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ABSTRACT

Several recent studies have investigated low-precision accumulation, reporting im-
provements in throughput, power, and area across various platforms. However,
the accompanying proposals have only considered the quantization-aware train-
ing (QAT) paradigm, in which models are fine-tuned or trained from scratch with
quantization in the loop. As models continue to grow in size, QAT techniques
become increasingly more expensive, which has motivated the recent surge in
post-training quantization (PTQ) research. To the best of our knowledge, ours
marks the first formal study of accumulator-aware quantization in the PTQ set-
ting. To bridge this gap, we introduce AXE—a practical, low-overhead framework
of accumulator-aware extensions designed to endow overflow avoidance guaran-
tees to existing layer-wise PTQ algorithms. We theoretically motivate AXE and
demonstrate its flexibility by implementing it on top of two state-of-the-art PTQ
algorithms: GPFQ and OPTQ. We further generalize AXE to support multi-stage
accumulation for the first time, opening the door for full datapath optimization and
scaling to large language models (LLMs). We evaluate AXE across autoregressive
language generation models, and observe significant improvements in the trade-
off between accumulator bit width and model accuracy over baseline methods.

1 INTRODUCTION

Modern deep learning models have scaled to use billions of parameters, requiring billions (or even
trillions) of multiply-accumulate (MAC) operations during inference. Their enormous size presents
a major obstacle to their deployment as their compute and memory requirements during inference
often exceed the budgets of real-world applications. As a result, model compression has emerged as
an important active area in deep learning research, with quantization being among the most prevalent
techniques studied and applied in practice (Wu et al., 2020; Nagel et al., 2021; Gholami et al., 2022).

Quantization techniques commonly reduce inference costs by restricting the precision of its weights
and activations. Although substituting the standard 32-bit floating-point operands for low-precision
counterparts can drastically reduce the cost of multiplications, this only accounts for part of the core
MAC operation; the resulting products are often still accumulated at 32 bits. Recent studies have
demonstrated that also restricting the precision of the accumulator can yield significant benefits (see
Section 2.2). However, exploiting such an optimization is non-trivial in practice as reducing the
width of the accumulator exponentially increases the risk of numerical overflow, which is known to
introduce arithmetic errors that significantly degrade model accuracy (Ni et al., 2020).

To address this, recent work has proposed an accumulator-aware quantization paradigm that en-
tirely eliminates the risk of numerical overflow via strict learning constraints informed by theoret-
ical guarantees (Colbert et al., 2023). The resulting scope of investigations has been limited to the
quantization-aware training (QAT) setting in which models are trained from scratch or fine-tuned
from checkpoints with quantization in the loop (Colbert et al., 2023; 2024). With the rising training
costs of modern deep learning models (e.g., large language models), it is important to develop meth-
ods that are equally as effective in the post-training quantization (PTQ) setting, where pre-trained
models are directly quantized and calibrated using relatively modest resources. However, control-
ling the accumulator bit width in such a scenario is non-trivial. In this work, we characterize and
address these challenges, introduce a practical framework for their investigation, and establish a new
state-of-the-art for accumulator-aware weight quantization in the PTQ setting.
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Figure 1: To reduce the minimum accumulator bit width required to avoid overflow during inference,
one could naı̈vely manipulate the weight and activation bit widths according to the data type bound
derived by Colbert et al. (2023). To date, Euclidean projection-based initialization (EP-init) (Colbert
et al., 2024) serves as the best alternative to this approach, but, as the name suggests, it has only been
studied as a QAT initialization strategy. AXE (green circles) significantly improves the trade-off be-
tween accumulator bit width and model quality for language models evaluated on WikiText2 (Merity
et al., 2016) when compared to EP-init (blue triangles) and naı̈ve bit width manipulation (red stars)
for both GPFQ (Lybrand & Saab, 2021) (top) and OPTQ (Frantar et al., 2022) (bottom).

Contribution. We introduce AXE, a framework of accumulator-aware extensions designed to en-
dow overflow avoidance guarantees to any layer-wise PTQ algorithm that greedily quantizes weights
one at a time, provided the base algorithm is also amenable to activation quantization. We theoreti-
cally motivate AXE and demonstrate its flexibility by presenting accumulator-aware variants of both
GPFQ and OPTQ. We evaluate AXE across pre-trained language generation models and show that
it significantly improves the trade-off between accumulator bit width and model quality when com-
pared to baseline methods. We visualize this trade-off using the Pareto frontiers in Figure 1, which
provide the minimum observed perplexity for a given target accumulator bit width. Furthermore,
unlike prior accumulator-aware quantization methods, which assume a monolithic accumulator, we
generalize AXE to support multi-stage accumulation, which enables accumulator-aware quantiza-
tion of large language models (LLMs) for the first time. Indeed, our results show that AXE scales
extremely well to billion-parameter language models when targeting multi-stage accumulation, sup-
porting the scaling hypothesis proposed by Colbert et al. (2024).

2 PRELIMINARIES

We denote the Kl-dimensional input activations to layer l as x(l) ∈ RKl , where X(l) ∈ RKl×D

denotes a matrix of D such inputs. The weight matrix for layer l with Kl input neurons and Cl

output neurons is similarly denoted as W (l) ∈ RCl×Kl ; its quantized counterpart is denoted as
Q(l) ∈ ACl×Kl

M , where we useAm×n
b to denote the space of all m×n matrices whose elements are

part of a fixed b-bit alphabet defined by the target quantization space. For example, the alphabet of
signed b-bit integers isAb := {k : −2b−1 +1 ≤ k ≤ 2b−1− 1, k ∈ Z}, assuming a sign-magnitude
representation, where Z is the space of all scalar integers.

For layer l, our notation yields Cl independent dot products of depth Kl for each of the D inputs.
For clarity, and without loss of generality, we often assume Cl = 1 when focusing on a single layer l
so that we can use w(l) to denote the weight matrix for layer l. When dropping their superscript, x
and w denote generic inputs and weights in RK , and x̃ and q denote their quantized counterparts.
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2.1 POST-TRAINING QUANTIZATION

Standard quantization operators, referred to as quantizers, are commonly parameterized by zero-
point z and strictly positive scaling factor s, as shown in Eq. 1 for weight tensor w. Our work
focuses on uniform integer quantization, where z is an integer value that ensures that zero is exactly
represented in the quantized domain, and s is a strictly positive scalar that corresponds to the reso-
lution of the quantizer. Scaled values are commonly rounded to the nearest integer, denoted by ⌈·⌋,
and elements that exceed the representation range of the quantized domain Ab are clipped.

Q(w) := s ·
(

clip
(⌈w

s

⌋
+ z; minAb,maxAb

)
− z
)

(1)

Methods for tuning these quantizers broadly fall into two paradigms: quantization-aware training
(QAT) and post-training quantization (PTQ). QAT methods train or fine-tune a neural network with
quantization in the loop, which often requires significant compute resources and sufficiently large
datasets. Our work focuses on PTQ methods, which directly cast and calibrate pre-trained mod-
els and often rely on little to no data without end-to-end training. PTQ methods tend to follow a
similar general structure, greedily casting and calibrating quantized models layer-by-layer or block-
by-block while seeking to approximate the minimizer of the reconstruction error

q∗ = argmin
q

1

2
∥XTw − X̃Tq∥22 (2)

where q∗ is the optimal quantized weights and X̃ is the quantized counterpart of X . Recent PTQ
methods concentrate on “weight-only quantization”, where X̃ = X , to solely minimize memory
storage and transfer costs (Lybrand & Saab, 2021; Frantar et al., 2022), and for good reason—the
ever-increasing weight volume of state-of-the-art neural networks has rendered many hyper-scale
transformer models memory-bound (Zhang et al., 2022a; Biderman et al., 2023). In such a scenario,
weight-only quantization algorithms can better preserve model quality and still realize end-to-end
throughput gains just by reducing data transfer costs, even with high-precision computations (usually
FP16) (Frantar et al., 2022; Tseng et al., 2024). However, weight-only quantization provides limited
opportunity to accelerate compute-intensive operations such as matrix multiplications, which is the
focus of this work. Thus, we investigate methods that are amenable to quantizing both weights
and activations to low-precision integers, which can realize throughput gains from both accelerated
computation and reduced data traffic (Xiao et al., 2023; Li et al., 2024).

