse autoencoders (Rajamanoharan et al., [2024) and uses straight-
through-estimator (Bengio et al.| 2013) to directly optimize activation thresholds (Lee et al., 2024).

Under review as a conference paper at ICLR 2026

I cwic 1B (ours) [CWIC 3B (ours) [TEAL 1B TEAL 3B
%

Llama 3.2 3B

70

65%

60%

Eval Score Avg.
o
o
N

.
Gemma 3 270M

Random Basgline

0.2B 0.3B 0.4B 0.5B 0.6B 0.88 1B 1.5B 2B 3B 4B

Active Parameters

Figure 1: Average performance of CWIC and active-parameter equivalent models on standard LLM
benchmarks (described in [subsection 4.2). Each trend line shows performance of a base model at
varying levels of sparsity (or active parameters) under CWIC and TEAL. The rightmost point of
each trendline corresponds to 0% sparsity.

This allows the model to (1) designate different levels of sparsity to different weight matrices and
(2) dynamically allocate compute to different tokens and sequences. It also gives us control over the
desired sparsity level using a loss function.

To complement CWIC, we introduce granular sparsity, which partitions matrix columns into smaller
stripes. This enables increased expressivity over the traditional approach of treating a matrix column
as the “unit” of sparsity that can be turned “on” or “off” (Lee et al., [2024). Picking a stripe size of
512 retains the hardware acceleration associated with these methods.

We distill 1B and 3B models from the Llama 3.2 family (Grattafiori et al.| |2024)) under the CWIC
framework into versions that use 2x-6x fewer Active Parameters (AP) per token. As in, we find that
CWIC outperforms TEAL (Liu et al.| 2025) and exhibits a graceful performance tradeoff at higher
sparsity levels (lower AP) while other activation sparsity techniques tend to exhibit performance
collapse beyond 33% sparsity (3x reduction in AP). CWIC kernels match TEAL performance and
CWIC scales as a sparsification method.

Examining the FLOPs and Active Parameters assigned by CWIC models to benchmark tasks reveals
that they naturally allocate less compute to “easier” tokens (such as role tokens, filler words, system
prompt) and sequences (such as questions from ARC-Easy vs ARC-Challenge (Clark et al., 2018)).

2 RELATED WORK

Activation sparsity reduces computation requirements by zeroing small activations, allowing them
to be skipped during matrix multiplications. Relufication (Mirzadeh et al.,|2024) replaces pretrained
LLM activation functions with ReLUs and inserts ReLUs elsewhere in the model to induce sparsity.
After finetuning to recover performance, Relufication can reduce FLOP counts by up to 50% with
almost no degradation. ProSparse (Song et al., 2025) builds on Relufication by adding an L1 penalty
to ReLLU activations to further increase sparsity.

GRIFFIN, Dong et al.| (2024) exploits sequence-level activation similarity to define adaptive
sequence-level sparsity patterns. Deja Vu (Liu et al.2023)) and ShadowLLLM (Akhauri et al., 2024)
predict sparsity on the fly by training small auxiliary MLPs to determine which weights matter to
particular input sequences. Q-Sparse (Wang et al.|[2024) discards all but the K largest channels of in-
put vectors when computing linear layers. Q-sparse improves performance over compute-equivalent
dense models and shows that sparsity degrades performance less on larger models.

Under review as a conference paper at ICLR 2026

Most similar to our work are CATS [2024), TEAL [2025)), and R-SPARSE
(Zhang et all, [2023)), which zero all activations that are smaller than a threshold. However, un-
like our work, they do not directly optimize individual thresholds using gradient-based methods.
CATS targets the same activation frequency with every threshold, TEAL optimizes thresholds using
a greedy block-wise heuristic, and R-SPARSE uses a search algorithm in conjunction with singular
value analysis.

Mixture of Experts (MoE) activates certain sections of the neural network (“experts”) to reduce
active parameter counts. Unlike activation sparsity, MoE architectures typically use a learned routing
mechanism to choose which experts to activate. Sparsely-Gated Mixture-of-Experts
proposed a gating network that incentivizes sparse, yet balanced, expert selection for language
modeling and translation. DeepSeekMoE (Dai et al., [2024) demonstrated that combinatorial expert
selection with more experts improves performance. Pham et al.|(2024) demonstrate the selection of
experts with the largest output magnitude is an effective routing strategy. (2022) find that
performance can improve if different tokens can receive different amounts of compute.

Sparse Autoencoders (SAEs) can faithfully reconstruct the hidden state of a neural network while
activating a very small percentage of their features. Variants include top-k SAEs (Gao et al,
that retain only the k largest activations, and JumpReLU (Rajamanoharan et al., 2024) SAEs that
retain only those ReLU activation that exceed a learned threshold. Notably, JumpReLU makes spar-
sity learnable, and allows different numbers of features to activate for different examples.
showed reconstruction fidelity is improved when different numbers of features can be acti-
vated for different tokens.

3 METHODS

3.1 GRANULAR SPARSITY

Column Sparsity

Existing sparsity methods (Mirzadeh et al. s s s Sss 38 3 s =
[2024, Wang et all 2024} [Lee et al. 2024) ex- H e H ges ss s s &
ploit column sparsity (sometimes transposed 28 =8 sss s Es EEESE ssse
d described as row sparsity) in matrix mul- 88 o Sea s esse s s ssas
a.n A . p y ae G0 OS8O & 60 880 8 & [[[]]
tiplications. When an input vector has a zero
element, the computation for the corresponding a column
matrix column can be skipped. Thus columns, a stripe
which are either entirely used or entirely un- Granular Sparsity ;
used, and can be considered the units of con- H H H a8 88 8 8
o . aees ae [] G0 6 66 66 & 88
ditional computation. sses @9 ©8 S8 5 68 88 6 88
- - - a8 S88 5 88 25 8 238 =ass s
Inspired by the insight of DeepSeekMoE S S 65 EEE 8 08 S8 ® sES EEES
ae G0 G600 & 00 60 & 086 o808
2024) that smaller and more configurable - . ees 88 ® ® @m
experts lead to better performance, we sought to ®aa “ss ois o o8 88 o S8 Swes
. . . ae a8 eee G0 66 & 688 888e
create a more expressive sparsity mechanism.
Termed “granular sparsity”, our method breaks and many more

each column into a set of stripes - with each

stripe being activated individually. This greatly Figure 2: Given a 4x4 matrix, using column spar-
Increases 'the number of achievable sparsity ity results in 16 possible configurations. Parti-
configurations (see [Figure 7). We construct the (ioning each column into 2 individually activated

