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Abstract

We present SciRIFF (Scientific Resource001
for Instruction-Following and Finetuning), a002
dataset of 137K instruction-following instances003
covering 54 tasks. These tasks span five core004
scientific literature understanding capabilities:005
information extraction, summarization, ques-006
tion answering, claim verification, and clas-007
sification. SciRIFF is unique in being the008
only all expert-written, high-quality instruction-009
following dataset designed for extracting and010
synthesizing information from research litera-011
ture across diverse scientific fields. It features012
complex instructions with long input contexts,013
detailed task descriptions, and structured out-014
puts. To demonstrate its utility, we finetune015
a series of large language models (LLMs) us-016
ing a mix of general-domain and SciRIFF in-017
structions. On nine out-of-distribution held-018
out tasks (referred to as SciRIFF-Eval), LLMs019
finetuned on SciRIFF achieve 70.6% average020
improvement over our baselines trained only021
on general-domain instructions. SciRIFF facili-022
tates the development and evaluation of LLMs023
to help researchers navigate the rapidly grow-024
ing body of scientific literature.025

1 Introduction026

Large language models (LLMs) have the poten-027

tial to advance scientific progress by helping028

researchers navigate and draw insights from the029

scientific literature. To accomplish these tasks,030

LLMs must be able to reliably follow a range031

of instructions—e.g. to extract information,032

summarize content, or answer questions—when033

given research articles as input. These instruc-034

tions are often grounded on entire scientific035

articles, featuring longer inputs than other typical036

instruction-following resources in science domain.037

In addition, the model’s responses may need to be038

structured according to a specific format or schema039

that supports aggregation for literature review040

(Marshall and Wallace, 2019), or is consumable041

by software components like augmented reading 042

interfaces (Lo et al., 2023; Palani et al., 2023). For 043

example, when analyzing clinical trials, responses 044

should follow a PICO framework (Population, 045

Intervention, Comparison, Outcome), or when 046

examining methodology papers, follow a standard- 047

ized format capturing study design, sample size, 048

statistical methods, and key findings. Additionally, 049

outputs must be machine-readable, such as JSON 050

formats that capture relationships between entities 051

(e.g., protein-protein interactions in biochem- 052

istry papers) or structured evidence for claims 053

(e.g., “claim”: “Coffee consumption 054

reduces diabetes risk”, “evidence”: 055

[“Study A shows 23% risk reduction”, 056

“Meta-analysis B confirms protective 057

effect”], “confidence”: “moderate”). 058

While bespoke models are available for specific 059

scientific literature understanding tasks, models 060

that can flexibly follow instructions in domain- 061

specific settings of science are preferable both for 062

their ease of use (offering a unified input / output 063

interface) and for their ability to generalize to novel 064

applications and settings within that domain. 065

The general instruction-following capabilities 066

of LLMs have advanced rapidly in recent years, 067

largely due to the availability of general-purpose in- 068

struction datasets (Zhang et al., 2023a). In addition, 069

some instruction-following resources are available 070

for specific scientific and medical tasks, such as 071

describing the properties of a molecule (Fang et al., 072

2024; Yu et al., 2024) or answering medical exam 073

questions (Toma et al., 2023; Han et al., 2023) (see 074

§5 for a review). However, few resources are avail- 075

able for supporting instruction-following for flexi- 076

ble scientific literature understanding capabilities 077

across a range of domains. 078

In this work, we present SciRIFF (Scientific 079

Resource for Instruction-Following and 080

Finetuning), a comprehensive dataset to en- 081

able progress on instruction-following over 082
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Figure 1: Example SciRIFF tasks. Given an input context from a research paper, the text prompt instructs an
LLM to perform an operation on the input—e.g. determine whether the abstract entails a scientific claim, extract
information over the full_text, answer a question, etc. The model’s output must conform to a task-specific,
user-specified structure. SciRIFF unifies 54 scientific literature understanding tasks under a common input /
output format, enabling the development of LLMs that can flexibly generalize to novel scientific use cases.

scientific literature. SciRIFF includes 137K083

demonstrations for 54 tasks spanning five broad084

scientific literature understanding task categories:085

information extraction, summarization, question086

answering, claim verification, and classification.087

SciRIFF covers five scientific domains, ranging088

from artificial intelligence to clinical medicine (Fig-089

ure 2). The tasks in SciRIFF are derived from chal-090

lenging scientific literature understanding datasets091

with real-world relevance, all of which include092

human-annotated inputs and responses. We opted093

for organic, human-annotated data rather than the094

synthetic or LLM-distilled instruction-following095

data explored in recent works (e.g., Lambert et al.,096

2024a), because human annotations better capture097

the nuanced domain expertise, complex structures098

and reasoning required for scientific tasks, while099

also providing a more reliable ground truth for eval-100

uating model performance on real-world scientific101

problems.102

Our resource is a unique and specialized103

instruction-following dataset. As illustrated in Fig-104

ure 1 and with sample prompt templates provided105

in Appendix C, it is characterized by: (1) ground-106

ing every instance in scientific articles or texts, (2)107

requiring structured and complex responses, such108

as answers paired with attributions (i.e., tracing the109

source of the answer), and (3) featuring longer in-110

put contexts compared to most existing resources111

in the science domain (see Figure 5 and Table 5112

in the Appendix). Notably, all our instruction tem-113

plates are created by human experts to ensure high 114

quality. 115

We also present a new benchmark dataset for 116

evaluating instruction-following capabilities of 117

LLMs in the science domain. We particularly hold 118

out a subset of SciRIFF for use as an evaluation 119

benchmark which covers a representative range 120

of skills and tasks, which we call SciRIFF-Eval 121

(§3.1). To demonstrate the utility of SciRIFF in im- 122

proving scientific literature instruction following, 123

we perform supervised finetuning experiments on 124

several LLMs ranging different sizes1. When fine- 125

tuned on a mix of SciRIFF and general open-source 126

instruction-following data (i.e., TULU v2 (Ivison 127

et al., 2023a)), our models show consistent im- 128

provements on SciRIFF-Eval compared to training 129

on general-domain instructions alone, even though 130

these evaluation tasks test true out-of-distribution 131

generalization with formats and templates entirely 132

excluded from training. 133

In summary, our contributions are as follows: 134

• We introduce SciRIFF, an expert-crafted, high- 135

quality, and comprehensive instruction-following 136

dataset with 137K instances covering a wide range 137

of tasks spanning five scientific domains. Many 138

tasks in SciRIFF feature long input contexts and 139

require structured and complex model responses. 140

• We supervise finetune a range of LLMs on 141

SciRIFF and demonstrate its effectiveness on 142

1Other types of post-training such as preference optimiza-
tion are outside our scope.
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instruction-following in scientific literature under-143