2.2 LOW-PRECISION ACCUMULATION

The majority of neural network quantization research targeting compute acceleration emphasizes
low-precision weights and activations. While this can significantly reduce the costs of multiplica-
tions, the resulting products are often still accumulated using high-precision additions. As lower
precision integer representations continue to increase in popularity (Dettmers & Zettlemoyer, 2023;
Ma et al., 2024), one can expect a focus skewed towards weight and activation quantization to yield
diminishing returns as high-precision additions can bottleneck throughput, power, and area (Ni et al.,
2020; de Bruin et al., 2020; Xie et al., 2021; Colbert et al., 2024). For example, Ni et al. (2020) show
that when constraining weights and activations to 3-bit × 1-bit multipliers, the cost of 32-bit accu-
mulation consumes nearly 75% of the total power and 90% of the total area of their custom MAC
unit; they report up to 4× power savings and 5× area reduction when reducing to 8-bit accumulation.

Reducing the accumulator bit width is non-trivial in practice as it exponentially increases the risk
of numerical overflow, often introducing arithmetic errors that degrade model accuracy (Ni et al.,
2020; Colbert et al., 2023). Existing methods to prepare quantized neural networks (QNNs) for low-
precision accumulation often aim to either reduce the risk of numerical overflow (Xie et al., 2021;
Li et al., 2022; Azamat et al., 2022) or mitigate its impact on model accuracy (Ni et al., 2020; Sakr
et al., 2019; Blumenfeld et al., 2024). These empirical approaches rely on several assumptions that
limit their real-world applicability. For one, empirical estimates of overflow rely on a priori knowl-
edge of the input distribution, which is impractical to assume in many real-world scenarios and can
even introduce vulnerabilities (Baier et al., 2019). Furthermore, overflow behavior can vary across
platforms and programming languages, so designing methods to mitigate the detrimental impact of
one particular overflow behavior (e.g., wraparound two’s complement arithmetic) limits portability
across applications and accelerators. Finally, empirical approaches are unable to support applica-
tions that require guaranteed arithmetic correctness, such as encrypted inference (Lou & Jiang, 2019;
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Stoian et al., 2023), and are known to break down when overflows occur too frequently (Ni et al.,
2020). To address these concerns, recent work has proposed to avoid overflow altogether using
accumulator-aware quantization (A2Q) (Colbert et al., 2023; 2024).

2.3 ACCUMULATOR-AWARE QUANTIZATION

Let P ∗ denote the minimum accumulator bit width required to guarantee overflow avoidance for a
given dot product. Aside from universally fixing the accumulator at 32 bits (or any other arbitrary
maximum number of bits imposed by a given processor), the most conservative method to calcu-
late P ∗ considers the data types of the dot product operands, i.e., weights and activations. Given
inputs x̃ ∈ AK

N and weights q ∈ AK
M , P ∗ is given by Eq. 3 as derived in Colbert et al. (2023), where

1signed(x̃) is an indicator function that returns 1 if x̃ is signed and 0 otherwise.

P ∗ =
⌈
log2

(
2log2(K)+N+M−1−1signed(x̃) + 1

)
+ 1
⌉

(3)

Note that P ∗ increases linearly with the bit widths of the operands and logarithmically with the
depth of the dot product. Thus, for a fixed neural architecture, one could heuristically manipulate the
weight and activation bit widths according to Eq. 3 to reduce P ∗. However, the quantization design
space ultimately limits the minimum attainable accumulator bit width, as well as the maximum
attainable model accuracy for any target accumulator bit width (Colbert et al., 2023; 2024).

Colbert et al. (2024) show that one can directly target the accumulator bit width as an independent
dimension of the quantization design space while still theoretically guaranteeing overflow avoidance.
When accumulating x̃Tq into a signed P -bit accumulator, one need only constrain ∥q∥1 according
to Eq. 4, assuming that

∑
i qi = 0.

∥q∥1 ≤
2P − 2

2N − 1
(4)

Motivated by this result, accumulator-aware QAT methods avoid overflow by constraining the ℓ1-
norm of weights during training to ultimately restrict the range of dot product outputs during infer-
ence (Colbert et al., 2023; 2024). These approaches rely on weight normalization-based quantizers
infused with strict accumulator-aware learning constraints. Although these approaches have yielded
promising results in low-precision accumulation scenarios, the scope of their success is limited to the
QAT setting (Colbert et al., 2023; 2024). However, from this family of QAT methods, one can apply
the Euclidean projection-based initialization strategy (EP-init) (Colbert et al., 2024) to the PTQ set-
ting without modification. However, we find that EP-init has two shortcomings in the PTQ setting:
(1) it universally relies on the round-to-zero rounding function to ensure that |Q(wi)| ≤ |wi| for all
i (Colbert et al., 2023; 2024); and (2) it is a vector-wise projection operation that is not amenable to
error correction (see Appendix C.2). We address these shortcomings in this work.

3 ACCUMULATOR-AWARE POST-TRAINING QUANTIZATION

The standard problem for neural network quantization aims to map high-precision values (e.g., 32-
bit floating-point) to low-precision counterparts (e.g., 4-bit scaled integers) while locally minimizing
the discrepancy between the output of the original model and that of the compressed one, as formal-
ized by Eq. 2 in Section 2.1. In the post-training quantization (PTQ) setting, one often assumes the
quantizer parameters (i.e., scaling factor s and zero point z) are fixed and that the individual weights
can move freely, as in Lybrand & Saab (2021); Frantar et al. (2022); Hubara et al. (2021). Build-
ing from this, we formalize accumulator-aware post-training quantization as a constrained variant
of the standard reconstruction problem in which the optimal quantized weights q∗ minimize local
quantization error while also satisfying a strict ℓ1-norm constraint, as defined below.

q∗ = argmin
q

1

2
∥XTw − X̃Tq∥22 s.t. ∥q∥1 ≤ Z (5)

To approximately solve this accumulator-constrained reconstruction problem, we introduce AXE,
a practical low-overhead framework of general accumulator-aware extensions that endow guaran-
teed overflow avoidance to layer-wise quantization algorithms that greedily assign bits element-by-
element (e.g., GPFQ and OPTQ). AXE is built on two accumulator-aware constraints: (1) a soft
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global constraint that discourages the underlying algorithm from opportunistically selecting quan-
tized weights with high magnitudes; and (2) a strict local constraint that greedily limits the range of
each selected quantized weight while error is iteratively corrected. In its standard form, AXE applies
these constraints per-channel (or per-neuron) so that each dot product in the network is guaranteed
to independently avoid overflow. Furthermore, without violating our constraints, we generalize our
framework to also support multi-stage accumulation in the form of tiled dot products by applying
our constraints in finer granularities. We first theoretically justify our solution using GPFQ, then
provide accumulator-aware variants of both GPFQ and OPTQ.

3.1 ACCUMULATOR CONSTRAINTS WITHOUT ZERO-CENTERING

Our goal is to provide a theoretical guarantee of overflow avoidance when accumulating the dot
product of q by any x̃ ∈ AK

N into a signed P -bit register. If q is a zero-centered vector such that∑
i qi = 0, then it is sufficient to constrain ∥q∥1 to satisfy the upper bound given by Eq. 4 in order to

guarantee overflow avoidance (see Section 2.3). However, enforcing such a zero-centering constraint
on a vector of integers is non-trivial in practice. Rather than directly enforcing this constraint on q,
A2Q+ (Colbert et al., 2024) enforces these constraints on its floating-point counterpart w and relies
on the symmetry of the quantizer and the round-to-zero operator to ensure that |Q(wi)| ≤ |wi| for
all i. We detach our solution from these zero-centering, round-to-zero, and symmetrical constraints.

For any x̃ ∈ AK
N , each element x̃i lies within the closed interval [µ, ν] for all i = {1, · · · ,K}, and

ν − µ = 2N − 1. It follows that the maximizing vector, u = argmaxx̃ x̃Tq, and the minimizing
vector, v = argminx̃ x̃Tq, are:

ui =

{
ν, where qi ≥ 0

µ, where qi < 0
vi =

{
µ, where qi ≥ 0

ν, where qi < 0
(6)

Fundamentally, to avoid overflow when accumulating x̃Tq into a P -bit register, the result needs to
fall within the register’s representation range for any x̃ ∈ AK

N . Without loss of generality, we derive
our algorithm assuming a sign-magnitude accumulator for clarity and conciseness. Thus, to safely
use a signed P -bit accumulator without overflow, the following inequalities need to be satisfied:

uTq ≤ 2P−1 − 1 (7)

−vTq ≤ 2P−1 − 1 (8)
To avoid zero-centering, one could generalize the result derived in Colbert et al. (2024) such that the
bound relies on a variable center, e.g.,

∑
i qi = ϵ. However, such a solution would still rely on the

round-to-zero constraint. Furthermore, it precludes the use of greedy sequential algorithms where ϵ
would be just as difficult to enforce as zero-centering, i.e., ϵ = 0. Thus, rather than constraining the
center, we greedily constrain the boundaries, as further discussed in Section 3.2.

