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ABSTRACT

Part of the success of diffusion models stems from their ability to perform iterative
refinement, i.e., repeatedly correcting outputs during generation. However, modern
masked discrete diffusion lacks this capability: when a token is generated, it cannot
be updated again, even when it introduces an error. Here, we address this limitation
by introducing the remasking diffusion model (ReMDM) sampler, a method that
can be applied to pretrained masked diffusion models in a principled way and that
is derived from a discrete diffusion model with a custom remasking backward
process. Most interestingly, ReMDM endows discrete diffusion with a form of
inference-time scaling. By increasing the number of sampling steps, ReMDM
generates natural language outputs that approach the quality of autoregressive
models, whereas when the computation budget is limited, ReMDM better maintains
quality. ReMDM also improves sample quality of masked diffusion models for
discretized images, and in scientific domains such as molecule design, ReMDM
facilitates diffusion guidance and pushes the Pareto frontier of controllability
relative to classical masking and uniform noise diffusion.

1 INTRODUCTION

Diffusion models have gained significant traction as algorithms for generating high-quality images
and videos (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020). Part of the success of
diffusion stems from its ability to perform iterative refinement—repeatedly modifying outputs and
fixing errors over multiple steps of generation—which makes diffusion models especially effective
at guided generation (Dhariwal & Nichol, 2021; Ho & Salimans, 2022), fast sampling (Song et al.,
2020a; Salimans & Ho, 2022; Song et al., 2023), and supports inference-time scaling to improve
sample quality Ma et al. (2025).

Discrete counterparts of diffusion models Austin et al. (2021) have also been steadily improving
in quality on tasks such as language modeling and biological sequence design Lou et al. (2024);
Sahoo et al. (2024); Schiff et al. (2024). However, modern discrete diffusion—especially the most
performant kind that relies on masking (Ou et al., 2024; Shi et al., 2024; Sahoo et al., 2024)—lacks
the fundamental ability to iteratively refine outputs. Once a discrete token is unmasked, it cannot
be updated again, even if it introduces an error. The lack of error correction in turn sets limits on
controllable generation, sampling speed, and sample quality.

Here, we address the inability of masked diffusion models to perform iterative refinement by in-
troducing a new sampler that supports remasking during generation. Our method, the remasking
diffusion model (ReMDM) sampler, is simple and allows users to directly specify the probability
of remasking a token at each time step. We augment the sampler with components that range from
nucleus sampling to remasking schedules, significantly boosting performance.

Our approach for deriving the sampler is rooted in probabilistic modeling—-we show that our method
corresponds to ancestral sampling in a discrete diffusion model (also called ReMDM) characterized
by a remasking backward process. The ReMDM model admits an objective that is a rescaled version
of the MDLM objective (Sahoo et al., 2024)—this suggests using the ReMDM sampler on top of
pretrained MDLMs, which we find to work well. We complement our analysis of the sampler by also
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Figure 1: Our family of masked diffusion processes allow for more flexible generation with remasking
of already decoded tokens. This improves sample quality and further closes the gap to AR models.
(Left) An illustrative example of errors fixed by ReMDM. The first two tokens can be “They sell” or
“She sells”, but due to the independence of the parallelized decoding processes, “She sell” is decoded.
Such mistakes can be corrected by remasking samplers. (Right) MAUVE scores on OpenWebText.
MDLM is from Sahoo et al. (2024). FB and DFM denote the forward-backward Campbell et al.
(2022) and discrete flow matching Gat et al. (2024) correctors, respectively.

showing that it can be interpreted as a predictor-corrector technique (Song et al., 2020b; Campbell
et al., 2022).

Most interestingly, the ReMDM sampler endows discrete diffusion with a form of inference-time
scaling. By increasing the number of denoising steps on language modeling tasks, ReMDM generates
samples with significantly higher sample quality metrics than any previous diffusion model and almost
matches the performance of an autoregressive (AR) model with the same architecture. Conversely,
when we reduce sampling steps to increase speed, performance degrades less than other samplers on
text and image generation. Lastly, ReMDM models are more amenable to guidance (Schiff et al.,
2024)—in molecule design experiments, ReMDM pushes the Pareto frontier of novelty and the
desired molecular property relative to alternatives relying on masking or uniform noise diffusion.

Contributions We summarize our contributions as follows:

1. We introduce the remasking diffusion model (ReMDM) sampler and several add-on compo-
nents that bring performant iterative refinement via remasking to masked diffusion models.

2. We show that our method is a form of ancestral sampling in a probabilistic model whose
ELBO is similar to that of classical masked diffusion. This analysis suggests using our
sampler on top of pretrained models, which we find to work well.

3. Across the domains of natural language, discretized images, and molecule string representa-
tions, we demonstrate empirically that ReMDM endows masked diffusion with inference-
time scaling that improves sample quality with more computation, and that also enhances
controlled generation.

2 BACKGROUND

Discrete Diffusion Models Diffusion models Sohl-Dickstein et al. (2015); Ho et al. (2020) are
characterized by parametric models pθ trained to reverse a fixed noising process q that maps clean
data x to increasingly noisy latent variables zt, for t ∈ [0, 1]. Austin et al. (2021); Sahoo et al. (2024);
Shi et al. (2024) extend this framework to discrete signals. Formally, we define x ∈ {0, 1}|V | ⊂ ∆|V |

as one-hot vectors, where |V | is the vocabulary size and ∆|V | is the simplex over this vocabulary.
For finite-time processes, we let T be the number of time steps. For each time step t(i) = i

T ∈ [0, 1]

(i.e., for i = 0, 1, . . . , T ), each intermediate latent variable zt(i) ∈ {0, 1}|V | has the marginal:

q(zt | x) = Cat(zt;αtx+ (1− αt)π) ∈ ∆|V |, (1)

where π is a user-specified prior and where we have dropped the explicit dependence of t on i. The
predefined schedule αt ∈ [0, 1] is monotonically decreasing in t. For sequences of L tokens, we
denote clean / noisy sequences as x(1:L) / z(1:L)t and each token ℓ ∈ {1, . . . , L} as x(ℓ) / z(ℓ)t .
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Masked Diffusion Language Models A special case of this formulation, known as ‘masking’ or
‘absorbing state’ discrete diffusion, sets the limiting distribution π = m, a one-hot vector centered on
a special [MASK] token. Letting s(i) = i−1

T be the time step directly preceding t, these posteriors
take the form:

q(zs | zt,x) = Cat
(
zs;

αs − αt
1− αt

x+
1− αs
1− αt

zt

)
. (2)

Importantly, despite the recent success of MDLM Sahoo et al. (2024) and other absorbing state
discrete diffusion models, these models suffer from a key drawback, which we call the failure to
remask property. Namely, the posterior formula in (2) implies that any unmasked token zt ̸= m
must remain unchanged throughout the entire denoising process, for all s ≤ t, which Sahoo et al.
(2024) formalize as q(zs | zt,x) = Cat(zs; zt) if zt ̸= m. Once a token is decoded, this prediction
is ‘locked-in’, a limitation that these diffusion models share with AR models.

As in Sahoo et al. (2024), a denoising neural network xθ is used for parameterizing pθ(zs|zt) =
q(zs|zt,xθ(zt)) and trained using the following objective:

L = Ez0∼q(z0|x)

[
− log pθ(x | z0)

]
+ Et∈{ 1

T ,...,1}
Ezt∼q(zt|x)T

[
αt − αs
1− αt

log(xθ(zt)
⊤x)

]
(3)

3 REMASKING DIFFUSION MODELS

In this work, we alleviate the failure to remask limitation that affects state-of-the-art masked diffusion
models. Our strategy is to design a probabilistic model similar to MDLM (Sahoo et al., 2024), but
whose denoising posterior generalizes (2) and supports remasking.

Specifically, we will define a discrete diffusion model whose posterior for zt ̸= m has the following
form:

q(zs | zt = x,x) = (1− σt)x+ σtm. (4)
The parameter σt gives us the flexibility of remasking a decoded token during generation. Because of
this property, we dub our method ReMasking Diffusion Models (ReMDM).

3.1 REMDM FORWARD PROCESSES

We define the complete forward process of ReMDM as:

qσ(z0:1 | x) = qσ(z1 | x)
T∏
i=1

qσ(zs | zt,x) (5)

where qσ(z1 | x) = q(z1) = m is the same limiting distribution as in masked diffusion. We construct
the posteriors qσ(zs | zt,x) as:{

Cat(zs; (1− σt)x+ σtm), zt ̸= m

Cat(zs;
αs−(1−σt)αt

1−αt
x+ 1−αs−σtαt

1−αt
m), zt = m.

(6)

Observe how (6) maintains the remasking property laid out in (4). Additionally, our chosen form
for q(zs | zt = m,x) ensures that the marginals for qσ(zt | x) are the same as in classical masked
diffusion (e.g., Sahoo et al. (2024)). This property will yield an ELBO for ReMDM that is very
similar to that of MDLM, and will help us argue for using the ReMDM sampling procedure on top of
a pretrained MDLM model. Formally, we establish the following result (proof in Appendix A.1):
Theorem 3.1. Given the posterior in (6), the marginal distribution qσ(zt | x) is the same as in (1).

In Appendix A.2, we demonstrate that this ability to remask necessitates that ReMDM is a non-
Markovian process (as in e.g., DDIM (Song et al., 2020a)).

Understanding the Role of σt To ensure that the posterior in (6) is a valid probability distribution,
we place following constraints on σt (see derivation in Appendix A.3):

0 ≤ σt ≤ min
{
1,

1− αs
αt

}
=: σmaxt . (7)

3



Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Further examining (6), we see that as σt increases, we move mass away from zt. Importantly, this
means that when zt is unmasked, σt directly controls the probability of remasking. When σt = 0, we
recover the posterior from MDLM in (2). Thus, ReMDM can be seen as a more general formulation
that admits MDLM as a special case.