Granular Matrix Multiplication (GMM) opera- gtripes results in a significantly greater number of
tion to multiply only those stripes of the weight achievable configurations.

matrix that are kept “active”. The GMM algo-
rithm is explained below.

The multiplication of a matrix W € R™*" with a vector & € R", can be expressed as the sum of
W column vectors v; := W. ; weighted by the elements z; of .

n
y: =Wz = Zmivi
i=1

Under review as a conference paper at ICLR 2026

Column-wise sparse matrix multiplication, uses a binary mask M € {0,1}" to zero out certain
elements of x. The remaining components contribute to the multiplication.
n

Ysparse 1= ZM,-xivi = Z x;v; where Sy :={i € {1,...,n} | M; =1}
i=1

1€ES M

In our method, we partition the output vector y and each column vector v; into k equally sized

. . . k
stripes. We introduce ||, a concatenation operator where y = Hrzly(’").

k - r
y = Hr:l invi()
i=1

Our granular sparsity operation, denoted GMM (x, W, G), uses a binary mask G € {0, 1}**" that
zeroes out certain stripes in the matrix W, as shown in We define the set of active (non-
zeroed) stripe indices:

Sg={(r,i) e {1,...,k} x{1,...,n}| G, =1}

Then the granular sparse output is given by:

Yoranular = GMM(CL'; W, g) = ||f:1 Z gr,ixi'ugr)

i=1
=l 2 wwl”

(ri)€Sg
Note that when k = 1, granular matrix multiplication reduces to standard column-wise sparsity.

3.2 SPARSITY THRESHOLDS

We use a different mask G for each input vector Calculating G

x (a strategy known as contextual sparsity) (Liu

et al., 2023). To determine the G, we use the H(z) = {1 z2>0
magnitudes of each element in x. Specifically, 0 z2<0
we learn a grid of thesholds 6 € Rﬁ_xn such that T(x,t) = H(x,t)

Gy is 1 if and only if 2; has have a magnitude
of at least 6,.;. We define this using a function
T'(z,t) that given the absolute value of x gate
and tl}q threshold Teturns an one or zero using the GMM parameterized by thresholds
Heaviside step function H(z).

Gri = T(|lwi] = 0rs)

. . Ygranular = GMM(J), W; 9)
Similarily, we denote granular matrix mul- n
tiplication parameterized by thresholds with . ||’f Z H(|zi| — 6,.) zo™
GMM(z, W, 6). et ’ '

We initialize 6 to zero at the start of training. To keep 6 positive, we set § = max(0, §) after every
parameter update. We found that 6 benefited from a significantly higher learning rate (LR) than other
parameters. We set the LR of 6 to the base LR multiplied by ng+/n, where 1y is a hyperparameter.

3.3 LEARNING THRESHOLDS

Previous works that use thresholds to determine contextual sparsity masks often rely on heuristics
to determine threshold values (Lee et al.l [2024). We seek better optimization by directly learning
the thresholds. Unfortunately, H (z) is not differentiable. We thus build on the ideas introduced in
JumpReLU (Rajamanoharan et al., 2024) to construct a straight-through-estimator (Bengio et al.,
2013)) with a pseudo-derivative that approximates the true derivative. This pseudo-derivative is de-
fined as follows, with K representing a kernel function and € representing a tunable bandwidth:

7216 = ¢ ()

Under review as a conference paper at ICLR 2026

For our kernel function K, we use the rectangle function seen in JumpReLU:

K(z) ::H(z—%)—H(z—!—%)

When calculating either a%gr,i or aei”gm- we set the corresponding €; equal to the batch-wise

standard deviation of x; (which does not receive gradients), scaled by a constant uniform hyperpa-
rameter o, with €; := a.std(z;). For a more detailed analysis of this gradient estimator, we refer
readers to the JumpReLU paper (Rajamanoharan et al.| 2024)).

When backpropagating the AP loss grads on the AP mask 7'(z, t) we allow grads to flow to both z,
and t. When backpropagating the grads from G, ;x; = T'(|z;| — 0..;)z; we make two key changes.
First, we take x;” grads straight through as if x; was unmasked. This was informed by our ablation
studies. Second, we stop the gradients from flowing to |x;|. This is needed because the scales of
grads going to z; through |x;| were dominating in practice due to the normalization step outlined in

3.4 NORMALIZATION

When initializing from a pre-trained network, we found that the batch-wise scales and offsets of x;
values can vary throughout the network, making it difficult to tune hyperparameters. To remedy
this, we whiten x before it enters the matrix multiplication operation. For a batch of x vectors, we
calculate the batch-wise mean € R™ and standard deviation o (z) € R™.

Then, we then perform the following: Yeranutar = GMM (m -z, W00 U(x)) + Wz

Note that when ¢ is composed of zeroes, this whitening procedure does not effect ysparse. To increase
training stability, we track Z and o (z) on a rolling basis. For this, the hyperparameter (i is used to
compute an exponential moving average. At inference time the running Z and o (x) values from the
last step of training are used.

