
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ACCUMULATOR-AWARE POST-TRAINING QUANTIZA-
TION FOR LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Several recent studies have investigated low-precision accumulation, reporting im-
provements in throughput, power, and area across various platforms. However,
the accompanying proposals have only considered the quantization-aware train-
ing (QAT) paradigm, in which models are fine-tuned or trained from scratch with
quantization in the loop. As models continue to grow in size, QAT techniques
become increasingly more expensive, which has motivated the recent surge in
post-training quantization (PTQ) research. To the best of our knowledge, ours
marks the first formal study of accumulator-aware quantization in the PTQ set-
ting. To bridge this gap, we introduce AXE—a practical, low-overhead framework
of accumulator-aware extensions designed to endow overflow avoidance guaran-
tees to existing layer-wise PTQ algorithms. We theoretically motivate AXE and
demonstrate its flexibility by implementing it on top of two state-of-the-art PTQ
algorithms: GPFQ and OPTQ. We further generalize AXE to support multi-stage
accumulation for the first time, opening the door for full datapath optimization and
scaling to large language models (LLMs). We evaluate AXE across autoregressive
language generation models, and observe significant improvements in the trade-
off between accumulator bit width and model accuracy over baseline methods.

1 INTRODUCTION

Modern deep learning models have scaled to use billions of parameters, requiring billions (or even
trillions) of multiply-accumulate (MAC) operations during inference. Their enormous size presents
a major obstacle to their deployment as their compute and memory requirements during inference
often exceed the budgets of real-world applications. As a result, model compression has emerged as
an important active area in deep learning research, with quantization being among the most prevalent
techniques studied and applied in practice (Wu et al., 2020; Nagel et al., 2021; Gholami et al., 2022).

Quantization techniques commonly reduce inference costs by restricting the precision of its weights
and activations. Although substituting the standard 32-bit floating-point operands for low-precision
counterparts can drastically reduce the cost of multiplications, this only accounts for part of the core
MAC operation; the resulting products are often still accumulated at 32 bits. Recent studies have
demonstrated that also restricting the precision of the accumulator can yield significant benefits (see
Section 2.2). However, exploiting such an optimization is non-trivial in practice as reducing the
width of the accumulator exponentially increases the risk of numerical overflow, which is known to
introduce arithmetic errors that significantly degrade model accuracy (Ni et al., 2020).

To address this, recent work has proposed an accumulator-aware quantization paradigm that en-
tirely eliminates the risk of numerical overflow via strict learning constraints informed by theoret-
ical guarantees (Colbert et al., 2023). The resulting scope of investigations has been limited to the
quantization-aware training (QAT) setting in which models are trained from scratch or fine-tuned
from checkpoints with quantization in the loop (Colbert et al., 2023; 2024). With the rising training
costs of modern deep learning models (e.g., large language models), it is important to develop meth-
ods that are equally as effective in the post-training quantization (PTQ) setting, where pre-trained
models are directly quantized and calibrated using relatively modest resources. However, control-
ling the accumulator bit width in such a scenario is non-trivial. In this work, we characterize and
address these challenges, introduce a practical framework for their investigation, and establish a new
state-of-the-art for accumulator-aware weight quantization in the PTQ setting.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

14 16 18 20 22 24 26 28 30
Accumulator Bit Width

101

102

103

104

Pe
rp

le
xi

ty

OPT-125M
GPFQ+AXE
GPFQ+EP-init
GPFQ
Float

14 16 18 20 22 24 26 28 30
Accumulator Bit Width

GPT2-137M
GPFQ+AXE
GPFQ+EP-init
GPFQ
Float

14 16 18 20 22 24 26 28 30
Accumulator Bit Width

Pythia-160M
GPFQ+AXE
GPFQ+EP-init
GPFQ
Float

14 16 18 20 22 24 26 28 30
Accumulator Bit Width

101

102

103

104

Pe
rp

le
xi

ty

OPT-125M
OPTQ+AXE
OPTQ+EP-init
OPTQ
Float

14 16 18 20 22 24 26 28 30
Accumulator Bit Width

GPT2-137M
OPTQ+AXE
OPTQ+EP-init
OPTQ
Float

14 16 18 20 22 24 26 28 30
Accumulator Bit Width

Pythia-160M
OPTQ+AXE
OPTQ+EP-init
OPTQ
Float

Figure 1: To reduce the minimum accumulator bit width required to avoid overflow during inference,
one could naı̈vely manipulate the weight and activation bit widths according to the data type bound
derived by Colbert et al. (2023). To date, Euclidean projection-based initialization (EP-init) (Colbert
et al., 2024) serves as the best alternative to this approach, but, as the name suggests, it has only been
studied as a QAT initialization strategy. AXE (green circles) significantly improves the trade-off be-
tween accumulator bit width and model quality for language models evaluated on WikiText2 (Merity
et al., 2016) when compared to EP-init (blue triangles) and naı̈ve bit width manipulation (red stars)
for both GPFQ (Lybrand & Saab, 2021) (top) and OPTQ (Frantar et al., 2022) (bottom).

Contribution. We introduce AXE, a framework of accumulator-aware extensions designed to en-
dow overflow avoidance guarantees to any layer-wise PTQ algorithm that greedily quantizes weights
one at a time, provided the base algorithm is also amenable to activation quantization. We theoreti-
cally motivate AXE and demonstrate its flexibility by presenting accumulator-aware variants of both
GPFQ and OPTQ. We evaluate AXE across pre-trained language generation models and show that
it significantly improves the trade-off between accumulator bit width and model quality when com-
pared to baseline methods. We visualize this trade-off using the Pareto frontiers in Figure 1, which
provide the minimum observed perplexity for a given target accumulator bit width. Furthermore,
unlike prior accumulator-aware quantization methods, which assume a monolithic accumulator, we
generalize AXE to support multi-stage accumulation, which enables accumulator-aware quantiza-
tion of large language models (LLMs) for the first time. Indeed, our results show that AXE scales
extremely well to billion-parameter language models when targeting multi-stage accumulation, sup-
porting the scaling hypothesis proposed by Colbert et al. (2024).

2 PRELIMINARIES

We denote the Kl-dimensional input activations to layer l as x(l) ∈ RKl , where X(l) ∈ RKl×D

denotes a matrix of D such inputs. The weight matrix for layer l with Kl input neurons and Cl

output neurons is similarly denoted as W (l) ∈ RCl×Kl ; its quantized counterpart is denoted as
Q(l) ∈ ACl×Kl

M , where we useAm×n
b to denote the space of all m×n matrices whose elements are

part of a fixed b-bit alphabet defined by the target quantization space. For example, the alphabet of
signed b-bit integers isAb := {k : −2b−1 +1 ≤ k ≤ 2b−1− 1, k ∈ Z}, assuming a sign-magnitude
representation, where Z is the space of all scalar integers.

For layer l, our notation yields Cl independent dot products of depth Kl for each of the D inputs.
For clarity, and without loss of generality, we often assume Cl = 1 when focusing on a single layer l
so that we can use w(l) to denote the weight matrix for layer l. When dropping their superscript, x
and w denote generic inputs and weights in RK , and x̃ and q denote their quantized counterparts.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.1 POST-TRAINING QUANTIZATION

Standard quantization operators, referred to as quantizers, are commonly parameterized by zero-
point z and strictly positive scaling factor s, as shown in Eq. 1 for weight tensor w. Our work
focuses on uniform integer quantization, where z is an integer value that ensures that zero is exactly
represented in the quantized domain, and s is a strictly positive scalar that corresponds to the reso-
lution of the quantizer. Scaled values are commonly rounded to the nearest integer, denoted by ⌈·⌋,
and elements that exceed the representation range of the quantized domain Ab are clipped.

Q(w) := s ·
(

clip
(⌈w

s

⌋
+ z; minAb,maxAb

)
− z
)

(1)

Methods for tuning these quantizers broadly fall into two paradigms: quantization-aware training
(QAT) and post-training quantization (PTQ). QAT methods train or fine-tune a neural network with
quantization in the loop, which often requires significant compute resources and sufficiently large
datasets. Our work focuses on PTQ methods, which directly cast and calibrate pre-trained mod-
els and often rely on little to no data without end-to-end training. PTQ methods tend to follow a
similar general structure, greedily casting and calibrating quantized models layer-by-layer or block-
by-block while seeking to approximate the minimizer of the reconstruction error

q∗ = argmin
q

1

2
∥XTw − X̃Tq∥22 (2)

where q∗ is the optimal quantized weights and X̃ is the quantized counterpart of X . Recent PTQ
methods concentrate on “weight-only quantization”, where X̃ = X , to solely minimize memory
storage and transfer costs (Lybrand & Saab, 2021; Frantar et al., 2022), and for good reason—the
ever-increasing weight volume of state-of-the-art neural networks has rendered many hyper-scale
transformer models memory-bound (Zhang et al., 2022a; Biderman et al., 2023). In such a scenario,
weight-only quantization algorithms can better preserve model quality and still realize end-to-end
throughput gains just by reducing data transfer costs, even with high-precision computations (usually
FP16) (Frantar et al., 2022; Tseng et al., 2024). However, weight-only quantization provides limited
opportunity to accelerate compute-intensive operations such as matrix multiplications, which is the
focus of this work. Thus, we investigate methods that are amenable to quantizing both weights
and activations to low-precision integers, which can realize throughput gains from both accelerated
computation and reduced data traffic (Xiao et al., 2023; Li et al., 2024).