3.2 NEGATIVE EVIDENCE LOWER BOUND

We define the joint distribution of the parameterized forward process pθ as follows:

pθ(x)pθ(z0:1 | x) = pθ(z1)pθ(x | z0)
T∏
i=1

pθ(zs | zt). (8)

We define pθ(z1) = π and parameterize pθ(zs | zt) = q(zs | zt,xθ(zt)), where xθ(zt) is a
denoising model. With this parameterization, the NELBO for ReMDM is (see Appendix A.4 for
details):

Lσ = Ez0∼q(z0|x)

[
− log pθ(x | z0)

]
+ Et∈{ 1

T ,...,1}
Ezt∼q(zt|x)T

[
(1− σt)αt − αs

1− αt
log(x⊤

θ x)

]
.

(9)
Since αt ≤ αs, each term in the second expectation increases monotonically in σt. When σt = 0,
for all t, we recover the MDLM objective from (3). This implies that the MDLM NELBO produces
a tighter bound compared to ReMDM. Furthermore, since the diffusion loss term in (9) is simply
a reweighted version of that in (3), one can presumably reuse weights from a model trained with
(3), i.e., using different σt at training and inference. Indeed, we find this to be a performant strategy
in practice. Moreover, we find the performance (test perplexity) between models trained with the
MDLM and the ReMDM objectives to be comparable (see Appendix E.1), further justifying our
reuse of pretrained weights, with the added benefit of more flexible sampling unlocked by ReMDM.

4 REMDM SAMPLERS

Using ReMDM for sampling opens a large design space for choosing σt. In the following, we explore
several practical design strategies for σt that significantly improve performance, and in Section 5
we describe further add-ons to the sampler (e.g., nucleus sampling) that also improve quality. See
Appendix C for the high-level pseudocode for the ReMDM sampler and more detailed algorithms for
implementing the schedules below.

4.1 DESIGN STRATEGIES FOR THE REMASKING SCHEDULE σt

Here, we list several strategies for setting σt ∈ [0, σmaxt ], which can either be employed separately or
in conjunction with the strategies introduced in Section 4.2. Note that for sequences, we can assign a
different σ(ℓ)

t for each token. When we omit this superscript, this implies that the same σt is used for
all tokens.

Max-Capped Schedule We can potentially reduce the maximum probability of remasking to a
constant ηcap ∈ [0, 1]. Concretely, we let σt = min{ηcap, 1−αs

αt
}, for all t ∈ [0, 1]. We denote this

schedule as “ReMDM-cap.”

Rescaled Schedule Alternatively, we can temper the chances of remasking by setting σt = ηrescale ·
σmaxt , with ηrescale ∈ [0, 1] as a hyperparameter that controls this rescaling. We denote this schedule
as “ReMDM-rescale.”

Confidence-Based Schedule Apart from the two strategies above, we explore a further reweighing
of σt which is based on the intuition that tokens of which the denoising model is less confident
should be assigned a larger probability of remasking. Consider the ℓ-th token in a sequence of L
latents at time t. For each ℓ ∈ {1, . . . , L}, we store its decoding probability at the time τ at which
it was last unmasked. Concretely, if z(ℓ)t ̸= m, then we define ψ(ℓ)

t := x
(ℓ)⊤
θ,τ z

(ℓ)
τ . If zt = m,

then ψ(ℓ)
t := ∞. Thus, ψ(ℓ)

t serves as a ‘confidence score’ for unmasked tokens. We then compute

σ
(ℓ)
t = η

(ℓ)
conf ·σt , where η

(ℓ)
conf =

exp(−ψ(ℓ)
t )∑L

l=1 exp(−ψ(ℓ′)
t )

. With this schedule, masked tokens are decoded
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using the approximate posterior from MDLM, and the unmasked tokens are remasked negatively
proportional to their confidence. We denote this schedule as “ReMDM-conf.”

4.2 DESIGN STRATEGIES FOR ‘TURNING ON’ REMDM

There may be certain periods of the generation process where remasking is more valuable and
some when it is detrimental / can slow down sampling, e.g., at the beginning of sampling, one
may wish to generate some tokens in a sequence using standard MDLM decoding, and only after
generating a reasonable starting candidate, then spend some computational budget ‘fixing mistakes’
via the remasking posterior. We, therefore, propose two methods for optionally ‘turning on/off’
ReMDM sampling, which amount to the following modification of the σt schedules above:

σ̃t =

{
σt, if t ∈ [ton, toff ),with ton > toff
0, otherwise.

(10)

Switch We choose some tswitch ∈ (0, 1] and in (10) we have [ton, toff ) = [tswitch, 0). We denote
this strategy as “ReMDM-switch.”
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(b) ReMDM and DFM σt schedules for OWT.

Loop In this strategy, we set both ton, toff ∈ (0, 1]. Furthermore, in the range when ReMDM is
activated, we modify the noise schedule to be constant, such that αt = α(ton). As shown in Figure
2a, this divides the sampling process into three phases. In the first phase, the model generates
tokens without remasking (σt = 0, i.e., using MDLM). In the second phase, we hold α constant
(i.e., αs = αt), and the model can ‘correct potential mistakes’ by remasking and predicting a fixed
proportion of the generated tokens in a loop. Finally, in the third phase, we let the model predict any
remaining unmasked tokens using the MDLM posterior. We denote this strategy as “ReMDM-loop.”
Note that we can also change the amount of computation spent in each of the three phases by taking
non-fixed-width steps.

4.3 COMPARISON WITH DISCRETE PREDICTOR-CORRECTOR SAMPLERS

Previous works, e.g., the forward-backward (FB; Campbell et al. (2024)) and discrete flow matching
(DFM; Gat et al. (2024)) correctors, propose to tackle the failure to remask property with discrete
predictor-corrector samplers, a special type of discrete diffusion samplers that decompose a single
sampling step into one predictor step followed by a certain number of corrector steps that remediate
possible mistakes without changing the marginals. Here, we demonstrate that these methods are
either a special case or a reparameterization of ReMDM sampling by first noting the following result
(see Appendix A.5 for the proof):

Theorem 4.1. qσ(zs | zt,x) from (6) is equivalent to an MDLM predictor step qpredictor(zsp | zt,x)
followed by a corrector step qcorrector(zsc | zsp ,x) in the form of{

Cat(zsc ; (1− σt)x+ σtm), zsp ̸= m

Cat(zsc ;
σtαs

1−αs
x+ 1−(1+σt)αs

1−αs
m), zsp = m.

(11)
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Since the only constraint on ReMDM’s sampler is the bound on σt, ReMDM offers a general
framework for the design of remasking samplers for discrete diffusion models. We now formalize the
generality of ReMDM (proofs provided in Appendices A.6 & A.7).

Proposition 4.2. The FB corrector Campbell et al. (2022) on MDLM is a special case of
ReMDM where σt = αs−αt

αt
.

Proposition 4.3. The DFM corrector Gat et al. (2024) on MDLM is a reparameterization of
ReMDM where σt =

βt(αs−αt)
αt

. βt ∈ R denotes the corrector schecule.

5 EXPERIMENTS

5.1 REMDM IMPROVES SAMPLE QUALITY

5.1.1 TEXT GENERATION

Experimental Setup We test the text generation capability of ReMDM with unconditional generation
from models trained on OpenWebText (OWT; Gokaslan & Cohen (2019)). The OWT dataset was
tokenized using the gpt-2 tokenizer Radford et al. (2019) and sequences were wrapped to a max
length of L = 1024. Our baselines consist of pretrained AR, SEDD Lou et al. (2024), and MDLM
models with checkpoints taken from the implementation in Sahoo et al. (2024). We also compare
to the MDLM pretrained models with the FB Campbell et al. (2022) and DFM Gat et al. (2024)
correctors during inference. For our method, we also reuse the MDLM checkpoint and experiment
with different ReMDM remasking schedules (see Appendix E.2.4 for the full set of results). We
generate 5,000 samples from each model/sampler and evaluate methods using the MAUVE score Liu
et al. (2021); Pillutla et al. (2021), as this metric balances sample quality and diversity. We also report
the perplexity of the generated sequences under GPT-2 Large (Gen PPL.) to measure quality and
average sequence entropy to reflect diversity of generated sequences as in Zheng et al. (2024).

Floating-Point Precision As indicated in Zheng et al. (2024), previous masked diffusion models
Lou et al. (2024); Sahoo et al. (2024) report sampling with 32-bit floating point precision, which was
found to significantly curb the diversity of generated samples. We therefore use 64-bit floating point
for all text-sampling experiments.

Nucleus Sampling We observe that nucleus sampling, Holtzman et al. (2019) is critical for generating
high-quality text sequences. We therefore use this strategy (with top-p = 0.9) for all models (except
SEDD—it doesn’t output logits).

Results In Table 1, we report results for the best ReMDM setting. For inference time scaling
results (T ≥ 1024), we use the max-capped schedule (ηcap = 0.02) in conjunction with the loop
strategy (ton = 0.55, toff = 0.05, and α(ton) = 0.9 held constant in the ReMDM-loop). For faster
sampling (T < 1024), we use the max-capped schedule (ηcap = 0.04) on its own. As shown in
Table 1, ReMDM scales favorably with inference time compute, achieving a 15.62× MAUVE score
compared to the masked diffusion models and a 2.23× MAUVE score compared to MDLM with
corrector samplers (see Appendix E.2.2 for ablation study on ReMDM components). In contrast,
masked diffusion models scale poorly with T and corrector sampler methods saturate when T is
large. We also explore the scenario of faster sampling (i.e., T < L = 1024). Even with more limited
computational budget, ReMDM is able to generate sequences with higher quality than the baselines.