standing.144

• We release the SciRIFF dataset, our evaluation145

suite SciRIFF-Eval, and the model checkpoints,146

and code to reproduce our results.147

2 SciRIFF148

SciRIFF is a comprehensive instruction-tuning re-149

source for real-world scientific literature under-150

standing, consisting of 137k instructions and span-151

ning five broad task categories and five subject152

domains (Figure 1). Our focus is on document-153

grounded scientific literature understanding tasks,154

rather than tasks that evaluate scientific knowledge155

recall (Feng et al., 2024), or general mathemat-156

ical, reasoning-related problem-solving abilities157

without reference to scientific literature (e.g., Sci-158

Instruct (Zhang et al., 2024a), MMLU (Hendrycks159

et al., 2021a)). In addition to coverage of a wide160

range of tasks, the instructions in SciRIFF often161

are grounded in long inputs (i.e., scientific pa-162

pers), and they support structured outputs accord-163

ing to a specific schema useful for tasks in litera-164

ture understanding (such as relation extraction, fact165

checking with rationale selection, QA with attribu-166

tion, etc). The instances in SciRIFF are sourced167

from existing high-quality scientific datasets and168

converted into instructions using human expert-169

written and verified instruction templates. Out of170

54 tasks, 50 involve templates paired with man-171

ually crafted Python scripts. These scripts serve172

to extract ground-truth answers, postprocess (e.g.,173

removing duplicate named entity mentions), and174

normalization on the source datasets. This includes175

transforming raw data, such as span-level formats176

for encoder models, into instruction-following for-177

mats.178

2.1 Dataset construction179

We construct SciRIFF by sourcing from exist-180

ing, high-quality scientific literature understanding181

datasets for instruction-following—drawing inspi-182

ration from canonical resources like Flan (Longpre183

et al., 2023) and Super-NaturalInstructions (Wang184

et al., 2022). We then ask experts to write high-185

quality and carefully-vetted instruction templates186

which will convert original dataset instances to187

SciRIFF instances. We chose this approach rather188

than the alternative recent trend of generating syn-189

thetic data using an LLM (e.g., (Köksal et al., 2023;190

Li et al., 2023)). We believe it is sensible to ex-191

haust available human-annotated resources, which 192

we can be fairly confident are correctly-annotated, 193

before turning to potentially noisy synthetic data 194

(See Appendix C). For the same reason, we would 195

need high-quality evaluation data, which we con- 196

struct by holding out nine SciRIFF tasks as an eval- 197

uation benchmark (§3.1). We hope our resource 198

will provide valuable signals for future synthetic 199

data generation efforts. 200

Dataset selection criteria In forming SciRIFF, 201

we focus on scientific literature understanding tasks 202

in which the model is given a portion of scientific 203

text as input, and is instructed to produce a response 204

derived directly from the text. The task families 205

include summarization, reading comprehension, 206

information extraction and other tasks, and are 207

the most relevant setting for real-world use cases 208

(e.g., meta-analysis of literature, clinical decision- 209

making, augmented reading). We exclude datasets 210

that require retrieval from document collections 211

(e.g., open-domain QA), since it’s unclear how to 212

build instruction-response pairs from them. We 213

also exclude datasets that assess general reasoning 214

and mathematical problem-solving skills without 215

necessarily grounding on scientific literature, such 216

as ScienceQA (Lu et al., 2022), SciBench (Wang 217

et al., 2023b), and MATH (Hendrycks et al., 2021b) 218

since such resources already exist. Additionally, 219

we only keep datasets that are publicly available, 220

have a permissive license, and are well-documented 221

and actively maintained. See Appendix A.1 for the 222

complete task list. 223

Instruction templates Our approach to use 224

expert-designed templates2 ensures that the instruc- 225

tions are tailored to each dataset’s unique charac- 226

teristics, maximizing the quality and relevance of 227

the resulting dataset. The expert annotators3 repur- 228

posed tasks for natural instruction-following using 229

custom scripts, cleaned and refined outputs (such 230

as deduplicating named entities), and augmented 231

the templates with additional dataset metadata to 232

enhance usability. We use json as the common 233

output format for all structured tasks, which facili- 234

tates consistent evaluation and aligns with industry 235

trends to request JSON outputs. Instruction tem- 236

plates are written in Jinja (Pallets, 2024). 237

2We opted for a single template per dataset. Our initial
experiments with LLM-generated templates proved unsatis-
factory, as they often resulted in vague or noisy instructions
and failed to clearly specify the desired output format.

3The authors of the paper.
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Figure 2: Distribution of task categories and domains in SciRIFF. The numbers in the pie charts indicate the number
of datasets present in every task category/domain, while the numbers in brackets indicate the total number of
instances per task category/domain.

Quality Verification. To ensure high-quality,238

each template was verified by an additional annota-239

tor for clarity and correctness. We include guide-240

lines and best practices for prompt-writing in the241

release and aim to promote community contribu-242

tions for actively expanding SciRIFF through our243

open-sourced data collection process.244

2.2 Instruction Mix Statistics245

Figures 2a and 2b present an overview of the SciR-246

IFF training set distribution over task categories247

and domains respectively. The domain distribu-248

tion reflects the current landscape of available high-249

quality scientific datasets (e.g., Reid et al., 2022),250

with a notable representation from the biomedicine251

and AI domain. This aligns with our dataset se-252

lection criteria, which prioritize well-documented253

resources with permissive licenses. Given the sig-254

nificant presence of information extraction tasks,255

a large percentage of datasets in SciRIFF (34256

datasets; 63%) require structured outputs.257

We construct three instruction mixes from this258

dataset collection, with maximum context lengths259

(input + output tokens) of 4,096, 8,192 and 16,382260

per instance (longer instances are truncated where261

possible and discarded otherwise; see Appendix262

A.3). Due to model and hardware limitations, we263

conduct experiments in this work using the SciR-264

IFF-4096 mixture, and make the longer mixtures265

available to enable future research. In what follows,266

we refer to SciRIFF-4096 simply as SciRIFF.267

3 Experiment setup268

We conduct supervised finetuning experiments to269

evaluate the effectiveness of SciRIFF in improv-270

ing LLM performance on scientific instruction-271

following tasks across various model families272

and sizes. Our experiments explore different273

data configurations and their impact on scien- 274

tific instruction-following as measured through 275

SciRIFF-Eval described in §3.1. 276

3.1 Evaluation 277

SciRIFF-Eval We selected a set of 9 tasks from 278

SciRIFF for evaluation, designed to cover a diverse 279

range of task categories and scientific domains. 280

SciRIFF tests true out-of-distribution generaliza- 281

tion with formats and templates entirely excluded 282

from training. The inputs, outputs, and evaluation 283

metrics for each task are detailed in Table 1. Addi- 284

tional details are included in Appendix E. 285

3.2 Scientific Instruction Finetuning 286

Using SciRIFF, our goal is to adapt pre-trained 287

LLMs to the scientific literature domain. We con- 288

duct supervised fine-tuning experiments using a 289

range of models and data configurations to assess 290

the effectiveness of SciRIFF. In §4.2, we present an 291

additional analysis examining the potential of using 292

SciRIFF for further finetuning of instruction-tuned 293

models, exploring a compute-efficient strategy for 294

adapting generic models to scientific literature do- 295

mains. 296

Data sources We finetune using two primary 297

datasets: (1) SciRIFF, and (2) Tülu V2 Mix (Ivi- 298

son et al., 2023b), an open-source high-quality 299

general-domain instruction-following dataset that 300

includes demonstrations from various sources, both 301

human-written (e.g., Flan (Wei et al., 2022)) and 302

distilled from proprietary LLMs (e.g., ShareGPT4, 303

Open Assistant5). The original Tülu V2 Mix 304

contains 326,154 examples, including 7.5K scien- 305

tific literature understanding demonstrations which 306

overlap (i.e. contaminated) with our evaluation set 307

4https://sharegpt.com/
5https://github.com/LAION-AI/Open-Assistant
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Name Type Input Output Metrics

BioASQ List QA QA Question, paper excerpts Answer entities Exact match F1
BioRED IE(NER) Biomedical abstract 6 entity types Exact match F1
DiSCoMaT IE(Table) LaTex table excerpt Table entries BLEU score
MultiCite (MC) Classification Citation context Citation intents Exact match F1
MuP Summarization ML paper full text Peer review summary LLM judge similarity
Qasper QA NLP paper question Answer / Attribution LLM judge similarity / Token F1
SciERC IE(Rel) CS abstract 6 entity types Exact match F1
SciFact Entailment Claim, abstract Verdict / Evidence Label F1 / Token F1

Table 1: Evaluation tasks included in SciRIFF-Eval. “/” separators indicate two separate subtasks. We use GPT-4o
as our LLM judge and evaluate similarity on a 1-5 scale; see Appendix E for details.

SciRIFF-Eval. We remove those 7.5K examples308

for clean experiments and to avoid contamination309

with SciRIFF-Eval. For all experiments, we consis-310

tently use this filtered version and refer to this as311

Tülu V2 Mix to maintain controlled finetuning and312

unbiased evaluations.313

Base models We use several base LLMs as start-314

ing points for our finetuning experiments: Llama315

3.1-8B (Touvron et al., 2023), Llama 3.2-3B316

(Dubey et al., 2024), and Qwen 2.5-1.5B (Yang317

et al., 2024).6 While our primary focus is on im-318

proving base models, we also experiment with mod-319

els that have undergone proprietary instruction tun-320

ing and preference optimization (“–instruct” ver-321

sions) (Ouyang et al., 2022). Although direct com-322

parisons with these proprietary posttrained models323

are complicated by unknown training details, we324

show that SciRIFF can provide additional value325

even in these cases. We note, however, that our326

main results and analyses focus on the controlled327

experiments with base models where we can fully328

account for all training conditions.329

Finetuning data configurations For each model,330

we explore three data configurations: (1) Tülu331

V2 Mix only, to establish a baseline for general332

instruction-following; (2) SciRIFF only, to assess333

the impact of scientific instruction data in isolation;334

and (3) SciRIFF+Tülu, combining the general and335

scientific instruction data.336

4 Results337

This section discusses our key results and findings.338

4.1 Main Results339

We report our main experimental results in Table 2.340

For fair comparison, all models are finetuned on the341

6Due to compute resource constraints, we were not able
to train larger models for all the model families. How-
ever, as shown in §4.1 improvements are consistent across
sizes/families.