2.2 LOW-PRECISION ACCUMULATION

The majority of neural network quantization research targeting compute acceleration emphasizes
low-precision weights and activations. While this can significantly reduce the costs of multiplica-
tions, the resulting products are often still accumulated using high-precision additions. As lower
precision integer representations continue to increase in popularity (Dettmers & Zettlemoyer, 2023;
Ma et al., 2024), one can expect a focus skewed towards weight and activation quantization to yield
diminishing returns as high-precision additions can bottleneck throughput, power, and area (Ni et al.,
2020; de Bruin et al., 2020; Xie et al., 2021; Colbert et al., 2024). For example, Ni et al. (2020) show
that when constraining weights and activations to 3-bit × 1-bit multipliers, the cost of 32-bit accu-
mulation consumes nearly 75% of the total power and 90% of the total area of their custom MAC
unit; they report up to 4× power savings and 5× area reduction when reducing to 8-bit accumulation.

Reducing the accumulator bit width is non-trivial in practice as it exponentially increases the risk
of numerical overflow, often introducing arithmetic errors that degrade model accuracy (Ni et al.,
2020; Colbert et al., 2023). Existing methods to prepare quantized neural networks (QNNs) for low-
precision accumulation often aim to either reduce the risk of numerical overflow (Xie et al., 2021;
Li et al., 2022; Azamat et al., 2022) or mitigate its impact on model accuracy (Ni et al., 2020; Sakr
et al., 2019; Blumenfeld et al., 2024). These empirical approaches rely on several assumptions that
limit their real-world applicability. For one, empirical estimates of overflow rely on a priori knowl-
edge of the input distribution, which is impractical to assume in many real-world scenarios and can
even introduce vulnerabilities (Baier et al., 2019). Furthermore, overflow behavior can vary across
platforms and programming languages, so designing methods to mitigate the detrimental impact of
one particular overflow behavior (e.g., wraparound two’s complement arithmetic) limits portability
across applications and accelerators. Finally, empirical approaches are unable to support applica-
tions that require guaranteed arithmetic correctness, such as encrypted inference (Lou & Jiang, 2019;

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Stoian et al., 2023), and are known to break down when overflows occur too frequently (Ni et al.,
2020). To address these concerns, recent work has proposed to avoid overflow altogether using
accumulator-aware quantization (A2Q) (Colbert et al., 2023; 2024).

2.3 ACCUMULATOR-AWARE QUANTIZATION

Let P ∗ denote the minimum accumulator bit width required to guarantee overflow avoidance for a
given dot product. Aside from universally fixing the accumulator at 32 bits (or any other arbitrary
maximum number of bits imposed by a given processor), the most conservative method to calcu-
late P ∗ considers the data types of the dot product operands, i.e., weights and activations. Given
inputs x̃ ∈ AK

N and weights q ∈ AK
M , P ∗ is given by Eq. 3 as derived in Colbert et al. (2023), where

1signed(x̃) is an indicator function that returns 1 if x̃ is signed and 0 otherwise.

P ∗ =
⌈
log2

(
2log2(K)+N+M−1−1signed(x̃) + 1

)
+ 1
⌉

(3)

Note that P ∗ increases linearly with the bit widths of the operands and logarithmically with the
depth of the dot product. Thus, for a fixed neural architecture, one could heuristically manipulate the
weight and activation bit widths according to Eq. 3 to reduce P ∗. However, the quantization design
space ultimately limits the minimum attainable accumulator bit width, as well as the maximum
attainable model accuracy for any target accumulator bit width (Colbert et al., 2023; 2024).

Colbert et al. (2024) show that one can directly target the accumulator bit width as an independent
dimension of the quantization design space while still theoretically guaranteeing overflow avoidance.
When accumulating x̃Tq into a signed P -bit accumulator, one need only constrain ∥q∥1 according
to Eq. 4, assuming that

∑
i qi = 0.

∥q∥1 ≤
2P − 2

2N − 1
(4)

Motivated by this result, accumulator-aware QAT methods avoid overflow by constraining the ℓ1-
norm of weights during training to ultimately restrict the range of dot product outputs during infer-
ence (Colbert et al., 2023; 2024). These approaches rely on weight normalization-based quantizers
infused with strict accumulator-aware learning constraints. Although these approaches have yielded
promising results in low-precision accumulation scenarios, the scope of their success is limited to the
QAT setting (Colbert et al., 2023; 2024). However, from this family of QAT methods, one can apply
the Euclidean projection-based initialization strategy (EP-init) (Colbert et al., 2024) to the PTQ set-
ting without modification. However, we find that EP-init has two shortcomings in the PTQ setting:
(1) it universally relies on the round-to-zero rounding function to ensure that |Q(wi)| ≤ |wi| for all
i (Colbert et al., 2023; 2024); and (2) it is a vector-wise projection operation that is not amenable to
error correction (see Appendix C.2). We address these shortcomings in this work.

3 ACCUMULATOR-AWARE POST-TRAINING QUANTIZATION

The standard problem for neural network quantization aims to map high-precision values (e.g., 32-
bit floating-point) to low-precision counterparts (e.g., 4-bit scaled integers) while locally minimizing
the discrepancy between the output of the original model and that of the compressed one, as formal-
ized by Eq. 2 in Section 2.1. In the post-training quantization (PTQ) setting, one often assumes the
quantizer parameters (i.e., scaling factor s and zero point z) are fixed and that the individual weights
can move freely, as in Lybrand & Saab (2021); Frantar et al. (2022); Hubara et al. (2021). Build-
ing from this, we formalize accumulator-aware post-training quantization as a constrained variant
of the standard reconstruction problem in which the optimal quantized weights q∗ minimize local
quantization error while also satisfying a strict ℓ1-norm constraint, as defined below.

q∗ = argmin
q

1

2
∥XTw − X̃Tq∥22 s.t. ∥q∥1 ≤ Z (5)

To approximately solve this accumulator-constrained reconstruction problem, we introduce AXE,
a practical low-overhead framework of general accumulator-aware extensions that endow guaran-
teed overflow avoidance to layer-wise quantization algorithms that greedily assign bits element-by-
element (e.g., GPFQ and OPTQ). AXE is built on two accumulator-aware constraints: (1) a soft

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

global constraint that discourages the underlying algorithm from opportunistically selecting quan-
tized weights with high magnitudes; and (2) a strict local constraint that greedily limits the range of
each selected quantized weight while error is iteratively corrected. In its standard form, AXE applies
these constraints per-channel (or per-neuron) so that each dot product in the network is guaranteed
to independently avoid overflow. Furthermore, without violating our constraints, we generalize our
framework to also support multi-stage accumulation in the form of tiled dot products by applying
our constraints in finer granularities. We first theoretically justify our solution using GPFQ, then
provide accumulator-aware variants of both GPFQ and OPTQ.

3.1 ACCUMULATOR CONSTRAINTS WITHOUT ZERO-CENTERING

Our goal is to provide a theoretical guarantee of overflow avoidance when accumulating the dot
product of q by any x̃ ∈ AK

N into a signed P -bit register. If q is a zero-centered vector such that∑
i qi = 0, then it is sufficient to constrain ∥q∥1 to satisfy the upper bound given by Eq. 4 in order to

guarantee overflow avoidance (see Section 2.3). However, enforcing such a zero-centering constraint
on a vector of integers is non-trivial in practice. Rather than directly enforcing this constraint on q,
A2Q+ (Colbert et al., 2024) enforces these constraints on its floating-point counterpart w and relies
on the symmetry of the quantizer and the round-to-zero operator to ensure that |Q(wi)| ≤ |wi| for
all i. We detach our solution from these zero-centering, round-to-zero, and symmetrical constraints.

For any x̃ ∈ AK
N , each element x̃i lies within the closed interval [µ, ν] for all i = {1, · · · ,K}, and

ν − µ = 2N − 1. It follows that the maximizing vector, u = argmaxx̃ x̃Tq, and the minimizing
vector, v = argminx̃ x̃Tq, are:

ui =

{
ν, where qi ≥ 0

µ, where qi < 0
vi =

{
µ, where qi ≥ 0

ν, where qi < 0
(6)

Fundamentally, to avoid overflow when accumulating x̃Tq into a P -bit register, the result needs to
fall within the register’s representation range for any x̃ ∈ AK

N . Without loss of generality, we derive
our algorithm assuming a sign-magnitude accumulator for clarity and conciseness. Thus, to safely
use a signed P -bit accumulator without overflow, the following inequalities need to be satisfied:

uTq ≤ 2P−1 − 1 (7)

−vTq ≤ 2P−1 − 1 (8)
To avoid zero-centering, one could generalize the result derived in Colbert et al. (2024) such that the
bound relies on a variable center, e.g.,

∑
i qi = ϵ. However, such a solution would still rely on the

round-to-zero constraint. Furthermore, it precludes the use of greedy sequential algorithms where ϵ
would be just as difficult to enforce as zero-centering, i.e., ϵ = 0. Thus, rather than constraining the
center, we greedily constrain the boundaries, as further discussed in Section 3.2.

3.2 ACCUMULATOR-AWARE GPFQ

The greedy path following quantization (GPFQ) algorithm (Lybrand & Saab, 2021) approaches the
standard quantization problem by traversing the neural network graph to sequentially quantize each
element in each layer while iteratively correcting for quantization error. At the l-th layer, this is
done by greedily selecting each element qi to minimize the squared distance between the running
sum

∑i
j=1 qjX̃j and its analog

∑i
j=1 wjXj such that

q
(l)
i = argmin

p∈AM

∥∥∥∥∥∥
i∑

j=1

w
(l)
j X

(l)
j −

i−1∑
j=1

q
(l)
j X̃

(l)
j − pX̃

(l)
i

∥∥∥∥∥∥
2

(9)

where X̃(l)
i denotes samples for the i-th input neuron to the l-th layer assuming the first l− 1 layers

are quantized, and AM is an M -bit fixed alphabet defined by the target quantization space. This
simplifies to the following iteration rule as derived in Lybrand & Saab (2021), where u(l)

0 = 0.

q
(l)
i = Q

(
⟨X̃(l)

i , u
(l)
i−1 + w

(l)
i X

(l)
i ⟩

∥X̃(l)
i ∥22

)
(10)

u
(l)
i = u

(l)
i−1 + w

(l)
i X

(l)
i − q

(l)
i X̃

(l)
i (11)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

To add accumulator-awareness, we introduce two constraints that are agnostic to the symmetry of
the quantizer and rounding function while still guaranteeing overflow avoidance. First, we introduce
a soft ℓ1-norm regularization penalty that discourages the underlying algorithm (e.g., GPFQ) from
opportunistically selecting weights with high magnitudes. Second, we introduce a strict constraint
that greedily limits the range of qi as error is iteratively corrected. This strict constraint is recursively
applied element-by-element to ensure that Eqs. 7 and 8 are independently satisfied, which ultimately
guarantees that Eq. 4 is satisfied without requiring a zero-centering constraint.