5.1.2 IMAGE GENERATION

Experimental Setup We use a pretrained MaskGiT model Chang et al. (2022) trained on ImageNet
Deng et al. (2009) 256× 256 samples. The images were patchified and flattened to a sequence of
L = 256 and encoded according to a codebook with 1024 tokens Esser et al. (2021). See Chang
et al. (2022) for more details about the model and training settings. We compare ReMDM’s sampler
to the original MaskGiT sampling and to MDLM. Although MaskGiT does not follow ancestral
sampling, it is still restricted by the failure to remask property. For each sampler, we conditionally
generate 50,000 images, with class labels randomly chosen from the 1,000 ImageNet categories,
and we measure sample quality using Fréchet Inception Distance (FID; Heusel et al. (2017)) and
Inception Score (IS; Salimans et al. (2016)). For all models, we explore the effect of scaling inference
compute and tuning sampling temperature.
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Table 1: ReMDM improves sample quality in inference-time scaling and faster sampling on OWT.
ReMDM outperforms state-of-the-art masked diffusion models (SEDD; Lou et al. (2024), MDLM;
Sahoo et al. (2024)) and masked diffusion models with corrector samplers such as Forward-Backward
(FB; Campbell et al. (2022)) and Discrete Flow Matching (DFM; Gat et al. (2024)) corrector samplers.
† indicates nucleus sampling. For each T , the best diffusion MAUVE score is bolded.

Method MAUVE (↑) Gen PPL. (↓) Entropy (↑)

Data 1.00 14.8 5.44

AR (T=1024) † 0.760 12.1 5.22

T=1024 T=2048 T=4096 T=1024 T=2048 T=4096 T=1024 T=2048 T=4096
SEDD (absorb) 0.008 0.008 0.009 104.7 103.2 102.5 5.62 5.61 5.61
MDLM† 0.042 0.037 0.035 51.3 51.3 50.9 5.46 5.46 5.45
MDLM+FB† 0.133 0.197 0.243 33.8 28.6 22.8 5.35 5.28 5.18
MDLM+DFM† 0.254 0.294 0.269 21.7 21.0 20.7 5.20 5.19 5.17
ReMDM† 0.403 0.610 0.656 28.6 22.8 17.6 5.38 5.30 5.20

T=128 T=256 T=512 T=128 T=256 T=512 T=128 T=256 T=512
SEDD (absorb) 0.007 0.007 0.008 119.2 110.1 107.2 5.65 5.63 5.62
MDLM† 0.015 0.023 0.031 61.5 55.8 53.0 5.52 5.49 5.48
MDLM+FB† 0.064 0.084 0.100 42.8 39.6 37.1 5.44 5.41 5.38
MDLM+DFM† 0.041 0.144 0.211 37.9 26.5 23.3 5.31 5.26 5.23
ReMDM† 0.057 0.216 0.350 42.5 30.5 21.1 5.43 5.34 5.21

Results We report the best results for each method in Table 2 (see Appendix E.3 for more details).
For MaskGiT, we found best results using no temperature, and for MDLM and ReMDM, we use a
temperature of 0.8. For our sampler, we report the ReMDM-rescale strategy with ηrescale = 0.05.
Although for the smallest T decoding setting MaskGiT outperforms the other methods, we see that
ReMDM has the best scaling, producing the highest quality images of any model at T = 64.

5.2 REMDM IMPROVES GUIDANCE

Table 2: ReMDM produces the highest quality images on
conditional discretized ImageNet generation. For each
metric T pair, the best value is bolded.

Metric Sampler T = 16 T = 32 T = 64

FID (↓)
MaskGiT 6.74 4.92 4.85
MDLM 7.88 5.37 4.69
ReMDM 7.40 4.92 4.45

IS (↑)
MaskGiT 155.32 181.57 196.38
MDLM 140.97 169.79 187.93
ReMDM 145.27 182.05 209.45

Experimental Setup We follow the
setup from Schiff et al. (2024) to ex-
plore controlled small molecule gener-
ation. Specifically, we use the ∼133k
molecules QM9 SMILES strings rep-
resentation. (Ruddigkeit et al., 2012;
Ramakrishnan et al., 2014; Weininger,
1988). Sequences were tokenized using
a regular expression method Schwaller
et al. (2019) and padded to a maxi-
mum length of L = 32. We use the
D-CFG and D-CBG methods defined in
Schiff et al. (2024) to conditionally gen-
erate molecules with higher ring counts
(greater than 90th percentile in the orig-
inal dataset). We vary the guidance strength γ ∈ {1, 2, 3, 4, 5} and scale inference steps
T ∈ {32, 64, 128}. Our baselines consist of an AR model guided using either CFG or the pop-
ular classifier-based FUDGE method Yang & Klein (2021), MDLM, and the uniform diffusion
language model (UDLM) proposed in Schiff et al. (2024), which was also introduced to alleviate
the no remasking limitation of absorbing state diffusion. For ReMDM sampling, we use pretrained
MDLM models and explore various strategies defined in Section 4 (see Appendix E.4 for full search
results). After generating 1,024 sequences, we use the RDKit library Landrum et al. (2013) to
determine whether sequences are valid and compute novelty of the generated sequences (number of
unique valid sequences that do not appear in the original QM9 dataset) and mean ring count of novel
sequences.

Results In Figure 3, we display the trade-off that comes from increasing γ. We only visualize results
for samples that have at least 50 novel sequences. For both CFG and CBG, ReMDM outperforms
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AR and diffusion approaches, pushing the novelty-property maximization frontier beyond that of the
baseline methods. Additionally, ReMDM scales favorably with more inference-time compute, seen
by the curves for larger T dominating those for smaller T . For D-CBG, we found the best strategy
to be a combination of the ReMDM-rescale (with ηrescale = 0.9) and ReMDM-conf schedules. For
calculating confidence scores, we use the log-probabilities of the conditional denoising network.
For D-CFG, we use the loop strategy, with ton = 0.25, toff = 0.125. In addition to these findings,
in Appendix E.4.1, we present experimental results for maximizing a different property of interest,
drug-likeness (QED; Bickerton et al. (2012)).
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Figure 3: ReMDM improves steer-ability by extending the novelty-property maximization frontier.
(Left) Discrete classifier-free guidance (D-CFG). (Right) Discrete classifier-based guidance (D-CBG)
and FUDGE Yang & Klein (2021) for AR.

6 RELATED WORKS, DISCUSSION, AND CONCLUSION

Denoising Diffusion Implicit Models An analogy can be drawn between our work and DDIM Song
et al. (2020a), where ReMDM is to MDLM for discrete signals as DDIM is to DDPM Ho et al. (2020)
for continuous data. Of note, Song et al. (2020a) also present a way of adapting non-Markovian
processes to discrete domains; however, they focus on uniform categorical as the limiting distribution.
In Appendix B, we demonstrate how this can be adapted for absorbing state diffusion and derive an
equivalence to our method.

Discrete Predictor-Corrector Samplers Continuous time Markov chain (CTMC) theory provides a
framework for samplers that correct errors in the reverse process, extending the original predictor-
corrector formulation for continuous data Song et al. (2020b) to discrete domains. In addition to
the FB and DFM correctors discussed above, other correctors include: the Stein operator Zhao et al.
(2024), and DPC Lezama et al. (2023). Unlike the plug-and-play methods of FB, DFM, and ReMDM,
the Stein operator and DPC correctors require additional training.

We also conducted an analysis to find the reason of ReMDM’s outperforming DFM. Unlike ReMDM,
the best DFM schedule was not designed with a focus on remasking and when to utilize it. In Figure
2b, we depict the remasking schedule corresponding to results in Table 1 (T = 4096) for DFM and
ReMDM(see full results in Appendix E.2.1). The DFM schedule shows a spike in the beginning and
a sharp decay afterward. In contrast, the ReMDM-loop schedule is designed to provide non-trivial
remasking probability after a good ‘candidate’ sequence has been generated by standard MDLM
generation. Additionally, ReMDM possesses other theoretical advantages over DFM, namely the
bound on σt and the NELBO analysis of the underlying probabilistic generative models that are not
present in Gat et al. (2024).

Conclusion In this work, we present a novel family of absorbing state discrete diffusion samplers.
Our method leverages the strong language modeling performance of this class of models by enabling
the use of pretrained weights with the added benefit of more flexible sampling strategies that allow
for remasking of predicted tokens. We demonstrate empirically that this leads to improved sample
quality for unconditional generation and leads to better controlled generation. Our approach also
unlocks an important inference-time compute scaling axis that is more limited for existing masked
diffusion models.
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A THEORETICAL RESULTS

A.1 PROOF OF THEOREM 3.1

Proof. We proceed by induction. The starting point q(z1 | x) = Cat(z1;α1x+ (1− α1)m) is true
by design. For the induction hypothesis, assume that for any t < 1, q(zt | x) = Cat(zt;αtx+ (1−
αt)m). Recall that in absorbing state processes, given x, for all t ∈ [0, 1], zt ∈ {x,m}. Then for
the previous time step s, we have:
q(zs = x | x) = q(zs = x | zt = x,x)q(zt = x | x) + q(zs = x | zt = m,x)q(zt = m | x)

= (1− σt)αt +
αs − (1− σt)αt

1− αt
(1− αt) = αs, (12)

and
q(zs = m | x) = q(zs = m | zt = x,x)q(zt = x | x) + q(zs = m | zt = m,x)q(zt = m | x)

= σtαt +
1− αs − σtαt

1− αt
(1− αt) = 1− αs. (13)

Combining (12) and (13) yields q(zs | x) = Cat(zs;αsx+ (1− αs)m).

A.2 DERIVING THE NON-MARKOVIAN FORWARD STEP qσ(zt | zs,x)

By Bayes’ rule we have:

qσ(zt | zs,x) =
qσ(zs | zt,x)qσ(zt | x)

qσ(zs | x)
.

From Theorem 3.1, we can replace the marginals qσ(zt | x) and qσ(zs | x) with those from (1).

To derive the form for qσ(zt | zs,x), we now look at the two possible values of zs ̸= m and zs = m.

