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ABSTRACT

We introduce a novel generative model, the Discrete Distribution Networks
(DDN), that approximates data distribution using hierarchical discrete distribu-
tions. We posit that since the features within a network inherently capture distri-
butional information, enabling the network to generate multiple samples simul-
taneously, rather than a single output, may offer an effective way to represent
distributions. Therefore, DDN fits the target distribution, including continuous
ones, by generating multiple discrete sample points. To capture finer details of
the target data, DDN selects the output that is closest to the Ground Truth (GT)
from the coarse results generated in the first layer. This selected output is then
fed back into the network as a condition for the second layer, thereby generat-
ing new outputs more similar to the GT. As the number of DDN layers increases,
the representational space of the outputs expands exponentially, and the generated
samples become increasingly similar to the GT. This hierarchical output pattern of
discrete distributions endows DDN with unique property: more general zero-shot
conditional generation. We demonstrate the efficacy of DDN and its intriguing
properties through experiments on CIFAR-10 and FFHQ.

D
D
N

Target

3

Reconstructed

Latent
"3-1-2"

level 1 level 2 level 3
(final)

D
D
N

Sampler

Feature

×

Feature

×
1

Sampler

×

×
2

Sampler

×

×

D
D
N

(a) Image Reconstruction through DDN

1 2 3 1 2 3 2 31

1 2 3

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Generated

Root

le
ve

l 1
le

ve
l 2

le
ve

l 3
(le

af
)

(b) Tree Structure of DDN’s Latent

Figure 1: (a) Illustrates the process of image reconstruction and latent acquisition in DDN. Each
layer of DDN outputs K distinct images to approximate the distribution P (X). The sampler then
selects the image most similar to the target from these and feeds it into the next DDN layer. As
the number of layers increases, the generated images become increasingly similar to the target. For
generation tasks, the sampler is simply replaced with a random choice operation. (b) Depicts the
tree-structured representation space of DDN’s latent variables. Each sample can be mapped to a leaf
node on this tree.

1 INTRODUCTION

With the advent of ChatGPT Brown et al. (2020) and DDPM Ho et al. (2020), deep generative
models have become increasingly popular and significant in everyday life. However, modeling the
complex and diverse high-dimensional data distributions is challenging. Previous methods Kingma
& Welling (2014); Radford et al. (2016); Kingma & Dhariwal (2018); Goyal et al. (2021); Song et al.
(2021); Shocher et al. (2024); Graves et al. (2023) have each demonstrated their unique strengths and
characteristics in modeling these distributions. In this work, we propose a novel approach to model
the target distribution, where the core idea is to generate multiple samples simultaneously, allowing
the network to directly output an approximate discrete distribution. Hence, we name our method
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Figure 2: DDN enables more general zero-shot conditional generation. DDN supports zero-shot
conditional generation across non-pixel domains, and notably, without relying on gradient, such as
text-to-image generation using a black-box CLIP model Radford et al. (2021). Images enclosed in
yellow borders serve as the ground truth. The abbreviations in the table header correspond to their
respective tasks as follows: ‘SR’ stands for Super-Resolution, with the following digit indicating the
resolution of the condition. ‘ST’ denotes Style Transfer, which computes Perceptual Losses with the
condition according to Johnson et al. (2016).

Discrete Distribution Networks (DDN). DDN embraces a core concept as simple as autoregressive
models, offering another straightforward and effective form for generative models.

Most generative models applied in real-world scenarios are conditional generative models. Tak-
ing image generation as an example, these models generate corresponding images based on content
provided by users, such as images to be edited, reference images Saharia et al. (2021), text descrip-
tions, hand-drawn editing strokes Voynov et al. (2022), sketches, and so on. Current mainstream
generative models Rombach et al. (2021); Ramesh et al. (2022); Zhang et al. (2023) typically re-
quire training separate models and parameters for each condition. These models are restricted to
fixed condition formats and lack the flexibility to adjust the influence of each condition dynamically,
thereby limiting users’ creative freedom.

Recent works have attempted to address this issue through zero-shot conditional generation (ZSCG).
However, these methods either only support conditions in the same pixel domain as the training data
Wang et al. (2022); Lugmayr et al. (2022); Meng et al. (2021); Nair et al. (2023) or depend on dis-
criminative models to supply gradients during generation Yu et al. (2023). In contrast, DDN supports
a wide range of ZSCG tasks, encompassing both pixel-domain and non-pixel-domain conditions, as
shown in fig. 2. To the best of our knowledge, DDN is the first generative model capable of perform-
ing zero-shot conditional generation in non-pixel domains without relying on gradient information.
This implies that DDN can achieve ZSCG solely based on black-box discriminative models.

The core concept of Discrete Distribution Networks (DDN) is to approximate the distribution of
training data using a multitude of discrete sample points. The secret to generating diverse samples
lies in the network’s ability to concurrently generate multiple samples (K). This is perceived as the
network outputting a discrete distribution. All generated samples serve as the sample space for this
discrete distribution. Typically, each sample in this discrete distribution has an equal probability
mass of 1/K. Our goal is to make this discrete distribution as close as possible to the target dataset.