3.5 STRAIGHT-THROUGH ESTIMATION

Previous work (Wang et al.| [2024) shows that sparse models can benefit from using straight-through
estimators during training. In our case, that means taking the gradients of z as if there was no
sparsity. Specifically, we use the following definition for the gradients of : Vg Ygranular 1= wr

Although this modification obviously leads to biased gradients, we theorize that this estimator im-
proves performance by removing the variance imparted on the grads when the values of G are chang-
ing frequently. The STE could also fix the vanishing gradients associated with high sparsity, as
postulated by Q-Sparse (Wang et al.|, [2024). The gradients of 6§ and W are left unchanged.

3.6 CONTROLLING SPARSITY

A key advantage of the learnable threshold is that we can control the sparsity of the model using a
loss function. The number of parameters to compute GMM(z, W; 6), is:

APs(z, W,G) = "Gl

We define APs(B) to represent the number of active parameters required by the entire model to
operate on a batch B, APsp,(B) to represent the number of active parameters required if we did
not have sparsity, and APsmrget(B) to represent the desired Active Parameter count. We then define
the Active Parameter Reduction (APR) as the ratio between the base FLOP count and the sparse
FLOP count and our loss function:

APsp5c (B APspa5c (B
APR(B) := A;:S(eé)) APRyype(B) : buse()

" APsyge(B)

o [(APR(E) - APRe51,5)

Under review as a conference paper at ICLR 2026

This loss was chosen as it gives us control over the desired compute costs, and stable performance
during training. We found it important to include a warmup phase where APSoe(B) is incremen-
tally lowered. We linearly increase APnget(B) from 1.03, to our final target value + 0.05.

3.7 FEED-FORWARD NETWORK MODIFICATIONS

Previous works have found that intermediate activations of the feed-forward blocks exhibit natural
sparsity (Mirzadeh et al. 2024). To leverage this, we slightly modify our granular sparsity
system for use in the feed-forward blocks. The Llama 3 suite of models uses gated linear units
(GLU) (Shazeer, 2020b) as their feedforward design. These are parameterized by a gate matrix
Waate € R™*%, an up matrix Wy, € R™*% and a down matrix Wygy, € RE¥*™.

We compute Wgyex with the standard granular)

sparsity method. Then, we use our learned threshold a =M silu(GMM(z, Weue, G))
method to compute M € {0,1}¢ based on the _ ()
magnitudes of Silu(Wgatel‘). YGLU, granular = Wdown Wup ©a

When the operations rendered unnecessary by the d
mask are filtered out, we arrive at the FLOP cost of APs(G, M) = —||G||1 + 2n||M||1
this operation. k

3.8 MODEL DISTILLATION

To efficiently train our sparse models, we use knowl-
edge distillation (Hinton et al.| 2015) with a teacher FK[, .=
network (usually the one that was used to initialize

the sparse model).

For our distillation loss, over a sequence of length py

T
> oKL
t=1

T
: KL

T, we use a combination of the forward (FKL) and ;
o
2

(pt(ytlyq),ps(yt\yq))
(

(Ps yt|y<t)7pt(yt‘y<t))

reverse KL divergence (RKL), which has been shown

to work better than either divergence individually gy := FKL + RKL)
(Wu et al .} [2024).

Our total loss is a weighted combination of our distil- L = Laisinn + MapsLaps
lation loss and our Active Parameter loss described in

4 EXPERIMENTS

4.1 SETUP

We tested our methods with the Llama-3.2-1B [and Llama-3.2-3B [l models for both the teacher
and the initialization of the student. We used the AdamW optimizer. Details of our hyperparameters

can be found in and details of our training set in[Appendix C]

Training was carried out over approximately 1B tokens for both 1B and 3B parameter experiments,
with our 1B model requiring 52 hours on 1 H100 GPU (for a total of 52 GPU hours). This com-
pute equates to only 0.015% of the 370K H100 hours originally used to train Llama-3.2-1B E Our
training implementation used only Python-level Pytorch operations. We believe that a lower level
implementation of the GMM operation, akin to Flash Attention (Dao et al.||2022), could accelerate
training considerably.

As a baseline, we applied TEAL (Liu et al., 2025), the current state of the art activation sparsity
method, to the base model using default settings. To generate activations for threshold optimization,
we used 1000 sequences from our training dataset.

Umeta-llama/Llama-3.2-1B
“meta-llama/Llama-3.2-3B
*meta-llama/Llama-3.2-1B

https://huggingface.co/meta-llama/Llama-3.2-1B
https://huggingface.co/meta-llama/Llama-3.2-3B
https://huggingface.co/meta-llama/Llama-3.2-1B

Under review as a conference paper at ICLR 2026

We measure model performance on standard LLM benchmarks. Specificaly, we aggregate perfor-
mance over MMLU (Hendrycks et al., [2021), WinoGrande (Sakaguchi et al., |2019), ARC (Easy
and Challenge) (Clark et al.| 2018), HellaSwag (Zellers et al., 2019), PIQA (Bisk et al.| 2019) and
OpenBookQA (Mihaylov et al., 2018)).

4.2 RESULTS

4.2.1 CWIC OUTPERFORMS TEAL

We find that CWIC outperforms TEAL (Liu et al., [2025) across all sparsity levels. CWIC shows
a gradual performance tradeoff as sparsity levels are increased (lower AP). This is explained by
the increasing KL divergence we observe between high APR models and the original model. In
contrast, TEAL tends to exhibit performance collapse beyond 33% sparsity (3x reduction in AP). We
find that sparsifying Llama3.2-1B to 66% sparsity with CWIC achieves a 15% increase in aggregate
benchmark scores over doing the same with TEAL. This performance gap between TEAL and CWIC
grows as the sparsity levels increase. The full set of results can be found in[subsection A.T]

4.2.2 CWIC SPARSIFICATION OUTPERFORMS ACTIVE PARAMETER EQUIVALENTS

compares our 3x APR models to dense transformer models in their compute classes that
have been trained from scratch. We see that they marginally outperform the dense model with
matching AP on the benchmark aggregate. In[Figure 1} a 3x AP reduction of Llama3.2-3B using
TEAL underperforms Llama3.2-1B (an AP equivalent model) by roughly 16%. In contrast, doing
the same with CWIC outperforms Llama3.2-1B by 1.6%.