Case 1a: zs ̸= m, zt ̸= m

qσ(zt = x | zs = x,x) =
qσ(zs = x | zt = x,x)qσ(zt = x | x)

qσ(zs = x | x)
=

(1− σt)αt
αs

. (14)

Case 1b: zs ̸= m, zt = m

qσ(zt = m | zs = x,x) =
qσ(zs = x | zt = m,x)qσ(zt = m | x)

qσ(zs = x | x)

=

(αs−(1−σt)αt

1−αt

)
(1− αt)

αs

=
αs − (1− σt)αt

αs
. (15)

Case 2a: zs = m, zt ̸= m

qσ(zt = x | zs = m,x) =
qσ(zs = m | zt = x,x)qσ(zt = x | x)

qσ(zs = m | x)
=

σtαt
1− αs

. (16)

Case 2b: zs = m, zt = m

qσ(zt = m | zs = m,x) =
qσ(zs = m | zt = m,x)qσ(zt = x | x)

qσ(zs = m | x)

=

(
1−αs−σtαt

1−αt

)
(1− αt)

1− αs

=
1− αs − σtαt

1− αs
. (17)

Combining (14), (15), (16), and (17) yields the non-Markovian forward process:

qσ(zt | zs,x) =

{
Cat(zt;

(1−σt)αt

αs
x+ αs−(1−σt)αt

αs
m), zs ̸= m

Cat(zt;
σtαt

1−αs
x+ 1−αs−σtαt

1−αs
m), zs = m

. (18)

12



Published as a workshop paper at DeLTa Workshop (ICLR 2025)

A.3 DERIVING BOUNDS FOR σt

To ensure that we have defined a valid probability, in both cases of the posterior in (6), since
x⊤m = 0, we require that the coefficients on both terms be within the range [0, 1]. Using this, we
can derive the bounds for σt given in (7).

For case where zt ̸= m, both coefficients must satisfy:
0 ≤ σt ≤ 1. (19)

For the case where zt = m, ensuring that the coefficients are in the range [0, 1] leads to the restriction
that:

αt − αs
αt

≤ σt ≤
1− αs
αt

. (20)

Since the noise schedule is monotonically decreasing in t, the lower bound in (20) is ≤ 0. Hence,
combining (19) and (20) produces the bounds in (7).

A.4 DERIVING THE REMDM NELBO

The variational objective or negative evidence lower bound (NELBO) for diffusion models has the
following form Sohl-Dickstein et al. (2015):
L = Ez0:T∼q(z0:1|x)

[
log(q(z0:1 | x) / pθ(x)pθ(z0:1 | x))

]
= Ez0:1∼q(z0:1|x)

[
− log pθ(x|z0)︸ ︷︷ ︸

Lrecon

+DKL[q(z1|x)∥pθ(z1)]︸ ︷︷ ︸
Lprior

+

T∑
i=1

DKL[q(zs | zt,x)∥pθ(zs | zt)]︸ ︷︷ ︸
Ldiffusion

]
,

(21)
where DKL denotes the Kullback–Leibler divergence.

Starting from (21), we note that, in practice, we set pθ(z1) = q(z1 | x) = q(z1) = π which ensures
Lprior = 0. Additionally, the reconstruction loss Lrecon is equivalent in both (21) and (9). We
therefore turn our attention to the ReMDM diffusion loss term

Lσdiffusion =

T∑
j=1

DKL[qσ(zs | zt,x)∥pθ(zs | zt)] (22)

Additionally, we note that in Sahoo et al. (2024), MDLM is parameterized using the denoising xθ
that is restricted in two ways. First the denoising model places zero probability mass on the [MASK]
token, i.e., x⊤

θ m = 0. Second the model ‘carries-over’ unmasked tokens, i.e., x⊤
θ zt = 1, if zt ̸= m.

Below we assume that our denoising network follows a similar parameterization.

We break down each term in this summation by the two possible values zt ̸= m and zt = m.

Case 1: zt ̸= m

DKL[qσ(zs | zt = x,x)∥pθ(zs | zt = x)]

= qσ(zs = x | zt = x,x) log
qσ(zs = x | zt = x,x)

pθ(zs = x | zt = x)
+ qσ(zs = m | zt = x,x) log

qσ(zs = m | zt = x,x)

pθ(zs = m | zt = x)

= (1− σt) log
1− σt
1− σt

+ σt log
σt
σt

= 0. (23)

Case 2: zt = m

DKL[qσ(zs | zt = m,x)∥pθ(zs | zt = m)]

= qσ(zs = x | zt = m,x) log
qσ(zs = x | zt = m,x)

pθ(zs = x | zt = m)
+ qσ(zs = m | zt = m,x) log

qσ(zs = m | zt = m,x)

pθ(zs = m | zt = m)

=
αs − (1− σt)αt

1− αt
log

αs−(1−σt)αt

1−αt

αs−(1−σt)αt

1−αt
x⊤xθ

+
1− αs − σtαt

1− αt
log

1−αs−σtαt

1−αt

1−αs−σtαt

1−αt

=
(1− σt)αt − αs

1− αt
log(x⊤xθ) (24)
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The carry-over unmasked tokens property of xθ implies that log(x⊤xθ) = log(1) = 0, which lets us
write the two cases from (23) and (24) as a single expression:

DKL[qσ(zs | zt,x)∥pθ(zs | zt)] =
(1− σt)αt − αs

1− αt
log(x⊤xθ) (25)

Then rewriting the summation in (22) as an expectation with t sampled uniformly from { 1
T , . . . , 1}

and plugging in (25), we recover the diffusion loss term in (9).

A.5 PROOF OF THEOREM 4.1

Proof. Recall that the MDLM predictor step amounts to drawing a sample zsp from the posterior
given in (2), which we can reformulate as:

q(zsp | zt,x) =

{
Cat(zsp ; zt), zt ̸= m,

Cat(zsp ;
αs−αt

1−αt
x+ 1−αs

1−αt
m), zt = m.

To prove the theorem statement, we must show that q(zsc | zt,x) is equivalent to the ReMDM poste-
rior from (6). We begin by noting that conditioned on the predictor sample zsp , the corrector sample
zsc is independent of zt. That is

q(zsc | zsp , zt,x) = q(zsc | zsp ,x) (26)

We now look at the two cases of zt ̸= m and zt = m:

Case 1a: zt ̸= m, zsc = x

q(zsc = x | zt = x,x) =
∑

z′∈{x,m}

q(zsc = x | zsp = z′, zt = x,x)q(zsp = z′ | zt = x,x)

= q(zsc = x | zsp = x,x)q(zsp = x | zt = x,x) + q(zsc = x | zsp = m,x)q(zsp = m | zt = x,x)

= q(zsc = x | zsp = x,x) = (1− σt). (27)

Case 1b: zt ̸= m, zsc = m Using the same argument as in Case 1a, we have that

q(zsc = m | zt = x,x) = q(zsc = m | zsp = x,x) = σt. (28)

Case 2a: zt = m, zsc = x

q(zsc = x | zt = m,x) =
∑

z′∈{x,m}

q(zsc = x | zsp = z′, zt = m,x)q(zsp = z′ | zt = m,x)

= q(zsc = x | zsp = x,x)q(zsp = x | zt = m,x) + q(zsc = x | zsp = m,x)q(zsp = m | zt = m,x)

= (1− σt)
(αs − αt

1− αt

)
+
( σtαs
1− αs

)(1− αs
1− αt

)
=
αs − (1− σt)αt

1− αt
. (29)

Case 2b: zt = m, zsc = m

q(zsc = m | zt = m,x) =
∑

z′∈{x,m}

q(zsc = m | zsp = z′, zt = m,x)q(zsp = z′ | zt = m,x)

= q(zsc = m | zsp = x,x)q(zsp = x | zt = m,x) + q(zsc = m | zsp = m,x)q(zsp = m | zt = m,x)

= σt

(αs − αt
1− αt

)
+
(1− (1 + σt)αs

1− αs

)(1− αs
1− αt

)
=

1− αs − σtαt
1− αt

. (30)

Combining (27), (28), (29), and (30) yields the desired result.
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A.6 PROOF OF PROPOSITION 4.2

Proof. The forward-backward corrector sampler Campbell et al. (2022) is derived using continuous
time Markov chain theory. In particular, the rate matrix for the corrector sampler step Rcorrector is
the sum of the forward rate matrix Rt and the backward rate matrix R̃t, i.e. Rcorrector = Rt + R̃t.

We first extract the forward rate matrix Rt of MDLM using the following discretization formula.

q(zt = y′ | zs = y) = δy′,y +Rt(y,y
′)∆t+ o(∆t) (31)

From Sahoo et al. (2024), we know that the forward step of MDLM q(zt | zs) = Cat(zt;
αt

αs
zs +

(1− αt

αs
)m). Let V denote the vocabulary set.

Case 1a: zs = x ∈ V \m, zt = x

1 +Rt(x,x)∆t+ o(∆t) = q(zt = x | zs = x) =
αt
αs

⇒Rt(x,x) = lim
∆t→0

1

∆t
(
αt
αs

− 1) =
α′
t

αt
(32)

Case 1b: zs = x ∈ V \m, zt = m

Rt(x,m)∆t+ o(∆t) = q(zt = m | zs = x) = 1− αt
αs

⇒Rt(x,m) = lim
∆t→0

1

∆t
(1− αt

αs
) = −α

′
t

αt
(33)

Case 1c: zs = x ∈ V \m, zt = y ∈ V \ {x,m}

Rt(x,y)∆t+ o(∆t) = q(zt = y | zs = x) = 0 ⇒ Rt(x,y) = 0 (34)

Case 1d: zs = m, zt = m

1 +Rt(m,m)∆t+ o(∆t) = q(zt = m | zs = m) = 1 ⇒ Rt(m,m) = 0 (35)

Case 1e: zs = m, zt = x ∈ V \m

Rt(m,x)∆t+ o(∆t) = q(zt = x | zs = m) = 0 ⇒ Rt(m,x) = 0 (36)

Similarly, we can derive the backward rate matrix R̃t using the following formula and MDLM
posterior (2).

q(zs = y′ | zt = y,x) = δy′,y +Rt(y,y
′)∆t+ o(∆t) (37)

Case 2a: zt = x ∈ V \m, zs = x

1 + R̃t(x,x)∆t+ o(∆t) = q(zs = x | zt = x) = 1 ⇒ R̃t(x,x) = 0 (38)