To accurately fit the target distribution of large datasets, a substantial representational space is re-
quired. In the most extreme scenario, this space must be larger than the number of training data
samples. However, current neural networks lack the feasibility to generate such a vast number of
samples simultaneously. Therefore, we adopt a strategy from autoregressive models Van Den Oord
et al. (2016) and partition this large space into a hierarchical conditional probability model. Each
layer of this model needs only a small number of outputs. We then select one of these outputs as the
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output for that layer and use it as conditional input to the next layer. As a result, the output of the
next layer will be more closely related to the selected conditional sample. If the number of layers is
L and the number of outputs per layer is K, then the output space of the network is KL. Due to its
exponential nature, this output space will be much larger than the number of samples in the dataset.
fig. 1 shows how DDN generates images.

We posit that the contributions of this paper are as follows: (1) We introduce a novel generative
model, termed Discrete Distribution Networks (DDN), which exhibit a more straightforward and
streamlined principle and form. (2) For training the DDN, we propose the “Split-and-Prune” opti-
mization algorithm, and a range of practical techniques. (3) We conduct preliminary experiments
and analysis on the DDN, showcasing its intriguing properties and capabilities, such as zero-shot
conditional generation and highly compact representations.

2 RELATED WORK

Deep Generative Model. Generative Adversarial Networks (GANs) Radford et al. (2016); Brock
et al. (2019) and Variational Autoencoders (VAEs) Kingma & Welling (2014); van den Oord et al.
(2018) are two early successful generative models. GANs reduce the divergence between the gen-
erated sample distribution and the target distribution through a game between the generator and
discriminator. However, regular GANs cannot map samples back to the latent space, thus they
cannot reconstruct samples. VAEs encode data into a simple distribution’s latent space through an
Encoder, and the Decoder is trained to reconstruct the original data from this simple distribution’s
latent space. Autoregressive models van den Oord et al. (2016) , with their simple principles and
methods, model the target distribution by decomposing the target data into conditional probability
distributions of each component. They can also compute the exact likelihood of target samples.
However, the efficiency of these models is reduced when dealing with image data, which is not
suitable to be decomposed into a sequence of components. Normalizing flow Kingma & Dhariwal
(2018) is another class of generative models that can compute the likelihood. They use invertible
networks to construct a mapping from samples to a noise space, and during the generation stage,
they map back from noise to samples. Energy Based Models (EBM) Goyal et al. (2021); Song et al.
(2021) with their high-quality and rich generative results, have led to the rise of diffusion models.
However, their multi-step iterative generation process requires substantial computational resources.
The recent Idempotent Generative Network Shocher et al. (2024) introduces a novel approach by
training a neural network to be idempotent, mapping any input to the target distribution effectively.

Connections to VQ-VAE. While both VQ-VAE van den Oord et al. (2018) and DDN involve dis-
crete representations, they differ significantly in their approach and capabilities. VQ-VAE enhances
the traditional VAE by replacing the continuous latent space with discrete codebooks, thus achieving
a more compact representation. VQ-VAE-2 Razavi et al. (2019) further improves this by employ-
ing a multi-scale hierarchical structure, thereby enhancing its representational power. However, the
discrete representation in VQ-VAE remains two-dimensional, potentially leading to redundant in-
formation. Furthermore, VQ-VAE and its successors still rely on an additional prior network for
generative modeling in the latent space. Notably, DDN can also serve as this prior model to effec-
tively model the latent space of VQ-VAE. Other distinctions between DDN and VQ-VAE include the
absence of an encoder and codebook in DDN, as well as its capacity for Zero-Shot Conditional Gen-
eration. VQ-VAEs are known to encounter codebook collapse, a problem that some researchers have
addressed by reinitializing unused codes near frequently used ones Williams et al. (2020); Dhariwal
et al. (2020). Our Split-and-Prune algorithm shares a similar core idea, albeit with some differences.
While the reinitialization method aims to balance code usage to mitigate codebook collapse, our
goal is to align the discrete distribution output by our network as closely as possible to the target
distribution.

3 DISCRETE DISTRIBUTION NETWORKS

Network architecture. Figure 3a illustrates the overall structure of the DDN, comprised of Neural
Network Blocks and Discrete Distribution Layers (DDL). Each DDL contains K output nodes, each
of which is a set of 1x1 convolutions responsible for transforming the feature into the corresponding
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Figure 3: Schematic of Discrete Distribution Networks (DDN). (a) The data flow during the
training phase of DDN is shown at the top. As the network depth increases, the generated images
become increasingly similar to the training images. Within each Discrete Distribution Layer (DDL),
K samples are generated, and the one closest to the training sample is selected as the generated im-
age for loss computation. These K output nodes are optimized using Adam with the Split-and-Prune
method. The right two figures shown the two model paradigms supported by DDN. (b) Single Shot
Generator Paradigm: Each neural network layer and DDL has independent weights. (c) Recurrence
Iteration Paradigm: All neural network layers and DDLs share weights. For inference, replacing the
Guided Sampler in the DDL with a random choice enables the generation of new images.

output image. The parameters of these 1x1 convolutions are optimized by Adam with Split-and-
Prune. The K images generated by the K output nodes are inputted into the Guided Sampler.
The Guided Sampler selects the image with the smallest L2 distance to the training image, which
serves as the output of the current layer and is used to calculate the L2 loss with the training image.
Simultaneously, the selected image is concatenated back into the feature, acting as the condition for
the next block. The index (depicted in green as “K-1” in fig. 3a) of the selected image represents the
latent value of the training sample at this layer. Through the guidance of the Guided Sampler layer
by layer, the image generated by the network progressively becomes more similar to the training
sample until the final layer produces an approximation of the training sample.