3.2 ACCUMULATOR-AWARE GPFQ

The greedy path following quantization (GPFQ) algorithm (Lybrand & Saab, 2021) approaches the
standard quantization problem by traversing the neural network graph to sequentially quantize each
element in each layer while iteratively correcting for quantization error. At the l-th layer, this is
done by greedily selecting each element qi to minimize the squared distance between the running
sum

∑i
j=1 qjX̃j and its analog

∑i
j=1 wjXj such that

q
(l)
i = argmin

p∈AM

∥∥∥∥∥∥
i∑

j=1

w
(l)
j X

(l)
j −

i−1∑
j=1

q
(l)
j X̃

(l)
j − pX̃

(l)
i

∥∥∥∥∥∥
2

(9)

where X̃(l)
i denotes samples for the i-th input neuron to the l-th layer assuming the first l− 1 layers

are quantized, and AM is an M -bit fixed alphabet defined by the target quantization space. This
simplifies to the following iteration rule as derived in Lybrand & Saab (2021), where u(l)

0 = 0.

q
(l)
i = Q

(
⟨X̃(l)

i , u
(l)
i−1 + w

(l)
i X

(l)
i ⟩

∥X̃(l)
i ∥22

)
(10)

u
(l)
i = u

(l)
i−1 + w

(l)
i X

(l)
i − q

(l)
i X̃

(l)
i (11)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

To add accumulator-awareness, we introduce two constraints that are agnostic to the symmetry of
the quantizer and rounding function while still guaranteeing overflow avoidance. First, we introduce
a soft ℓ1-norm regularization penalty that discourages the underlying algorithm (e.g., GPFQ) from
opportunistically selecting weights with high magnitudes. Second, we introduce a strict constraint
that greedily limits the range of qi as error is iteratively corrected. This strict constraint is recursively
applied element-by-element to ensure that Eqs. 7 and 8 are independently satisfied, which ultimately
guarantees that Eq. 4 is satisfied without requiring a zero-centering constraint.

Soft ℓ1-norm regularization penalty. By design, greedy sequential quantization algorithms (e.g.,
GPFQ and OPTQ) opportunistically alter weights to correct for as much error as possible in
each step, often yielding high-magnitude quantized weights. However, this is unfavorable in the
accumulator-aware quantization setting as high-magnitude weights consume more of the ℓ1-norm
budget allocated per-channel (see Eq. 4). To address this, we penalize high-magnitude weights dur-
ing error correction. We build from the sparse GPFQ formulation proposed by Zhang et al. (2023) as
given by Eq. 12; the solution is given by Eq. 13, where Πλ(x) := sign(x)(|x| − λ)+, (·)+ denotes
the rectified linear unit (ReLU), and λ > 0 is an arbitrary tuneable regularization parameter.

q
(l)
i = argmin

p∈AM

1

2

∥∥∥∥ i∑
j=1

w
(l)
j X

(l)
j −

i−1∑
j=1

q
(l)
j X̃

(l)
j − pX̃

(l)
i

∥∥∥∥2
2

+ λ|p|
∥∥∥∥X̃(l−1)

i

∥∥∥∥2
2

 (12)

= Q ◦Πλ

(
⟨X̃(l)

i , u
(l)
i−1 + w

(l)
i X

(l)
i ⟩

∥X̃(l)
i ∥22

)
(13)

Noticeably, this formulation is amenable to leverage EP-init (Colbert et al., 2024), which takes the
same functional form. Thus, we tune our selection of λ to be the optimal Lagrangian scalar derived
from the solution to the constrained convex optimization problem formulated by Eq. 14. Here, the
objective is to find the optimal Euclidean projection of w onto the ℓ1 ball of radius Z, where Z is the
accumulator-aware ℓ1-norm target given, up to a scaling, by the upper bound in Eq. 4. Thus, v∗ is the
vector that minimizes the projection onto the boundary of our constrained set before quantization.

v∗ = min
v

1

2
∥v −w∥22 subject to ∥v∥1 ≤ Z (14)

Define ρ as the number of non-zero elements in the optimal solution and µ as the result of sorting w
by magnitude in descending order. The Lagrange multiplier λ associated with the solution to the
optimization problem is given by

λ =
1

ρ

(
ρ∑

i=1

µi − Z

)
, (15)

which can be interpreted as the average difference between our scaled accumulator-aware ℓ1-norm
target and the magnitudes of all non-zero elements in the optimal Euclidean projection v∗. We direct
the reader to Colbert et al. (2024) and Duchi et al. (2008) for the associated proofs and derivations.
It is important to note that because this projection is derived before quantization it cannot guarantee
overflow avoidance on its own; both error correction and rounding errors may violate our constraint.
However, we observe that it consistently yields improvements in model quality (see Appendix C.2).

Strict accumulator-aware constraint. For clarity, and without loss of generality, we motivate
our strict accumulator-aware constraint using the special case where x̃ is represented with unsigned
integers such that µ = 0 and ν = 2N−1. Note that this setting is common when following activation
functions with non-negative dynamic ranges (e.g., ReLUs), or when an appropriate non-zero-valued
zero-point is adopted (i.e., asymmetric quantization) (Gholami et al., 2022; Zhang et al., 2022b).

Let α denote the sum of all negative elements in q, and let β denote the sum of all positive elements
in q. From Eq. 7, we can derive the upper bound on β given by Eq. 16, which can similarly be
derived for −α from Eq. 8 in the case of sign-magnitude representations. Indeed, uTq ≤ 2P−1 − 1
is guaranteed whenever βν+αµ ≤ 2P−1−1, which holds in the case of unsigned activations if

β ≤ 2P−1 − 1

2N − 1
. (16)
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Therefore, to quantize layer l for a target P -bit accumulator, we introduce a practical mechanism to
control the range of the dot product based on the following modified GPFQ scheme:

q
(l)
i = Q ◦Ψ

a
(l)
i−1,b

(l)
i−1
◦Πλ

(
⟨X̃(l)

i , u
(l)
i−1 + w

(l)
i X

(l)
i ⟩

∥X̃(l)
i ∥22

)
(17)

a
(l)
i = A(l) − αi (18)

b
(l)
i = B(l) − βi (19)

where αi denotes the sum of all negative elements in q whose index is less than i and βi is its
positive counterpart, A(l) and B(l) (defined in Eq. 20) are respectively the upper limits of αi and βi,
and the closed interval [a(l)i , b

(l)
i ] is the range greedily enforced on qi as error is iteratively corrected.

We use Ψa,b to denote the clipping function Ψa,b(x) := clip (x; a, b), which is effectively a no-op
when the range [a(l)i , b

(l)
i ] exceeds that of the quantized domain AM . This has the desired feature of

being functionally equivalent to GPFQ when the accumulator is large enough (e.g., 32 bits). Finally,
recall that u(l)

i is given by Eq. 11 with u
(l)
0 = 0, which remains unchanged.

By independently constraining the limits of qi, our accumulator-aware variant avoids overflow with-
out explicit zero-centering. To ensure rounding errors do not compromise our bounds, we use

−A(l) = B(l) =
2P−1 − 1

2N − 1
−max (∆) (20)

where max (∆) denotes the worst-case difference in raw magnitude caused by rounding; for exam-
ple, max (∆) = 0.5 for round-to-nearest and max (∆) = 0 for round-to-zero. Thus, our formula-
tion and resulting iteration rules are also agnostic to the symmetry of the quantizer and its choice of
rounding function. We also note that, while our derivation considers the sign-magnitude representa-
tion for the clarity that its symmetry provides, the separate consideration of A(l) and B(l) is useful
for asymmetric representations (e.g., two’s complement).

3.3 AXE: ACCUMULATOR-AWARE EXTENSIONS

While the theoretical justification we presented is tied to the formulation of GPFQ and its deriva-
tions, we can extract our constraints to construct a generalized framework that enables the investiga-
tion of accumulator-aware PTQ with any iterative algorithm that sequentially assigns bits, assuming
the algorithm is also amenable to activation quantization. Our framework consists of two steps:
(1) accumulator-aware projection based on our soft ℓ1-norm regularization penalty; and (2) greedy
accumulator-aware clipping based on our strict range limits. We further generalize AXE to support
multi-stage accumulation, which has implications for tiled dot products and SIMD parallelization.