Case 2b: zt = x ∈ V \m, zs = y ∈ V \ x

R̃t(x,y)∆t+ o(∆t) = q(zs = y | zt = x) = 0 ⇒ R̃t(x,y) = 0 (39)

Case 2c: zt = m, zs = x

R̃t(m,x)∆t+ o(∆t) = q(zs = x | zt = m) =
αs − αt
1− αt

⇒R̃t(m,x) = lim
∆t→0

1

∆t

αs − αt
1− αt

= − α′
t

1− αt
(40)
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Case 2d: zt = m, zs = m

1 + R̃t(m,m)∆t+ o(∆t) = q(zs = m | zt = m) =
1− αs
1− αt

⇒R̃t(m,m) = lim
∆t→0

1

∆t
(
1− αs
1− αt

− 1) =
α′
t

1− αt
(41)

Case 2e: zt = m, zs = y ∈ V \ {x,m}

R̃t(m,y)∆t+ o(∆t) = q(zs = m | zt = y) = 0 ⇒ R̃t(m,m) = 0 (42)

By adding Rt and R̃t, we get the rate matrix of the forward-backward corrector step. The next step
is to discretize it. Concretely, we apply (37) to the forward-backward rate matrix.

qFB(zsc | zsp ,x) =

{
Cat(zsc ;

2αt−αs

αt
x+ αs−αt

αt
m), zsp ̸= m

Cat(zsc ;
αs−αt

1−αt
x+ 1−αs

1−αt
m), zsp = m.

(43)

Note that (43) keeps the marginal at time t unchanged while (11) keeps the marginal at time s
unchanged. In order to conduct a fair comparison, we rewrite the time t version of (11) as follows.

qcorrectorReMDM (zsc | zsp ,x) =

{
Cat(zsc ; (1− σt)x+ σtm), zsp ̸= m

Cat(zsc ;
σtαt

1−αt
x+ 1−(1+σt)αt

1−αt
m), zsp = m.

(44)

Comparing (43) and (44), we can find that (43) is a special case where σt = αs−αt

αt
.

A.7 PROOF OF PROPOSITION 4.3

Proof. The DFM corrector sampler Gat et al. (2024) is derived from a generating velocity ucorrt
using the following transformation equation.

zsc ∼ δzt
(·) + ucorrt (·, zt)∆t (45)

The corrector generating velocity is defined as a weighted sum of the forward sampling generating
velocity ût and the backward sampling generating velocity ǔt.

ucorrt (·, zt) = (1 + βt)ût(·, zt)− βtǔt(·, zt) (46)

The weighting coefficient βt ∈ R is referred to as the corrector schedule and can be user-specified.

The forward and backward sampling generating velocities take the following forms:

ût(·, zt) = − α′
t

1− αt

[
p0|t(· | zt)− δzt(·)

]
(47)

ǔt(·, zt) = −α
′
t

αt

[
δzt(·)− p1|t(· | zt)

]
(48)

Note that our formulation is slightly different from the original presentation in Gat et al. (2024), since
in our notation as t goes from 1 to 0, we move from noise to the target distribution, whereas in the
flow matching literature this direction is reversed. Plugging (47) and (48) into (46), we derive the
following form for ucorrt :

ucorrt (·, zt) =
[ (1 + βt)α

′
t

1− αt
+
βtα

′
t

αt

]
δzt

(·)− (1 + βt)α
′
t

1− αt
p0|t(· | zt)−

βtα
′
t

αt
p1|t(· | zt) (49)

By plugging (49) into (45), we have that
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zsc ∼
[
1 +

(1 + βt)α
′
t∆t

1− αt
+
βtα

′
t∆t

αt

]
δzt

(·)− (1 + βt)α
′
t∆t

1− αt
p0|t(· | zt)−

βtα
′
t∆t

αt
p1|t(· | zt)

∼
[
1 +

(1 + βt)(αt − αs)

1− αt
+
βt(αt − αs)

αt

]
δzt

(·)− (1 + βt)(αt − αs)

1− αt
p0|t(· | zt)−

βt(αt − αs)

αt
p1|t(· | zt)

(50)

We can rewrite this as

qDFM (zsc | zt,x) =

{
Cat(zsc ; (1 +

βt(αt−αs)
αt

)x+ βt(αs−αt)
αt

m), zt ̸= m

Cat(zsc ;
(1+βt)(αs−αt)

1−αt
x+ (1 + (1+βt)(αt−αs)

1−αt
)m), zt = m.

(51)

Comparing (51) and (6), we see that (51) is equivalent to (6) where σt =
βt(αs−αt)

αt
.

B COMPARISON TO DDIM NON-MARKOVIAN PROCESSES

In DDIM Song et al. (2020a), the authors present non-Markovian forward processes for both con-
tinuous and discrete signals. For discrete data, although in DDIM the proposed method assumes a
uniform categorical as the limiting distribution, here we demonstrate how one can adapt the proposed
method in DDIM for absorbing state diffusion and derive an equivalence between ReMDM and
this new DDIM process under a reparameterization of σt. For clarity, we use σDDIMt to denote the
parameter from DDIM and σReMDM

t to denote the parameter used in our work.

In DDIM, the processes assuming a uniform categorical distribution as the limiting distribution is
defined to have the following posteriors:

q(zs | zt,x) = (αs − σtαt)x+ σDDIMt zt + (1− αs − (1− αt)σ
DDIM
t )|V |−11, (52)

where 1 is a column vector of ones and |V | is the vocabulary size. We can apply the methodology
from DDIM to absorbing state diffusion by replacing the limiting distribution 1/|V | in (52) with m,
which produces:

q(zs | zt,x) = (αs − σtαt)x+ σDDIMt zt + (1− αs − (1− αt)σt)m

=

{
(αs + σDDIMt (1− αt))x+ ((1− αs)− (1− αt)σ

DDIM
t )m zt ̸= m

(αs − σDDIMt αt)x+ (1− αs + αtσ
DDIM
t )m zt = m

(53)

Comparing the zt ̸= m case in (53) to that in the ReMDM posterior in (6), we can derive an equiva-
lence between our proposed method and that from DDIM with the following reparameterization:

σReMDM
t = 1− αs − (1− αt)σ

DDIM
t . (54)

Plugging this reparameterization into the zt = m case in (6) yields an equivalence to the zt = m
case in (53) as well.

In addition to extending the discrete formulation from DDIM to absorbing state processes, we believe
that our formulation is easier to analyze relative to the one when reparameterizing to use σDDIMt ,
e.g., deriving bounds on σt is more straightforward for our work and it is more natural to explore the
various design decisions defined in Section 4 using our formulation.

C REMDM SAMPLER ALGORITHMS

Below we present the high-level ReMDM sampling pseudocode in Algorithm 1, and algorithms
for ReMDM-switch (Algorithm 2) and ReMDM-loop (Algorithm 3) both of which can optionally
combine with the various strategies for setting σt described in Section 4.1.
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Algorithm 1 Sampling with ReMDM.

// Differences to standard MDLM sampling noted in brown.
Input: pre-trained denoising network xθ (e.g., MDLM), number of timesteps T , noise schedule
αt, remasking schedule σt.
Initialize zt = m.
for i = T to 1 do
t = i/T, s = (i− 1)/T .
Set αt, αs according to noise schedule.
Set σt ∈ [0, σmaxt ] according to remasking schedule.
Compute approximate posterior:

pθ(zs | zt) = qσ(zs | zt,x = xθ(zt))

=

{
Cat(zs; (1− σt)xθ + σtm), zt ̸= m

Cat(zs;
αs−(1−σt)αt

1−αt
xθ +

1−αs−σtαt

1−αt
m), zt = m

Sample zs ∼ pθ.
Set zt = zs.

end for
Output: zt.

D ADDITIONAL EXPERIMENTAL DETAILS

D.1 OPENWEBTEXT

In this experiment, we reuse the pretrained AR, SEDD, and MDLM checkpoints released by Sahoo
et al. (2024) where the diffusion models are trained using a log-linear schedule, i.e., αt = 1− t. AR,
SEDD, and MDLM share the same architecture: a Transformer-based model Vaswani (2017) that
augments the diffusion transformer Peebles & Xie (2023) with rotary embeddings Su et al. (2024)
and consists of 169M parameters. The neural network is comprised of 12 layers, 12 attention heads,
and 768 hidden dimensions. Please see Sahoo et al. (2024) for the full model architecture and training
details.

As in Sahoo et al. (2024), we use gpt-2 tokenizer for our experiments. We use the same train-
validation split as in Sahoo et al. (2024) (where the last 100k documents of OWT were designated as
the validation set) and randomly select 5,000 samples from the validation set to serve as the ‘reference’
for MAUVE score computation. For the discrete flow matching corrector sampler, we follow Gat
et al. (2024) and set the corrector schedule β(t) = At0.25(1− t)0.25 where A = 10 (see Appendix
A.7 for the definition of corrector schedule). We empirically find that nucleus sampling performs
better than the temperature technique proposed in Gat et al. (2024). We also use non-fixed-width time
steps as in Gat et al. (2024).

For evaluation metrics, we report MAUVE scores, generative perplexity, and entropy. For MAUVE,
we generate 5,000 samples for each model/sampler. We use the gpt-2 tokenizer, GPT-2 Large
Radford et al. (2019) as the embedding model, and the MAUVE scaling hyperparameter is set to 5.
For generative perplexity, we use GPT-2 Large as the external model. As in Zheng et al. (2024), we
also report the average sequence entropy as a diversity metric. Specifically, we compute the entropy
for the number of tokens for each sequence before it is decoded by the tokenizer and then report the
mean entropy value of 5,000 generated sequences.