Soft ℓ1-norm regularization penalty. By design, greedy sequential quantization algorithms (e.g.,
GPFQ and OPTQ) opportunistically alter weights to correct for as much error as possible in
each step, often yielding high-magnitude quantized weights. However, this is unfavorable in the
accumulator-aware quantization setting as high-magnitude weights consume more of the ℓ1-norm
budget allocated per-channel (see Eq. 4). To address this, we penalize high-magnitude weights dur-
ing error correction. We build from the sparse GPFQ formulation proposed by Zhang et al. (2023) as
given by Eq. 12; the solution is given by Eq. 13, where Πλ(x) := sign(x)(|x| − λ)+, (·)+ denotes
the rectified linear unit (ReLU), and λ > 0 is an arbitrary tuneable regularization parameter.

q
(l)
i = argmin

p∈AM

1

2

∥∥∥∥ i∑
j=1

w
(l)
j X

(l)
j −

i−1∑
j=1

q
(l)
j X̃

(l)
j − pX̃

(l)
i

∥∥∥∥2
2

+ λ|p|
∥∥∥∥X̃(l−1)

i

∥∥∥∥2
2

 (12)

= Q ◦Πλ

(
⟨X̃(l)

i , u
(l)
i−1 + w

(l)
i X

(l)
i ⟩

∥X̃(l)
i ∥22

)
(13)

Noticeably, this formulation is amenable to leverage EP-init (Colbert et al., 2024), which takes the
same functional form. Thus, we tune our selection of λ to be the optimal Lagrangian scalar derived
from the solution to the constrained convex optimization problem formulated by Eq. 14. Here, the
objective is to find the optimal Euclidean projection of w onto the ℓ1 ball of radius Z, where Z is the
accumulator-aware ℓ1-norm target given, up to a scaling, by the upper bound in Eq. 4. Thus, v∗ is the
vector that minimizes the projection onto the boundary of our constrained set before quantization.

v∗ = min
v

1

2
∥v −w∥22 subject to ∥v∥1 ≤ Z (14)

Define ρ as the number of non-zero elements in the optimal solution and µ as the result of sorting w
by magnitude in descending order. The Lagrange multiplier λ associated with the solution to the
optimization problem is given by

λ =
1

ρ

(
ρ∑

i=1

µi − Z

)
, (15)

which can be interpreted as the average difference between our scaled accumulator-aware ℓ1-norm
target and the magnitudes of all non-zero elements in the optimal Euclidean projection v∗. We direct
the reader to Colbert et al. (2024) and Duchi et al. (2008) for the associated proofs and derivations.
It is important to note that because this projection is derived before quantization it cannot guarantee
overflow avoidance on its own; both error correction and rounding errors may violate our constraint.
However, we observe that it consistently yields improvements in model quality (see Appendix C.2).

Strict accumulator-aware constraint. For clarity, and without loss of generality, we motivate
our strict accumulator-aware constraint using the special case where x̃ is represented with unsigned
integers such that µ = 0 and ν = 2N−1. Note that this setting is common when following activation
functions with non-negative dynamic ranges (e.g., ReLUs), or when an appropriate non-zero-valued
zero-point is adopted (i.e., asymmetric quantization) (Gholami et al., 2022; Zhang et al., 2022b).

Let α denote the sum of all negative elements in q, and let β denote the sum of all positive elements
in q. From Eq. 7, we can derive the upper bound on β given by Eq. 16, which can similarly be
derived for −α from Eq. 8 in the case of sign-magnitude representations. Indeed, uTq ≤ 2P−1 − 1
is guaranteed whenever βν+αµ ≤ 2P−1−1, which holds in the case of unsigned activations if

β ≤ 2P−1 − 1

2N − 1
. (16)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Therefore, to quantize layer l for a target P -bit accumulator, we introduce a practical mechanism to
control the range of the dot product based on the following modified GPFQ scheme:

q
(l)
i = Q ◦Ψ

a
(l)
i−1,b

(l)
i−1
◦Πλ

(
⟨X̃(l)

i , u
(l)
i−1 + w

(l)
i X

(l)
i ⟩

∥X̃(l)
i ∥22

)
(17)

a
(l)
i = A(l) − αi (18)

b
(l)
i = B(l) − βi (19)

where αi denotes the sum of all negative elements in q whose index is less than i and βi is its
positive counterpart, A(l) and B(l) (defined in Eq. 20) are respectively the upper limits of αi and βi,
and the closed interval [a(l)i , b

(l)
i] is the range greedily enforced on qi as error is iteratively corrected.

We use Ψa,b to denote the clipping function Ψa,b(x) := clip (x; a, b), which is effectively a no-op
when the range [a(l)i , b

(l)
i] exceeds that of the quantized domain AM . This has the desired feature of

being functionally equivalent to GPFQ when the accumulator is large enough (e.g., 32 bits). Finally,
recall that u(l)

i is given by Eq. 11 with u
(l)
0 = 0, which remains unchanged.

By independently constraining the limits of qi, our accumulator-aware variant avoids overflow with-
out explicit zero-centering. To ensure rounding errors do not compromise our bounds, we use

−A(l) = B(l) =
2P−1 − 1

2N − 1
−max (∆) (20)

where max (∆) denotes the worst-case difference in raw magnitude caused by rounding; for exam-
ple, max (∆) = 0.5 for round-to-nearest and max (∆) = 0 for round-to-zero. Thus, our formula-
tion and resulting iteration rules are also agnostic to the symmetry of the quantizer and its choice of
rounding function. We also note that, while our derivation considers the sign-magnitude representa-
tion for the clarity that its symmetry provides, the separate consideration of A(l) and B(l) is useful
for asymmetric representations (e.g., two’s complement).

3.3 AXE: ACCUMULATOR-AWARE EXTENSIONS

While the theoretical justification we presented is tied to the formulation of GPFQ and its deriva-
tions, we can extract our constraints to construct a generalized framework that enables the investiga-
tion of accumulator-aware PTQ with any iterative algorithm that sequentially assigns bits, assuming
the algorithm is also amenable to activation quantization. Our framework consists of two steps:
(1) accumulator-aware projection based on our soft ℓ1-norm regularization penalty; and (2) greedy
accumulator-aware clipping based on our strict range limits. We further generalize AXE to support
multi-stage accumulation, which has implications for tiled dot products and SIMD parallelization.

In Appendix A, we present the pseudocode for our accumulator-aware variants of GPFQ and OPTQ.
In both cases, λ is derived per-channel before quantization. Adjusted weight values are greedily
projected on the ℓ1 ball accordingly, then clipped to the difference between the cumulative sum
of positive and negative elements and their respective limits. The resulting set of quantized weights
Q ∈ AK×C

M is then guaranteed to avoid overflow when accumulating its inner product with any X̃ ∈
AK×D

N into P -bit signed registers. Unlike the base GPFQ and OPTQ algorithms, our accumulator-
aware variants require quantized activations to calculate the accumulator-aware limits in Eq. 20.

Multi-Stage Accumulation. Our accumulator-aware constraints can be generalized to target cus-
tomized datapaths beyond user-specific accumulator bit widths. Unlike A2Q and A2Q+, which
assume a monolithic accumulator for each dot product (Colbert et al., 2023; 2024), we generalize
our framework to support multi-staged accumulation as visualized in Figure 2. In such a scenario,
our constraints are enforced on the quantized weights in tiles of size T so that each partial dot prod-
uct can be concurrently computed by an atomic MAC unit. We refer to the accumulator of this
atomic MAC unit as the “inner” accumulator and denote its bit width as PI . Conversely, we refer
to the accumulator of the resulting partial sums as the “outer” accumulator and denote its bit width
as PO. Given that a K-dimensional dot product is executed in tiles of size T , where each tile is
constrained to a PI -bit accumulator, we can calculate the minimum bit width required to guarantee
overflow avoidance for the outer accumulator as:

PO = ⌈PI + log2(K)− log2(T)⌉ (21)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

While we are the first to our knowledge to target multi-stage accumulation while guaranteeing over-
flow avoidance, accumulating in multiple stages is not new. Quantized inference libraries such as
FBGEMM (Khudia et al., 2018a), XNNPACK (Dukahn & Barchard, 2021), and Ryzen AI (AMD,
2024) have employed multi-staged accumulation to exploit a 16-bit inner accumulator (i.e., PI = 16)
to realize performance benefits, albeit without any theoretical guarantees of overflow avoidance. For
example, Khudia et al. (2018b) use FBGEMM to realize nearly a 2× throughput uplift on compute-
bound workloads by accumulating at 16 bits in tiles of 64 elements rather than accumulating at 32
bits. Currently, these libraries typically disable this optimization if overflow is observed too often
during testing. However, AXE provides a mechanism to simultaneously quantize and constrain a
pre-trained model for low-precision multi-staged accumulation while guaranteeing overflow avoid-
ance, enabling co-design for this optimization for the first time. As shown in Section 4, this general-
ization is critical in maintaining the quality of billion-parameter large language models, which often
have dot products containing more than ten thousand elements.