same data mixes. We show that including SciRIFF 342

instances results in the best average performance 343

in each model family. We report GPT-4o and GPT- 344

4o-mini as strong baselines. Our key observations 345

and findings are below: 346

SciRIFF enhances scientific literature under- 347

standing Table 2 shows that finetuning on SciR- 348

IFF consistently enhances the overall performance 349

on SciRIFF-Eval. Compared to the corresponding 350

base models finetuned on Tülu, SciRIFF-trained 351

models achieve, on average, 70.6% performance 352

gain. For example, the Qwen 2.5 1.5B model im- 353

proves from 29.1 to 57.2 in average score with 354

SciRIFF alone, and further to 59.1 with SciR- 355

IFF+Tülu. Furthermore, without exception, SciR- 356

IFF also adds values when used to finetune “– 357

instruct” versions of models (44.6% on average). 358

Across all model groups, the “–instruct” variants 359

trained exclusively on SciRIFF achieve the high- 360

est average scores within their respective groups. 361

Finally, while GPT-4o and GPT-4o-mini serve as 362

strong proprietary baselines with average scores of 363

60.4 and 58.0 respectively, out of the twelve mod- 364

els trained with the inclusion of SciRIFF instances, 365

nine outperform GPT-4o on SciRIFF-Eval, with 366

Qwen 2.5 1.5B showing the most significant im- 367

provement. These results indicate that our special- 368

ized SciRIFF can substantially enhance scientific 369

literature understanding and extraction capabilities 370

beyond what general or proprietary instruction data 371

provides. 372

Task-specific impacts and room for improve- 373

ment Beyond the overall improvements, SciR- 374

IFF training achieves particularly large gains on 375

the three IE tasks (BioRED, DiSCoMaT, and Sci- 376

ERC). Relative to their Tülu-only counterparts, 377

SciRIFF-finetuned base models improve IE perfor- 378

mance by, on average, 200.4%, while "–instruct" 379

models see an average 139.8% improvement. In 380
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Model Data BioASQ BioR DiscMT EI MC MuP Qasper SciERC SciFact Avg.

GPT-4o - 48.3 63.6 71.3 25.9 62.0 88.3 54.0 / 55.0 40.3 85.5 / 70.4 60.4
GPT-4o-mini - 49.6 53.7 75.6 27.7 54.8 88.8 61.7 / 46.7 33.1 82.7 / 63.6 58.0

Qwen 2.5 1.5B--Instruct - 38.9 19.7 35.5 10.5 36.9 80.8 38.8 / 39.4 20.8 55.0 / 31.5 37.1
SciRIFF 48.1 79.7 80.6 20.9 70.9 67.3 42.8 / 54.3 52.0 80.9 / 68.9 60.6
SciRIFF+Tülu 49.3 80.1 79.5 21.3 70.8 61.3 45.8 / 48.6 51.0 78.5 / 70.1 59.7

Qwen 2.5 1.5B Tülu 35.7 23.4 31.8 7.6 6.6 73.0 25.0 / 23.2 12.0 52.4 / 29.5 29.1
SciRIFF 43.6 81.8 45.6 18.9 71.2 67.8 47.0 / 51.4 52.7 78.8 / 70.5 57.2
SciRIFF+Tülu 46.5 79.0 78.3 19.4 70.2 63.8 40.4 / 49.7 51.7 80.9 / 70.6 59.1

Llama 3.2 3B--Instruct - 42.9 35.9 61.0 11.2 47.3 86.0 43.9 / 35.8 20.8 59.5 / 40.0 44.0
SciRIFF 42.7 84.0 83.4 25.5 71.4 64.8 50.0 / 57.1 58.2 86.8 / 70.5 63.1
SciRIFF+Tülu 43.0 83.3 82.9 21.7 72.2 69.0 51.9 / 58.2 53.3 85.6 / 70.3 62.8

Llama 3.2 3B Tülu 35.5 30.1 46.7 3.1 44.0 75.6 47.4 / 34.4 20.3 55.4 / 36.6 39.0
SciRIFF 43.6 84.2 83.2 25.2 71.7 64.3 46.0 / 57.2 57.2 81.6 / 65.8 61.8
SciRIFF+Tülu 46.0 84.3 83.3 24.6 72.7 65.5 47.7 / 56.3 57.0 82.7 / 71.2 62.8

Llama 3.1 8B--Instruct - 43.7 48.8 62.2 17.8 48.8 88.3 54.0 / 43.0 30.6 66.7 / 51.7 50.5
SciRIFF 45.9 86.0 83.7 25.0 71.4 70.5 53.3 / 54.1 56.8 85.8 / 72.5 64.1
SciRIFF+Tülu 48.8 84.7 83.6 26.6 71.3 66.0 50.9 / 55.2 54.4 85.5 / 70.2 63.4

Llama 3.1 8B Tülu 44.4 42.8 51.8 1.1 39.4 80.8 42.8 / 28.6 24.3 50.0 / 33.6 40.0
SciRIFF 46.2 84.2 83.9 23.5 71.0 68.5 49.8 / 52.2 56.2 83.3 / 71.9 62.8
SciRIFF+Tülu 41.6 85.2 78.7 28.2 71.6 70.5 47.9 / 61.0 58.1 87.4 / 71.2 63.8

Table 2: Performance on SciRIFF-Eval tasks across model families and training configurations. For base models,
we compare SciRIFF against Tülu on scientific understanding tasks. GPT-4o and GPT-4o-mini serve as strong
baselines. Best performance per model group is bolded. Columns with a “/” indicate two evaluation metrics as
described in §3.1.

contrast, performance on the summarization task381

(MuP) generally shows decreases after SciRIFF382

finetuning. This suggests that while SciRIFF is383

particularly effective for enhancing IE capabilities,384

it may not provide additional benefits for summa-385

rization tasks that are likely well-covered in gen-386

eral instruction-following. Additionally, we hy-387

pothesize that MuP’s evaluation approach (LLM-388

as-Judge against a gold reference) might penalize389

stylistic or structural shifts in answers that devi-390

ate from the reference. The fact that GPT-4o and391

our strong finetuned models achieve only an aver-392

age score of around 60 highlights the difficulty of393

SciRIFF-Eval. Model performance remains rela-394

tively low on tasks like EI; This is due to a combi-395

nation of task difficulty and evaluation challenges,396

which we discuss in §6.397

Balancing scientific and general data As shown398

in Table 2, combining SciRIFF and Tülu V2 Mix399

training data (SciRIFF+Tülu) yields the best per-400

formance on SciRIFF-Eval for base models. This401

suggests that incorporating general instruction-402

following data may provide some broader capabil-403

ity transfer, which base models particularly benefit404

from, though the impact remains limited (within 405

2.2%). On the other hand, for “–instruct” models 406

training exclusively on SciRIFF data proves more 407

effective, but similarly trivially (within 1% on aver- 408

age). 409

Checkpoint SciRIFF Tülu-V2 Total

Llama 2 base 35,357 318,686 354,043
Tülu V2 35,357 35,357 70,714

Table 3: SciRIFF and Tülu V2 Mix instances used for
finetuning described in §4.2, with nsci = 1000.

4.2 Continual Finetuning Analysis 410

In early phase of our experiments, we study strate- 411

gies for efficient adaptation. Specifically, we exam- 412

ined whether starting from an existing instruction- 413

tuned checkpoint (on general instruction-following 414

data) could provide compute advantages over train- 415

ing from scratch, without hurting SciRIFF-Eval 416

performance. For this controlled experiment, we 417

selected two starting points: (1) Llama 2 base and 418

(2) the same model already finetuned on science- 419

decontaminated Tülu V2 Mix (referred to as Tülu 420

V2). 421
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Model Data 7B Sci. 70B

Llama 2 Tülu 36.7 47.5
SciRIFF 48.0 51.1
SciRIFF+Tülu 46.0 50.8

Tülu V2 SciRIFF 47.0 48.8
SciRIFF+Tülu 47.0 50.7

Table 4: Comparison of SciRIFF-Eval (Sci.) perfor-
mance for models finetuned from Llama 2 base and
Tülu V2 (science-decontaminated), at both 7B and 70B
scales. Best performance in each group is bolded.