Model Type (Active Params) ALL MMLU WG* Arc-C HS* Arc-E OBQA* PIQA
Llama3B CWIC 3.05x APR (1053M) 54.7 383 58.3 395 643 694 39.4 73.9
LlamalB (1236M) 53.1 38.6 57.9 369 642 617 37.2 74.9
LlamalB CWIC 3.05x APR (245M) 442 252 51.6 292 483 528 334 68.8
Gemma-3-270M 43.6 243 52.7 276 438 575 30.6 68.9

Table 1: Comparison of 3x APR models to compute-equivalent models. WG, HS and OBQA are
the WinoGrande, HellaSwag and OpenbookQA datasets respectively.

4.2.3 CWIC ABLATION FINDINGS

We construct two ablations to test CWIC design choices and run them on Llama-3.2-1B. Our first
ablation tests the utility of “granular sparsity” by reverting to column sparsity instead of stripe spar-
sity. In the second ablation, we including MSE on the last hidden states in the distillation loss. At
APR 3.05x on Llama-3.2-1B, we observe a 1.7% performance hit using column sparsity and a 1.6%
performance drop with MSE on the last hidden states (see[Table 2)). The full set of ablation results

are provided in[Appendix A2

Version Step Multiplier all mmlu wg arc:e HS arcie obga piqa
Full CWIC 6000 3.05x 475 267 557 331 536 580 348 704
No Stripes 6000 3.05x 458 262 541 309 514 563 326 69.1
No MSE 6000 3.05x 459 247 522 307 514 574 344 705

Table 2: Model performance under CWIC ablations

4.2.4 CWIC SCALING LAWS

Given budget constraints, we sparsified 1B and 3B models. We observed CWIC versions of both
outperform their respective TEAL sparsified and dense active-parameter-equivialents across sparsity
levels (full results in

Modern LLMs can have 10-100x more parameters. Q-Sparse (Wang et al.| 2024)) studied the scaling
laws of sparsely activated models and found that the performance gap between dense and sparsely-
activated models diminishes as model size increases. TEAL |Liu et al.| (2025) shows that at 65%

Under review as a conference paper at ICLR 2026

sparsity, Llama-3-8B4 sees an average downstream task performance reduction of 22% while Llama-
3-70B5 (70B parameters) only sees a performance reduction of 9%. Since our method and TEAL
both calculate sparsity based on activation thresholds, we expect to see similar scaling trends where
CWIC will work as well, if not better, at larger scales

4.2.5 WALL CLOCK SPEEDUPS

We implemented a triton kernel based on TEAL (Liu et al.|[2025)). Keeping the stripe size a multiple
of the kernel block size along the output dimension maintains the efficiency of TEAL'’s triton kernel.
In the GPU setting we matched the TEAL procedure. For testing on CPU we implemented a Rust
version and compared to OpenBlas, taking precautions to evict the matrix from cache before each
timed operation. At 66% sparsity, CWIC kernels speed up inference by 2.5x in both GPU and CPU
settings for Llama3.2-1B and 2.7x for LLama3.2-3B.

A100 PCle AMD EPYC 7H12 64-Core Processor
I cus.As [cWiC (ours) TEAL I 5 ~s [cWiC (ours)
5x

3.

Wall Clock Speedup:

I
: \
.

.
Wall Clock Speedups
_ . o .
. \
.
.
g
.

FLOP Reduction FLOP Reduction

Figure 3: GPU and CPU speedups where hidden width: 4096, stripe size: 512

5 DISCUSSION

5.1 SPARSITY PATTERNS

Analyzing the activation frequencies reveals sev- e Y e WP O e teeED
eral insights about the model’s structure of cir- ATTNK ATN.O —— MPGATE —-- TOTAL

cuits and sparsity. First, we observe that some
channels in the residual stream activate for al-
most every input across layers (Figure 7). They
emerge very early (100 steps), and stay almost
unchanged for the entirety of training. We be-
lieve that these channels may capture common
knowledge, and serve a similar purpose to the

shared experts used by DeepSeekMOoE (Dai et al.| \(_‘/’Hf \ N,
2024). An example of this behavior can be found :

in[Figure D)
Second, we find striking patterns (see % 3 5 5 » =
in the O attention matrix. Individual atten- e

tion heads have consistently high/low activa-
tions across channels. We hypothesize that the
model is learning to “prune” unhelpful atten-)
tion heads, similag;y to prgvious work tllljat reduces ~ checkpoint of Llama-3.2-3B. FFN gnd FN
compute cost by explicitly removing attention GATE represent the Wup, / Waown matrices and

heads (Mugnaini et al., [2025)). Weaee Tespectively.

Unlike the QKV, UP, GATE layers there are no patterns across layers as the input to O is not the
residual stream. We have provided an example of this sparsity pattern in

We also find that stripes in the language modeling head corresponding to earlier vocabulary tokens
have higher activation frequencies. This is because the vocabulary of Llama models is implicitly
sorted from high to low token frequency, so frequent tokens have more compute designated to them

0.4 1

e

o
N

Activation Density

(

Figure 4: Activation frequency of different
matrix types across layers from the 6x APR

Under review as a conference paper at ICLR 2026

than infrequent ones. This effect is so pronounced that without regularization, the network will
eventually put nearly zero compute towards infrequent tokens, leading to representation collapse.

Finally, among the Q, K, and V attention matrices, activation of the V matrix is the most dense,
followed by K and O ([Figure 4). Note the dip in activation frequencies across matrices from layers
8-14 followed by a slight rise in layers 15 and 16.