In Appendix A, we present the pseudocode for our accumulator-aware variants of GPFQ and OPTQ.
In both cases, λ is derived per-channel before quantization. Adjusted weight values are greedily
projected on the ℓ1 ball accordingly, then clipped to the difference between the cumulative sum
of positive and negative elements and their respective limits. The resulting set of quantized weights
Q ∈ AK×C

M is then guaranteed to avoid overflow when accumulating its inner product with any X̃ ∈
AK×D

N into P -bit signed registers. Unlike the base GPFQ and OPTQ algorithms, our accumulator-
aware variants require quantized activations to calculate the accumulator-aware limits in Eq. 20.

Multi-Stage Accumulation. Our accumulator-aware constraints can be generalized to target cus-
tomized datapaths beyond user-specific accumulator bit widths. Unlike A2Q and A2Q+, which
assume a monolithic accumulator for each dot product (Colbert et al., 2023; 2024), we generalize
our framework to support multi-staged accumulation as visualized in Figure 2. In such a scenario,
our constraints are enforced on the quantized weights in tiles of size T so that each partial dot prod-
uct can be concurrently computed by an atomic MAC unit. We refer to the accumulator of this
atomic MAC unit as the “inner” accumulator and denote its bit width as PI . Conversely, we refer
to the accumulator of the resulting partial sums as the “outer” accumulator and denote its bit width
as PO. Given that a K-dimensional dot product is executed in tiles of size T , where each tile is
constrained to a PI -bit accumulator, we can calculate the minimum bit width required to guarantee
overflow avoidance for the outer accumulator as:

PO = ⌈PI + log2(K)− log2(T )⌉ (21)
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While we are the first to our knowledge to target multi-stage accumulation while guaranteeing over-
flow avoidance, accumulating in multiple stages is not new. Quantized inference libraries such as
FBGEMM (Khudia et al., 2018a), XNNPACK (Dukahn & Barchard, 2021), and Ryzen AI (AMD,
2024) have employed multi-staged accumulation to exploit a 16-bit inner accumulator (i.e., PI = 16)
to realize performance benefits, albeit without any theoretical guarantees of overflow avoidance. For
example, Khudia et al. (2018b) use FBGEMM to realize nearly a 2× throughput uplift on compute-
bound workloads by accumulating at 16 bits in tiles of 64 elements rather than accumulating at 32
bits. Currently, these libraries typically disable this optimization if overflow is observed too often
during testing. However, AXE provides a mechanism to simultaneously quantize and constrain a
pre-trained model for low-precision multi-staged accumulation while guaranteeing overflow avoid-
ance, enabling co-design for this optimization for the first time. As shown in Section 4, this general-
ization is critical in maintaining the quality of billion-parameter large language models, which often
have dot products containing more than ten thousand elements.

0

Acc

MAC Unit

(a)

MAC Unit MAC Unit MAC Unit

Adder

(b)

Figure 2: We visualize (a) an atomic MAC unit and (b) parallelized multi-staged accumulation.

4 EXPERIMENTS

Models & Datasets. We conduct experiments on GPT2 (Radford et al., 2019), OPT (Zhang et al.,
2022a), and Pythia (Biderman et al., 2023) models and calibrate all quantized models using Wiki-
Text2 (Merity et al., 2016). When focusing on our scaling analysis, we use the LM Evaluation
Harness benchmarking suite (Gao et al., 2023) to evaluate 6 reasoning tasks: ARC-easy and ARC-
challenge (Clark et al., 2018), HellaSwag (Zellers et al., 2019), LAMBADA (Radford et al., 2019),
PIQA (Bisk et al., 2020), and Winogrande (Sakaguchi et al., 2021).

Quantization Design Space. We constrain our quantization design space to uniform-precision mod-
els such that every hidden layer has the same weight, activation, and accumulator bit width, respec-
tively denoted as M , N , and P . We consider 3- to 8-bit integers for both weights and activations,
unlike (Frantar et al., 2022) and (Zhang et al., 2023), which focused on weight-only quantization.
Rather than evaluating each combination of M and N , we restrict ourselves to configurations where
N ≥ M to reduce the cost of experimentation as such configurations tend to dominate the Pareto
frontiers (Colbert et al., 2024). We implement our methods in PyTorch (Paszke et al., 2019) us-
ing the Brevitas quantization library (Pappalardo, 2023). We include all hyperparameter details in
Appendix C. All models are quantized using a single AMD MI210 GPU with 64 GB of memory.

4.1 OPTIMIZING FOR ACCUMULATOR CONSTRAINTS

We first consider the scenario in which QNNs are optimized for accumulator-constrained processors.
Unlike prior work, we focus our analysis on the PTQ setting. As discussed in Section 2.3, one could
heuristically manipulate M and N according to the data type bound derived by Colbert et al. (2023);
however, the quantization design space ultimately limits the minimum attainable accumulator bit
width. To the best of our knowledge, Euclidean projection-based initialization (EP-init) serves as
the best alternative to this bit width manipulation approach in the PTQ setting (see Section 2.3).
Therefore, we use EP-init and naı̈ve bit width manipulation as our baselines.

In Figure 1, we use Pareto frontiers to visually characterize the trade-off between accumulator bit
width P and model quality for both GPFQ and OPTQ, respectively. We assume a monolithic accu-
mulator in these experiments (i.e., P = PI = PO). For each model and each PTQ algorithm, the
Pareto frontier shows the lowest observed perplexity for a target P when varying M and N within
our design space, with the perplexity of the 32-bit floating-point model provided for reference. Re-
call that accumulator-aware quantization requires both the weights and activations to be quantized
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Table 1: We report the WikiText2 perplexity results when evaluating AXE on Pythia models quan-
tized to W4A8 for 16-bit accumulation in tiles of 128 elements (denoted 128×16b). We compare
against the unconstrained baseline (denoted Base). We use our functionally equivalent memory-
efficient GPFQ formulation to scale to larger models (see Appendix B).

70M 160M 410M 1.0B 1.4B 2.8B 6.9B
Float 45.2 26.7 15.9 13.2 11.8 10.2 9.2

GPFQ∗ Base 61.7 40.1 23.0 14.7 15.7 13.3 14.2
128×16b 81.9 47.1 25.9 15.4 16.8 14.3 15.2

OPTQ Base 65.4 46.6 28.9 14.7 15.7 17.3 13.5
128×16b 201.4 131.8 60.7 16.2 18.6 16.6 16.2

(see Section 3.2); therefore, this is not a direct comparison against the original GPFQ and OPTQ
proposals, which only quantized weights. We provide a detailed breakdown of each Pareto frontier
in Appendix F, where we report the perplexity of each Pareto-dominant model, their weight and ac-
tivation bit widths, and resulting unstructured weight sparsity. We observe similar trends as reported
in Colbert et al. (2024); the Pareto-optimal activation bit width N decreases as P is reduced, and
the unstructured weight sparsity conversely increases. This suggests that our accumulator-aware
boundary constraints obey similar mechanics as the ℓ1-norm constraints of QAT methods, as our
theoretical justification predicts (see Section 3.3).

4.2 LOW-PRECISION ACCUMULATION FOR LARGE LANGUAGE MODELS

As discussed in Colbert et al. (2024), the ℓ1-norm of an unconstrained weight vector inherently
grows as its dimensionality increases. This suggests that accumulator-aware quantization scales
well to strictly deeper neural architectures since the constraints tighten with width rather than depth;
experimental results on the ResNet family support this hypothesis (Colbert et al., 2024). However,
this also suggests that accumulator-aware quantization scales poorly in neural network families that
grow in width, as is the case in transformer architectures (Zhang et al., 2022a; Biderman et al.,
2023). Thus, to scale our accumulator-aware PTQ framework to billion-parameter language models,
we turn to our multi-stage accumulation variant of AXE (see Section 3.3). Here, one assumes the
partial sums of a dot product are concurrently computed in fixed-length tiles of size T . Our goal in
this setting is to minimize perplexity for a target inner accumulator bit width PI that is assumed to
be universal across all tiles. Thus, our accumulator width is constant even as models grow wider.

Rather than exploring the full quantization design space, we focus on 4-bit weights and 8-bit acti-
vations (W4A8) to maximize utility across platforms with a reasonable number of experiments, as
prior studies have suggested this configuration is generally useful (Dettmers & Zettlemoyer, 2023;
Li et al., 2024). We evaluate AXE on top of both GPFQ and OPTQ using tiles of 128 elements
under 16-bit accumulator constraints (note that P ∗

I = 20 when T = 128 for W4A8 via Eq. 3).
Again, prior work has established 128 to be a generally useful tiling size; AVX-512 ISA supports
T = 32 elements (Khudia et al., 2018a), Ryzen AI NPUs support T = 64 elements (AMD, 2024),
and many works allocate scaling factors in groups of 128 elements (Lin et al., 2023; Liu et al., 2024).
Finally, we find that the peak memory utilization of GPFQ limits its evaluation on billion-parameter
LLMs. Thus, we introduce a functionality equivalent memory-efficient reformulation to enable the
algorithm to scale to larger models (see Appendix B). We report our results in Tables 1 and 2.