0

Acc

MAC Unit

(a)

MAC Unit MAC Unit MAC Unit

Adder

(b)

Figure 2: We visualize (a) an atomic MAC unit and (b) parallelized multi-staged accumulation.

4 EXPERIMENTS

Models & Datasets. We conduct experiments on GPT2 (Radford et al., 2019), OPT (Zhang et al.,
2022a), and Pythia (Biderman et al., 2023) models and calibrate all quantized models using Wiki-
Text2 (Merity et al., 2016). When focusing on our scaling analysis, we use the LM Evaluation
Harness benchmarking suite (Gao et al., 2023) to evaluate 6 reasoning tasks: ARC-easy and ARC-
challenge (Clark et al., 2018), HellaSwag (Zellers et al., 2019), LAMBADA (Radford et al., 2019),
PIQA (Bisk et al., 2020), and Winogrande (Sakaguchi et al., 2021).

Quantization Design Space. We constrain our quantization design space to uniform-precision mod-
els such that every hidden layer has the same weight, activation, and accumulator bit width, respec-
tively denoted as M , N , and P . We consider 3- to 8-bit integers for both weights and activations,
unlike (Frantar et al., 2022) and (Zhang et al., 2023), which focused on weight-only quantization.
Rather than evaluating each combination of M and N , we restrict ourselves to configurations where
N ≥ M to reduce the cost of experimentation as such configurations tend to dominate the Pareto
frontiers (Colbert et al., 2024). We implement our methods in PyTorch (Paszke et al., 2019) us-
ing the Brevitas quantization library (Pappalardo, 2023). We include all hyperparameter details in
Appendix C. All models are quantized using a single AMD MI210 GPU with 64 GB of memory.

4.1 OPTIMIZING FOR ACCUMULATOR CONSTRAINTS

We first consider the scenario in which QNNs are optimized for accumulator-constrained processors.
Unlike prior work, we focus our analysis on the PTQ setting. As discussed in Section 2.3, one could
heuristically manipulate M and N according to the data type bound derived by Colbert et al. (2023);
however, the quantization design space ultimately limits the minimum attainable accumulator bit
width. To the best of our knowledge, Euclidean projection-based initialization (EP-init) serves as
the best alternative to this bit width manipulation approach in the PTQ setting (see Section 2.3).
Therefore, we use EP-init and naı̈ve bit width manipulation as our baselines.

In Figure 1, we use Pareto frontiers to visually characterize the trade-off between accumulator bit
width P and model quality for both GPFQ and OPTQ, respectively. We assume a monolithic accu-
mulator in these experiments (i.e., P = PI = PO). For each model and each PTQ algorithm, the
Pareto frontier shows the lowest observed perplexity for a target P when varying M and N within
our design space, with the perplexity of the 32-bit floating-point model provided for reference. Re-
call that accumulator-aware quantization requires both the weights and activations to be quantized

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: We report the WikiText2 perplexity results when evaluating AXE on Pythia models quan-
tized to W4A8 for 16-bit accumulation in tiles of 128 elements (denoted 128×16b). We compare
against the unconstrained baseline (denoted Base). We use our functionally equivalent memory-
efficient GPFQ formulation to scale to larger models (see Appendix B).

70M 160M 410M 1.0B 1.4B 2.8B 6.9B
Float 45.2 26.7 15.9 13.2 11.8 10.2 9.2

GPFQ∗ Base 61.7 40.1 23.0 14.7 15.7 13.3 14.2
128×16b 81.9 47.1 25.9 15.4 16.8 14.3 15.2

OPTQ Base 65.4 46.6 28.9 14.7 15.7 17.3 13.5
128×16b 201.4 131.8 60.7 16.2 18.6 16.6 16.2

(see Section 3.2); therefore, this is not a direct comparison against the original GPFQ and OPTQ
proposals, which only quantized weights. We provide a detailed breakdown of each Pareto frontier
in Appendix F, where we report the perplexity of each Pareto-dominant model, their weight and ac-
tivation bit widths, and resulting unstructured weight sparsity. We observe similar trends as reported
in Colbert et al. (2024); the Pareto-optimal activation bit width N decreases as P is reduced, and
the unstructured weight sparsity conversely increases. This suggests that our accumulator-aware
boundary constraints obey similar mechanics as the ℓ1-norm constraints of QAT methods, as our
theoretical justification predicts (see Section 3.3).

4.2 LOW-PRECISION ACCUMULATION FOR LARGE LANGUAGE MODELS

As discussed in Colbert et al. (2024), the ℓ1-norm of an unconstrained weight vector inherently
grows as its dimensionality increases. This suggests that accumulator-aware quantization scales
well to strictly deeper neural architectures since the constraints tighten with width rather than depth;
experimental results on the ResNet family support this hypothesis (Colbert et al., 2024). However,
this also suggests that accumulator-aware quantization scales poorly in neural network families that
grow in width, as is the case in transformer architectures (Zhang et al., 2022a; Biderman et al.,
2023). Thus, to scale our accumulator-aware PTQ framework to billion-parameter language models,
we turn to our multi-stage accumulation variant of AXE (see Section 3.3). Here, one assumes the
partial sums of a dot product are concurrently computed in fixed-length tiles of size T . Our goal in
this setting is to minimize perplexity for a target inner accumulator bit width PI that is assumed to
be universal across all tiles. Thus, our accumulator width is constant even as models grow wider.

Rather than exploring the full quantization design space, we focus on 4-bit weights and 8-bit acti-
vations (W4A8) to maximize utility across platforms with a reasonable number of experiments, as
prior studies have suggested this configuration is generally useful (Dettmers & Zettlemoyer, 2023;
Li et al., 2024). We evaluate AXE on top of both GPFQ and OPTQ using tiles of 128 elements
under 16-bit accumulator constraints (note that P ∗

I = 20 when T = 128 for W4A8 via Eq. 3).
Again, prior work has established 128 to be a generally useful tiling size; AVX-512 ISA supports
T = 32 elements (Khudia et al., 2018a), Ryzen AI NPUs support T = 64 elements (AMD, 2024),
and many works allocate scaling factors in groups of 128 elements (Lin et al., 2023; Liu et al., 2024).
Finally, we find that the peak memory utilization of GPFQ limits its evaluation on billion-parameter
LLMs. Thus, we introduce a functionality equivalent memory-efficient reformulation to enable the
algorithm to scale to larger models (see Appendix B). We report our results in Tables 1 and 2.

We first focus our scaling law analysis on the Pythia model suite, which was specifically designed
to facilitate such a study (Biderman et al., 2023). From our results in Table 1, we observe that, as
model size increases, the quality of the accumulator-constrained models approaches that of the un-
constrained baselines as expected, with AXE preserving 92.4% of the baseline GPFQ perplexity and
82.8% of the baseline OPTQ perplexity of Pythia-6.9B compared to 74.8% and 32.3% for Pythia-
70M, respectively. From our results in Table 2, we again observe that, as model size increases, the
gap is reduced between the zero-shot reasoning capabilities of the constrained models and their un-
constrained baselines; AXE preserves 98% of the baseline GPFQ accuracy and 96% of the baseline
OPTQ accuracy for Pythia-6.9B compared to 86% and 76% for Pythia-70M, respectively. Under the
A2Q scaling hypothesis, this suggests the narrowing accuracy gap is in part because model capacity
is growing without tightening the constraints since T is held constant even as K increases. In Ap-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: We report the geometric mean calculated over 6 zero-shot reasoning tasks when evaluating
AXE on Pythia models quantized to W4A8 for 16-bit accumulation in tiles of 128 elements (denoted
128×16b). We compare against the unconstrained baseline (denoted Base). We again use our func-
tionally equivalent memory-efficient GPFQ formulation to scale to larger models (see Appendix B).

70M 160M 410M 1.0B 1.4B 2.8B 6.9B
Float 32.9 40.1 43.6 47.3 50.2 53.9 56.1

GPFQ∗ Base 26.4 33.7 34.0 42.4 39.5 44.1 40.0
128×16b 22.8 32.5 31.5 41.9 37.7 42.9 39.3

OPTQ Base 29.0 36.6 38.4 43.9 44.7 46.5 47.3
128×16b 22.2 32.6 29.3 40.0 43.1 45.8 45.6

pendix C.2, we provide an ablation study targeting a monolithic 16-bit accumulator (i.e., PO = 16).
There, we show the gap conversely increases as K increases, confirming that fixing PI via multi-
stage accumulation improves scaling.

5 DISCUSSION AND CONCLUSIONS

As neural networks continue to increase in size, and their weights and activations are increasingly
being represented with fewer bits, we anticipate the accumulator to play a larger role in hardware-
software co-design (see Section 2.2). While prior work on accumulator-aware quantization has been
limited to the QAT setting (see Section 2.3), ours marks the first to extend accumulator-awareness to
the PTQ setting. To do so, we introduce AXE—a practical low-overhead framework of accumulator-
aware extensions designed to endow overflow avoidance guarantees to any layer-wise PTQ algorithm
that greedily assign bits element-by-element. We demonstrate the flexibility of AXE by presenting
accumulator-aware variants of GPFQ and OPTQ with principled overflow avoidance guarantees.
Furthermore, unlike prior accumulator-aware quantization methods, which assume a monolithic ac-
cumulator, we generalize AXE to support multi-stage accumulation for the first time.