We explored different training approaches for422

each starting point. For Llama 2 base, we train on423

all available Tülu V2 Mix demonstrations, com-424

bined with 1000 instances per SciRIFF task, given425

the empirical findings in Section 4.3. For the Tülu426

V2 starting point, we perform continual finetuning427

using 1000 instances per SciRIFF task, together428

with a matching number (1000) of instances sam-429

pled from Tülu V2 Mix.430

Table 4 reports average SciRIFF-Eval perfor-431

mance for our two starting checkpoints using three432

data configurations. Despite using a smaller total433

amount of training data, starting from Tülu V2434

performs comparably to Llama 2 base while re-435

quiring only 20% of the compute. When trained436

on SciRIFF+Tülu data, models from both starting437

points achieve similar performance: Tülu V2 is438

slightly better on science at 7B and nearly identi-439

cal at 70B. Given that finetuning Tülu V2 requires440

only 20% of the data (Table 3), this suggests a po-441

tential for compute-efficient adaptation of strong442

instruction-following models to scientific domains.443

This aligns with findings from prior works, e.g.444

Dong et al. (2024); Shi et al. (2023). While our445

main experiments (§3.2) now use other model ar-446

chitectures7, this analysis demonstrates how practi-447

tioners can study the learning behavior of a specific448

model family to identify compute-efficient adapta-449

tion strategies. When combined with the analysis450

in the following Section 4.3, these insights can help451

determine optimal training configurations for SciR-452

IFF when working with a fixed model architecture.453

4.3 Instruction Data Scale454

We define nsci as the number of instances per SciR-455

IFF task. Figure 3 shows that performance on456

SciRIFF-Eval increases sharply as nsci rises from457

100 to 500 and levels off subsequently. We found458

7Due to compute limitation, we do not perform similar
continual finetuning analysis on all other models.
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Figure 3: Performance on SciRIFF-Eval as a function
of nsci, the number of science instances per task. Per-
formance gains largely saturate by nsci = 1000. Experi-
ments are done on Llama 2 and our Tülu V2 7B models.
We extrapolate the finding to settings in §3.2.

that 1,000 instances per science task are sufficient 459

for peak performance for Llama 2 models. 460

Therefore, we set nsci = 1000 across our exper- 461

iments in the continual finetuning analysis (§4.2) 462

based on these findings. 463

5 Related Work 464

Strategies for creation of instruction-following 465

resources. Instruction tuning has emerged as a 466

crucial technique for enhancing generalizability 467

and controllability of LLMs (Wei et al., 2022; 468

Sanh et al., 2022; Mishra et al., 2022; Ivison et al., 469

2023b). Instruction-following resource creation 470

strategies have been explored, such as repurposing 471

existing datasets using human-written instruction 472

templates (Wei et al., 2022; Chung et al., 2024; 473

Sanh et al., 2022), crowdsourcing instructions 474

[ Databricks (2023); Zhou et al. (2023); Mishra 475

et al. (2021), ShareGPT8] and generating synthetic 476

data. As LLM capabilities grow, synthetic instruc- 477

tion generation approaches, often including hu- 478

mans in the loop as correctors, have shown promis- 479

ing results. Broadly, these approaches use LLMs 480

to either generate new dataset/task instances along- 481

side instructions (Wang et al., 2023c; Xu et al., 482

2024; Nayak et al., 2024; Lou et al., 2024), or to 483

“back-translate” existing datasets into instructions 484

(Yin et al., 2023; Köksal et al., 2023; Li et al., 2023). 485

In this work, we create instructions using human- 486

written templates (§2.1) for quality assurance. 487

Instruction-following resources for scientific 488

literature. While numerous open-domain 489

8https://sharegpt.com/
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instruction-following collections exist, resources490

for enhancing and evaluating LLMs’ instruction-491

following capabilities on scientific literature492

are limited. Such resources are critical for493

developing models that can assist researchers494

and accelerate scientific discovery (Taylor et al.,495

2022; Xie et al., 2023). Recent work has taken496

steps in this direction with the development of497

instruction-following datasets for specific domains498

such as mathematics (Yue et al., 2024a,b; Shao499

et al., 2024; Luo et al., 2023; Tang et al., 2024;500

Toshniwal et al., 2024), medicine (Parmar et al.,501

2022; Wu et al., 2024; Rohanian et al., 2023),502

chemistry (Yu et al., 2024; Zhang et al., 2024b),503

molecular biology (Fang et al., 2024; Tran et al.,504

2023), materials science (Song et al., 2023),505

and college-level foundational science (Zhang506

et al., 2024a). Besides domain limitations, these507

resources primarily focus on improving LLMs’508

abilities to solve college-level science problems509

or reasoning tasks (see also, MMLU (Hendrycks510

et al., 2021a), SciEval (Sun et al., 2023), Theo-511

remQA (Chen et al., 2023), SciBench (Wang et al.,512

2023b), and GPQA (Rein et al., 2023)). In contrast,513

SciRIFF both covers a broader set of scientific514

domains and focuses on document-grounded515

scientific literature understanding tasks that can516

power real-world scientific use cases. Another517

distinguishing factor of our work is our inclusion518

of tasks that require structured outputs, following a519

uniform JSON output format, besides text-to-text520

tasks. Some instruction-tuning resources have521

explored structured output formats (Zhang et al.,522

2023b; Wang et al., 2023a; Jiao et al., 2023; Gao523

et al., 2023), but not with a focus on scientific524

literature. Finally, most datasets in SciRIFF require525

long input contexts, leading to longer instruction526

contexts than prior works (see Appendix Table 5527

for a comparison).528

Other scientific literature benchmarks. Prior529

works have developed benchmarks to improve530

and assess scientific literature understanding. No-531

table efforts in the biomedical domain include532

BLUE (Peng et al., 2019), BLURB (Gu et al.,533

2021), InBoXBART (Parmar et al., 2022), and Big-534

Bio (Fries et al., 2022); SciRIFF covers a broader535

set of domains than these resources. Other efforts536

such as SciRepEval (Singh et al., 2023), Galac-537

tica (Taylor et al., 2022), and AcademicGPT (Wei538

et al., 2023) cover domains beyond biomedicine,539

but are not suitably formatted for training or540

evaluating instruction-following models. Sci- 541

ASSESS (Cai et al., 2024) evaluates LLMs’ pro- 542

ficiency in scientific literature analysis, focusing 543

on tasks like memorization and reasoning. Li et al. 544

(2024) introduce a hybrid strategy that combines 545

continual pretraining and supervised finetuning to 546

specialize LLMs for scientific literature understand- 547

ing, along with SciLitIns - a synthetically generated 548

instruction dataset. In contrast, SciRIFF provides 549

fully expert-written instructions with structured out- 550

puts, serving both as a benchmark and training re- 551

source for advancing LLMs in scientific literature 552

tasks and downstream applications. 553

6 Conclusion and Future Work 554

In this work, we introduced SciRIFF, a resource to 555

facilitate progress on LLM instruction-following 556

over scientific literature. We demonstrated that 557

training on SciRIFF leads to significant improve- 558

ment of model performance on held-out scientific 559

tasks (on average 70.6% over baselines), with espe- 560

cially large improvements on tasks requiring struc- 561

tured extraction or attribution. 562

As observed in §4.1, neither our best-performing 563

fine-tuned models nor the GPT-4o on SciRIFF-Eval 564

is sufficiently strong (around 60%). This is partly 565

due to the difficulty of the tasks, but also due the 566

challenges associated with evaluating structured 567

LLM responses in cases where the predicted sur- 568

face form does not match the reference, but the 569

underlying meaning is the same (Wadhwa et al., 570

2023). Utilizing LLMs to perform more flexible 571

and fine-grained evaluations (Kim et al., 2024) rep- 572

resents a promising direction. Future work could 573

focus on reliably generating multiple templates for 574

such complex tasks in a more controlled and prin- 575

cipled manner to help models learn from a richer 576

set of demonstrations and improve their general- 577

ization to unseen tasks. Incorporating reliable syn- 578

thetic data generation techniques and preference 579

data (Lambert et al., 2024b) for scientific literature 580

understanding tasks is also a promising avenue. In 581

conclusion, we are optimistic that the SciRIFF data 582

and evaluations, as well as the model checkpoints, 583

will serve as valuable resources to build systems 584

which can boost the productivity of scientific re- 585

searchers. 586
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Limitations587

While we demonstrated the effectiveness of SciR-588

IFF and the value of SciRIFF-Eval, we note the589

following limitations about our work: Although our590

resource is constructed through human-annotated591

templates, the source of our data is existing la-592

beled datasets from scientific literature understand-593

ing and synthesizing tasks. Although we included594

a wide range of datasets, this still could limit the595

open-ended tasks that could involve literature un-596

derstanding. Additionally, more sophisticated it-597

erative or conversational interactions mimicking598

interactions with a research assistant are not cap-599

tured with SciRIFF. Furthermore, the largest model600

our compute could afford to finetune on is 8B in601

size. We suspect that training larger open-source602

models (e.g., Llama 3.1 405B) can close the gap.603

Ethical Statement604

The ethical risks associated with this work are min-605

imal. As we source the data from existing datasets606

and we work in the science domain, we do not sus-607

pect major risks are involved in the curation of our608

dataset. However, potential biases might still exist609

in some datasets. For example, one of the source610

datasets is paper summarization which is sourced611

from OpenReview.net peer reviews by the original612

authors. And peer reviews might inherently occa-613

sionally include biases or unhelpful languages. As614

with all LLMs, our trained models are still prone615

to issues such as hallucinations, so users should616

exercise caution when interpreting model outputs,617

particularly in downstream applications in science,618

and verify any generated content for accuracy and619

relevance.620
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A Additional information on SciRIFF 1086