We first focus our scaling law analysis on the Pythia model suite, which was specifically designed
to facilitate such a study (Biderman et al., 2023). From our results in Table 1, we observe that, as
model size increases, the quality of the accumulator-constrained models approaches that of the un-
constrained baselines as expected, with AXE preserving 92.4% of the baseline GPFQ perplexity and
82.8% of the baseline OPTQ perplexity of Pythia-6.9B compared to 74.8% and 32.3% for Pythia-
70M, respectively. From our results in Table 2, we again observe that, as model size increases, the
gap is reduced between the zero-shot reasoning capabilities of the constrained models and their un-
constrained baselines; AXE preserves 98% of the baseline GPFQ accuracy and 96% of the baseline
OPTQ accuracy for Pythia-6.9B compared to 86% and 76% for Pythia-70M, respectively. Under the
A2Q scaling hypothesis, this suggests the narrowing accuracy gap is in part because model capacity
is growing without tightening the constraints since T is held constant even as K increases. In Ap-
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Table 2: We report the geometric mean calculated over 6 zero-shot reasoning tasks when evaluating
AXE on Pythia models quantized to W4A8 for 16-bit accumulation in tiles of 128 elements (denoted
128×16b). We compare against the unconstrained baseline (denoted Base). We again use our func-
tionally equivalent memory-efficient GPFQ formulation to scale to larger models (see Appendix B).

70M 160M 410M 1.0B 1.4B 2.8B 6.9B
Float 32.9 40.1 43.6 47.3 50.2 53.9 56.1

GPFQ∗ Base 26.4 33.7 34.0 42.4 39.5 44.1 40.0
128×16b 22.8 32.5 31.5 41.9 37.7 42.9 39.3

OPTQ Base 29.0 36.6 38.4 43.9 44.7 46.5 47.3
128×16b 22.2 32.6 29.3 40.0 43.1 45.8 45.6

pendix C.2, we provide an ablation study targeting a monolithic 16-bit accumulator (i.e., PO = 16).
There, we show the gap conversely increases as K increases, confirming that fixing PI via multi-
stage accumulation improves scaling.

5 DISCUSSION AND CONCLUSIONS

As neural networks continue to increase in size, and their weights and activations are increasingly
being represented with fewer bits, we anticipate the accumulator to play a larger role in hardware-
software co-design (see Section 2.2). While prior work on accumulator-aware quantization has been
limited to the QAT setting (see Section 2.3), ours marks the first to extend accumulator-awareness to
the PTQ setting. To do so, we introduce AXE—a practical low-overhead framework of accumulator-
aware extensions designed to endow overflow avoidance guarantees to any layer-wise PTQ algorithm
that greedily assign bits element-by-element. We demonstrate the flexibility of AXE by presenting
accumulator-aware variants of GPFQ and OPTQ with principled overflow avoidance guarantees.
Furthermore, unlike prior accumulator-aware quantization methods, which assume a monolithic ac-
cumulator, we generalize AXE to support multi-stage accumulation for the first time.

Our experiments in Section 4.1 show that AXE significantly improves the trade-off between accu-
mulator bit width and model accuracy when compared to existing baselines. As has been shown
before in the QAT setting (Colbert et al., 2023; 2024), exposing control over the accumulator bit
width allows one to reduce P further than what is attainable via naı̈ve bit width manipulations
while also maintaining model accuracy. Moreover, we observe that AXE universally yields marked
improvement over EP-init across both models and datasets, establishing a new state-of-the-art for
accumulator-aware quantization in the PTQ setting. Although EP-init and AXE are both derived
from the same convex optimization problem (see Eq. 14), EP-init is a vector projection that is ap-
plied after quantization and relies on the round-to-zero rounding function to ensure the ℓ1-norm
constraints are respected. Previous reports had suspected EP-init is limited by this reliance on round-
to-zero (Colbert et al., 2023; 2024); we provide an ablation study in Appendix C.2 that supports this
hypothesis but also suggests error correction is critical. For GPFQ, we observe error correction to
be more important than round-to-nearest, but we observe the opposite for OPTQ, although a more
exhaustive analysis in future work may uncover more insights.

Our experiments in Section 4.2 show that our generalized multi-stage accumulation enables
accumulator-aware weight quantization for billion-parameter LLMs. We observe that the gap be-
tween the constrained and unconstrained quantized models shrinks as model size increases, preserv-
ing both perplexity and zero-shot reasoning. However, we also observe that the gap between the
quantized models and their 32-bit floating-point counterparts begins to increase with model size.
This is consistent with the findings of Li et al. (2024), who conclude that while larger models tend
to have a higher tolerance for weight quantization, they also tend to have a lower tolerance for acti-
vation quantization. Thus, there exists two diametrically opposing trends in superposition. For the
Pythia model suite, we observe Pythia-1B to be the equilibrium point where the costs of weight and
activation quantization are balanced. While it is orthogonal to the scope of this study, we expect
the emerging rotation-based quantization schemes (e.g., QuaRot (Ashkboos et al., 2024) or Spin-
Quant (Liu et al., 2024)) to impact this equilibrium point and reduce the gap between quantized
models and their 32-bit floating-point counterparts. We leave such investigations for future work.
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A PSUEDO-CODE FOR ACCUMULATOR-AWARE VARIANTS OF GPFQ AND
OPTQ

We present the pseudo-code for our accumulator-aware variants of GPFQ (Lybrand & Saab, 2021)
and OPTQ (Frantar et al., 2022) in Algorithms 1 and 2, respectively, where we define Ψa,b(v) to
denote the clipping function applied elementwise so that (Ψa,b(v))j = Ψaj ,bj (vj). We direct the
reader to Section 3 for theoretical justification for these algorithms.

Algorithm 1 Accumulator-Aware GPFQ. Our accumulator-aware GPFQ variant (Ly-
brand & Saab, 2021) quantizes W to M bits given input activations X and their N -bit
quantized counterparts X̃ . Note that Wi,Vi ∈ RC , Qi ∈ AC

M , Xi ∈ RD, and X̃i ∈ AD
N ,

all interpreted as row vectors.

Require: W ∈ RK×C , X ∈ RK×D, X̃ ∈ AK×D
N

1: Q← 0 ∈ AK×C
M . // Quantized output

2: U ← 0 ∈ RD×C // Per-sample quantization error
3: a← A ∈ RC , b← B ∈ RC // Initialize running sums
4: λ← deriveThreshold(W ) // Derive per-channel Lagrangian thresholds
5: for i = 1, ...,K do
6: Vi ←Wi

⟨X̃i,Xi⟩
∥X̃i∥2

2

+ X̃iU
∥X̃i∥2

2

// Adjust for quantization error

7: Vi ← Ψa,b ◦Πλ(Vi) // Accumulator-aware projection & clipping
8: Qi ← Q(Vi) // Quantize weight
9: a← a−Qi ⊙ 1Qi≥0 // Update positive range

10: b← b−Qi ⊙ 1Qi≤0 // Update negative range
11: U ← U +XT

i Wi − X̃T
i Qi // Update quantization error

12: end for
13: return Q

Algorithm 2 Accumulator-Aware OPTQ. Our accumulator-aware OPTQ variant (Fran-
tar et al., 2022) quantizes W to M bits given H−1 = Cholesky((2X̃X̃T + ηI)−1),
where η is a small dampening factor to avoid numerical issues. Following Frantar et al.
(2022), we set η to be 1% of the average diagonal value. Note that Wi,Vi ∈ RC and
Qi ∈ AC

M , all interpreted as row vectors.