For computational efficiency, we adopted a decoder structure similar to the generator in GANs for
coarse-to-fine image generation, as shown in fig. 3b. We refer to this as the Single Shot Generator
which is our default choice. As each layer of DDN can naturally input and output RGB domain data,
DDN seamlessly support the Recurrence Iteration Paradigm fig. 3c.

Objective function. The DDN model consists of L layers of Discrete Distribution Layers (DDL).
For a given layer l, denoted as fl, the input is the selected sample from the previous layer, x∗

l−1. The
layer generates K new samples, fl(x∗

l−1), from which we select the sample x∗
l that is closest to the

current training sample x, along with its corresponding index k∗l . The loss Jl for this layer is then
computed only on the selected sample x∗

l .

k∗l = argmin
k∈{1,...,K}

∥∥fl(x∗
l−1)[k]− x

∥∥2 (1)

x∗
l = fl(x

∗
l−1)[k

∗
l ] ; Jl = ∥x∗

l − x∥2 (2)

Here, x∗
0 = 0 represents the initial input to the first layer. For simplicity, we omit the details of

input/output feature, neural network blocks and transformation operations in the equations.

By recursively unfolding the above equations, we can derive the latent variable k∗
1:L and the global

objective function J .

k∗
1:L = [k∗1 , k

∗
2 , . . . , k

∗
L] =

[
argmin

k∈{1,...,K}

∥∥F([k∗
1:l−1, k])− x

∥∥2]L

l=1

(3)
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J =
1

L

L∑
l=1

∥F(k∗
1:l)− x∥2 (4)

Here, F represents the composite function formed from fl, defined as: F(k1:l) =
fl(fl−1(. . . f1(x0)[k1] . . . )[kl−1])[kl]. Finally, we average the L2 loss across all layers to obtain
the final loss for the entire network.

How to generation. When the network performs the generation task, replacing the Guided Sampler
with a random choice enables image generation. Given the exponential representational space of
KL sample space and the limited number of samples in the training set, the probability of sampling
an image with the same latent space as those in the training set is also exponentially low. For image
reconstruction tasks, the process is almost identical to the training process, only substituting the
training image with the target image to be reconstructed and omitting the L2 Loss part from the
training process. The Final Generated Image in fig. 3a represents the final reconstruction result.
The indices of the selected samples along the way form the latent representation of the target image
k∗
1:L, same as eq. (3). Therefore, the latent k∗

1:L is a sequence of integers with length L, which
we regard as the hierarchical discrete representation of the target sample. The latent space exhibits
a tree structure with L layers and K degrees per node, where each leaf node represents a sample
space, and its latent representation indicates the indices of all nodes along the path to this leaf node,
as shown in fig. 1b. In the latent sequence, values placed earlier correspond to higher-level nodes in
the tree, controlling the low-frequency information of the output sample, while later values tend to
affect high-frequency information.
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Figure 4: Illustration of the principle behind the Split-and-Prune operation. For example in
(a), the light blue bell-shaped curve represents a one-dimensional target distribution. The 5 “↑”
under the x-axis are the initial values from a uniform distribution of 5 output nodes, which divide
the entire space into 5 parts using midpoints between adjacent nodes as boundaries (i.e., vertical
gray dashed lines). Each part corresponds to the range represented by this output node on the
continuous space x. Below each node are three values: P stands for the relative frequency of the
ground truth falling within this node’s range during training; Q refers to the probability mass of this
sample (node) in the discrete distribution output by the model during the generation phase, which is
generally equal for each sample, i.e., 1/K. The bottom-most value denotes the difference between
P and Q. Colorful horizontal line segments represent the average probability density of P , Q within
corresponding intervals. In (b), the Split operation selects the node with the highest P (circled in
red). In (c), the Prune operation selects the node with the smallest P (circled in red). In (d), through
the combined effects of loss and Split-and-Prune operations, the distribution of output nodes moves
towards final optimization. From the observed results, the KL divergence (KL(P ||Q)) consistently
decreases as the operation progresses, and the yellow line increasingly approximates the light blue
target distribution.

3.1 OPTIMIZATION WITH SPLIT-AND-PRUNE

We have observed two primary issues resulting from each layer calculating loss only with the closest
output samples to the ground truth (GT). Firstly, a problem similar to the“dead codebooks” in VQ-
VAE arises, wherein output nodes that are not selected for a long time receive no gradient updates.
During generation, these “dead nodes” are selected with equal probability, leading to poor output.
The second issue is the probability density shift. For instance, in a one-dimensional asymmetric
bimodal distribution, the target distribution is a mixture of two thin and tall Gaussian distribution
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functions, with one larger and one smaller peak. The means of these two peaks are -1 and 1, re-
spectively. Therefore, half of the output samples with initial values less than 0 will be matched
with samples from the larger peak and optimized towards the larger Gaussian distribution. Mean-
while, the other half of the output samples with values greater than 0 will be optimized towards the
smaller Gaussian. A problem arises as the large and small peaks carry different probability masses
but occupy equal portions of the output samples, resulting in the same sampling probability during
generation.