A.1 SciRIFF task list 1087

The full list of SciRIFF tasks is visualized in Fig- 1088

ure 4. Detailed information on all tasks—including 1089

citations, URLs to source websites, and licens- 1090

ing information where available—will be provided 1091

in our dataset card. Where convenient, we use 1092

datasets as preprocessed by the BigBio resource 1093

(https://huggingface.co/bigbio); details are in the 1094

dataset card. 1095

A.2 Task length distribution 1096

Figure 5 shows the distribution of input and output 1097

lengths for demonstrations in SciRIFF. 1098

Table 5 compares SciRIFF with selected 1099

instruction-following datasets, including canonical 1100

collections commonly used for general fine-tuning 1101

and selected datasets specialized in scientific do- 1102

mains. Our dataset features longer input contexts 1103

than existing resources. 1104

A.3 Truncation strategy 1105

In §2.2, we mention that when an instance exceeds 1106

the maximum context length for a given version of 1107

SciRIFF, we truncate where possible and discard 1108

otherwise. In particular, we truncate for tasks (like 1109

question answering) where the task output can be 1110

localized to particular passages in the input doc- 1111

ument by randomly removing irrelevant passages 1112

until the document fits in the desired context. For 1113

tasks like summarization, where the task output 1114

cannot easily be localized, we simply discard ex- 1115

amples that are longer than the context window. 1116

B Instruction template creation 1117

Instruction templates are written in (Pallets, 2024), 1118

Guidelines and “best practices” for prompt-writing 1119

will be available at our GitHub repository. Each 1120

prompt was double-checked by an additional paper 1121

author for clarity and correctness. 1122

C Sample template 1123

In this section, we provide examples of our expert- 1124

written templates that demonstrate the complexity 1125

and precision required for scientific literature under- 1126

standing tasks, described in §1 and §2.1. These tem- 1127

plates are carefully designed to elicit structured out- 1128

puts while requiring sophisticated capabilities such 1129

as information extraction with attribution, multi- 1130

step reasoning, and adherence to specific output 1131
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Figure 4: Overview of SciRIFF dataset. Dashed black lines indicate that a task is included in SciRIFF-Eval
and held out during model training. Scientific domains are colored as follows: ■Biomedicine;■AI;■Clinical
Medicine;■Chemistry;■Materials Science;■Miscellaneous.

Name # Instances Domain Avg. Length

General Domain
Flan V2 (Chung et al., 2024) 15M General 355.6 / 31.2
SuperNI (Wang et al., 2022) 97K General 291.1 / 38.7
Tülu V2 Mix (Ivison et al., 2023b) 326K General 353.3 / 696.9

Scientific Domain
BoX (Parmar et al., 2022) 141K Biomed X∗
SciInstruct (Zhang et al., 2024a) 254K Math, PH, Chem, FP 88.4 / 265.6
Mol-Instructions (Fang et al., 2024) 2.04M Biomolecular 126.3 / 112.9
MathInstruct (Yue et al., 2024a) 262K Math 82.5 / 174.0
MedInstruct-52K (Zhang et al., 2023c) 52K Medical 148.2 / 96.9
LlaSMol (Yu et al., 2024) 3.29M Chem 81.9 / 53.0

SciRIFF (Our work) 137K AI, Biomed, Clinical, Chem, MatSci 1242.9 / 139.6

Table 5: Comparison with selected instruction-following datasets. We use the following abbreviations: PH – Physics;
FP – Formal Proof; MatSci – Materials Science. We report average token counts for input/output using Llama 2
tokenizer using up to 200k subsamples from each dataset. ∗BoX dataset is not readily available.
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Figure 5: Distribution of input (left) and output (right) token lengths over SciRIFF training instances.

schemas. The templates shown –QASPER (QA,1132

Figure 6), SciERC (IE, Figure 7), HealthVer (Fact-1133

checking, Figure 8), DiSCoMaT (IE over tabular1134

data, Figure 9), and DataFinder Reco MC (Mul-1135

tiple Choice QA, Figure 10) – demonstrates how1136

our instruction format guides models to perform1137

challenging tasks like answering questions with1138

evidence attribution, extracting nested entity re-1139

lationships, and verifying scientific claims with1140

supporting rationales.91141

D Training Details1142

For instruction-tuning, our training hyperparame-1143

ters were as follows:1144

• Precision: BFloat161145

• Epochs: 51146

• Weight decay: 01147

• Warmup ratio: 0.031148

• Learning rate: 2e-5 (1e-5 for 70B)1149

• Max. seq. length: 4,0961150

• Effective batch size: 1281151

All of our models were trained on v3-128 TPUs1152

on the Google TPU Research Cloud.1153

E Evaluation details1154

The following pages show full input / output ex-1155

amples for all SciRIFF-Eval tasks, along with de-1156

tails on metric calculations. This information will1157

be available on our project GitHub page. We use1158

9Our preliminary experiments showed that even strong
proprietary models like GPT-4o struggled to reliably generate
such structured outputs without explicit templates. This obser-
vation motivated our decision to use expert-written templates.

gpt-4o-2024-08-06 model for tasks using an LLM 1159

judge as evaluation. 1160
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QASPER

You will be shown sections from a scientific research paper, together with a question about the paper. This is an
extractive question-answering task, where you must find and extract relevant text spans directly from the paper to
answer the question. Your response should strictly be a ‘json‘ object with two fields:

- "answer": An array of strings extracted directly from the paper which, collectively, answer the question.
- "evidence": An array of strings. Each should be an excerpt from the paper, in which one or more of the extracted
answers can be found.

For example, for the question "What baselines did the authors compare against?", a sample response might be:
{
“answer”: [“BERT”,“RoBERT”],
“evidence”: [“In our experiments, we compare the performance of our model against BERT and RoBERTa.”]
}
Do not include any text in your response other than the json.
If the question is unanswerable given the provided excerpts, respond with the single word "null".
Paper: {{paper}}

Question: {{question}}

|||

{% if unanswerable %} null
{% else %}
{{ {"answer": answer, "evidence": evidence} | tojson }}
{% endif %}

Figure 6: Canonical template for QASPER task in Figure 4. See §C for description.

SciERC

You will be shown an abstract from a computer science research paper. Given this abstract, your task is to extract all
unique entities with the following types:

- "Task": Applications, problems to solve, systems to construct. Examples include "information extraction", "machine
reading system", "image segmentation".
- "Method": : Methods, models, systems to use, or tools, components of a system, frameworks. Examples include
"language model", "CORENLP", "POS parser".
- "Metric": Metrics, measures, or entities that can express quality of a system / method. Examples include "F1",
"BLEU", "Precision", "time complexity".
- "Material": Data, datasets, resources, Corpus, Knowledge base. Examples include "image data", "speech data", "stereo
images", "CoNLL", "Wikipedia".
- "OtherScientificTerm": Phrases that are a scientific terms but do not fall into any of the above classes. Examples
include "physical or geometric constraints", "qualitative prior knowledge", "tree kernel", "noise".
- "Generic": General terms or pronouns that may refer to a entity but are not themselves informative, often used as
connection words. Examples include "model", "approach", "them".

Please return the output as a JSON object of the format: {"type1" : ["example_entity", ...], "type2" : ["ex-
ample_entity", ...]}. The keys should be entity types and values should be lists of extracted entities belonging to the
corresponding type. Entity types with no matching entities should be assigned an empty array "[]".

For instance, the output might look like: {"Task": ["speech recognition", ...], "Method": ["Conditional random field"],
"Material": [], ...}.

Only output the JSON object and do not include any additional text.

Abstract:

{{ org_text }}

|||

{{ ner_dict | tojson }}

Figure 7: Canonical template for SciERC task in Figure 4. See §C for description.
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HealthVer

You will be shown a claim about public health and the abstract of a biomedical research paper. Each sentence from the
abstract will be on a separate line. Your task is to return a JSON object with two fields:

- "verdict": The fact-checking verdict. If the information in the abstract supports the claim, write "SUPPORT". If the
abstract contradicts the claim, write "CONTRADICT". If the abstract does not provide enough information to arrive at a
verdict, write "NEI" (for "not enough information").
- "evidence": An array of sentences providing evidence for the verdict. Please copy all relevant sentences verbatim from
the abstract. If the verdict was "NEI", then return an empty array.

For instance, if the model were given the claim "wearing masks can prevent the spread of COVID", the output might be:

{
"verdict": "SUPPORT",
"evidence": ["Our findings indicate that mass mask-wearing reduces the transmission rate for COVID-19."]
}

Claim: {{ claim }}

Abstract:
{{ abstract_with_newlines }}

|||

{{ output_json_with_sentences }}

Figure 8: Canonical template for HealthVer task in Figure 4. See §C for description.

DiSCoMaT

{{ table_code_text }}

You are provided with the table above from a materials science paper. Here are JSON templates for two types of
numeric cells: "Other" and "Glass_Compound_Amount":

{"value": "xx", "type": "Other"}
{"value": "xx", "type": "Glass_Compound_Amount", "constituent": "xx", "unit": "xx", "material": "xx"}

Please describe all numeric cells in the above table following the JSON templates (proceeding by row in a left-right,
top-down direction). For each cell, output one JSON description per line. For any unanswerable attributes in the
templates, set their value to the placeholder "xx".