Require: W ∈ RK×C , H−1 ∈ RK×K

1: Q← 0 ∈ AK×C
M // Quantized output

2: E ← 0 ∈ RC // Per-channel quantization errors
3: a← A ∈ RC , b← B ∈ RC // Initialize running sums
4: λ← deriveThreshold(W ) // Derive per-channel Lagrangian thresholds
5: for i = 1, ...,K do
6: Vi ← Ψa,b ◦Πλ(Wi) // Accumulator-aware projection & clipping
7: Qi ← Q(Vi) // Quantize processed weight
8: E ← (Wi −Qi)/H

−1
i,i // Calculate quantization error

9: Wi:K ←Wi:K −E ·H−1
i,i:K // Update weights

10: a← a−Qi ⊙ 1Qi≥0 // Update positive range
11: b← b−Qi ⊙ 1Qi≤0 // Update negative range
12: end for
13: return Q

B MEMORY-EFFICIENT GPFQ

As discussed in Section 3.2, GPFQ approaches the standard quantization problem by traversing the
neural network graph to sequentially quantize each element in each layer while iteratively correcting
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for quantization error. The derived iteration rule is formalized by Eqs. 10 and 11. In this standard
formulation, the i-th quantized weight qi depends on the inner product

⟨X̃(l)
i ,u

(l)
i−1 + w

(l)
i X

(l)
i ⟩

where X(l)
i , X̃

(l)
i ∈ RD are samples for the i-th neuron of the inputs to layer l, and u

(l)
i−1 ∈ RD is the

running error from quantizing the first i− 1 weights. Thus, at layer l, GPFQ requires collecting and
storing 2D samples for the Kl input neurons, and updating the running quantization error for each
sample for the Cl output neurons. This implies poor scaling to larger models and larger calibration
sets as the memory requirements are O(D × (2Kl + Cl)). Indeed, assuming 128 samples with a
sequence length of 2048 at 32-bit precision, Pythia-6.9B (Biderman et al., 2023) requires a peak
memory usage of roughly 30 GB at the first FFN layer excluding pre-trained weights. We set out to
reduce this overhead.

We start with the observation that OPTQ is far more memory efficient. OPTQ uses the Hessian
proxy 2XXT , which can be efficiently computed one sample at a time and stored as a Kl × Kl

square matrix, an O(Kl × Kl) memory requirement that is 36× less than GPFQ for Pythia-6.9B.
Thus, we reformulate GPFQ to use square matrices via mathematical manipulation of singular value
decompositions. We present the following theorem:

Theorem B.1. Let H =
(
X̃X̃T

)1/2
and G = XX̃T . For pre-trained weights W ∈ RK×C ,

quantization alphabet A, and GPFQ function of the form of Algorithm 1, it follows that:

GPFQ(W ,X, X̃,A) = GPFQ(W ,GH−1,H,A) (22)

Proof. According to the iteration steps in Algorithm 1, it suffices to show that the argument of quan-
tizer Q is unchanged after substituting Xi, X̃i with (GH−1)i and Hi respectively. Specifically, at
the i-th iteration of GPFQ(W ,GH−1,H,A), we have

Vi ←Wi
⟨Hi, (GH−1)i⟩
∥Hi∥22

+
HiUi−1

∥Hi∥22
(23)

where the quantization error is given by

Ui−1 =

i−1∑
j=1

(GH−1)Tj Wj −HT
j Qj . (24)

Let ei ∈ RK denote the vector with a 1 in the i-th coordinate and 0’s elsewhere. It follows from

H =
(
X̃X̃T

)1/2
and G = XX̃T that

∥Hi∥22 = ∥eTi H∥22 = eTi H
2ei = eTi X̃X̃Tei = ∥X̃i∥22,

Hi(GH−1)Tj = eTi H(eTj GH−1)T = eTi G
Tej = eTi X̃XTej = X̃iX

T
j ,

and
HiH

T
j = eTi H(eTj H)T = eTi H

2ej = eTi X̃X̃Tej = X̃iX̃
T
j .

Plugging above identities into equation 23 and equation 24, we obtain

Vi ←Wi
⟨X̃i,Xi⟩
∥X̃i∥22

+
X̃iÛi−1

∥X̃i∥22
(25)

with Ûi−1 =
∑i−1

j=1 X
T
j Wj−X̃T

j Qj . Since Vi in equation 25 is identical with the i-th quantization
argument in GPFQ(W ,X, X̃,A), both algorithms derive the same quantized weights Qi = Q(Vi).
This completes the proof.

At layer l, this memory-efficient GPFQ formulation requires collecting and storing G, H , and U ,
which are each Kl × Kl matrices, reducing to an O(Kl × Kl) memory requirement that is 12×
less than the standard GPFQ formulation for Pythia-6.9B. We leverage this functionally equivalent
formulation for our LLM evaluations in Section 4.2.
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C EXPERIMENTAL DETAILS & ABLATIONS

C.1 HYPERPARAMETERS & QUANTIZATION SCHEMES

Below, we provide a detailed description of the quantization schemes and the specific hyperparam-
eters used in our experiments. As discussed in Section 4, we consider pre-trained autoregressive
language models that are respectively made publicly available via the HuggingFace (Wolf et al.,
2020) libraries. All models are quantized via the Brevitas (Pappalardo, 2023) quantization library
using a single AMD MI210 GPU with 64 GB of memory.

We leverage the unmodified implementations of the various LLMs discussed in Section 4 as pro-
vided by HuggingFace (Wolf et al., 2020), as well as their pre-trained floating-point checkpoints
and datasets (Lhoest et al., 2021). We use drop-in replacements for all linear layers in the networks
except the embedding layer or final prediction head, leaving them at 32-bit floating-point. As is
common practice (Frantar et al., 2022), we build our calibration set using 128 samples randomly se-
lected from the WikiText2 dataset (Merity et al., 2016) without replacement using a fixed sequence
length of 2048 tokens for all models except GPT2 (Radford et al., 2019), which is restricted to a
maximum sequence length of 1024 by the library.

Quantization Scheme. As discussed in Section 2, we adopt the standard uniform integer quantizer
parameterized by scaling factor s and zero-point z. We quantize activations asymmetrically, tuning
z to the lowest 99-th percentile based on the calibration data. While AXE is not reliant on symmetric
weight quantization, we eliminate zero-points in all weight quantizers such that z = 0, as is common
practice so as to avoid computational overhead of cross-terms (Nagel et al., 2021; Zhang et al.,
2022b). Throughout our experiments, we adopt 32-bit floating-point scaling factors that take the
form of Eq. 26, where max(w) is calculated per-channel for the weights and per-tensor for the
activations quantized to b bits.

s =
max(w)

2b−1 − 1
(26)

Quantization Process. To quantize our models, we first load the pre-trained checkpoint and merge
batch normalization layers if they exist, then we apply SmoothQuant (Xiao et al., 2023) before
calibrating the scaling factors and zero-points. We then apply either GPFQ (Lybrand & Saab, 2021)
or OPTQ (Frantar et al., 2022) (with or without AXE) before finally applying bias correction (Nagel
et al., 2019). When sequentially quantizing weights element-by-element, we do so in descending
order according to the diagonal value of the Hessian proxy (2XXT by our notation in Section 2),
which was originally implemented in IST-DASLab (2022) and reported to yield superior results
in Lin et al. (2023); Chee et al. (2024). When evaluating EP-init in the PTQ setting, we do so after
OPTQ or GPFQ but before bias correction. Because bias correction does not adjust weight values,
this allows us to at least perform some form of error correction with EP-init while still ensuring
guaranteed overflow avoidance.

C.2 ABLATION STUDIES

Impact of error correction and choice of rounding function. Previous reports had suspected EP-
init is limited by its reliance on the round-to-zero (RTZ) rounding function (Colbert et al., 2023;
2024), which has been shown to be a poor choice (Nagel et al., 2020) AXE removes this reliance
and also enables greedy error correction. We design an ablation study to isolate the impact of RTZ
and error correction. We quantize OPT-125M (Zhang et al., 2022a) and Pythia-160M (Biderman
et al., 2023) to 4-bit weights and 8-bit activations while targeting 20-bit accumulation since our
Pareto front shows this configuration to be both reasonable and challenging. We evaluate AXE with
round-to-zero (AXE-RTZ) and AXE with round-to-nearest (AXE-RTN). We report the results in
Table 3. We interpret the gap between EP-init and AXE-RTZ as the benefit of error correction, and
the gap between AXE-RTZ and AXE-RTN as the benefit of rounding function. We observe that
error correction has a greater impact than rounding function selection for GPFQ, but we observe the
opposite for OPTQ. Finally, we evaluate AXE with our hard constraint only (AXE-HCO) to isolate
the impact of our soft constraint, which is not necessary for guaranteeing overflow avoidance. We
interpret the gap between AXE-RTN and AXE-HCO as the impact of our soft constraint, which
consistently provides improved or maintained performance.
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Table 3: We evaluate round-to-nearest (RTN) and round-to-zero (RTZ) within our AXE framework
to directly compare against EP-init. We also evaluate AXE with our hard constraint only (HCO) to
isolate the impact of our soft constraint. All models are quantized to W4A8 while targeting a 20-bit
monolitic accumulator (i.e., PO = 20).