Inspired by the theory of evolution and genetic algorithms Katoch et al. (2021), we propose the Split-
and-Prune algorithm to address the above issues, as outlined in algorithm 1. The Split operation
targets nodes frequently matched by training samples, while the Prune operation addresses the issue
of “dead nodes”, similar to those inWilliams et al. (2020); Dhariwal et al. (2020). These nodes
are akin to species in evolution, subject to diversification and extinction. During training, we track
the frequency with which each node is matched by training samples. For nodes with excessive
frequency, we execute the Split operation, cloning the node into two new nodes, each inheriting
half of the old node’s frequency. Although these two new nodes have identical parameters and
outputs, the next matched training sample will only be associated with one node. Therefore, the loss
and gradient only affect one node’s parameters. Consequently, their parameters and outputs exhibit
slight differences, dividing the old node’s match space into two. In subsequent training, the outputs
of the two new nodes will move towards the centers of their respective spaces under the influence of
the loss, diverging to produce more diverse outputs. For nodes with low matching frequency (dead
nodes), we implement the Prune operation, removing them outright. fig. 4 illustrates the process
of the Split-and-Prune operation and how it reduces the distance between the discrete distribution
represented by the Output Nodes and the target distribution. The efficacy of the Split-and-Prune
optimization algorithm is validated through examples of fitting 2d density maps in fig. 17.

3.2 APPLICATIONS

Algorithm 1 Split-and-Prune of one layer
Require: Output nodes number K, model f , non-output

parameters θ, target distribution q(x)
1: Initialize output node parameters ψ(k) for k ∈
{1, . . . ,K} with random values

2: Initialize counter c(k) = 0 for k ∈ {1, . . . ,K}
3: Set split/prune threshold Psplit ← 2/K, Pprune ←

0.5/K
4: n← 0, knew ← K + 1
5: repeat
6: x ∼ q(x)

7: Choose k∗ = argmin
k∈ψ

∥f(θ,ψ(k))− x∥2

8: Gradient descent∇θ,ψ(k∗) ∥f(θ,ψ(k∗))− x∥2
9: c(k∗) := c(k∗) + 1

10: n← n+ 1
11: kmax = argmax

k
c(k) and kmin =

argmin
k

c(k)

12: if c(kmax)/n > Psplit or c(kmin)/n < Pprune

then
# Split:

13: ψ(knew) := clone(ψ(kmax))
14: c(knew) := c(kmax)/2
15: c(kmax) := c(kmax)/2
16: knew ← knew + 1

# Prune:
17: n← n− c(kmin)
18: remove ψ(kmin) and c(kmin)
19: end if
20: until converged

Zero-Shot Conditional Generation
(ZSCG). Each layer of the DDN produces
multiple target samples, with a selected sam-
ple being forwarded as a condition to the next
layer. This enables the generation of new
samples in the desired direction, ultimately
producing a sample that meets the given
condition. Indeed, the reconstruction process
shown in fig. 1a is a ZSCG process guided by
a target image, which never directly enters
the network.

To implement ZSCG, we replace the Guided
Sampler in fig. 3a with a Conditional Guided
Sampler. For instance, when generating an
image of class yi guided by a classifier gcls,
we replace the “L2 Distance to Training Im-
age” in the Guided Sampler of fig. 3a with
the probability of each output image belong-
ing to class yi according to the classifier. We
then replace “argmin” with “argmax” to con-
struct the Guided Sampler for this classifier.
Similar to eq. (1), the sampling method is as
follow:

k∗l = argmax
k∈{1,...,K}

gcls(fl(x
∗
l−1)[k])[yi] (5)

After performing L steps guided sampling
and L×K steps of classification, the ZSCG results can be obtained without any gradient.
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For super-resolution and colorization tasks, we construct a transform that converts the generated
images to the target domain (low-resolution or grayscale). This approach significantly reduces the
impact of the missing signal from the condition on the generated images, allowing DDN to success-
fully perform super-resolution tasks even when the source image has a resolution as low as 4× 4.

The use of “argmax” in the Guided Sampler causes each layer to select a fixed sample, resulting in a
single image output for each condition, similar to the greedy sampling in GPT. To increase diversity,
we employ more flexible sampling methods. For most ZSCG tasks, we use Top-k sampling with
k = 2, balancing diversity and condition appropriateness in the large generation space (2L).

The versatility of ZSCG can be further enhanced by combining different Guided Samplers. For
example, an image can guide the primary structure while text guides the attributes. The influence
of each condition can be adjusted by setting their respective weights. Experiments involving the
combination of different Guided Samplers will be presented in the Appendix.

Efficient Data Compression Capability. The latent of DDN is a highly compressed discrete rep-
resentation, where the information content of a DDN latent is L × log2 K bits. Taking our default
experimental values of K=512 and L=128 as an example, a sample can be compressed to 1152
bits, demonstrating the efficient lossy compression capability of DDN. We hypothesize this ability
originates from two aspects: 1) the compact hierarchical discrete representation, and 2) the Split-
and-Prune operation makes the probabilities of each node as equal as possible, thereby increasing the
information entropy Shannon (1948) of the entire latent distribution and more effectively utilising
each bit within the latent.

In our experiments, we set K=512 as the default, considering the balance between generation per-
formance and training efficiency. However, from the perspective of data compression, setting K to 2
and increasing L provides a better balance between representation space and compression efficiency.
We refer to DDN with K=2 as Binary DDN (BinDDN). To our knowledge, BinDDN are the first
generative model capable of directly transforming data into semantically meaningful binary strings.
These binary strings represent a leaf node on a balanced binary tree.

3.3 TECHNIQUES

In this subsection, we present several techniques for training Discrete Distribution Networks.

Chain Dropout. In scenarios where the number of training samples is limited, each data sample
undergoes multiple training iterations within the network. During these iterations, similar selections
are often made by the Guided Sampler at each layer. However, the representational space of DDN
far exceeds the number of training samples in the dataset. This disparity leads to a situation where
the network is only trained on a very limited set of pathways, resulting in what can be perceived
as overfitting on these pathways. To mitigate this, we introduce a strategy during training where
each Discrete Distribution Layer substitutes the Guided Sampler with a “random choice” at a fixed
probability rate. We refer to this method as “Chain Dropout”.