Cell Description:

|||

{{ json_records }}

Figure 9: Canonical template for DiSCoMaT task in Figure 4. See §C for description.
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DataFinder Reco MC

You are provided with a research question, keyphrases about the question, a description of candidate datasets and
dataset options. Read the description of popular datasets provided below and select the ones that can be used
to validate the following research question. Use your knowledge of machine learning datasets to make the best judgement.

Your response should be formatted as a ‘json‘ array. For instance, for the query "Semi supervised image classification",
a sample response might be: ["CIFAR-10", "CIFAR-100"]. Do not include any extra text in the response other than the
answer array.

Query: {{ query }}

Keyphrases: {{ keyphrase_query }}

Dataset description:
{{ context }}

Options:- {{ options }}

|||

{%- set ans_list = answer.split(", ") %}
{{ ans_list | tojson }}

Figure 10: Canonical template for DataFinder Reco MC (QA-multiple choice) task in Figure 4. See §C for
description.
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Evaluation tasks

This doc has a list of all evaluation tasks,  including input / output examples and evaluation metrics.

Table of contents

BioASQ:  question answering

BioRED:  named entity recognition

Discomat:  table extraction

Evidence inference:  evidence tuple extraction

Multicite:  citation intent classification

MUP:  summarization

Qasper:  paper question answering

SciERC:  named entity recognition

SciFact:  claim verification

BioASQ

Task input:  A collection of biomedical research excerpts and a question answerable from the excerpts.

Task output:  A list of answers to the question.

Metrics:  Compare predicted vs.  reference answers using exact-match F1.

Input

Below are a collection of excerpts from biomedical research articles. Excerpts are separated by 

newlines. Your task is to answer a question based these excerpts. Your response should be 

formatted 

as a `json` array. 

 

For instance, given excerpts from articles studying breast cancer, and the question "what are some 

common genes associated with breast cancer?", an answer might be formatted like: ["BRCA1", 

"BRCA2", 

"TP53", ...]. Only include answers that are mentioned in the provided exerpts. The array should 

always have at least one answer; do not respond with an empty array []. Do not include any text in 

your response other than the answer array. 

 

Context: sensitization, behavioral changes, and low body mass index (BMI). One possible cellular 

target that may mediate some of these findings is the hypocretin/orexin neurons. This neuronal 

system plays a role in regulating wakefulness/sleep cycles, pain perception, and appetite. Food 

intake, in contrast, receives circadian modulation through hormones such as leptin, ghrelin, 

insulin 

and orexin. A low level of hypocretin-1/orexin-A in the cerebrospinal fluid is sufficient to 

diagnose narcolepsy type 1, being a highly specific and sensitive biomarker, and the irreversible 

loss of hypocretin neurons is responsible for the main symptoms of the disease: Orexins, or 

hypocretins, are excitatory neuropeptides involved in the regulation of feeding behavior and the 

sleep and wakefulness states. 

 

[Lines omitted for space] 
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Orexin A (OXA) and orexin B (OXB) are recently discovered neuropeptides that appear to play a role 

in various distinct functions such as arousal and the sleep-wake cycle as well as on appetite and 

regulation of feeding and energy homeostasis. Orexins were first described as neuropeptides 

expressed by a sp Orexin/hypocretin neurons located in the lateral hypothalamus play a critical 

role 

in the maintenance of arousal and contribute to the regulation of multiple homeostatic and 

behavioral processes. 

 

Question: What processes do orexin/hypocretin neurons regulate? 

Output

[ 

  "sleep", 

  "appetite", 

  "wakefullness", 

  "pain", 

  "reward", 

  "energy homeostasis", 

  "goal-directed behaviors", 

  "Arousal", 

  "addiction" 

] 

BioRed

Task input:  Abstract of a biomedical research article.

Task output:  All entities in the article of the following types:

cell line

chemical

disease

gene

gene variant

species

Metrics:  Compare predicted vs.  reference entities using exact-match F1.

Input

You will be shown an abstract from a biomedical research paper. Given this abstract, your task is 

to 

extract all unique entities of the following types: ["Chemical", "Variant", "Gene", "CellLine", 

"Disease", "Species"]. 

 

Please return the output as a JSON object of the format: {"CellLine": ["hRPTEC", ...], "Chemical": 

["Glucose", ...], "Disease": ["Diabetes", ...], "Gene": ["HNF-6", ...], "Species": ["Patients", 

...], "Variant": ["Pro75Ala", ...]}. The keys should be entity types and values should be lists of 

extracted entities belonging to the corresponding type. If you cannot find entities belonging to a 

specific type, the value should be []. 
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Only output the JSON object and do not include any additional text. 

 

Abstract: 

 

Fatal carbamazepine induced fulminant eosinophilic (hypersensitivity) myocarditis: emphasis on 

anatomical and histological characteristics, mechanisms and genetics of drug hypersensitivity and 

differential diagnosis. The most severe adverse reactions to carbamazepine have been observed in 

the 

haemopoietic system, the liver and the cardiovascular system. A frequently fatal, although 

exceptionally rare side effect of carbamazepine is necrotizing eosinophilic (hypersensitivity) 

myocarditis. We report a case of hypersensitivity myocarditis secondary to administration of 

carbamazepine. Acute hypersensitivity myocarditis was not suspected clinically, and the diagnosis 

was made post-mortem. Histology revealed diffuse infiltration of the myocardium by eosinophils and 

lymphocytes with myocyte damage. Clinically, death was due to cardiogenic shock. To best of our 

knowledge this is the second case of fatal carbamazepine induced myocarditis reported in English 

literature. 

Output

{ 

  "CellLine": [], 

  "Chemical": ["carbamazepine"], 

  "Disease": [ 

    "hypersensitivity", 

    "death", 

    "myocarditis", 

    "cardiogenic shock", 

    "drug hypersensitivity" 

  ], 

  "Gene": [], 

  "Species": [], 

  "Variant": [] 

} 

Discomat

Task input:  A passage from a research paper including a table.

Task output:  The table,  with each cell as a json line.

Metrics:  BLEU score between predicted and gold reference.  Manual inspection showed that BLEU was

pretty reliable for this task.

Input

| Sample no. | Ph, volume percent of crystals | Activation energy (kJ/mol) of the scale factor for 

normalised frequency | ln(t 0, s) of the scale factor | G  unrelaxed shear modulus (GPa) | 

| Glas 0     | 0                              | 137+-18                                               

| -50.15                         | 24.3                             | 

| Glas 1     | 17                             | 129+-13                                               
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| -47.68                         | 23.8                             | 

| Glas 3     | 22                             | 126+-16                                               

| -45.72                         | 24.7                             | 

| Glas 5     | 27                             | 117+-10                                               

| -42.25                         | 25.0                             | 

Caption: Activation energies of shear stress relaxation and unrelaxed shear modulus of disilicate 

lithium glasses 

 

You are provided with a table from a material science paper. Here are JSON templates for two types 

of numeric cells: "Other" and "Glass_Compound_Amount": {"value": "xx", "type": "Other"} {"value": 

"xx", "type": "Glass_Compound_Amount", "constituent": "xx", "unit": "xx", "material": "xx"} 

 

Please describe all numeric cells in the above table following the JSON templates (proceeding by 

row 

in a left-right, top-down direction). For each cell, output one JSON description per line. For any 

unanswerable attributes in the templates, set their value to the placeholder "xx". 

 

Cell Description: 

Output

{"value": "0", "type": "Other"} 

{"value": "137", "type": "Other"} 

{"value": "24.3", "type": "Other"} 

{"value": "17", "type": "Other"} 

{"value": "129", "type": "Other"} 

{"value": "23.8", "type": "Other"} 

{"value": "22", "type": "Other"} 

{"value": "126", "type": "Other"} 

{"value": "24.7", "type": "Other"} 

{"value": "27", "type": "Other"} 

{"value": "117", "type": "Other"} 

{"value": "25.0", "type": "Other"} 

Evidence Inference

Task input:  Abstract of a clinical trial report.

Task output:  List of all ICO (intervention / comparator / outcome) tuples,  together with the

effect of the intervention on the outcome and the textual evidence of this effect.

Metrics:  "Fuzzy" F1.  Given a prediction and a reference tuple,  compute the token overlap for each tuple

item.  If token overlaps for all fields exceed 0.3,  the predicted tuple is judged as a match to the reference.

Input

You will be shown the abstract of a medical clinical trial report. Your task is to extract all the 

findings from this report into a JSON array. Each finding should contain the following five 

elements: 

 

- Intervention: The medical intervention being tested. This should be a text span copied from the 
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  input passage. 