5.2 VARIABLE COMPUTE BUDGETS

uses text thickness to indicate compute allocated to different tokens in a prompt-response
pair on a CWIC model based off Llama-3.2-1B-Instruct. We observe three common trends in
compute allocation in general.

ser<|end_header_id|>

Find the slope of a line through (5, 8) and (9, 9)<|eot_id|><| 2ol
start_header_id|>assisiani<|end_header_id|>

>
To find the slope of a line through two points (x1, y1) and (x2, y2), %
we can use the formula: O1s{

m=(y2-y1)/(x2-x1) os]

21

In this case, we have the points (5, 8) and (9, 9). Plugging in the
values, we get:

17 18 19 20
Mean FLOPs Across Question Tokens

m=(9-8)/(9-5 Figure 6: Active parameters allocated to

=1/4 each question of ARC-Easy and ARC-

So, the slope of the line through the points (5, 8) and (9, 9) is 1/4.<| Challenge. ‘We ignore the SyStCm prompt

eot.id|> and only consider the question and option

Less Compute More Compute tokens. Active parameters are averaged per-
question.

Figure 5: Active parameter count allocation of a
6x APR model across tokens.

Semantically quoting sections of the user prompt such as “(5,8) and (9,9)” in the response uses fewer
active parameters. Punctuation, prepositions and filler words such as “the” and “and” are allocated
lower budgets. Behavior on system prompt and system/user/assistant role tokens gets distilled into
very few active parameters and thus receives a very low compute allocation. We provide more

visualizations of variable compute allocation in [Appendix D}

Sparsity thresholds allows different tokens and different sequences to use different amounts of com-
pute. shows that the average Active parameters dedicated by the 6x APR model to running
ARC-Easy and ARC-Challenge benchmarks follow similar distributions, but with the Arc-E taking
5% less compute on average. A significant number of the ARC-E questions were allocated less
compute than ARC-C questions. As evidenced by the scores of the 6x APR model (subsection A T)),
ARC-Easy questions are indeed easier for the model!

6 FUTURE WORK

Our striping method groups output channels based on their order. However, outside of attention
heads, there is no guarantee that adjacent channels are functionally similar. When initializing a
sparse model from a pretrained one, it may be beneficial to reorder channels to form semantic group-
ings. This idea has seen success in mixture-of-expert conversions (Elazar & Taylor, 2022).

We observed that the KL. divergence between the base and APR models remains stable between
2x-4.5x APR. It curves up beyond 4.5x APR. Performance improvements could be realized by mod-
ifying the APR warm-up to use a non-linear schedule.

We believe that several further optimizations can be made to the GPU CWIC kernel to unlock further
speed gains from Active Parameter reductions.

Finally, we observed that longer training in tokens improves quality (as seen with the continued 6x
training). It is natural to ask how far can this be pushed, and what are the scaling laws.

Under review as a conference paper at ICLR 2026

LIMITATIONS

The primary limitation of our work concerns the scale of our experiments. We did not train models
larger than 3B parameters, and we did not train for longer than 1B tokens. We believe that signifi-
cantly better benchmark performance could be achieved with more training. Previous work (Wang
et al., [2024)) has also indicated that sparsity leads to less performance degradation at larger scales,
so our method may be more suitable for larger models than those tested here.

Furthermore, we only tested our method on transformer architectures and language modeling. The
application to other models such as vision transformers (Dosovitskiy et al., [2021)) has not been
explored.

REPRODUCIBILITY STATEMENT

We are committed to publishing reproducible research. We will open source our code (codebase
already ready and version tracked on GitHub) and training data (already uploaded to HuggingFace).
We will also be releasing model checkpoints for the research community to use and test out of
the box (already uploaded to HuggingFace). We will link these resources in the paper after the
review session during which anonymity is required. As a starting measure, we have provided all

hyperparameter settings in and the training data recipe in[Appendix C

REFERENCES

Yash Akhauri, Ahmed F AbouElhamayed, Jordan Dotzel, Zhiru Zhang, Alexander M Rush, Safeen
Huda, and Mohamed S Abdelfattah. Shadowllm: Predictor-based contextual sparsity for large
language models, 2024. URL https://arxiv.org/abs/2406.16635.

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martin Blazquez, Guilherme Penedo,
Lewis Tunstall, Andrés Marafioti, Hynek Kydli¢ek, Agustin Piqueres Lajarin, Vaibhav Srivastav,
Joshua Lochner, Caleb Fahlgren, Xuan-Son Nguyen, Clémentine Fourrier, Ben Burtenshaw, Hugo
Larcher, Haojun Zhao, Cyril Zakka, Mathieu Morlon, Colin Raffel, Leandro von Werra, and
Thomas Wolf. Smollm2: When smol goes big — data-centric training of a small language model,
2025. URL https://arxiv.org/abs/2502.02737.

Guoqging Zheng Shweti Mahajan Dany Rouhana Andres Codas Yadong Lu Wei-ge Chen
Olga Vrousgos Corby Rosset Fillipe Silva Hamed Khanpour Yash Lara Ahmed Awadallah
Arindam Mitra, Luciano Del Corro. Agentinstruct: Toward generative teaching with agentic
flows, 2024.

Kola Ayonrinde. Adaptive sparse allocation with mutual choice feature choice sparse autoencoders,
2024. URL https://arxiv.org/abs/2411.02124.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: reasoning
about physical commonsense in natural language. CoRR, abs/1911.11641, 2019. URL http:
//arxiv.org/abs/1911.11641.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
2018. URL https://arxiv.org/abs/1803.05457.

Damai Dai, Chengqi Deng, Chenggang Zhao, R. X. Xu, Huazuo Gao, Deli Chen, Jiashi Li,
Wangding Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li, Panpan Huang, Fuli Luo, Chong
Ruan, Zhifang Sui, and Wenfeng Liang. Deepseekmoe: Towards ultimate expert specializa-
tion in mixture-of-experts language models, 2024. URL https://arxiv.org/abs/2401.
06066.