Our experiments in Section 4.1 show that AXE significantly improves the trade-off between accu-
mulator bit width and model accuracy when compared to existing baselines. As has been shown
before in the QAT setting (Colbert et al., 2023; 2024), exposing control over the accumulator bit
width allows one to reduce P further than what is attainable via naı̈ve bit width manipulations
while also maintaining model accuracy. Moreover, we observe that AXE universally yields marked
improvement over EP-init across both models and datasets, establishing a new state-of-the-art for
accumulator-aware quantization in the PTQ setting. Although EP-init and AXE are both derived
from the same convex optimization problem (see Eq. 14), EP-init is a vector projection that is ap-
plied after quantization and relies on the round-to-zero rounding function to ensure the ℓ1-norm
constraints are respected. Previous reports had suspected EP-init is limited by this reliance on round-
to-zero (Colbert et al., 2023; 2024); we provide an ablation study in Appendix C.2 that supports this
hypothesis but also suggests error correction is critical. For GPFQ, we observe error correction to
be more important than round-to-nearest, but we observe the opposite for OPTQ, although a more
exhaustive analysis in future work may uncover more insights.

Our experiments in Section 4.2 show that our generalized multi-stage accumulation enables
accumulator-aware weight quantization for billion-parameter LLMs. We observe that the gap be-
tween the constrained and unconstrained quantized models shrinks as model size increases, preserv-
ing both perplexity and zero-shot reasoning. However, we also observe that the gap between the
quantized models and their 32-bit floating-point counterparts begins to increase with model size.
This is consistent with the findings of Li et al. (2024), who conclude that while larger models tend
to have a higher tolerance for weight quantization, they also tend to have a lower tolerance for acti-
vation quantization. Thus, there exists two diametrically opposing trends in superposition. For the
Pythia model suite, we observe Pythia-1B to be the equilibrium point where the costs of weight and
activation quantization are balanced. While it is orthogonal to the scope of this study, we expect
the emerging rotation-based quantization schemes (e.g., QuaRot (Ashkboos et al., 2024) or Spin-
Quant (Liu et al., 2024)) to impact this equilibrium point and reduce the gap between quantized
models and their 32-bit floating-point counterparts. We leave such investigations for future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

AMD. Ryzen AI column architecture and tiles. https://riallto.ai/3_2_Ryzenai_
capabilities.html, 2024. [Accessed 06-30-2024].

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Martin Jaggi, Dan Alistarh,
Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in rotated llms. arXiv
preprint arXiv:2404.00456, 2024.

Azat Azamat, Jaewoo Park, and Jongeun Lee. Squeezing accumulators in binary neural networks for
extremely resource-constrained applications. In Proceedings of the 41st IEEE/ACM International
Conference on Computer-Aided Design, pp. 1–7, 2022.

Lucas Baier, Fabian Jöhren, and Stefan Seebacher. Challenges in the deployment and operation of
machine learning in practice. In ECIS, volume 1, 2019.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. PIQA: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelli-
gence, volume 34, pp. 7432–7439, 2020.

Yaniv Blumenfeld, Itay Hubara, and Daniel Soudry. Towards cheaper inference in deep networks
with lower bit-width accumulators. arXiv preprint arXiv:2401.14110, 2024.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. QuIP: 2-bit quantization
of large language models with guarantees. Advances in Neural Information Processing Systems,
36, 2024.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Ian Colbert, Alessandro Pappalardo, and Jakoba Petri-Koenig. A2Q: Accumulator-aware quantiza-
tion with guaranteed overflow avoidance. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pp. 16989–16998, 2023.

Ian Colbert, Alessandro Pappalardo, Jakoba Petri-Koenig, and Yaman Umuroglu. A2Q+: Improv-
ing accumulator-aware weight quantization. In Forty-first International Conference on Machine
Learning, 2024.

Barry de Bruin, Zoran Zivkovic, and Henk Corporaal. Quantization of deep neural networks for
accumulator-constrained processors. Microprocessors and microsystems, 72:102872, 2020.

Tim Dettmers and Luke Zettlemoyer. The case for 4-bit precision: k-bit inference scaling laws. In
International Conference on Machine Learning, pp. 7750–7774. PMLR, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. Efficient projections onto
the l 1-ball for learning in high dimensions. In Proceedings of the 25th international conference
on Machine learning, pp. 272–279, 2008.

Marat Dukahn and Frank Barchard. Faster quantized inference
with XNNPACK. https://blog.tensorflow.org/2021/09/
faster-quantized-inference-with-xnnpack.html, 2021. [Accessed 06-30-
2024].

11

https://riallto.ai/3_2_Ryzenai_capabilities.html
https://riallto.ai/3_2_Ryzenai_capabilities.html
https://blog.tensorflow.org/2021/09/faster-quantized-inference-with-xnnpack.html
https://blog.tensorflow.org/2021/09/faster-quantized-inference-with-xnnpack.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. OPTQ: Accurate quantization
for generative pre-trained transformers. In The Eleventh International Conference on Learning
Representations, 2022.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 12 2023. URL https://zenodo.org/records/
10256836.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. In Low-Power Computer
Vision, pp. 291–326. Chapman and Hall/CRC, 2022.

Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and Daniel Soudry. Accurate post training
quantization with small calibration sets. In International Conference on Machine Learning, pp.
4466–4475. PMLR, 2021.

IST-DASLab. gptq. https://github.com/ist-daslab/gptq, 2022.

Daya Khudia, Protonu Basu, and Summer Deng. Open-sourcing FBGEMM for state-
of-the-art server-side inference. https://engineering.fb.com/2018/11/07/
ml-applications/fbgemm/, 2018a. [Accessed 06-30-2024].

Daya S Khudia, Prontonu Basu, and Summer Deng. Open-sourcing fbgemm for state-of-the-
art server-side inference, 2018b. URL https://engineering.fb.com/2018/11/07/
ml-applications/fbgemm/.

Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von Platen,
Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, et al. Datasets: A
community library for natural language processing. arXiv preprint arXiv:2109.02846, 2021.

Haokun Li, Jing Liu, Liancheng Jia, Yun Liang, Yaowei Wang, and Mingkui Tan. Downscaling and
overflow-aware model compression for efficient vision processors. In 2022 IEEE 42nd Interna-
tional Conference on Distributed Computing Systems Workshops (ICDCSW), pp. 145–150. IEEE,
2022.

Shiyao Li, Xuefei Ning, Luning Wang, Tengxuan Liu, Xiangsheng Shi, Shengen Yan, Guohao Dai,
Huazhong Yang, and Yu Wang. Evaluating quantized large language models. arXiv preprint
arXiv:2402.18158, 2024.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. AWQ:
Activation-aware weight quantization for LLM compression and acceleration. arXiv preprint
arXiv:2306.00978, 2023.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. SpinQuant–llm quantization
with learned rotations. arXiv preprint arXiv:2405.16406, 2024.

Qian Lou and Lei Jiang. She: A fast and accurate deep neural network for encrypted data. Advances
in neural information processing systems, 32, 2019.

Eric Lybrand and Rayan Saab. A greedy algorithm for quantizing neural networks. The Journal of
Machine Learning Research, 22(1):7007–7044, 2021.

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Li Dong,
Ruiping Wang, Jilong Xue, and Furu Wei. The era of 1-bit LLMs: All large language models are
in 1.58 bits. arXiv preprint arXiv:2402.17764, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

12

https://zenodo.org/records/10256836
https://zenodo.org/records/10256836
https://github.com/ist-daslab/gptq
https://engineering.fb.com/2018/11/07/ml-applications/fbgemm/
https://engineering.fb.com/2018/11/07/ml-applications/fbgemm/
https://engineering.fb.com/2018/11/07/ml-applications/fbgemm/
https://engineering.fb.com/2018/11/07/ml-applications/fbgemm/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max Welling. Data-free quantization
through weight equalization and bias correction. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 1325–1334, 2019.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or
down? adaptive rounding for post-training quantization. In International Conference on Machine
Learning, pp. 7197–7206. PMLR, 2020.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart Van Baalen,
and Tijmen Blankevoort. A white paper on neural network quantization. arXiv preprint
arXiv:2106.08295, 2021.

Renkun Ni, Hong-min Chu, Oscar Castañeda, Ping-yeh Chiang, Christoph Studer, and Tom Gold-
stein. Wrapnet: Neural net inference with ultra-low-resolution arithmetic. arXiv preprint
arXiv:2007.13242, 2020.

Alessandro Pappalardo. Xilinx/brevitas, 2023. URL https://doi.org/10.5281/zenodo.
3333552.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Charbel Sakr, Naigang Wang, Chia-Yu Chen, Jungwook Choi, Ankur Agrawal, Naresh Shanbhag,
and Kailash Gopalakrishnan. Accumulation bit-width scaling for ultra-low precision training of
deep networks. arXiv preprint arXiv:1901.06588, 2019.

Andrei Stoian, Jordan Frery, Roman Bredehoft, Luis Montero, Celia Kherfallah, and Benoit
Chevallier-Mames. Deep neural networks for encrypted inference with tfhe. In International
Symposium on Cyber Security, Cryptology, and Machine Learning, pp. 493–500. Springer, 2023.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. QuIP#:
Even better llm quantization with hadamard incoherence and lattice codebooks. arXiv preprint
arXiv:2402.04396, 2024.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 conference on empirical methods in
natural language processing: system demonstrations, pp. 38–45, 2020.

Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, and Paulius Micikevicius. Integer quan-
tization for deep learning inference: Principles and empirical evaluation. arXiv preprint
arXiv:2004.09602, 2020.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. SmoothQuant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Hongwei Xie, Yafei Song, Ling Cai, and Mingyang Li. Overflow aware quantization: Accelerat-
ing neural network inference by low-bit multiply-accumulate operations. In Proceedings of the
Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelli-
gence, pp. 868–875, 2021.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

13

https://doi.org/10.5281/zenodo.3333552
https://doi.org/10.5281/zenodo.3333552

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jinjie Zhang, Yixuan Zhou, and Rayan Saab. Post-training quantization for neural networks with
provable guarantees. SIAM Journal on Mathematics of Data Science, 5(2):373–399, 2023.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. OPT: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022a.