Learning Residual. In the context of utilizing the Single Shot Generator structure, a Discrete Dis-
tribution Layer is introduced every two convolution layers. Given such small amount of computation
between adjacent layers, directly regressing the images themselves with these convolutions becomes
challenging. Drawing inspiration from ResNet He et al. (2016), we propose a scheme for the net-
work to learn the residual between the output images from the preceding layer and the ground truth.
The output of the current layer is then computed as the sum of the output from the previous layer
and the current layer’s residual. This approach alleviates the pressure of the network to represent
complex data and enhances the flexibility of the network.

Leak Choice. In each layer of the DDN, the output is conditioned on the image selected from the
previous layer. This condition serves as a signal in the image domain, requiring the current layer to
expend computational resources to extract features and interpret the choices made by the Sampler.
However, for a DDN with a Single Shot Generator structure, the computation between two adjacent
layers is minimal, involving only two convolutional layers. To facilitate faster understanding of the
choices made by the Sampler in the subsequent layer, we have added extra convolutional layers to
each output node. The features produced by these extra convolutions also serve as conditional inputs
to the next layer. But these features don’t participate in the calculation of distance or loss in DDL.
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(a) CelebA-HQ 64x64 (b) FFHQ 64x64

(c) CIFAR (d) Conditional CIFAR (e) Conditional MNIST

Figure 5: Random samples from DDN. Figures (d) and (e) showcase images that are conditionally
generated by conditional DDN, with each row of images representing a distinct category.

4 EXPERIMENTS

Table 1: Quantitative comparison on
CIFAR-10. The data for VQ-VAE
comes from Vuong et al. (2023). Data
for other baselines comes from Bond-
Taylor et al. (2021).

Method Type FID↓
DCGAN GAN 37.1
IGEBM EBM 38.0

VAE VAE 106.7
VQ-VAE VAE 117.4

Gated PixelCNN AR 65.9
GLOW Flow 46.0

DDN(ours) DDN 52.0

We trained our models on a server equipped with 8
RTX2080Ti GPUs, setting the Chain Dropout probabil-
ity to 0.05 by default. For the 64x64 resolution experi-
ments, we utilized a DDN with 93M parameters, setting
K = 512 and L = 128. In the CIFAR experiments, we
employed a DDN with 74M parameters, setting K = 64
and L = 64. The MNIST experiments were conducted
using a Recurrence Iteration Paradigm UNet model with
407K parameters, where K = 64 and L = 10. DDN is
implemented on the foundation of the EDM Karras et al.
(2022) codebase, with training parameters nearly identi-
cal to EDM. Both code and model weights shall be re-
leased for reproducing. More extended experiments ex-
ploring the properties of DDN can be found in the Ap-
pendix.

4.1 QUALITATIVE AND QUANTITATIVE RESULTS

Generation Quality. fig. 5a and fig. 5b depict random
generation results of DDN on CelebA-HQ-64x64 Karras et al. (2017) and FFHQ-64x64 Karras
et al. (2019), verifying the model’s effectiveness in modeling facial data. The generation quality on
CelebA-HQ appears superior to that on FFHQ, which is also reflected in the lower FID score (35.4
VS 43.1). We surmise this disparity arises from CelebA-HQ’s relatively cleaner backgrounds and
less diverse facial data compared to FFHQ.

We conduct a qualitative comparison with a recent work, the Idempotent Generative Network (IGN)
Shocher et al. (2024), accepted by ICLR 2024. Since IGN was only experimented on the CelebA

8
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(a) DDN (Ours), FID=35.4 (b) Idempotent Generative Network (IGN), FID=39

Figure 6: Comparison of randomly generated images on CelebA-HQ 64x64. DDN produces
images with clearer details and fewer artifacts compared to IGN Shocher et al. (2024).

dataset and did not release its code, our comparison is limited on the CelebA dataset. As depicted in
fig. 6, our DDN demonstrate better generation capabilities over IGN.

Figure 5c showcases the random generation results of DDN on the CIFAR dataset. In parallel,
we present the FID score of DDN on unconditional CIFAR in table 1, comparing it against classical
generative models. It is worth noting that modeling CIFAR remains a challenging task, especially for
new and under-explored generative models like DDN. For instance, the recent work IGN Shocher
et al. (2024) did not conduct experiments on CIFAR. Instead, we wish to emphasize the unique
capability of DDN in “more general zero-shot conditional generation”.

Conditional Training. Training a conditional DDN is quite straightforward, it only requires the
input of the condition or features of the condition into the network, and the network will automati-
cally learn P (X|Y ). fig. 5d and fig. 5e show the generation results of the class-conditional DDN on
CIFAR and MNIST, respectively. The conditional DDN displays a good ability to learn the correct
P (X|Y ) distribution.

Table 2: Ablation study on FFHQ-64x64. We use
the reconstruction Fréchet Inception Distance (rFID) to
reflect the reconstructive performance of the network.
All models are trained on the FFHQ-64x64 dataset.
The rFID-FFHQ represents the reconstructive perfor-
mance of the model on the training set, while rFID-
CelebA can be seen as an indication of the model’s gen-
eralization performance on the test set. “w/o” stands
for “without”.