10

https://arxiv.org/abs/2406.16635
https://arxiv.org/abs/2502.02737
https://arxiv.org/abs/2411.02124
http://arxiv.org/abs/1911.11641
http://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066

Under review as a conference paper at ICLR 2026

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
memory-efficient exact attention with IO-awareness. In Advances in Neural Information Process-
ing Systems (NeurlPS), 2022.

Harry Dong, Beidi Chen, and Yuejie Chi. Prompt-prompted adaptive structured pruning for efficient
IIm generation, 2024. URL https://arxiv.org/abs/2404.01365!

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale, 2021. URL https://arxiv.org/abs/2010.11929.

Nathan Elazar and Kerry Taylor. Implicit mixture of interpretable experts for global and local inter-
pretability, 2022. URL https://arxiv.org/abs/2212.00471\

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya Sutskever,
Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders, 2024. URL https:
//arxiv.orqg/abs/2406.04093.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
Guzmén, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
soo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,
Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Celebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng
Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vitor Albiero, Vladan Petrovic, Weiwei
Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,

11

https://arxiv.org/abs/2404.01365
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2212.00471
https://arxiv.org/abs/2406.04093
https://arxiv.org/abs/2406.04093

Under review as a conference paper at ICLR 2026

Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smoth-
ers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
son Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
driguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
Shishir Patil, Shiva Shankar, Shugiang Zhang, Shugiang Zhang, Sinong Wang, Sneha Agarwal,
Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
mar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,
Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-
duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
cob Steinhardt. Measuring massive multitask language understanding, 2021. URL https:
//arxiv.org/abs/2009.03300.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.
URL https://arxiv.org/abs/1503.02531.

12

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/1503.02531

Under review as a conference paper at ICLR 2026

Renren Jin, Jiangcun Du, Wuwei Huang, Wei Liu, Jian Luan, Bin Wang, and Deyi Xiong. A
comprehensive evaluation of quantization strategies for large language models, 2024. URL
https://arxiv.org/abs/2402.16775.

Donghyun Lee, Je-Yong Lee, Genghan Zhang, Mo Tiwari, and Azalia Mirhoseini. Cats:
Contextually-aware thresholding for sparsity in large language models, 2024. URL https:
//arxiv.org/abs/2404.08763.

James Liu, Pragaash Ponnusamy, Tianle Cai, Han Guo, Yoon Kim, and Ben Athiwaratkun. Training-
free activation sparsity in large language models, 2025. URL https://arxiv.org/abs/
2408.14690.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,
Ce Zhang, Yuandong Tian, Christopher Re, and Beidi Chen. Deja vu: Contextual sparsity for
efficient 1lms at inference time, 2023. URL https://arxiv.org/abs/2310.17157.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? A new dataset for open book question answering. CoRR, abs/1809.02789, 2018.
URLhttp://arxiv.org/abs/1809.027809.

Seyed Iman Mirzadeh, Keivan Alizadeh-Vahid, Sachin Mehta, Carlo C del Mundo, Oncel Tuzel,
Golnoosh Samei, Mohammad Rastegari, and Mehrdad Farajtabar. ReLU strikes back: Exploiting
activation sparsity in large language models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=0soWxY8g2E.

Leandro Giusti Mugnaini, Bruno Lopes Yamamoto, Lucas Lauton de Alcantara, Victor Zacarias,
Edson Bollis, Lucas Pellicer, Anna Helena Reali Costa, and Artur Jordao. Efficient llms with amp:
Attention heads and mlp pruning, 2025. URL https://arxiv.org/abs/2504.21174,

Quang Pham, Giang Do, Huy Nguyen, TrungTin Nguyen, Chenghao Liu, Mina Sartipi, Binh T.
Nguyen, Savitha Ramasamy, Xiaoli Li, Steven Hoi, and Nhat Ho. Competesmoe — effective
training of sparse mixture of experts via competition, 2024. URL https://arxiv.org/
abs/2402.02526!l

Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, Janos
Kramdr, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu sparse
autoencoders, 2024. URL |https://arxiv.org/abs/2407.14435.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale, 2019. URL https://arxiv.org/abs/1907.
10641

Noam Shazeer. GLU variants improve transformer. CoRR, abs/2002.05202, 2020a. URL https:
//arxiv.org/abs/2002.05202.

Noam Shazeer. Glu variants improve transformer, 2020b. URL https://arxiv.org/abs/
2002.05202.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer,
2017. URL https://arxiv.org/abs/1701.06538.

Chenyang Song, Xu Han, Zhengyan Zhang, Shengding Hu, Xiyu Shi, Kuai Li, Chen Chen, Zhiyuan
Liu, Guangli Li, Tao Yang, and Maosong Sun. Prosparse: Introducing and enhancing intrinsic
activation sparsity within large language models, 2025. URL https://arxiv.org/abs/
2402.13516l

Teknium. Openhermes 2.5: An open dataset of synthetic data for generalist llm assistants, 2023.
URLhttps://huggingface.co/datasets/teknium/OpenHermes—2. 5.

Hongyu Wang, Shuming Ma, Ruiping Wang, and Furu Wei. Q-sparse: All large language models
can be fully sparsely-activated, 2024. URL https://arxiv.org/abs/2407.10969.

13

https://arxiv.org/abs/2402.16775
https://arxiv.org/abs/2404.08763
https://arxiv.org/abs/2404.08763
https://arxiv.org/abs/2408.14690
https://arxiv.org/abs/2408.14690
https://arxiv.org/abs/2310.17157
http://arxiv.org/abs/1809.02789
https://openreview.net/forum?id=osoWxY8q2E
https://arxiv.org/abs/2504.21174
https://arxiv.org/abs/2402.02526
https://arxiv.org/abs/2402.02526
https://arxiv.org/abs/2407.14435
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/2402.13516
https://arxiv.org/abs/2402.13516
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://arxiv.org/abs/2407.10969

Under review as a conference paper at ICLR 2026

Taiqiang Wu, Chaofan Tao, Jiahao Wang, Runming Yang, Zhe Zhao, and Ngai Wong. Rethink-
ing kullback-leibler divergence in knowledge distillation for large language models, 2024. URL
https://arxiv.org/abs/2404.02657.