D.2 IMAGENET

In this experiment, we reuse the pre-trained MaskGiT model for all samplers Chang et al. (2022).
The MaskGiT architecture is a Transformer model Vaswani (2017) that consists of 24 layers, 8
attention heads, 768 embedding dimension, and 3,072 hidden dimension. Similar to MDLM, this
model implements the carry-over unmasked tokens property in the parameterization of xθ. The full
model architecture and training setup details are available in Chang et al. (2022).
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Algorithm 2 Sampling with ReMDM-switch.

Input: pre-trained denoising network xθ (e.g., MDLM), number of timesteps T , number of tokens
in a sequence L, noising schedule αt, maximum value for remasking ηcap ∈ [0, 1], rescale value
for remasking ηrescale ∈ [0, 1], boolean value for whether to use confidence strategy use conf,
time for ‘switching on’ ReMDM tswitch ∈ (0, 1).
Initialize z

(1:L)
t = {m}L.

Initialize ψ(1:L)
t = {−∞}L.

for i = T to 1 do
t = i/T, s = (i− 1)/T .
Set αt, αs according to noise schedule.
if t ≤ tswitch then
σ
(ℓ)
t = ηrescale ·min{ηcap, (1− αs)/αt} for all ℓ = {1, . . . , L}.

if use conf then
Compute η(ℓ)conf = exp(−ψ(ℓ))∑

l′ exp(−ψ(ℓ′))
for all ℓ ∈ {1, . . . , L}.

σ
(ℓ)
t = η

(ℓ)
conf · σ

(ℓ)
t for all ℓ ∈ {1, . . . , L}.

end if
else
σ
(1:L)
t = {0}L.

end if
For all ℓ ∈ {1, . . . , L}, compute approximate posterior:

pθ(z
(ℓ)
s | z(1:L)t ) = qσ(z

(ℓ)
s | z(1:L)t ,x = x

(ℓ)
θ (z

(1:L)
t ))

=

{
Cat(zs; (1− σ

(ℓ)
t )x

(ℓ)
θ + σ

(ℓ)
t m), zt ̸= m

Cat(zs;
αs−(1−σ(ℓ)

t )αt

1−αt
x
(ℓ)
θ +

1−αs−σ(ℓ)
t αt

1−αt
m), zt = m

Sample z
(ℓ)
s ∼ pθ for all ℓ ∈ {1, . . . , L}.

if use conf then
Store confidence scores ψ(ℓ)

t = (z
(ℓ)
s )⊤xθ(z

(1:L)
t )(ℓ), for all newly decoded z

(ℓ)
s ̸= z

(ℓ)
t ̸= m.

end if
Set z(1:L)t = z

(1:L)
s .

end for
Output: z(1:L)t .

In Table 2, the MaskGiT sampler refers to the heuristic confidence-based decoding described in Chang
et al. (2022). The MDLM sampler refers to using the outputs of the pre-trained MaskGiT denoising
model, then applying the zero-mask parameterization and plugging xθ into the posterior from (2).
The ReMDM sampler refers to using the same xθ as that used with the MDLM sampler, but with
the posterior from (6). For ReMDM, we explore the max-capped (with ηcap ∈ {0.01, 0.02, 0.05}),
rescaled (with η ∈ {0.01, 0.02, 0.05}), and confidence-based schedules described in Section 4.1. We
do not combine these strategies, but rather test each separately. For all three samplers, we perform a
sweep over softmax temperature scaling using a scale parameter τ ∈ {0.6, 0.8, 1.0}. For a vector y,
with yi denoting its ith component, softmax temperature scaling is implemented as follows:

exp(yi/τ)∑
j exp(yj/τ)

.

For all samplers we use a log-linear schedule for αt, i.e., α(t) = 1− t.

We use the code from Dhariwal & Nichol (2021) to compute FID and IS metrics.

D.3 QM9

For the guidance experiments on QM9, we follow the setup used in Schiff et al. (2024). The dataset
was tokenized using a regular expression-based tokenizer Schwaller et al. (2019) with padded max
sequence lengths of L = 32. Including special tokens, the tokenizer vocabulary size is |V | = 40. The
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Algorithm 3 Sampling with ReMDM-loop.

Input: pre-trained denoising network xθ (e.g., MDLM), number of timesteps T , number of
tokens in a sequence L, noising schedule αt, maximum value for remasking ηcap ∈ [0, 1], rescale
value for remasking ηrescale ∈ [0, 1], boolean value for whether to use confidence strategy
use conf, start time for ReMDM loop ton ∈ [0, 1), number of discrete time steps to spend
prior to ReMDM loop nphase1 ∈ (0, T ), number of discrete time steps to spend in ReMDM loop
nphase2 ∈ (0, T − nphase1).
Initialize z

(1:L)
t = {m}L.

Initialize ψ(1:t)
t = {−∞}L.

for i = T to 1 do
t = i/T, s = (i− 1)/T .
if t > (T − nphase1)/T then
// Phase 1
Rescale and shift time: t = (t · (1− ton) · T/nphase1) + (T · (ton − 1)/nphase1) + 1.
Rescale and shift time: s = (s · (1− ton) · T/nphase1) + (T · (ton − 1)/nphase1) + 1.
Set αt, αs according to noise schedule.
σ
(1:L)
t = {0}L.

else if t ≥ (T − nphase1 − nphase2)/T then
// Phase 2: ReMDM loop
Set αt = α(ton), αs = α(ton).
σ
(ℓ)
t = ηrescale ·min{ηcap, (1− αs)/αt} for all ℓ = {1, . . . , L}.

if use conf then
Compute η(ℓ)conf = exp(−ψ(ℓ))∑

l′ exp(−ψ(ℓ′))
for all ℓ ∈ {1, . . . , L}.

σ
(ℓ)
t = η

(ℓ)
conf · σ

(ℓ)
t for all ℓ ∈ {1, . . . , L}.

end if
else
// Phase 3
Rescale time: t = t · ton · T/(T − nphase1 − nphase2).
Rescale time: s = s · ton · T/(T − nphase1 − nphase2).
Set αt, αs according to noise schedule.
σ
(1:L)
t = {0}L.

end if
For all ℓ ∈ {1, . . . , L}, compute approximate posterior:

pθ(z
(ℓ)
s | z(1:L)t ) = qσ(z

(ℓ)
s | z(1:L)t ,x = x

(ℓ)
θ (z

(1:L)
t ))

=

{
Cat(zs; (1− σ

(ℓ)
t )x

(ℓ)
θ + σ

(ℓ)
t m), zt ̸= m

Cat(zs;
αs−(1−σ(ℓ)

t )αt

1−αt
x
(ℓ)
θ +

1−αs−σ(ℓ)
t αt

1−αt
m), zt = m

Sample z
(ℓ)
s ∼ pθ for all ℓ ∈ {1, . . . , L}.

if use conf then
Store confidence scores ψ(ℓ)

t = (z
(ℓ)
s )⊤xθ(z

(1:L)
t )(ℓ), for all newly decoded z

(ℓ)
s ̸= z

(ℓ)
t ̸= m.

end if
Set z(1:L)t = z

(1:L)
s .

end for
Output: z(1:L)t .

AR, MDLM, and UDLM models used for discrete CBG and CFG were taken from the implementation
provide in Schiff et al. (2024). These models are based on a Transformer architecture (causally
masked for AR) known as DiT Peebles & Xie (2023). See Schiff et al. (2024) for the full model
and experimental setup details. Note that Schiff et al. (2024) provide a first-order approximation
for D-CBG that avoids the required O(|V | · L · T ) calls to the classifier pϕ, which comes from
needing to evaluate every possible token replacement from a vocabulary of size |V | at every position
in a sequence of length L for each step of the sampling process of duration T . However, given the
relatively shorter sequences and smaller vocabulary size used in the QM9 experiments and that Schiff
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et al. (2024) found generally higher quality results without the first order approximation, we omit the
first-order approximation from our experiments and instead use the full, un-approximated D-CBG
implementation.

In the main text, we report results for experiments performed to maximize the ring count value of
molecules. In Appendix E.4, we also present results for maximizing the property of drug-likeness
(QED), which was also explored in Schiff et al. (2024). Guidance training and inference were
performed on the molecular property of interest (ring count or QED) using a binarized label, where
molecules with property value ≥ the 90th percentile in the dataset were labeled y = 1. The QED and
ring count properties were extracted for each molecule in the QM9 dataset using the RDKit library
Landrum et al. (2013).

For all the models and guidance mechanisms, we report results with varying guidance strength
γ ∈ {1, 2, 3, 4, 5} and timesteps T ∈ {32, 64, 128}. For the diffusion models, we generate using a
log-linear schedule for αt, i.e., α(t) = 1− t.

For evaluation, we generated 1,024 sequences with each model / guidance mechanism. We used
RDKit to parse the generated sequences. Sequences that could not be parsed were deemed ‘invalid’.
Of the valid molecule strings, we remove duplicates and report the number of ‘novel’ sequences,
which we define as valid and unique generated sequences that do not appear in the full QM9 dataset.
We then use RDKit to compute QED / ring count of the novel generated sequences and report the
mean value.

For ReMDM samplers, we reuse the pre-trained MDLM weights. We perform an extensive
grid search for both properties, QED and ring count, and guidance mechanisms, D-CFG and D-
CBG. Namely we explore the ReMDM-rescale schedule with ηrescale ∈ {0.1, 0.5, 0.9, 1.0}. We
test sampling with and without the confidence-based schedule being used in conjunction with
ReMDM-rescale. For each combination, we also try both the switch and loop strategies. For
switch, we use tswitch ∈ {0.1, 0.5, 0.9}. For loop, we sweep over the tuples (ton, toff ) ∈
{(0.5, 0.25), (0.25, 0.125), (0.1, 0.05)}. We use non-fixed width steps in ReMDM-loop, so that
for each T , the loop starts at discrete step i = T/2 and ends at step i = ⌊(1 − toff ) · T ⌋, and we
‘rescale’ time accordingly before and after the loop phases, as described in Algorithm 3.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 TRAINING WITH MDLM V.S. REMDM NELBO

In Table 3, we report QM9 dataset validation set perplexities for models trained with either the
MDLM NELBO from (3) or the ReMDM NELBO from (9), with σt = min{ηcap, (1− αs)/αt}, for
some ηcap ∈ (0, 1]. We follow the same model architecture and training settings defined in Schiff
et al. (2024) for this dataset. Overall, we find that validation perplexities for this dataset are fairly
consistent across models trained with either objective.