Model FID↓ FFHQ↓ CelebA↓
K=512 (default) 43.1 26.0 33.2
K=64 47.0 32.3 38.7
K=8 52.6 40.9 49.8
K=2 (BinDDN) 66.5 38.4 70.6
w/o Split-and-Prune 55.3 31.2 34.7
w/o Chain Dropout 182.3 26.5 37.4
w/o Learning Res. 56.2 40.2 40.2
w/o Leak Choice 56.0 34.3 32.2

Zero-Shot Conditional Generation. We
trained a DDN model on the FFHQ-64x64
dataset and then tested the capability of
the model for zero-shot conditional image
generation using the CelebA-HQ-64x64
dataset, as shown in fig. 2. We presented
the experiments of text-guided ZSCG us-
ing CLIP Radford et al. (2021) in the
Appendix. Our generation process does
not require gradient derivation or numeri-
cal optimization, nor does it need iterative
steps. To the best of our knowledge, DDN
is the first generative model that supports
purely discriminative model as guide for
zero-shot conditional generation.

In addition, we employed an off-the-shelf
CIFAR classifier Phan (2021) to guide the
generation of specific category images by
a DDN model trained unconditionally on
CIFAR. We want to emphasize that the
classifier is an open-source, pre-trained
ResNet18 model, with no additional mod-
ifications or retraining. fig. 8 displays images of various CIFAR categories generated by the model
under the guidance of the classifier.

Latent analysis. We trained a DDN on the MNIST dataset with K = 8 and L = 3 to visualize both
the hierarchical generative behavior of the DDN and the distribution of samples in the entire latent
representation space, as shown in Figure 7.
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4.2 ABLATION STUDY

In Table 2, we demonstrate the impact of different numbers of output nodes (K) and various tech-
niques on the network. Interestingly, despite the substantial difference between having and not
having the Split-and-Prune technique in the toy example, as shown in fig. 17, the performance in
the ablation study without Split-and-Prune is not as poor as one might expect. We hypothesize that
this is due to the Chain Dropout forcing all dead nodes to receive gradient guidance, preventing the
network from generating poor results that are unoptimized. A particular case is when K = 2, where
the representational space of BinDDN is already sufficiently compact. The use of Chain Dropout
in this case tends to result in more blurred generated images. Therefore, we did not employ Chain
Dropout when K = 2.

5 CONCLUSION

In this paper, we have introduced Discrete Distribution Networks, a generative model that approx-
imates the distribution of training data using a multitude of discrete sample points. DDN exhibits
unique property: more general zero-shot conditional generation. We also proposed the Split-and-
Prune optimization algorithm and several effective techniques for training DDN. Additionally, we
showcase the efficacy of DDN and its intriguing properties through experiments.

Figure 7: Hierarchical Generation Visualization of DDN.
We trained a DDN with output level L = 3 and output nodes
K = 8 per level on MNIST dataset, its latent hierarchi-
cal structure is visualized as recursive grids. Each sample
with a colored border represents an intermediate generation
product. The samples within the surrounding grid of each
colored-bordered sample are refined versions generated con-
ditionally based on it (enclosed by the same color frontier).
The small samples without colored borders are the final gen-
erated images. The larger the image, the earlier it is in the
generation process, implying a coarse version. The large im-
age in the middle is the average of all the generated images.
More detailed visualization of L = 4 will be presented in
the Appendix.

Figure 8: Zero-Shot Conditional
Generation on CIFAR-10 Guided by
a pretrained classification model with-
out gradient. Each row corresponds
to a class in CIFAR-10. Specifi-
cally, the first row consists of air-
planes, the third row displays birds
flying against the blue sky, and the last
row presents trucks. Our model suc-
cessfully generates reasonable images
for each class without any conditional
training, demonstrating the powerful
zero-shot generation capability of our
DDN.
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A EXPERIMENTAL RESULTS ON GENERATIVE PERFORMANCE

We present additional experiments to verify the generative and reconstructive capabilities of Discrete
Distribution Networks (DDN).

Conditional DDN for Image-to-Image Tasks. In the realm of image-to-image tasks, we extend our
Discrete Distribution Networks (DDN) to a conditional setting, resulting in the conditional DDN.
In this architecture, the condition is directly fed into the network during training in the beginning
of each stage. The condition serves as an informative guide, significantly reducing the model’s
generative space and, consequently, the complexity of the modeling task.

Those conditions inherently carry rich information, enabling the network to produce higher-quality
samples. Through this conditional design, the DDN can leverage the abundant information contained
in the conditions to generate more accurate and detailed images as shown in fig. 9.

Verify whether DDN can generate new images. As depicted in fig. 10, we compare the images
that are closest in the training dataset, FFHQ, to those generated by our DDNs. It suggests that our
DDNs can synthesize new images that, while not present in the original dataset, still conform to its
target distribution.

Demonstration of Generation and Reconstruction Quality. figs. 12 to 14 illustrate the generation
and reconstruction results in various ablation experiments using the DDN model.

Efficacy of Split-and-Prune and Chain Dropout. A series of experiments were conducted to sep-
arately investigate the effectiveness of the Split-and-Prune and Chain Dropout methods. To isolate
the impacts of these two algorithms, we simplified the experimental conditions as much as possible,
using the MNIST dataset as a base, setting K = 8 and L = 10, and disabling Learning Residual.
The generated image quality under three different settings is displayed in fig. 11. The results demon-
strated that the Split-and-Prune method is indispensable, leading to significant improvements in the
quality of generated images. Meanwhile, the Chain Dropout method was found to alleviate the poor
results observed when the Split-and-Prune method was not implemented.