Weizhe Yuan, Jane Yu, Song Jiang, Karthik Padthe, Yang Li, Dong Wang, Ilia Kulikov, Kyunghyun
Cho, Yuandong Tian, Jason E Weston, and Xian Li. Naturalreasoning: Reasoning in the wild with
2.8m challenging questions, 2025. URL https://arxiv.org/abs/2502.13124,

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence?, 2019. URL https://arxiv.org/abs/1905.07830.

Zhenyu Zhang, Zechun Liu, Yuandong Tian, Harshit Khaitan, Zhangyang Wang, and Steven Li.
R-sparse: Rank-aware activation sparsity for efficient 1lm inference, 2025. URL https://
arxiv.org/abs/2504.194409.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Tianle Li, Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zhuohan Li, Zi Lin, Eric. P Xing, Joseph E. Gonzalez, Ion Stoica, and Hao Zhang.
Lmsys-chat-1m: A large-scale real-world Ilm conversation dataset, 2023.

Yangi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew Dai, Zhifeng
Chen, Quoc Le, and James Laudon. Mixture-of-experts with expert choice routing, 2022. URL
https://arxiv.org/abs/2202.09368.

A EVALUATIONS RESULTS

A.1 COMPARISON TO COMPUTE EQUIVALENT MODELS

Model Technique Step Multiplier all mmlu wg arccc HS arcie obqa piqa
Gemma270M — — — 436 243 527 276 438 575 30.6 689
llama-3.2-1B — — — 53.1 386 579 369 642 617 372 749
llama-3.2-1B CWIC 3000 2.05x 492 277 560 335 584 602 358 729
llama-3.2-1B CWIC 6000 3.05x 475 267 557 331 536 580 348 704
llama-3.2-1B CWIC 9000 4.05x 46.1 264 533 302 503 569 362 69.2
llama-3.2-1B CWIC 12000 5.05x 442 252 516 292 483 528 334 688
llama-3.2-1B CWIC 15000 6.05x 438 249 522 306 466 534 308 68.1
llama-3.2-1B CWIC 18000 6.05x 445 260 534 310 480 539 314 680
llama-3.2-3B — — — 617 552 651 463 741 721 408 78.1
llama-3.2-3B CWIC 3000 2.05x 572 474 60.1 422 683 69.1 380 75.6
llama-3.2-3B CWIC 6000 3.05x 547 383 583 395 643 694 394 739
llama-3.2-3B CWIC 9000 4.05x 525 323 570 386 615 671 37.0 743
llama-3.2-3B CWIC 12000 5.05x 498 288 536 352 591 626 374 717
llama-3.2-3B CWIC 15000 6.05x 494 276 538 343 577 622 382 720
llama-3.2-1B TEAL — 1.65x 481 281 553 340 552 566 356 717
llama-3.2-1B TEAL — 2.11x 39.1 24.1 513 247 390 430 300 619
llama-3.2-1B TEAL — 2.44x 340 229 48.0 227 289 328 28.0 550
llama-3.2-1B TEAL — 2.70x 332 229 485 249 263 290 284 520
llama-3.2-1B TEAL 2.91x 328 23.0 494 251 260 266 298 50.1
llama-3.2-3B TEAL — 1.78x 574 483 58.6 424 698 69.1 384 75.6
llama-3.2-3B TEAL 2.41x 485 307 545 352 554 583 360 694
llama-3.2-3B TEAL — 2.92x 37.6 232 50.1 266 345 417 260 613
llama-3.2-3B TEAL — 3.35x 324 23.0 504 236 264 264 266 507
llama-3.2-3B TEAL — 3.71x 322 231 494 241 264 266 246 515

Table 3: Model Performance Comparison (acc_norm)

14

https://arxiv.org/abs/2404.02657
https://arxiv.org/abs/2502.13124
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/2504.19449
https://arxiv.org/abs/2504.19449
https://arxiv.org/abs/2202.09368

Under review as a conference paper at ICLR 2026

A.2 CWIC ABLATIONS PERFORMANCE

Model Technique Step Multiplier all mmlu wg arccc HS arcce obqa piqa
llama-3.2-1B No Stripes 3000 2.05x 480 273 548 30.7 569 57.1 358 733
llama-3.2-1B No Stripes 6000 3.05x 45.8 26.2 541 309 514 563 326 69.1
llama-3.2-1B No Stripes 9000 4.05x 452 265 531 302 495 557 332 683
llama-3.2-1B No Stripes 12000 5.05x 439 26.9 519 30.7 46.6 52.0 31.6 677
llama-3.2-1B No Stripes 15000 6.05x 424 236 514 287 446 500 316 667
llama-3.2-1B No MSE 3000 2.05x 48.3 26.8 544 340 563 59.8 352 718
llama-3.2-1B No MSE 6000 3.05x 459 247 522 307 514 574 344 705
llama-3.2-1B NoMSE 9000 4.05x 456 258 535 298 489 572 358 68.1
llama-3.2-1B No MSE 12000 5.05x 450 263 563 292 46.6 53.8 340 688
llama-3.2-1B NoMSE 15000 6.05x 444 249 532 297 465 551 334 682
Table 4: Model performance under CWIC ablations
B HYPERPARAMETERS
B.1 SETTINGS
Setting 1B 1B noStripes 1B noSTE 3B
Base model Llama-3.2-1B Llama-3.2-1B Llama-3.2-1B Llama-3.2-3B
Max sequence length 1024 1024 1024 1024
Sequences per step 64 64 64 64
Reduction final 6.05 6.05 6.05 6.05
Reduction warmup length 15,000 steps 15,000 steps 15,000 steps 15,000 steps
Learning rate schedule 1,000,000 steps 1,000,000 steps 1,000,000 steps 1,000,000 steps
Learning rate warmup 500 steps 500 steps 500 steps 500 steps
Learning rate max 0.00005 0.00005 0.00005 0.00003
Optimizer AdamW AdamW AdamW AdamW
Betal 0.9 0.9 0.9 0.9
Beta2 0.95 0.95 0.95 0.95
Weight Decay 0.01 0.01 0.01 0.01
Baist 0.99
Qe 0.1 0.1 0.1 0.1
s 1.0 1.0 1.0 1.0
AAPs 10.0 10.0 10.0 10.0
Stripe Size 512 FULL 512 512