- Comparator: The baseline against which the intervention is being evaluated. This should be a 

text 

  span copied from the input passage. If no comparator is reported, set to `null`. 

- Outcome: The medical outcome whose effect is being measured. This should be a text span copied 

  from the input passage. 

- Effect: The effect of the intervention on the outcome, relative to the comparator. The effect 

  should be one of the following three values: ("significantly increased", "significantly 

  decreased", "no significant difference"). 

- Evidence: The evidence for the effect. This should be a text span copied from the input passage. 

 

Please format your output as a JSON array. Each entry in the output should be an array containing 

the 5 elements listed above, in the following order: [<intervention>, <comparator>, <outcome>, 

<effect>, <evidence>]. 

 

For example, an output with two findings might read: [["aspirin", "placebo", "headache severity", 

"significantly decreased", "Mean headache severity was significantly decreased in the aspirin 

group 

compared to the placebo group (p < 0.05)."], ["aspirin", "placebo", "weight loss", "no significant 

difference", "We did not observe any difference in weight loss between the group given aspirin 

relative to the control group"]] 

 

There are 3 finding(s) in the abstract below. Please extract them. Output only the JSON array with 

these 3 findings. Do not include any additional text. 

 

Abstract: ABSTRACT.OBJECTIVES: To compare the efficacy and safety of SB4 (an etanercept 

biosimilar) 

with reference product etanercept (ETN) in patients with moderate to severe rheumatoid arthritis 

(RA) despite methotrexate (MTX) therapy. 

 

ABSTRACT.METHODS: This is a phase III, randomised, double-blind, parallel-group, multicentre study 

with a 24-week primary endpoint. Patients with moderate to severe RA despite MTX treatment were 

randomised to receive weekly dose of 50 mg of subcutaneous SB4 or ETN. The primary endpoint was 

the 

American College of Rheumatology 20% (ACR20) response at week 24. Other efficacy endpoints as well 

as safety, immunogenicity and pharmacokinetic parameters were also measured. 

 

ABSTRACT.RESULTS: 596 patients were randomised to either SB4 (N=299) or ETN (N=297). The ACR20 

response rate at week 24 in the per-protocol set was 78.1% for SB4 and 80.3% for ETN. The 95% CI 

of 

the adjusted treatment difference was -9.41% to 4.98%, which is completely contained within the 

predefined equivalence margin of -15% to 15%, indicating therapeutic equivalence between SB4 and 

ETN. Other efficacy endpoints and pharmacokinetic endpoints were comparable. The incidence of 

treatment-emergent adverse events was comparable (55.2% vs 58.2%), and the incidence of antidrug 

antibody development up to week 24 was lower in SB4 compared with ETN (0.7% vs 13.1%). 

 

ABSTRACT.CONCLUSIONS: SB4 was shown to be equivalent with ETN in terms of efficacy at week 24. SB4 

was well tolerated with a lower immunogenicity profile. The safety profile of SB4 was comparable 

with that of ETN. 

 

ABSTRACT.TRIAL REGISTRATION NUMBERS: NCT01895309, EudraCT 2012-005026-30. 

 

Findings: 
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Output

[ 

  [ 

    "SB4 (an etanercept biosimilar)", 

    "etanercept (ETN)", 

    "therapeutic equivalence - Patients with moderate to severe rheumatoid arthritis (RA) despite 

methotrexate (MTX) treatment", 

    "no significant difference", 

    "The 95% CI of the adjusted treatment difference was \u22129.41% to 4.98%, which is completely 

contained within the predefined equivalence margin of \u221215% to 15%, indicating therapeutic 

equivalence between SB4 and ETN." 

  ], 

  [ 

    "SB4 (an etanercept biosimilar)", 

    "etanercept (ETN)", 

    "incidence of antidrug antibody development up to week 24 - Patients with moderate to severe 

rheumatoid arthritis (RA) despite methotrexate (MTX) treatment", 

    "significantly decreased", 

    "the incidence of antidrug antibody development up to week 24 was lower in SB4 compared with 

ETN (0.7% vs 13.1%)." 

  ], 

  [ 

    "SB4 (an etanercept biosimilar)", 

    "etanercept (ETN)", 

    "incidence of treatment-emergent adverse events - Patients with moderate to severe rheumatoid 

arthritis (RA) despite methotrexate (MTX) treatment", 

    "no significant difference", 

    "The incidence of treatment-emergent adverse events was comparable (55.2% vs 58.2%)" 

  ] 

] 

Multicite

Task Input:  A citation sentence from a research paper.

Task output:  A list of intents for the citation sentence.

Metrics:  Compare predicted vs.  reference intents using exact-match F1.

Input

Your task is to classify the citation intent within the following provided text from a 

computational 

linguistics research paper. The cited work is demarcated by "<cite>" and "</cite>". Determine the 

purpose of the cited work by selecting from the listed categories: 

 

- Background: The cited paper underpins the subject matter. 

- Motivation: The cited paper inspires or provides a rationale for the current research. 

- Uses: The current work utilizes concepts or tools from the cited paper. 

- Extends: The current work advances ideas or methods from the cited paper. 
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- Similarities: The current work identifies commonalities with the cited paper. 

- Differences: The current work delineates its distinction from the cited paper. 

- FutureWork: The cited paper is acknowledged as groundwork for prospective research. 

 

Indicate the intents by listing them in a `json` array, e.g. ["Background", "Uses"]. More than one 

intent may be applicable. Do not include any extraneous text in your response. 

 

Context with Citation: In addition to that, we implemented semi-supervised classification by 

training in the positive samples of the <cite>[9]</cite> dataset and training in only the lexicon 

as 

negative samples. 

Output

["Similarities", "Uses"] 

MUP

Task input:  Full text of a machine learning paper.

Task output:  Short paper summary that a reviewer might write as part of a paper review.

Metrics:  Use GPT-3.5 to judge similarity of generated summary to human reference on 1-5 scale.  Based

on manual inspection,  this was higher-quality than automated metrics like ROUGE.

Input

You will be presented with the title and body text of a computer science research paper. Please 

write a summary of the work that would be informative for a peer reviewer assessing its quality. 

Your summary should be 3 sentences long. In your response, include only the summary and no 

additional text. 

 

Paper title: Reinforcement Learning with Efficient Active Feature Acquisition 

 

Paper body: 1 INTRODUCTION . Recently , machine learning models for automated sequential decision 

making have shown remarkable success across many application areas , such as visual recognition ( 

Mathe et al. , 2016 ; Das et al. , 2017 ) , robotics control ( Finn et al. , 2016 ; Zhang et al. , 

2018 ) , medical diagnosis ( Ling et al. , 2017 ; Peng et al. , 2018 ) and computer games ( Mnih 

et 

al. , 2015 ; Silver et al. , 2016 ) . One fundamental reason that drives the success of such 

models 

and enables them to outperform classical algorithms is the availability of large amounts of 

training 

data . Typically such training data is either fully observed or the features stem from an 

action-independent observation model ( which clearly can depend on the state of the system ) . 

However , the fundamental assumption that the same features are always readily available during 

deployment could not hold in many real-world applications . For instance , consider a medical 

support system for monitoring and treating patients during their stay at hospital which was 

trained 

on rich historical medical data . To provide the best possible treatment , the system might need 

to 
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perform several measurements of the patient over time , while some of them could be costly or even 

pose a health risk . Therefore , during deployment , it is more ideal that the system could 

function 

with minimal features while during training more features might have been available . In such 

cases 

, we are interested in decision making models that actively take the measurement process , i.e. , 

feature acquisition , into account and only acquire the information relevant for making a decision 

. 

In this paper , we consider the challenging problem of learning effective policies when the cost 

of 

information acquisition can not be neglected . To be successful , we need to learn policies which 

acquires the information required for solving a task in the cheapest way possible . [Truncated for 

space]. 

 

3-sentence paper summary: 

Output

In this paper the authors propose an approach for simultaneously learning how to explore more 

efficiently in POMDPs via targeted feature acquisition, and learning a reward-maximizing control 

policy, balancing the cost of feature acquisition with the expected reward. Learning is done via a 

VAE framework which combines a belief inference model and an observation decoder, with a key 

innovation being that inference is done as a sequential process. Results comparing this approach 

to other variational inference approaches show the proposed framework reaches better performance 

with lower cost (particularly, number of acquired features). 

Qasper

Task input:  The full text of an NLP research paper,  and a question answerable from the paper body (but

not the abstract).

Task output:  An answer to the question,  accompanied by the extracts from the paper body supplying the

answer.

Metrics:  We compute metrics for both the answer and the evidence.

Answer:  GPT-3.5 judge of similarity of model answer to human reference (1-5 scale).

Evidence:  Token F1 overlap with gold evidence.