B FURTHER DEMONSTRATIONS ON ZERO-SHOT CONDITIONAL
GENERATION

In this section, we present additional experimental results on Zero-Shot Conditional Generation
(ZSCG).

Utilizing CLIP as Conditioning Guidance. As illustrated in fig. 15, we leverage CLIP Radford
et al. (2021) along with corresponding prompts as conditioning cues. We use a Discrete Distribution
Network (DDN) model, which is exclusively trained on the FFHQ dataset, to yield Zero-Shot Con-
ditional Generation (ZSCG) results. Remarkably, DDN can generate corresponding images under
the guidance of CLIP without the necessity for gradient computations and only requiring a single
inference pass.
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Condition GT

Guided by:

Figure 9: Conditional DDN performing coloring and edge-to-RGB tasks. Benefiting from the
reduction of the generative space by the condition, DDN is capable of generating high-quality im-
ages of 256× 256 resolution. Columns 4 and 5 display the generated results under the guidance of
other images, where the produced image strives to adhere to the style of the guided image as closely
as possible while ensuring compliance with the condition.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 10: Nearest neighbors of the model trained on FFHQ. The leftmost column presents images
generated by the DDN. Starting from the second column, we display the images from FFHQ that
are most similar to the generated images, as measured by LPIPS Zhang et al. (2018).
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(a) With Split-and-Prune, set Chain
Dropout 0

(b) Without Split-and-Prune, set
Chain Dropout 0

(c) Without Split-and-Prune, set
Chain Dropout 0.05

Figure 11: Efficacy of Split-and-Prune and Chain Dropout on MNIST.

K=512 (default)
(FID 43.1)

K=64 
(FID 47.0)

K=8 
(FID 52.6)

K=2 (BinDDN) 
(FID 66.5)

w/o Split-and-Prune 
(FID 55.3)

w/o Chain Dropout 
(FID 182.3)

w/o Learning Residual 
(FID 56.2)

w/o Leak Choice 
(FID 56.0)

Figure 12: Illustration of the random sample generation effects as part of the ablation study on our
DDNs model.
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K=64
(rFID 32.3)

K=512(default)
(rFID 26.0)

K=8
(rFID 40.9)

K=2(BinDDN)
(rFID 38.4)

w/o Split-and-Prune
(rFID 31.2)

w/o Chain Dropout
(rFID 26.5)

w/o Learning Residual
(rFID 40.2)

w/o Leak Choice
(rFID 34.3)

GT

Figure 13: Demonstration of the reconstruction capability of our ablation study model on FFHQ-
64x64, which can be interpreted as the model’s fitting ability on the training set.
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K=64
(rFID 38.7)

K=512(default)
(rFID 33.2)

K=8
(rFID 49.8)

K=2(BinDDN)
(rFID 70.6)

w/o Split-and-Prune
(rFID 34.7)

w/o Chain Dropout
(rFID 37.4)

w/o Learning Residual
(rFID 40.2)

w/o Leak Choice
(rFID 32.2)

GT

Figure 14: Demonstration of the reconstruction capability of our ablation study model on CelebA-
64x64, which can be interpreted as the model’s generalization ability on the test set.
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Figure 15: Zero-Shot Conditional Generation guided by CLIP. The text at the top is the guide
text for that column.
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Figure 16: Zero-Shot Conditional Generation under the Influence of Multiple Conditions. The
DDN balances the steering forces of CLIP and Inpainting according to their associated weights.

Nodes/level Level Representation space Validation accuracy↑
K L KL 128 1024 10k 50k
2 10 1024 65.9 77.3 85.8 86.9
8 3 512 69.0 81.1 87.6 88.0
8 5 3.3× 104 67.5 79.1 87.5 90.5
8 10 1.1× 109 58.6 75.3 84.9 89.0
64 10 1.1× 1018 52.5 70.4 80.9 86.3

Table 3: Fine-tuning DDN latent as decision tree on MNIST. Constructing a decision tree based
on the latent variables from the DDN and fine-tuning it on MNIST trainning set. We report the
validation set accuracy of the decision tree after majority voting for class prediction with varying
number of training samples: 128, 1,024, 10,000, and 50,000 (the full training set).

ZSCG with Multiple Conditions. In fig. 16, we illustrate the operation of ZSCG under the com-
bined action of two Guided Samplers: Inpainting and CLIP. Each sampler operates under its own
specific condition. The inpainting sampler utilizes a mask to cover the areas where the CLIP prompt
acts. Specifically, “wearing sunglasses” masks the eyes, “wearing a hat” masks the upper half of
the face, and “happy person” masks the lower half. For each Discrete Distribution Layer (DDL),
both samplers assign a rank to the generated images, corresponding to the degree of match to their
respective conditions– the better the match, the higher the rank. We assign a weight to each sampler,
which affects the assigned ranking. In this case, both samplers have a weight of 0.5. To promote
diversity in the generated samples, we randomly select one image from the top two ranked by their
condition-matching scores, serving as the output for that DDL layer.

C LATENT ANALYSIS

Semantic Performance of Latents. We explored the semantic capabilities of DDN latents through a
classification experiment on the MNIST dataset. Given the inherent tree structure of DDN’s latents,
we employed a decision tree classification method, using fine-tuning data to assign class votes to
nodes in the tree. For unassigned nodes, their class is inherited from the closest ancestor node
with a class. We fine-tuned DDN’s latent decision tree using various numbers of labeled training
set data, and the results on the test set are shown in table 3. All experiments in this table were
conducted with Recurrence Iteration Paradigm’s UNet, which has approximately 407k parameters.
However, computational complexity increases proportionally with the number of output levels (L).
These experiments substantiate that DDN’s latents encompass meaningful semantic information.