Xinyu Zhang, Ian Colbert, and Srinjoy Das. Learning low-precision structured subnetworks using
joint layerwise channel pruning and uniform quantization. Applied Sciences, 12(15):7829, 2022b.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A PSUEDO-CODE FOR ACCUMULATOR-AWARE VARIANTS OF GPFQ AND
OPTQ

We present the pseudo-code for our accumulator-aware variants of GPFQ (Lybrand & Saab, 2021)
and OPTQ (Frantar et al., 2022) in Algorithms 1 and 2, respectively, where we define Ψa,b(v) to
denote the clipping function applied elementwise so that (Ψa,b(v))j = Ψaj ,bj (vj). We direct the
reader to Section 3 for theoretical justification for these algorithms.

Algorithm 1 Accumulator-Aware GPFQ. Our accumulator-aware GPFQ variant (Ly-
brand & Saab, 2021) quantizes W to M bits given input activations X and their N -bit
quantized counterparts X̃ . Note that Wi,Vi ∈ RC , Qi ∈ AC

M , Xi ∈ RD, and X̃i ∈ AD
N ,

all interpreted as row vectors.

Require: W ∈ RK×C , X ∈ RK×D, X̃ ∈ AK×D
N

1: Q← 0 ∈ AK×C
M . // Quantized output

2: U ← 0 ∈ RD×C // Per-sample quantization error
3: a← A ∈ RC , b← B ∈ RC // Initialize running sums
4: λ← deriveThreshold(W) // Derive per-channel Lagrangian thresholds
5: for i = 1, ...,K do
6: Vi ←Wi

⟨X̃i,Xi⟩
∥X̃i∥2

2

+ X̃iU
∥X̃i∥2

2

// Adjust for quantization error

7: Vi ← Ψa,b ◦Πλ(Vi) // Accumulator-aware projection & clipping
8: Qi ← Q(Vi) // Quantize weight
9: a← a−Qi ⊙ 1Qi≥0 // Update positive range

10: b← b−Qi ⊙ 1Qi≤0 // Update negative range
11: U ← U +XT

i Wi − X̃T
i Qi // Update quantization error

12: end for
13: return Q

Algorithm 2 Accumulator-Aware OPTQ. Our accumulator-aware OPTQ variant (Fran-
tar et al., 2022) quantizes W to M bits given H−1 = Cholesky((2X̃X̃T + ηI)−1),
where η is a small dampening factor to avoid numerical issues. Following Frantar et al.
(2022), we set η to be 1% of the average diagonal value. Note that Wi,Vi ∈ RC and
Qi ∈ AC

M , all interpreted as row vectors.

Require: W ∈ RK×C , H−1 ∈ RK×K

1: Q← 0 ∈ AK×C
M // Quantized output

2: E ← 0 ∈ RC // Per-channel quantization errors
3: a← A ∈ RC , b← B ∈ RC // Initialize running sums
4: λ← deriveThreshold(W) // Derive per-channel Lagrangian thresholds
5: for i = 1, ...,K do
6: Vi ← Ψa,b ◦Πλ(Wi) // Accumulator-aware projection & clipping
7: Qi ← Q(Vi) // Quantize processed weight
8: E ← (Wi −Qi)/H

−1
i,i // Calculate quantization error

9: Wi:K ←Wi:K −E ·H−1
i,i:K // Update weights

10: a← a−Qi ⊙ 1Qi≥0 // Update positive range
11: b← b−Qi ⊙ 1Qi≤0 // Update negative range
12: end for
13: return Q

B MEMORY-EFFICIENT GPFQ

As discussed in Section 3.2, GPFQ approaches the standard quantization problem by traversing the
neural network graph to sequentially quantize each element in each layer while iteratively correcting

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

for quantization error. The derived iteration rule is formalized by Eqs. 10 and 11. In this standard
formulation, the i-th quantized weight qi depends on the inner product

⟨X̃(l)
i ,u

(l)
i−1 + w

(l)
i X

(l)
i ⟩

where X(l)
i , X̃

(l)
i ∈ RD are samples for the i-th neuron of the inputs to layer l, and u

(l)
i−1 ∈ RD is the

running error from quantizing the first i− 1 weights. Thus, at layer l, GPFQ requires collecting and
storing 2D samples for the Kl input neurons, and updating the running quantization error for each
sample for the Cl output neurons. This implies poor scaling to larger models and larger calibration
sets as the memory requirements are O(D × (2Kl + Cl)). Indeed, assuming 128 samples with a
sequence length of 2048 at 32-bit precision, Pythia-6.9B (Biderman et al., 2023) requires a peak
memory usage of roughly 30 GB at the first FFN layer excluding pre-trained weights. We set out to
reduce this overhead.

We start with the observation that OPTQ is far more memory efficient. OPTQ uses the Hessian
proxy 2XXT , which can be efficiently computed one sample at a time and stored as a Kl × Kl

square matrix, an O(Kl × Kl) memory requirement that is 36× less than GPFQ for Pythia-6.9B.
Thus, we reformulate GPFQ to use square matrices via mathematical manipulation of singular value
decompositions. We present the following theorem:

Theorem B.1. Let H =
(
X̃X̃T

)1/2
and G = XX̃T . For pre-trained weights W ∈ RK×C ,

quantization alphabet A, and GPFQ function of the form of Algorithm 1, it follows that:

GPFQ(W ,X, X̃,A) = GPFQ(W ,GH−1,H,A) (22)

Proof. According to the iteration steps in Algorithm 1, it suffices to show that the argument of quan-
tizer Q is unchanged after substituting Xi, X̃i with (GH−1)i and Hi respectively. Specifically, at
the i-th iteration of GPFQ(W ,GH−1,H,A), we have

Vi ←Wi
⟨Hi, (GH−1)i⟩
∥Hi∥22

+
HiUi−1

∥Hi∥22
(23)

where the quantization error is given by

Ui−1 =

i−1∑
j=1

(GH−1)Tj Wj −HT
j Qj . (24)

Let ei ∈ RK denote the vector with a 1 in the i-th coordinate and 0’s elsewhere. It follows from

H =
(
X̃X̃T

)1/2
and G = XX̃T that

∥Hi∥22 = ∥eTi H∥22 = eTi H
2ei = eTi X̃X̃Tei = ∥X̃i∥22,

Hi(GH−1)Tj = eTi H(eTj GH−1)T = eTi G
Tej = eTi X̃XTej = X̃iX

T
j ,

and
HiH

T
j = eTi H(eTj H)T = eTi H

2ej = eTi X̃X̃Tej = X̃iX̃
T
j .

Plugging above identities into equation 23 and equation 24, we obtain

Vi ←Wi
⟨X̃i,Xi⟩
∥X̃i∥22

+
X̃iÛi−1

∥X̃i∥22
(25)

with Ûi−1 =
∑i−1

j=1 X
T
j Wj−X̃T

j Qj . Since Vi in equation 25 is identical with the i-th quantization
argument in GPFQ(W ,X, X̃,A), both algorithms derive the same quantized weights Qi = Q(Vi).
This completes the proof.

At layer l, this memory-efficient GPFQ formulation requires collecting and storing G, H , and U ,
which are each Kl × Kl matrices, reducing to an O(Kl × Kl) memory requirement that is 12×
less than the standard GPFQ formulation for Pythia-6.9B. We leverage this functionally equivalent
formulation for our LLM evaluations in Section 4.2.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C EXPERIMENTAL DETAILS & ABLATIONS

C.1 HYPERPARAMETERS & QUANTIZATION SCHEMES

Below, we provide a detailed description of the quantization schemes and the specific hyperparam-
eters used in our experiments. As discussed in Section 4, we consider pre-trained autoregressive
language models that are respectively made publicly available via the HuggingFace (Wolf et al.,
2020) libraries. All models are quantized via the Brevitas (Pappalardo, 2023) quantization library
using a single AMD MI210 GPU with 64 GB of memory.

We leverage the unmodified implementations of the various LLMs discussed in Section 4 as pro-
vided by HuggingFace (Wolf et al., 2020), as well as their pre-trained floating-point checkpoints
and datasets (Lhoest et al., 2021). We use drop-in replacements for all linear layers in the networks
except the embedding layer or final prediction head, leaving them at 32-bit floating-point. As is
common practice (Frantar et al., 2022), we build our calibration set using 128 samples randomly se-
lected from the WikiText2 dataset (Merity et al., 2016) without replacement using a fixed sequence
length of 2048 tokens for all models except GPT2 (Radford et al., 2019), which is restricted to a
maximum sequence length of 1024 by the library.

Quantization Scheme. As discussed in Section 2, we adopt the standard uniform integer quantizer
parameterized by scaling factor s and zero-point z. We quantize activations asymmetrically, tuning
z to the lowest 99-th percentile based on the calibration data. While AXE is not reliant on symmetric
weight quantization, we eliminate zero-points in all weight quantizers such that z = 0, as is common
practice so as to avoid computational overhead of cross-terms (Nagel et al., 2021; Zhang et al.,
2022b). Throughout our experiments, we adopt 32-bit floating-point scaling factors that take the
form of Eq. 26, where max(w) is calculated per-channel for the weights and per-tensor for the
activations quantized to b bits.

s =
max(w)

2b−1 − 1
(26)

Quantization Process. To quantize our models, we first load the pre-trained checkpoint and merge
batch normalization layers if they exist, then we apply SmoothQuant (Xiao et al., 2023) before
calibrating the scaling factors and zero-points. We then apply either GPFQ (Lybrand & Saab, 2021)
or OPTQ (Frantar et al., 2022) (with or without AXE) before finally applying bias correction (Nagel
et al., 2019). When sequentially quantizing weights element-by-element, we do so in descending
order according to the diagonal value of the Hessian proxy (2XXT by our notation in Section 2),
which was originally implemented in IST-DASLab (2022) and reported to yield superior results
in Lin et al. (2023); Chee et al. (2024). When evaluating EP-init in the PTQ setting, we do so after
OPTQ or GPFQ but before bias correction. Because bias correction does not adjust weight values,
this allows us to at least perform some form of error correction with EP-init while still ensuring
guaranteed overflow avoidance.