Algorithm Model EP-init AXE-RTZ AXE-RTN AXE-HCO

GPFQ OPT-125M 8828.3 165.2 31.9 31.9
Pythia-160M 2500.2 211.0 43.0 49.2

OPTQ OPT-125M 998.6 539.3 37.1 70.0
Pythia-160M 4524.4 1798.7 84.9 194.8

Multi-stage vs. monolithic accumulation. In Section 4.2, we analyze how our accumulator
constraints scale to increasingly large language models within the Pythia model suite (Biderman
et al., 2023). There, we discuss our observation that, as model size increases, the quality of the
accumulator-constrained models approaches that of the unconstrained baselines for both GPFQ and
OPTQ. This suggests the narrowing gap in perplexity is in part because model capacity is growing
without tightening the constraints. To verify this, we perform an ablation study targeting a mono-
lithic 16-bit accumulator (i.e., PI = PO = 16). We quantize all Pythia models up to Pythia-1B
using either OPTQ or GPFQ, and report the results in Table 4. Not only do we observe significant
instability, we also observe a 7.4× regression in perplexity between Pythia-70M and Pythia-1B,
confirming that fixing PI improves scaling as models grow wider.

Table 4: We evaluate AXE using Pythia models quantized to W4A8 when targeting a monolithic
16-bit accumulator (i.e., PO = 16). Note that this is in direct contrast with Table 1, which targets
multi-stage accumulation (i.e., PI = 16).

Algorithm 70M 160M 410M 1B

GPFQ 4397 7135 10496 32601
OPTQ 2438 4439 9759 34387

D ADDITIONAL EXPERIMENTS WITH LLAMA3

Our intention with focusing on Pythia in Section 4.2 was to investigate scaling, for which the Pythia
model family was specifically designed (Biderman et al., 2023). However, to demonstrate gener-
alization to another model family, we provide additional results with Llama3 (Dubey et al., 2024)
evaluated on WikiText2 (Merity et al., 2016).

To the best of our knowledge, only datatype manipulation and EP-init (Colbert et al., 2024) serve as
alternatives to AXE for accumulator-aware quantization in the PTQ setting. As shown in Figure 1,
AXE is the Pareto-dominant algorithm. Furthermore, as discussed in Section 4.2, we observe that
multi-stage accumulation is critical to ensure accumulator-aware quantization scales to increasingly
large language models (also see Appendix C.2 for ablations). Therefore, as EP-init does not sup-
port multi-stage accumulation, the only existing alternative accumulator-aware PTQ mechanism for
billion-parameter LLMs is datatype manipulation. Note that, via Eq. 3, W4A4 guarantees overflow
avoidance for 16-bit accumulation in tiles of 128 elements. Therefore, we compare AXE to datatype
manipulation when constraining a model to target 16-bit accumulation in tiles of 128 elements (i.e.,
128×16b). We provide our perplexity results in Table 5 along with the 32-bit accumulator baselines
(i.e., 128× 32b) as well as the original 32-bit floating-point perplexities.

Note that AXE enables low-precision accumulation for Llama3 with minimal degradation from the
unconstrained baselines. As discussed in Section 3.2, AXE has the desired feature of being func-
tionally equivalent to the underlying algorithm (e.g., OPTQ or GPFQ) when the accumulator is large
enough (e.g., 32 bits). Thus, one should expect these benefits to manifest most when targeting low-
precision accumulators (e.g., 16 bits) but not high-precision accumulators (e.g., 32 bits), as observed
in Table 5. Furthermore, the gap between the constrained and unconstrained baseline decreases as
the model size increases. This result supports our scaling hypothesis in Section 4.2 as well as our
results with the Pythia model family.
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Table 5: We report the WikiText2 perplexity when evaluating Llama3 models quantized for 16-bit
accumulation in tiles of 128 elements (denoted “128 × 16b”). We compare AXE against datatype
manipulation (denoted “Base”), which serves as the only alternative for billion-parameter models.
Note the 128× 32b baseline is W4A8 while the 128× 16b baseline is W4A4.

3.2-1B 3.2-3B 3.1-8B
Float16 11.8 9.1 6.5

OPTQ
(128×32b)

Base 14.5 10.2 7.5
AXE 14.4 10.2 7.5

OPTQ
(128×16b)

Base inf inf inf
AXE 14.9 10.4 7.6

To collect these results, we use the same quantization scheme discussed in Appendix C aside from
using per-token dynamic activation scaling rather than per-tensor, which improves model quality
without impacting our accumulator constraint guarantees. We use the same quantization process
described in Appendix C, but remove bias correction, which seems to have minimal impact on these
models. We perform a light grid search over SmoothQuant’s α parameter and find α = 0.4 to
generally perform the best on average for these models.

E ZERO-SHOT REASONING DETAILS

We provide the detailed zero-shot reasoning results presented in Section 4.2 for GPFQ and OPTQ.
We present the results for the Pythia model suite in Table 6. We quantize all models to W4A8
and use AXE to constrain quantized models for 16-bit multi-stage accumulation in tiles of size 128
elements (denoted 128×16b). We compare against the unconstrained baselines (denoted Base). We
report the geometric average calculated over 6 reasoning task evaluations: ARC-easy (ARC-E) and
ARC-challenge (ARC-C) (Clark et al., 2018), HellaSwag (HS) (Zellers et al., 2019), LAMBADA
(LA) (Radford et al., 2019), PIQA (Bisk et al., 2020), and Winogrande (Wino) (Sakaguchi et al.,
2021). We use the LM Evaluation Harness benchmarking suite (Gao et al., 2023) for zero-shot
reasoning without changing other default parameters. We use our functionally equivalent memory-
efficient GPFQ formulation to scale to larger language models (see Appendix B).

F PARETO FRONTIER DETAILS

We provide the detailed Pareto frontiers visualized in Figure 1 for GPFQ and OPTQ. For each
model, we report the perplexity, quantization configuration, and unstructured weight sparsity.
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Table 6: We provide the details of the zero-shot reasoning tasks presented in Section 4.2.

Model Algorithm Variant PPL Avg. ARC-C ARC-E HS LA PIQA Wino

Pythia-70M

Float - 45.2 32.9 17.5 37.5 26.7 22.7 59.8 52.9

GPFQ* Base 61.7 26.4 16.1 35.6 26.8 7.3 58.1 51.7
128×16b 81.9 22.8 17.8 34.2 26.4 2.9 57.5 51.9

OPTQ Base 65.4 29.0 17.5 36.0 26.5 11.8 58.4 52.2
128×16b 201.4 22.2 18.6 34.1 26.6 2.4 55.9 51.9

Pythia-160M

Float - 26.7 34.9 19.5 43.6 28.4 35.4 62.3 51.3

GPFQ* Base 40.1 26.6 19.2 39.4 27.9 6.5 60.2 49.2
128×16b 47.1 18.0 18.3 38.4 27.6 0.4 58.5 52.1

OPTQ Base 46.6 31.4 19.2 39.4 28.0 18.7 61.2 53.0
128×16b 131.8 24.1 21.0 36.0 27.3 3.4 58.3 49.3

Pythia-410M

Float - 15.9 43.6 21.4 51.9 33.7 51.6 66.7 53.4

GPFQ* Base 23.0 34.0 20.1 46.0 31.8 15.7 63.7 52.6
128×16b 25.9 31.5 18.9 41.0 30.3 12.5 62.1 53.4

OPTQ Base 28.9 38.4 20.7 47.5 32.2 29.7 64.2 52.7
128×16b 60.7 29.3 20.7 40.7 30.2 8.0 60.6 51.5

Pythia-1.0B

Float - 13.2 47.3 24.4 57.0 37.8 56.3 70.7 53.4

GPFQ* Base 14.7 42.4 21.0 50.2 35.2 44.5 65.8 53.2
128×16b 15.4 41.9 20.9 50.8 34.3 44.4 65.1 51.9

OPTQ Base 14.7 43.9 22.4 51.0 36.5 46.9 67.2 54.3
128×16b 16.2 40.0 22.2 48.0 35.2 32.4 65.0 51.8

Pythia-1.4B

Float - 11.8 50.2 26.1 60.5 40.4 61.7 70.8 57.5

GPFQ* Base 15.7 39.5 23.3 53.5 36.4 22.4 66.5 55.9
128×16b 16.8 37.7 22.4 52.6 35.8 18.4 65.7 56.3