Table 5: Hyperparameter settings for the default model

The hyperparameters for our training run are presented in Table] Note that the default training
mode had a APR target warmup, normalization, stripe size of 512, and x ste enabled.

B.2 EFFECTS OF HYPERPARAMETERS

With respect to the bandwidth scale ., performance was stable within a range of about 0.05 to 0.25.
Values outside of this range caused significant training instability. The choice momentum parameter
of running batch statistics 45 (range of 0.9 to 0.99) had very little impact on performance. When
calculating pseudo-derivatives, we found that other kernel functions besides the rectangle kernel

described in |subsection 3.3| gave similar performance.

C TRAINING DATA

The training data used in our distillation process is listed below:
* OpenHermes-2.5 Training Dat (Teknium, [2023)

*teknium/OpenHermes-2.5

15

https://huggingface.co/datasets/teknium/OpenHermes-2.5

Under review as a conference paper at ICLR 2026

* NaturalReasoning DatasetEl
SmolTalk Dataseﬂ

* Orca Agentlnstruct-1M-v 1E| (Arindam Mitral 2024
LMSYS-Chat-1M Dataseff| (Zheng et al., 2023)

e MMLU training split (repeated 5x) (Hendrycks et al.} 202T)
* ARC training split (repeated 5x) (Clark et al., 2018)
¢ WinoGrande training split (repeated 5x) (Sakaguchi et al.},[2019)

All data sequences were converted to the standard chat format used by Llama-3.2-1B-Instruct, then
filtered for a maximum total sequence length of 1024. We also packed shorter sequences together
to increase training efficiency, and used attention masking to prevent interactions between packed
sequences.

D OBSERVED SPARSITY PATTERNS

Step 800, Flop Ratio 2 Step 6008, Flop Ratio 6
Layer «——Input x Channel—— «——1Input x Channel——

Figure 7: Activation frequencies of W, at 2x and 6x APR. Rows correspond to weight stripes.
Column intensity represents the frequency at which an input position passes the column thresh-
old (darker column indicates lower frequency). The green boxes highlight how important features
(brighter columns) emerge early and are magnified in relative importance over training.

3facebook/natural_reasoning
®HuggingFaceTB/smoltalk
"microsoft/orca-agentinstruct-1M-v1
$Imsys/Imsys-chat-1m

16

https://huggingface.co/datasets/facebook/natural_reasoning
https://huggingface.co/datasets/HuggingFaceTB/smoltalk
https://huggingface.co/datasets/microsoft/orca-agentinstruct-1M-v1
https://huggingface.co/datasets/lmsys/lmsys-chat-1m

Under review as a conference paper at ICLR 2026

Channels Grouped By Head

F AN A 0O O I
1 A N O O N A
_Im=l=HIWIIFIIIIIIIIMMIIIIMIIIIIII A1 0 O 1

(U
il |

AR
R S A
10 T NSRRI IO
il L T ORI 11
1 I
L |

0

Stripes grouped By Laye

Figure 8: The sparsity levels within O heads (each white-outlined cell is a head) tend to be similar
across channels. Sometimes entire heads will be always on or always off. Unlike the QKV, UP,
GATE, there are no patterns across layers as the input to O is not the residual stream.

E OBSERVED COMPUTE ALLOCATION

<|begin_of_text|>Here is a simple rh poem with 4 lines about a lonely computer:
A that gl in
It for keys that never write.
No call, no appear,
<|begin_of_text|>Here is a list of 3 famous explorers from the early-mod period
1. :S across the Atlantic in 1492 and the Americas, initiating sustained European exploration there.
2. Mag : Led the first expedition to circum the globe, proving the Earth could be fully traversed by sea.
3.Vas G : First European to reach India by sea the of Good Hope, 1ing direct maritime trade with Asia.
<|begin_of text|>Question

has5 of . Each basket contains 3 apples. He gives 1 basket to Alice. How many apples does Bob have now
Answer:
Step 1 apples =5 3 apples each = 15 apples.

e —

0.0 0.1 0.2 0.3

Figure 9: Visualizationx of FLOPs allocated to different tokens during inference for three outut
sequences.

17

	Introduction
	Related Work
	Methods
	Granular Sparsity
	Sparsity Thresholds
	Learning Thresholds
	Normalization
	Straight-Through Estimation
	Controlling Sparsity
	Feed-Forward Network Modifications
	Model Distillation

	Experiments
	Setup
	Results
	CWIC outperforms TEAL
	CWIC Sparsification outperforms Active Parameter Equivalents
	CWIC Ablation Findings
	CWIC Scaling Laws
	Wall Clock Speedups

	Discussion
	Sparsity Patterns
	Variable Compute Budgets

	Future Work
	Evaluations Results
	Comparison to Compute Equivalent Models
	CWIC Ablations Performance

	Hyperparameters
	Settings
	Effects of Hyperparameters

	Training Data
	Observed Sparsity Patterns
	Observed Compute Allocation