C.2 ABLATION STUDIES

Impact of error correction and choice of rounding function. Previous reports had suspected EP-
init is limited by its reliance on the round-to-zero (RTZ) rounding function (Colbert et al., 2023;
2024), which has been shown to be a poor choice (Nagel et al., 2020) AXE removes this reliance
and also enables greedy error correction. We design an ablation study to isolate the impact of RTZ
and error correction. We quantize OPT-125M (Zhang et al., 2022a) and Pythia-160M (Biderman
et al., 2023) to 4-bit weights and 8-bit activations while targeting 20-bit accumulation since our
Pareto front shows this configuration to be both reasonable and challenging. We evaluate AXE with
round-to-zero (AXE-RTZ) and AXE with round-to-nearest (AXE-RTN). We report the results in
Table 3. We interpret the gap between EP-init and AXE-RTZ as the benefit of error correction, and
the gap between AXE-RTZ and AXE-RTN as the benefit of rounding function. We observe that
error correction has a greater impact than rounding function selection for GPFQ, but we observe the
opposite for OPTQ. Finally, we evaluate AXE with our hard constraint only (AXE-HCO) to isolate
the impact of our soft constraint, which is not necessary for guaranteeing overflow avoidance. We
interpret the gap between AXE-RTN and AXE-HCO as the impact of our soft constraint, which
consistently provides improved or maintained performance.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 3: We evaluate round-to-nearest (RTN) and round-to-zero (RTZ) within our AXE framework
to directly compare against EP-init. We also evaluate AXE with our hard constraint only (HCO) to
isolate the impact of our soft constraint. All models are quantized to W4A8 while targeting a 20-bit
monolitic accumulator (i.e., PO = 20).

Algorithm Model EP-init AXE-RTZ AXE-RTN AXE-HCO

GPFQ OPT-125M 8828.3 165.2 31.9 31.9
Pythia-160M 2500.2 211.0 43.0 49.2

OPTQ OPT-125M 998.6 539.3 37.1 70.0
Pythia-160M 4524.4 1798.7 84.9 194.8

Multi-stage vs. monolithic accumulation. In Section 4.2, we analyze how our accumulator
constraints scale to increasingly large language models within the Pythia model suite (Biderman
et al., 2023). There, we discuss our observation that, as model size increases, the quality of the
accumulator-constrained models approaches that of the unconstrained baselines for both GPFQ and
OPTQ. This suggests the narrowing gap in perplexity is in part because model capacity is growing
without tightening the constraints. To verify this, we perform an ablation study targeting a mono-
lithic 16-bit accumulator (i.e., PI = PO = 16). We quantize all Pythia models up to Pythia-1B
using either OPTQ or GPFQ, and report the results in Table 4. Not only do we observe significant
instability, we also observe a 7.4× regression in perplexity between Pythia-70M and Pythia-1B,
confirming that fixing PI improves scaling as models grow wider.

Table 4: We evaluate AXE using Pythia models quantized to W4A8 when targeting a monolithic
16-bit accumulator (i.e., PO = 16). Note that this is in direct contrast with Table 1, which targets
multi-stage accumulation (i.e., PI = 16).

Algorithm 70M 160M 410M 1B

GPFQ 4397 7135 10496 32601
OPTQ 2438 4439 9759 34387

D ADDITIONAL EXPERIMENTS WITH LLAMA3

Our intention with focusing on Pythia in Section 4.2 was to investigate scaling, for which the Pythia
model family was specifically designed (Biderman et al., 2023). However, to demonstrate gener-
alization to another model family, we provide additional results with Llama3 (Dubey et al., 2024)
evaluated on WikiText2 (Merity et al., 2016).

To the best of our knowledge, only datatype manipulation and EP-init (Colbert et al., 2024) serve as
alternatives to AXE for accumulator-aware quantization in the PTQ setting. As shown in Figure 1,
AXE is the Pareto-dominant algorithm. Furthermore, as discussed in Section 4.2, we observe that
multi-stage accumulation is critical to ensure accumulator-aware quantization scales to increasingly
large language models (also see Appendix C.2 for ablations). Therefore, as EP-init does not sup-
port multi-stage accumulation, the only existing alternative accumulator-aware PTQ mechanism for
billion-parameter LLMs is datatype manipulation. Note that, via Eq. 3, W4A4 guarantees overflow
avoidance for 16-bit accumulation in tiles of 128 elements. Therefore, we compare AXE to datatype
manipulation when constraining a model to target 16-bit accumulation in tiles of 128 elements (i.e.,
128×16b). We provide our perplexity results in Table 5 along with the 32-bit accumulator baselines
(i.e., 128× 32b) as well as the original 32-bit floating-point perplexities.

Note that AXE enables low-precision accumulation for Llama3 with minimal degradation from the
unconstrained baselines. As discussed in Section 3.2, AXE has the desired feature of being func-
tionally equivalent to the underlying algorithm (e.g., OPTQ or GPFQ) when the accumulator is large
enough (e.g., 32 bits). Thus, one should expect these benefits to manifest most when targeting low-
precision accumulators (e.g., 16 bits) but not high-precision accumulators (e.g., 32 bits), as observed
in Table 5. Furthermore, the gap between the constrained and unconstrained baseline decreases as
the model size increases. This result supports our scaling hypothesis in Section 4.2 as well as our
results with the Pythia model family.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 5: We report the WikiText2 perplexity when evaluating Llama3 models quantized for 16-bit
accumulation in tiles of 128 elements (denoted “128 × 16b”). We compare AXE against datatype
manipulation (denoted “Base”), which serves as the only alternative for billion-parameter models.
Note the 128× 32b baseline is W4A8 while the 128× 16b baseline is W4A4.

3.2-1B 3.2-3B 3.1-8B
Float16 11.8 9.1 6.5

OPTQ
(128×32b)

Base 14.5 10.2 7.5
AXE 14.4 10.2 7.5

OPTQ
(128×16b)

Base inf inf inf
AXE 14.9 10.4 7.6

To collect these results, we use the same quantization scheme discussed in Appendix C aside from
using per-token dynamic activation scaling rather than per-tensor, which improves model quality
without impacting our accumulator constraint guarantees. We use the same quantization process
described in Appendix C, but remove bias correction, which seems to have minimal impact on these
models. We perform a light grid search over SmoothQuant’s α parameter and find α = 0.4 to
generally perform the best on average for these models.

E ZERO-SHOT REASONING DETAILS

We provide the detailed zero-shot reasoning results presented in Section 4.2 for GPFQ and OPTQ.
We present the results for the Pythia model suite in Table 6. We quantize all models to W4A8
and use AXE to constrain quantized models for 16-bit multi-stage accumulation in tiles of size 128
elements (denoted 128×16b). We compare against the unconstrained baselines (denoted Base). We
report the geometric average calculated over 6 reasoning task evaluations: ARC-easy (ARC-E) and
ARC-challenge (ARC-C) (Clark et al., 2018), HellaSwag (HS) (Zellers et al., 2019), LAMBADA
(LA) (Radford et al., 2019), PIQA (Bisk et al., 2020), and Winogrande (Wino) (Sakaguchi et al.,
2021). We use the LM Evaluation Harness benchmarking suite (Gao et al., 2023) for zero-shot
reasoning without changing other default parameters. We use our functionally equivalent memory-
efficient GPFQ formulation to scale to larger language models (see Appendix B).

F PARETO FRONTIER DETAILS

We provide the detailed Pareto frontiers visualized in Figure 1 for GPFQ and OPTQ. For each
model, we report the perplexity, quantization configuration, and unstructured weight sparsity.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 6: We provide the details of the zero-shot reasoning tasks presented in Section 4.2.

Model Algorithm Variant PPL Avg. ARC-C ARC-E HS LA PIQA Wino

Pythia-70M

Float - 45.2 32.9 17.5 37.5 26.7 22.7 59.8 52.9

GPFQ* Base 61.7 26.4 16.1 35.6 26.8 7.3 58.1 51.7
128×16b 81.9 22.8 17.8 34.2 26.4 2.9 57.5 51.9

OPTQ Base 65.4 29.0 17.5 36.0 26.5 11.8 58.4 52.2
128×16b 201.4 22.2 18.6 34.1 26.6 2.4 55.9 51.9

Pythia-160M

Float - 26.7 34.9 19.5 43.6 28.4 35.4 62.3 51.3

GPFQ* Base 40.1 26.6 19.2 39.4 27.9 6.5 60.2 49.2
128×16b 47.1 18.0 18.3 38.4 27.6 0.4 58.5 52.1

OPTQ Base 46.6 31.4 19.2 39.4 28.0 18.7 61.2 53.0
128×16b 131.8 24.1 21.0 36.0 27.3 3.4 58.3 49.3

Pythia-410M

Float - 15.9 43.6 21.4 51.9 33.7 51.6 66.7 53.4

GPFQ* Base 23.0 34.0 20.1 46.0 31.8 15.7 63.7 52.6
128×16b 25.9 31.5 18.9 41.0 30.3 12.5 62.1 53.4

OPTQ Base 28.9 38.4 20.7 47.5 32.2 29.7 64.2 52.7
128×16b 60.7 29.3 20.7 40.7 30.2 8.0 60.6 51.5

Pythia-1.0B

Float - 13.2 47.3 24.4 57.0 37.8 56.3 70.7 53.4

GPFQ* Base 14.7 42.4 21.0 50.2 35.2 44.5 65.8 53.2
128×16b 15.4 41.9 20.9 50.8 34.3 44.4 65.1 51.9