OPTQ Base 15.7 44.7 23.7 55.2 38.5 42.6 67.2 55.6
128×16b 18.6 43.1 23.1 53.5 37.1 39.4 65.9 53.9

Pythia-2.8B

Float - 10.2 53.9 29.4 64.4 45.3 64.7 74.0 60.1

GPFQ* Base 13.3 44.1 26.2 57.1 40.7 30.9 69.6 56.2
128×16b 14.3 42.9 24.2 55.6 40.0 28.4 70.2 58.2

OPTQ Base 17.3 46.5 26.7 59.4 42.4 37.0 70.7 57.7
128×16b 16.6 45.8 26.0 58.2 41.0 37.5 68.8 57.5

Pythia-6.9B

Float - 9.2 56.1 31.5 67.3 48.1 67.1 75.2 60.7

GPFQ* Base 14.2 40.0 28.5 56.5 40.9 15.4 70.2 57.4
128×16b 15.2 39.3 27.2 55.8 39.9 15.1 69.4 57.9

OPTQ Base 13.5 47.3 29.1 62.8 45.4 32.9 70.7 57.9
128×16b 16.2 45.6 29.9 59.7 44.0 27.0 70.7 59.8
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Table 7: GPFQ: We provide the test perplexity (PPL) and quantization configuration of the Pareto-
optimal models that form the frontiers visualized in Figure 1. Note that M and N respectively
denote the weight and activation bit widths.

Model P GPFQ GPFQ+EP-init GPFQ+AXE
PPL (M,N) Sparsity PPL (M,N) Sparsity PPL (M,N) Sparsity

OPT-125M
(Float: 27.7)

16 - - - 9148.8 (3,4) 76.5 249.8 (3,6) 55.6
17 - - - 7624.6 (3,4) 72.7 91.2 (4,6) 37.9
18 11007.2 (3,3) 58.3 7471.2 (3,5) 75.5 41.8 (4,6) 27.8
19 9567.6 (3,4) 54.5 1059.3 (5,6) 39.1 32.3 (4,7) 27.0
20 874.4 (3,5) 50.5 86.1 (5,6) 29.8 29.3 (5,7) 15.7
21 101.0 (3,6) 46.4 42.4 (5,7) 28.1 28.6 (5,8) 15.6
22 40.5 (4,6) 26.3 30.4 (6,7) 16.0 28.1 (6,8) 9.6
23 31.8 (4,7) 25.9 29.5 (6,8) 15.9 27.9 (6,8) 8.6
24 29.0 (5,7) 14.7 28.2 (7,8) 9.5 27.8 (7,8) 5.4
32 27.8 (8,8) 3.8 27.8 (8,8) 5.3 27.8 (8,8) 3.8

GPT2-137M
(Float: 29.9)

16 - - - 3345.8 (3,3) 93.2 552.4 (3,6) 55.4
17 - - - 2705.3 (3,6) 75.1 310.1 (3,7) 52.8
18 3760.3 (3,3) 82.3 1100.5 (4,5) 52.9 134.3 (4,7) 34.9
19 2782.2 (3,4) 43.9 402.9 (4,6) 47.3 67.5 (4,7) 25.6
20 742.4 (3,5) 55.3 213.2 (4,7) 44.3 40.4 (4,8) 24.5
21 356.2 (3,6) 48.8 85.2 (5,7) 24.9 33.2 (5,8) 13.2
22 189.9 (4,6) 26.4 46.3 (5,8) 23.8 32.1 (6,8) 7.3
23 65.8 (4,7) 24.7 34.2 (6,8) 13.0 31.8 (6,8) 6.3
24 39.8 (4,8) 23.8 32.1 (7,8) 7.1 31.5 (7,8) 3.2
32 31.5 (8,8) 1.6 31.6 (8,8) 3.2 31.5 (8,8) 1.6

Pythia-160M
(Float: 26.7)

16 - - - 4501.1 (3,4) 76.8 386.0 (3,6) 53.2
17 - - - 3095.1 (3,5) 72.5 198.6 (3,6) 46.3
18 9887.1 (3,3) 49.4 1070.2 (4,5) 46.7 74.5 (4,6) 25.1
19 1946.8 (3,4) 49.8 391.7 (4,6) 42.9 46.2 (4,7) 24.4
20 456.2 (3,5) 47.8 117.5 (5,6) 23.6 34.6 (5,7) 13.3
21 198.3 (3,6) 45.1 78.5 (5,7) 23.4 32.4 (5,8) 13.3
22 69.6 (4,6) 23.5 48.6 (5,7) 21.2 30.1 (6,8) 7.8
23 44.4 (4,7) 22.6 37.2 (6,8) 13.0 28.2 (6,8) 5.5
24 33.2 (5,7) 11.3 31.8 (7,8) 7.4 27.6 (7,8) 2.8
32 27.4 (8,8) 1.4 27.5 (8,8) 2.7 27.4 (8,8) 1.4
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Table 8: OPTQ: We provide the test perplexity (PPL) and quantization configuration of the Pareto-
optimal models that form the frontiers visualized in Figure 1. Note that M and N respectively
denote the weight and activation bit widths.

Model P OPTQ OPTQ+EP-init OPTQ+AXE
PPL (M,N) Sparsity PPL (M,N) Sparsity PPL (M,N) Sparsity

OPT-125M
(Float: 27.7)

16 - - - 3333.8 (4,5) 62.2 225.0 (3,6) 52.8
17 - - - 1722.6 (4,5) 53.6 80.2 (3,6) 45.7
18 9942.5 (3,3) 54.5 409.8 (5,5) 36.1 41.3 (4,6) 26.6
19 8278.3 (3,4) 47.5 136.0 (5,6) 35,7 35.0 (5,6) 15.1
20 281.1 (3,5) 45.5 46.9 (5,6) 26.8 31.3 (5,6) 14.2
21 60.4 (3,6) 44.7 40.1 (5,7) 26.8 29.0 (5,7) 14.2
22 35.7 (4,6) 25.8 30.3 (6,7) 15.6 28.5 (5,8) 14.2
23 31.5 (5,6) 14.6 29.7 (6,8) 15.6 28.0 (6,8) 8.6
24 29.2 (5,7) 14.6 28.1 (7,8) 9.5 27.8 (7,8) 5.4
32 27.8 (8,8) 2.2 27.8 (8,8) 5.6 27.8 (8,8) 2.2

GPT2-137M
(Float: 29.9)

16 - - - 2765.6 (4,4) 52.6 1513.6 (4,5) 34.0
17 - - - 2465.0 (4,4) 49.0 496.4 (3,6) 43.4
18 4140.7 (3,3) 59.3 2465.0 (4,4) 49.0 117.9 (4,6) 24.2
19 2782.2 (3,4) 43.9 1108.4 (5,6) 34.5 59.9 (4,7) 24.2
20 2149.8 (4,4) 26.0 361.7 (4,7) 43.6 45.5 (5,7) 13.1
21 1153.8 (4,5) 24.7 73.1 (5,7) 24.7 37.3 (5,8) 13.2
22 176.9 (4,6) 24.0 42.7 (5,8) 24.5 33.1 (6,8) 12.2
23 50.1 (4,7) 23.2 33.5 (6,8) 13.4 32.1 (6,8) 6.2
24 37.4 (5,7) 12.2 32.0 (7,8) 7.3 31.8 (7,8) 3.1
32 31.8 (8,8) 1.6 31.7 (8,8) 3.3 31.7 (8,8) 1.6

Pythia-160M
(Float: 26.7)

16 - - - 6739.6 (4,6) 79.7 1521.2 (3,5) 41.7
17 - - - 5345.7 (4,5) 49.9 311.7 (4,5) 22.9
18 27098.1 (3,3) 40.5 1372.4 (4,5) 41.1 126.1 (4,6) 23.1
19 5644.0 (3,4) 40.3 641.2 (4,6) 41.0 61.4 (4,6) 21.3
20 948.4 (3,5) 40.1 132.9 (5,6) 23.4 43.5 (5,6) 10.9
21 151.3 (4,5) 21.4 108.5 (5,7) 23.5 32.8 (5,7) 10.9
22 61.4 (4,6) 21.3 74.1 (5,7) 22.0 30.0 (5,8) 10.9
23 43.3 (5,6) 10.9 40.4 (6,8) 13.0 28.0 (6,8) 5.5
24 32.8 (5,7) 10.9 32.1 (7,8) 7.5 27.4 (7,8) 2.7
32 27.2 (8,8) 1.4 27.6 (8,8) 2.9 27.2 (8,8) 1.4
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