Input

You will be shown sections from a scientific research paper, together with a question about the 

paper. Paragraphs in the paper are separated by newlines. Your task is to answer the question 

based 

on the contents of the paper. 

 

Paper: 

---------------------------------------- 

Named Entity Disambiguation for Noisy Text 

 

We address the task of Named Entity Disambiguation (NED) for noisy text. We present WikilinksNED, 

a 
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large-scale NED dataset of text fragments from the web, which is significantly noisier and more 

challenging than existing news-based datasets. To capture the limited and noisy local context 

surrounding each mention, we design a neural model and train it with a novel method for sampling 

informative negative examples. We also describe a new way of initializing word and entity 

embeddings 

that significantly improves performance. Our model significantly outperforms existing 

state-of-the-art methods on WikilinksNED while achieving comparable performance on a smaller 

newswire dataset. 

 

The WikilinksNED Dataset:             Entity Mentions in the Web We introduce WikilinksNED, a 

large-scale NED dataset based on text fragments from the web. Our dataset is derived from the 

Wikilinks corpus BIBREF14 , which was constructed by crawling the web and collecting hyperlinks 

(mentions) linking to Wikipedia concepts (entities) and their surrounding text (context). 

Wikilinks 

contains 40 million mentions covering 3 million entities, collected from over 10 million web 

pages. 

Wikilinks can be seen as a large-scale, naturally-occurring, crowd-sourced dataset where thousands 

of human annotators provide ground truths for mentions of interest. This means that the dataset 

contains various kinds of noise, especially due to incoherent contexts. The contextual noise 

presents an interesting test-case that supplements existing datasets that are sourced from mostly 

coherent and well-formed text. 

 

[Truncated for space] 

---------------------------------------- 

 

Question: How was a quality control performed so that the text is noisy but the annotations are 

accurate? 

 

To answer the question, format your response as a `json` object with two fields: 

 

"answer": A string providing a succinct answer to the question, in your own words. "evidence": An 

array of strings. Each entry should be a full paragraph from the paper. Together, the evidence 

should serve as a justification for the answer. 

 

For instance, for the question "What baselines did the authors compare against?", a sample 

response 

might be: 

 

{ "answer": "BERT and RoBERTa." "evidence": ["We compare our approach against two baselines. In 

  Table 1, we compare against BERT. In Table 2, we compare against RoBERTa. Our findings indicate 

  that our approach improves over both baeslines..."] } 

 

The "answer" field should be roughly 190 characters in length. 

 

Do not include any text in your response other than the json. If the question is unanswerable 

given 

the provided excerpts, respond with the single word "null". 

 

To repeat, the question is: How was a quality control performed so that the text is noisy but the 

annotations are accurate? 

 

Answer JSON object: 
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Output

{ 

  "answer": "Profile pictures from the Twitter users' profiles.", 

  "evidence": [ 

    "The recent advancements in deep neural networks, specifically for image analysis task, can 

lead to determining demographic features such as age and gender BIBREF13 . We show that by 

determining and integrating heterogeneous set of features from different modalities \u2013 

aesthetic features from posted images (colorfulness, hue variance, sharpness, brightness, 

blurriness, naturalness), choice of profile picture (for gender, age, and facial expression), the 

screen name, the language features from both textual content and profile's description (n-gram, 

emotion, sentiment), and finally sociability from ego-network, and user engagement \u2013 we can 

reliably detect likely depressed individuals in a data set of 8,770 human-annotated Twitter 

users." 

  ] 

} 

SciERC

Task input:  An abstract of an NLP paper.

Task output:  A list of all entities mentioned in the paper of the following types:

Material

Method

Metric

Task

Generic

Other scientific term

Metrics:  Exact-match F1.

Input

You will be shown an abstract from a computer science research paper. Given this abstract, your 

task 

is to extract all unique entities with the following types: 

 

- "Task": Applications, problems to solve, systems to construct. Examples include "information 

  extraction", "machine reading system", "image segmentation". 

- "Method": : Methods, models, systems to use, or tools, components of a system, frameworks. 

  Examples include "language model", "CORENLP", "POS parser". 

- "Metric": Metrics, measures, or entities that can express quality of a system / method. Examples 

  include "F1", "BLEU", "Precision", "time complexity". 

- "Material": Data, datasets, resources, Corpus, Knowledge base. Examples include "image data", 

  "speech data", "stereo images", "CoNLL", "Wikipedia". 

- "OtherScientificTerm": Phrases that are a scientific terms but do not fall into any of the above 

  classes. Examples include "physical or geometric constraints", "qualitative prior knowledge", 

  "tree kernel", "noise". 

- "Generic": General terms or pronouns that may refer to a entity but are not themselves 

  informative, often used as connection words. Examples include "model", "approach", "them". 
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Please return the output as a JSON object of the format: {"type1" : ["example_entity", ...], 

"type2" 

: ["example_entity", ...]}. The keys should be entity types and values should be lists of 

extracted 

entities belonging to the corresponding type. Entity types with no matching entities should be 

assigned an empty array []. 

 

For instance, the output might look like: {"Task": ["speech recognition", ...], "Method": 

["Conditional random field"], "Material": [], ...}. 

 

Only output the JSON object and do not include any additional text. 

 

Abstract: 

 

We present a syntax-based constraint for word alignment, known as the cohesion constraint. It 

requires disjoint English phrases to be mapped to non-overlapping intervals in the French 

sentence. 

We evaluate the utility of this constraint in two different algorithms. The results show that it 

can 

provide a significant improvement in alignment quality. 

Output

{ 

  "Generic": ["algorithms"], 

  "Material": ["English phrases", "French sentence"], 

  "Method": [], 

  "Metric": ["alignment quality"], 

  "OtherScientificTerm": ["cohesion constraint", "syntax-based constraint"], 

  "Task": ["word alignment"] 

} 

SciFact

Task input:  An abstract from a biomedical research article,  and a scientific claim.

Task output:

A fact-checking verdict indicating whether the abstract supports or refutes the claim,  or has no

relevant information.

The evidence -- i.e.  sentences from the abstract justifying the verdict.

Metrics:  We compute metrics for both the answer and the evidence.

Verdict:  Label F1.

Evidence:  Token F1 overlap with gold evidence.

Input

You will be shown a scientific claim, and the abstract of a biomedical research paper. Each 

sentence 

from the abstract will be on a separate line. Your task is to return a JSON object with two 
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fields: 

 

- "verdict": The fact-checking verdict. If the information in the abstract supports the claim, 

write 

  "SUPPORT". If the abstract contradicts the claim, write "CONTRADICT". If the abstract does not 

  provide enough information to arrive at a verdict, write "NEI" (for "not enough information"). 

- "evidence": An array of sentences providing evidence for the verdict. Please copy all relevant 

  sentences verbatim from the abstract. If the verdict was "NEI", then return an empty array. 

 

For instance, if the model were given the claim "smoking causes cancer", the output might be { 

"verdict": "SUPPORT", "evidence": ["The results of our meta-analysis provide overwhelming support 

  that cigarette smoking is a risk cause for lung cancer."] } 

 

Your response should not include any text other than the json. 

 

Claim: Therapeutics receiving accelerated approval encounter a lower frequency of post-marketing 

safety events 

 

Abstract: Importance Postmarket safety events of novel pharmaceuticals and biologics occur when 

new 

safety risks are identified after initial regulatory approval of these therapeutics. These safety 

events can change how novel therapeutics are used in clinical practice and inform patient and 

clinician decision making. Objectives To characterize the frequency of postmarket safety events 

among novel therapeutics approved by the US Food and Drug Administration (FDA), and to examine 

whether any novel therapeutic characteristics known at the time of FDA approval were associated 

with 

increased risk. [Truncated for space] Biologics, psychiatric therapeutics, and accelerated and 

near–regulatory deadline approval were statistically significantly associated with higher rates of 

events, highlighting the need for continuous monitoring of the safety of novel therapeutics 

throughout their life cycle. 

Output

{ 

  "verdict": "CONTRADICT", 

  "evidence": [ 

    "In multivariable analysis, postmarket safety events were statistically significantly more 

frequent among biologics (incidence rate ratio [IRR] = 1.93; 95% CI, 1.06-3.52; P = .03), 

therapeutics indicated for the treatment of psychiatric disease (IRR = 3.78; 95% CI, 1.77-8.06; P 

< .001), those receiving accelerated approval (IRR = 2.20; 95% CI, 1.15-4.21; P = .02), and those 

with near\u2013regulatory deadline approval (IRR = 1.90; 95% CI, 1.19-3.05; P = .008); events were 

statistically significantly less frequent among those with regulatory review times less than 200 

days (IRR = 0.46; 95% CI, 0.24-0.87; P = .02)." 

  ] 

} 
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F Information About Use of AI Assistants1173

We use OpenAI ChatGPT and Anthropic Claude1174

for grammar checking in manuscript preparation.1175
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