Table 3: Training with ReMDM and MDLM NELBO objectives leads to similar validation set
perplexity values (for the QM9 dataset). In the top row, the model is trained using the continuous time
formulation of the MDLM objective from Sahoo et al. (2024). In the bottom two rows, models are
trained with discrete-time objectives. The first column, σt = 0, corresponds to the MDLM objective
from (3) and the columns with varying ηcap correspond to training with the ReMDM objective from
(9) with σt = min{ηcap, (1− αs)/αt}. We find that results are comparable across training settings.

σt = 0 ηcap = 0.5 ηcap = 1.0

T = ∞ 2.088 – –

T = 4096 2.094 2.107 2.119
T = 8192 2.092 2.097 2.101
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Figure 4: Remasking probability schedule of ReMDM and DFM corrector on OWT. Schedules used
in experiments from Table 1 are plotted.

E.2 OPENWEBTEXT

E.2.1 REMDM σt V.S. DFM σt

In Figure 4, we plot the remasking probability schedules of ReMDM and DFM correctors in the
experiments reported in Table 1. Similarly to Figure 2b, the DFM schedules show a spike at first and
a long tail afterward. Here, the best performing βt = At0.25(1− t)0.25 schedule reported in Gat et al.
(2024) is used. We also adjust the width of the time steps accordingly, as reported in Gat et al. (2024).

E.2.2 ABLATION ON REMDM COMPONENTS

In Figure 5, we sequentially ablate each building block of ReMDM and report the MAUVE score of
samples. Starting with MDLM, we see that each of our proposed sampling improvements increases
the MAUVE score, with the largest improvement coming from remasking ability of ReMDM.

E.2.3 RESULTS OF MODELS WITHOUT NUCLEUS SAMPLING

In Table 4, we present the sample quality of different models without nucleus sampling. Consistent
with the results in Zheng et al. (2024), when using double-precision floating-point numbers during
sampling, discrete diffusion models produce poor quality sequences, as reflected by the relatively
higher generative perplexity values compared to Table 1. These results underscore the importance of
nucleus sampling for discrete diffusion models in text generation.

E.2.4 COMPARING DIFFERENT REMDM SCHEDULES

In Table 5, we report the OpenWebText unconditional generation results for various ReMDM sched-
ules. For ReMDM-conf, we set σt proportional to the upper bound σmax. In the case of inference-
time scaling (T ≥ 1024), ReMDM-loop performs the best while in the case of faster sampling
(T < 1024), ReMDM-cap is found to perform better than others. In both scenarios, ReMDM-rescale
and ReMDM-conf do not perform as well as the other two schedules.
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Figure 5: Effect of ReMDM components on OWT generation quality. Inference-time scaling with
T ∈ {1024, 2048, 4096}.

Table 4: Sample quality of absorbing state discrete diffusion models without nucleus sampling.

Method MAUVE (↑) Gen PPL. (↓) Entropy (↑)

AR (T=1024) 0.407 35.0 5.58

T=1024 T=2048 T=4096 T=1024 T=2048 T=4096 T=1024 T=2048 T=4096
SEDD 0.008 0.008 0.009 104.7 103.2 102.5 5.62 5.61 5.61
MDLM 0.009 0.008 0.009 104.8 104.4 104.1 5.63 5.63 5.63
MDLM+FB 0.009 0.011 0.010 102.6 101.9 100.9 5.65 5.65 5.64
MDLM+DFM 0.008 0.010 0.010 125.9 119.1 115.7 5.70 5.69 5.69
ReMDM 0.007 0.007 0.007 173.0 256.2 370.6 5.76 5.81 5.74

T=128 T=256 T=512 T=128 T=256 T=512 T=128 T=256 T=512
SEDD 0.007 0.007 0.008 119.2 110.1 107.2 5.65 5.63 5.62
MDLM 0.007 0.008 0.008 121.4 111.8 107.2 5.67 5.65 5.64
MDLM+FB 0.007 0.009 0.010 112.8 106.4 104.4 5.67 5.66 5.65
MDLM+DFM 0.005 0.006 0.007 360.7 189.5 143.5 5.85 5.77 5.73
ReMDM 0.006 0.007 0.006 160.5 176.8 226.9 5.73 5.75 5.79

E.2.5 TUNING ηcap / ηrescale

In Figure 6, we plot MAUVE scores when using the ReMDM-cap schedule with different ηcap values
and varying number of decoding steps T . As shown in Figure 6a, in the case of inference-time scaling
(T ≥ 1024), the MAUVE scores at T = 4096 tend to decrease as ηcap increases while the MAUVE
scores at T = 1024 tend to increase with larger ηcap. We attribute this to the perplexity-entropy
trade-off. In particular, when ηcap increases, the probability of remasking increases, improving
perplexity, but also harming diversity. In the case of T = 4096, the models can generate higher
quality sentences and the reduction in diversity outweighs marginal improvements in generative
perplexity. For T = 1024, the samples are of relatively poorer quality and the improvement in
perplexity plays a major role in driving up the MAUVE score. To achieve the best balance, we choose
ηcap = 0.008 for the setting of inference-time scaling.

For faster sampling (T < 1024), in Figure 6b, with the exception of η = 0.045 we see a positive
trend between increasing ηcap and improving MAUVE scores. In Tables 1 and 5, we report results
using η = 0.040.

We also performed similar studies for schedules that combine ReMDM-cap with the ReMDM-loop
strategy (Figure 7) and for ReMDM-rescale schedules (Figure 8). For both of these settings, we
observe trends for increasing ηcap / ηrescale that are similar to those described above. In Table 5, we
report the following choice of hyperparameter for each of these settings. For ReMDM-loop combined
with ReMDM-cap, in the inference-time scaling experiments (T ≥ 1024), we report results using
ηcap = 0.020. For the faster sampling experiments (T < 1024), we report results for ηcap = 0.055.
For the ReMDM-rescale inference-time scaling experiments, we report results with ηrescale = 0.015
and for the faster sampling experiments, we use ηrescale = 0.045 in Table 1.

23



Published as a workshop paper at DeLTa Workshop (ICLR 2025)

1024 2048 4096
Time Steps

0.25

0.30

0.35

0.40

0.45

0.50

M
AU

VE
(

)

ReMDM-cap

eta=0.005
eta=0.006
eta=0.007
eta=0.008
eta=0.009
eta=0.010

(a) MAUVE scores of ReMDM-cap inference-time
scaling

128 256 512
Time Steps

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
AU

VE
(

)

ReMDM-cap
eta=0.025
eta=0.030
eta=0.035
eta=0.040
eta=0.045

(b) MAUVE scores of ReMDM-cap faster sam-
pling

Figure 6: Impact of σt on ReMDM-cap’s unconditional text generation quality on OpenWebText.
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Figure 7: Impact of ηcap on unconditional text generation quality on OpenWebText using the
ReMDM-loop strategy with ReMDM-cap.
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Table 5: Comparing sample quality on OWT for various ReMDM schedules. † indicates nucleus
sampling. For each T , the best MAUVE score is bolded.

Method MAUVE (↑) Gen PPL. (↓) Entropy (↑)

T=1024 T=2048 T=4096 T=1024 T=2048 T=4096 T=1024 T=2048 T=4096
ReMDM-cap† 0.355 0.474 0.353 27.7 20.2 14.4 5.32 5.21 5.06
ReMDM-loop† 0.403 0.610 0.656 28.6 22.8 17.6 5.38 5.30 5.20
ReMDM-rescale† 0.253 0.289 0.208 27.4 20.4 14.6 5.28 5.15 4.94
ReMDM-conf† 0.075 0.071 0.093 39.2 37.2 36.1 5.36 5.34 5.36

T=128 T=256 T=512 T=128 T=256 T=512 T=128 T=256 T=512
ReMDM-cap† 0.057 0.216 0.350 42.5 30.5 21.1 5.43 5.34 5.21
ReMDM-loop† 0.041 0.159 0.328 51.5 38.1 29.3 5.52 5.45 5.38
ReMDM-rescale† 0.040 0.107 0.218 46.2 34.8 25.6 5.44 5.36 5.24
ReMDM-conf† 0.019 0.035 0.053 57.7 49.6 43.3 5.50 5.46 5.41

E.3 IMAGENET

In Table 6, we present the full results for varying the sampling temperature τ and the various
ReMDM schedules and the their corresponding hyperparameters (ηcap for ReMDM-cap. and ηrescale
for ReMDM-rescale). As noted in Section 5.1.2, while both MDLM and ReMDM benefit from using
a softmax temperature of τ = 0.8, the MaskGiT sampler produces the best results with no temperature
scaling (i.e., τ = 1). Of note, we use FID to determine which setting constitutes the ‘best’ results for
each sampler. With reduced temperature, the entropy of the softmax is reduced leading to less diverse
samples. This is reflected in the trade-off of the FID vs. IS metrics across sampling temperatures,
with IS penalizing a lack of diversity less than FID Heusel et al. (2017).

E.4 QM9

In Figures 10-25, we present the results from the extensive hyperparameter search we conducted across
both properties, ring count (Figures 10-17) and QED (Figures 18-25), and guidance mechanisms
D-CFG (Figures 10-13, 18-21) and D-CBG (Figures 14-17, 22-25).

E.4.1 DRUG-LIKENESS PROPERTY MAXIMIZATION

In Figure 9, we present D-CFG and D-CBG results for baseline and the ‘best’ ReMDM setting when
maximizing the drug-likeness (QED) property. Similar to the results for maximizing the ring count
property in Section 5.2, we find that ReMDM improves the novelty-property maximization frontier
relative to MDLM when maximizing QED, although the benefits of ReMDM relative to MDLM are
less pronounced for QED than for ring count.