More Comprehensive Latent Visualization. fig. 18 demonstrates a more comprehensive distribu-
tion of samples that correspond to the latent variables.
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Figure 17: Toy examples for two-dimensional data generation. The numerical values at the bot-
tom of each figure represent the Kullback-Leibler (KL) divergence. Due to phenomena such as
“dead nodes” and “density shift”, the application of Gradient Descent alone fails to properly fit the
Ground Truth (GT) density. By employing the Split-and-Prune strategy, the density map looks the
same as Real Samples. In the experiment, we use K = 10, 000 discrete nodes to emulate the proba-
bility distribution of GT density. Each node encompasses two parameters, x and y, initialized from
a uniform distribution. Each experiment consists of 100,000 iterations, where in each iteration an
L2 loss is calculated based only on the node closest to the GT. The GT density map is converted into
a discrete distribution with bins of size 100×100, which is then used to calculate the KL divergence
against the discrete distribution represented by these nodes. The KL divergence of Split-and-Prune
is even lower than that of the Real Samples. This is because our algorithm has been exposed to
100,000 sets of GT data, thus it better reflects the GT distribution compared to the ‘Real Samples’,
which are drawn only 10,000 times from the GT distribution.
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Figure 18: Hierarchical Generation Visualization of DDN with L = 4. We trained a DDN with
output level L = 4 and output nodes K = 8 per level on MNIST dataset, its latent hierarchical struc-
ture is visualized as recursive grids. Each sample with a colored border represents an intermediate
generation product. The samples within the surrounding grid of each colored-bordered sample are
refined versions generated conditionally based on it (enclosed by the same color frontier). The small
samples without colored borders are the final generated images. The larger the image, the earlier it
is in the generation process, implying a coarse version. The large image in the middle is the average
of all the generated images. The samples with blue borders represent the 8 outputs of the first level,
while those with green borders represent the 82 = 64 outputs of the second level. It can be observed
that images within the same grid display higher similarity, due to their shared “ancestors”. Best view
in color and zoom in.

D MORE DETAILED EXPERIMENTAL EXPLANATION

In fig. 19, we have expanded the “Illustration of the Split-and-Prune operation” by providing a
schematic when K increases to 15. This demonstrates that having a larger sample space results in
an approximation that is closer to the target distribution.

In the caption of fig. 17, we have detailed the experimental parameters for “Toy examples for two-
dimensional data generation”. Additionally, we will explain why the KL divergence in our model is
lower than that found in the Real Samples.
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(a) Initial, K=5
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(b) Split, K=5→6
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(c) Prune, K=6→5
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(d) Final, K=5
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(e) Initial, K=15
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(f) Final, K=15

Figure 19: Illustration of the Split-and-Prune operation. For example in (a), the light blue bell-
shaped curve represents a one-dimensional target distribution. The 5 “↑” under the x-axis are the
initial values from a uniform distribution of 5 output nodes, which divide the entire space into 5
parts using midpoints between adjacent nodes as boundaries (i.e., vertical gray dashed lines). Each
part corresponds to the range represented by this output node on the continuous space x. Below
each node are three values: P stands for the relative frequency of the ground truth falling within this
node’s range during training; Q refers to the probability mass of this sample (node) in the discrete
distribution output by the model during the generation phase, which is generally equal for each sam-
ple, i.e., 1/K. The bottom-most value denotes the difference between P and Q. Colorful horizontal
line segments represent the average probability density of P , Q within corresponding intervals. In
(b), the Split operation selects the node with the highest P (circled in red). In (c), the Prune opera-
tion selects the node with the smallest P (circled in red). In (d), through the combined effects of loss
and Split-and-Prune operations, the distribution of output nodes moves towards final optimization.
From the observed results, the KL divergence (KL(P ||Q)) consistently decreases as the operation
progresses, and the yellow line increasingly approximates the light blue target distribution. Finally,
we show the distributions of the initial and final stages when the number of output nodes K = 15
in (e) and (f). Due to the increased representational space (higher resolution), in (f), the probability
density distribution Q (yellow line segment) is closer to the lightblue target distribution than in the
case of K = 5.
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E LIMITATIONS

There are some key limitations of Discrete Distribution Networks (DDNs):

• Loss of high-frequency signals: The high level of data compression and the use of pixel
L2 loss during optimization may result in the loss of high-frequency signals, causing the
images to appear blurred. A potential improvement could be learning from VQ-GAN Esser
et al. (2021) and incorporating adversarial loss Creswell et al. (2018) to enhance the mod-
eling of high-frequency signals.

• Difficulty with complex data: While random choice can generate decent facial data,
DDNs struggle with complex data, such as ImageNet Krizhevsky et al. (2012). One possi-
ble solution is to learn an additional prior model dedicated to sampling output nodes.

• computational burden of zero-shot conditional generation: ZSCG requires L×K for-
ward passes through the guided model, where L is the number of layers and K is the
number of possible outputs per layer. When the guided model itself is computationally ex-
pensive, this results in significant computational overhead and prolonged generation time.
However, since the discrimination process is parallelizable across the K-dimensional out-
put space, batching techniques can be employed to mitigate latency. In addition, further
research will be conducted to reduce the number of guided model calls during the ZSCG
process.
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