OPTQ Base 14.7 43.9 22.4 51.0 36.5 46.9 67.2 54.3
128×16b 16.2 40.0 22.2 48.0 35.2 32.4 65.0 51.8

Pythia-1.4B

Float - 11.8 50.2 26.1 60.5 40.4 61.7 70.8 57.5

GPFQ* Base 15.7 39.5 23.3 53.5 36.4 22.4 66.5 55.9
128×16b 16.8 37.7 22.4 52.6 35.8 18.4 65.7 56.3

OPTQ Base 15.7 44.7 23.7 55.2 38.5 42.6 67.2 55.6
128×16b 18.6 43.1 23.1 53.5 37.1 39.4 65.9 53.9

Pythia-2.8B

Float - 10.2 53.9 29.4 64.4 45.3 64.7 74.0 60.1

GPFQ* Base 13.3 44.1 26.2 57.1 40.7 30.9 69.6 56.2
128×16b 14.3 42.9 24.2 55.6 40.0 28.4 70.2 58.2

OPTQ Base 17.3 46.5 26.7 59.4 42.4 37.0 70.7 57.7
128×16b 16.6 45.8 26.0 58.2 41.0 37.5 68.8 57.5

Pythia-6.9B

Float - 9.2 56.1 31.5 67.3 48.1 67.1 75.2 60.7

GPFQ* Base 14.2 40.0 28.5 56.5 40.9 15.4 70.2 57.4
128×16b 15.2 39.3 27.2 55.8 39.9 15.1 69.4 57.9

OPTQ Base 13.5 47.3 29.1 62.8 45.4 32.9 70.7 57.9
128×16b 16.2 45.6 29.9 59.7 44.0 27.0 70.7 59.8

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 7: GPFQ: We provide the test perplexity (PPL) and quantization configuration of the Pareto-
optimal models that form the frontiers visualized in Figure 1. Note that M and N respectively
denote the weight and activation bit widths.

Model P GPFQ GPFQ+EP-init GPFQ+AXE
PPL (M,N) Sparsity PPL (M,N) Sparsity PPL (M,N) Sparsity

OPT-125M
(Float: 27.7)

16 - - - 9148.8 (3,4) 76.5 249.8 (3,6) 55.6
17 - - - 7624.6 (3,4) 72.7 91.2 (4,6) 37.9
18 11007.2 (3,3) 58.3 7471.2 (3,5) 75.5 41.8 (4,6) 27.8
19 9567.6 (3,4) 54.5 1059.3 (5,6) 39.1 32.3 (4,7) 27.0
20 874.4 (3,5) 50.5 86.1 (5,6) 29.8 29.3 (5,7) 15.7
21 101.0 (3,6) 46.4 42.4 (5,7) 28.1 28.6 (5,8) 15.6
22 40.5 (4,6) 26.3 30.4 (6,7) 16.0 28.1 (6,8) 9.6
23 31.8 (4,7) 25.9 29.5 (6,8) 15.9 27.9 (6,8) 8.6
24 29.0 (5,7) 14.7 28.2 (7,8) 9.5 27.8 (7,8) 5.4
32 27.8 (8,8) 3.8 27.8 (8,8) 5.3 27.8 (8,8) 3.8

GPT2-137M
(Float: 29.9)

16 - - - 3345.8 (3,3) 93.2 552.4 (3,6) 55.4
17 - - - 2705.3 (3,6) 75.1 310.1 (3,7) 52.8
18 3760.3 (3,3) 82.3 1100.5 (4,5) 52.9 134.3 (4,7) 34.9
19 2782.2 (3,4) 43.9 402.9 (4,6) 47.3 67.5 (4,7) 25.6
20 742.4 (3,5) 55.3 213.2 (4,7) 44.3 40.4 (4,8) 24.5
21 356.2 (3,6) 48.8 85.2 (5,7) 24.9 33.2 (5,8) 13.2
22 189.9 (4,6) 26.4 46.3 (5,8) 23.8 32.1 (6,8) 7.3
23 65.8 (4,7) 24.7 34.2 (6,8) 13.0 31.8 (6,8) 6.3
24 39.8 (4,8) 23.8 32.1 (7,8) 7.1 31.5 (7,8) 3.2
32 31.5 (8,8) 1.6 31.6 (8,8) 3.2 31.5 (8,8) 1.6

Pythia-160M
(Float: 26.7)

16 - - - 4501.1 (3,4) 76.8 386.0 (3,6) 53.2
17 - - - 3095.1 (3,5) 72.5 198.6 (3,6) 46.3
18 9887.1 (3,3) 49.4 1070.2 (4,5) 46.7 74.5 (4,6) 25.1
19 1946.8 (3,4) 49.8 391.7 (4,6) 42.9 46.2 (4,7) 24.4
20 456.2 (3,5) 47.8 117.5 (5,6) 23.6 34.6 (5,7) 13.3
21 198.3 (3,6) 45.1 78.5 (5,7) 23.4 32.4 (5,8) 13.3
22 69.6 (4,6) 23.5 48.6 (5,7) 21.2 30.1 (6,8) 7.8
23 44.4 (4,7) 22.6 37.2 (6,8) 13.0 28.2 (6,8) 5.5
24 33.2 (5,7) 11.3 31.8 (7,8) 7.4 27.6 (7,8) 2.8
32 27.4 (8,8) 1.4 27.5 (8,8) 2.7 27.4 (8,8) 1.4

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 8: OPTQ: We provide the test perplexity (PPL) and quantization configuration of the Pareto-
optimal models that form the frontiers visualized in Figure 1. Note that M and N respectively
denote the weight and activation bit widths.

Model P OPTQ OPTQ+EP-init OPTQ+AXE
PPL (M,N) Sparsity PPL (M,N) Sparsity PPL (M,N) Sparsity

OPT-125M
(Float: 27.7)

16 - - - 3333.8 (4,5) 62.2 225.0 (3,6) 52.8
17 - - - 1722.6 (4,5) 53.6 80.2 (3,6) 45.7
18 9942.5 (3,3) 54.5 409.8 (5,5) 36.1 41.3 (4,6) 26.6
19 8278.3 (3,4) 47.5 136.0 (5,6) 35,7 35.0 (5,6) 15.1
20 281.1 (3,5) 45.5 46.9 (5,6) 26.8 31.3 (5,6) 14.2
21 60.4 (3,6) 44.7 40.1 (5,7) 26.8 29.0 (5,7) 14.2
22 35.7 (4,6) 25.8 30.3 (6,7) 15.6 28.5 (5,8) 14.2
23 31.5 (5,6) 14.6 29.7 (6,8) 15.6 28.0 (6,8) 8.6
24 29.2 (5,7) 14.6 28.1 (7,8) 9.5 27.8 (7,8) 5.4
32 27.8 (8,8) 2.2 27.8 (8,8) 5.6 27.8 (8,8) 2.2

GPT2-137M
(Float: 29.9)

16 - - - 2765.6 (4,4) 52.6 1513.6 (4,5) 34.0
17 - - - 2465.0 (4,4) 49.0 496.4 (3,6) 43.4
18 4140.7 (3,3) 59.3 2465.0 (4,4) 49.0 117.9 (4,6) 24.2
19 2782.2 (3,4) 43.9 1108.4 (5,6) 34.5 59.9 (4,7) 24.2
20 2149.8 (4,4) 26.0 361.7 (4,7) 43.6 45.5 (5,7) 13.1
21 1153.8 (4,5) 24.7 73.1 (5,7) 24.7 37.3 (5,8) 13.2
22 176.9 (4,6) 24.0 42.7 (5,8) 24.5 33.1 (6,8) 12.2
23 50.1 (4,7) 23.2 33.5 (6,8) 13.4 32.1 (6,8) 6.2
24 37.4 (5,7) 12.2 32.0 (7,8) 7.3 31.8 (7,8) 3.1
32 31.8 (8,8) 1.6 31.7 (8,8) 3.3 31.7 (8,8) 1.6

Pythia-160M
(Float: 26.7)

16 - - - 6739.6 (4,6) 79.7 1521.2 (3,5) 41.7
17 - - - 5345.7 (4,5) 49.9 311.7 (4,5) 22.9
18 27098.1 (3,3) 40.5 1372.4 (4,5) 41.1 126.1 (4,6) 23.1
19 5644.0 (3,4) 40.3 641.2 (4,6) 41.0 61.4 (4,6) 21.3
20 948.4 (3,5) 40.1 132.9 (5,6) 23.4 43.5 (5,6) 10.9
21 151.3 (4,5) 21.4 108.5 (5,7) 23.5 32.8 (5,7) 10.9
22 61.4 (4,6) 21.3 74.1 (5,7) 22.0 30.0 (5,8) 10.9
23 43.3 (5,6) 10.9 40.4 (6,8) 13.0 28.0 (6,8) 5.5
24 32.8 (5,7) 10.9 32.1 (7,8) 7.5 27.4 (7,8) 2.7
32 27.2 (8,8) 1.4 27.6 (8,8) 2.9 27.2 (8,8) 1.4

22

	Introduction
	Preliminaries
	Post-Training Quantization
	Low-Precision Accumulation
	Accumulator-Aware Quantization

	Accumulator-Aware Post-Training Quantization
	Accumulator Constraints without Zero-Centering
	Accumulator-Aware GPFQ
	AXE: Accumulator-Aware Extensions

	Experiments
	Optimizing for Accumulator Constraints
	Low-Precision Accumulation for Large Language Models

	Discussion and Conclusions
	Psuedo-code for Accumulator-Aware Variants of GPFQ and OPTQ
	Memory-Efficient GPFQ
	Experimental Details & Ablations
	Hyperparameters & Quantization Schemes
	Ablation Studies

	Additional Experiments with Llama3
	Zero-Shot Reasoning Details
	Pareto Frontier Details