For D-CFG, results reflect combining ReMDM-rescale (ηrescale = 0.1) with the confidence-based
scheduler and switch strategy (tswitch = 0.1). For D-CBG, results reflect combining ReMDM-rescale
(ηrescale = 1.0) with the confidence-based scheduler and switch strategy (tswitch = 0.5)

E.4.2 TUNING ηrescale

Larger ηrescale is Better for Ring Count Maximization Across settings, we find that generally, with
some exceptions in the settings where the confidence-based schedule is not used (where ReMDM per-
forms comparatively worse than when confidence is used, as discussed below), we see a trend where
large ηrescale values lead to Pareto curves that are pushed further in the direction of more novelty
and higher ring counts. Additionally, we find that for ηrescale ≥ 0.5, the results are less sensitive to
this parameter.

Inconclusive ηrescale Results for QED Maximization For maximizing the QED property, the results
are less conclusive. In the settings that use the confidence-based schedule, there is no clear ηrescale
that dominates the others. For settings that do not use the confidence-based schedule, we observe a
trend where results improve with ηrescale = 0.1.
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Table 6: Discretized ImageNet conditional generation grid search over softmax temperature τ
and ReMDM hyperparameters. Values reflect FID / IS for varying T . For each sampler, the row
corresponding to the hyperparameter setup that is reported in the main Table 2 is bolded.

FID (↓) IS (↑)
Strategy τ T = 16 T = 32 T = 64 T = 16 T = 32 T = 64

MaskGiT
0.6 10.06 11.03 11.72 236.90 244.79 243.64
0.8 6.66 7.09 7.75 205.91 225.08 233.87
1.0 6.74 4.92 4.85 155.32 181.57 196.38

MDLM
0.6 6.99 7.67 8.43 214.55 233.59 242.28
0.8 7.88 5.37 4.69 140.97 169.79 187.93
1.0 26.02 18.18 13.96 64.01 82.54 96.30

ReMDM-cap, ηcap = 0.01
0.6 7.07 7.81 8.75 216.00 238.35 243.82
0.8 7.71 5.20 4.56 141.31 172.66 194.77
1.0 26.25 18.78 14.72 63.97 81.25 93.69

ReMDM-cap, ηcap = 0.02
0.6 7.10 7.94 9.01 217.12 239.50 244.98
0.8 7.55 5.00 4.53 142.33 178.32 198.87
1.0 26.86 19.50 15.85 63.06 79.46 91.68

ReMDM-cap, ηcap = 0.05
0.6 7.21 8.38 9.91 223.96 243.14 244.60
0.8 7.24 4.83 4.52 147.20 184.21 211.06
1.0 28.11 21.43 19.27 60.47 76.12 82.15

ReMDM-rescale, ηrescale = 0.01
0.6 7.09 7.78 8.66 215.52 237.82 244.96
0.8 7.75 5.24 4.58 141.11 171.56 193.73
1.0 26.09 18.48 14.29 64.45 82.26 95.69

ReMDM-rescale - ηrescale = 0.02
0.6 7.09 7.84 8.90 217.67 239.87 246.37
0.8 7.64 5.07 4.48 142.50 176.57 197.35
1.0 26.58 18.84 14.78 63.40 81.20 94.99

ReMDM-rescale - ηrescale = 0.05
0.6 7.19 8.22 9.65 223.05 242.99 250.68
0.8 7.40 4.92 4.45 145.27 182.05 209.45
1.0 27.39 19.99 16.69 62.09 78.82 90.58

ReMDM-conf
0.6 7.46 8.54 9.82 221.25 243.56 251.83
0.8 6.91 5.16 5.35 150.73 189.51 212.66
1.0 22.14 13.14 8.88 73.00 101.79 126.29
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Figure 9: ReMDM improves steer-ability by extending the novelty-property maximization frontier.
Controlled generation for drug-likeness (QED) maximization on QM9 dataset with varying inference
compute T and guidance strength γ. (Left) Discrete classifier-free guidance (D-CFG). (Right) Discrete
classifier-based guidance (D-CBG) and FUDGE for AR.
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Figure 10: ReMDM-rescaled with loop and confidence-based schedules hyperparameter tuning for
maximizing ring count using D-CFG. Larger marker sizes indicate larger γ values.

E.4.3 ABLATING USE OF CONFIDENCE-BASED SCHEDULE

For maximizing the QED property, we observe a clear pattern where incorporating confidence-based
schedules improves results. For ring count, this trend holds true as well, especially for larger values
of ηrescale, where the confidence score potentially helps temper large remasking probabilities for
relatively ‘safe’ tokens, but the trend is less pronounced overall than for QED experiments.

E.4.4 TUNING tswitch / LOOP PARAMETERS

For both QED and ring count maximization, when using D-CFG as the guidance mechanism, we
observe a general trend that activating ReMDM, with either the switch or loop strategies, benefits
from starting later in the decoding process, i.e., smaller tswitch / ton. This trend also holds true
for D-CBG in the QED experiments. A notable exception is when using D-CBG in the ring count
experiments, where we see the opposite trend, i.e., activating ReMDM earlier (larger tswitch / ton)
improves results.

F GENERATED SAMPLES

We visualize the generated sentences of MDLM (T = 4096) (Figure 26), MDLM+DFM (T = 4096)
(Figure 27), and ReMDM (T = 4096) (Figure 28). We find that the MDLM samples contain many
uncorrelated semantic fragments, with grammar errors appearing very often. MDLM+DFM can
formulate the text around a special topic, but the internal logic is not fluent. In contrast, ReMDM is
able to generate high quality, fluent English with a clear semantic topic.
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Figure 11: ReMDM-rescaled with loop and without confidence-based schedules hyperparameter
tuning for maximizing ring count using D-CFG. Larger marker sizes indicate larger γ values.
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Figure 12: ReMDM-rescaled with switch and confidence-based schedules hyperparameter tuning
for maximizing ring count using D-CFG. Larger marker sizes indicate larger γ values.
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Figure 13: ReMDM-rescaled with switch and without confidence-based schedules hyperparameter
tuning for maximizing ring count using D-CFG. Larger marker sizes indicate larger γ values.
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Figure 14: ReMDM-rescaled with loop and confidence-based schedules hyperparameter tuning for
maximizing ring count using D-CBG. Larger marker sizes indicate larger γ values.
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Figure 15: ReMDM-rescaled with loop and without confidence-based schedules hyperparameter
tuning for maximizing ring count using D-CBG. Larger marker sizes indicate larger γ values.
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Figure 16: ReMDM-rescaled with switch and confidence-based schedules hyperparameter tuning
for maximizing ring count using D-CBG. Larger marker sizes indicate larger γ values.
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Figure 17: ReMDM-rescaled with switch and without confidence-based schedules hyperparameter
tuning for maximizing ring count using D-CBG. Larger marker sizes indicate larger γ values.
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Figure 18: ReMDM-rescaled with loop and confidence-based schedules hyperparameter tuning for
maximizing drug-likeness (QED) using D-CFG. Larger marker sizes indicate larger γ values.
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Figure 19: ReMDM-rescaled with loop and without confidence-based schedules hyperparameter
tuning for maximizing drug-likeness (QED) using D-CFG. Larger marker sizes indicate larger γ
values.
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Figure 20: ReMDM-rescaled with switch and confidence-based schedules hyperparameter tuning
for maximizing drug-likeness (QED) using D-CFG. Larger marker sizes indicate larger γ values.
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Figure 21: ReMDM-rescaled with switch and without confidence-based schedules hyperparameter
tuning for maximizing drug-likeness (QED) using D-CFG. Larger marker sizes indicate larger γ
values.
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Figure 22: ReMDM-rescaled with loop and confidence-based schedules hyperparameter tuning for
maximizing drug-likeness (QED) using D-CBG. Larger marker sizes indicate larger γ values.
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Figure 23: ReMDM-rescaled with loop and without confidence-based schedules hyperparameter
tuning for maximizing drug-likeness (QED) using D-CBG. Larger marker sizes indicate larger γ
values.
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Figure 24: ReMDM-rescaled with switch and confidence-based schedules hyperparameter tuning
for maximizing drug-likeness (QED) using D-CBG. Larger marker sizes indicate larger γ values.
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Figure 25: ReMDM-rescaled with switch and without confidence-based schedules hyperparameter
tuning for maximizing drug-likeness (QED) using D-CBG. Larger marker sizes indicate larger γ
values.
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G ASSETS

In Table 7, we list the datasets (and corresponding licenses, when available) used in this work. In
Table 8, we list the software packages (and corresponding licenses) used in this work.

Table 7: Datasets (and corresponding licenses) used in this work.

Dataset License

ImageNet Deng et al. (2009) ImageNet License
OpenWebText Gokaslan & Cohen (2019) Creative Commons CC0 license (“no rights reserved”)
QM9 Ruddigkeit et al. (2012); Ramakrishnan et al. (2014) N/A

Table 8: Software (and corresponding license) used in this work.

Library License

Guided Diffusion Dhariwal & Nichol (2021) MIT
HuggingFace (Wolf et al., 2019) Apache 2.0
Hydra (Yadan, 2019) MIT
Jax (Bradbury et al., 2018) Apache 2.0
NumPy (Harris et al., 2020) NumPy license
MaskGiT Chang et al. (2022) Apache 2.0
Matplotlib (Hunter, 2007) Matplotib license
OmegaConf BSD 3-Clause
Pandas (pandas development team, 2020) BSD 3-Clause “New” or “Revised”
PyTorch (Paszke et al., 2019) BSD-3 Clause
PyTorch Lightning (Falcon & The PyTorch Lightning team, 2019) Apache 2.0
RDKit Landrum et al. (2013) BSD 3-Clause “New” or “Revised”
Seaborn (Waskom, 2021) BSD 3-Clause “New” or “Revised”
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—endoftext— might be seen as a tough choice, it’s smart to do so.
According to past reports, the SIM cards are only made available in the powerful manufacturer’s
range of carrier variants. And though the ZTE does its own case with these phones, this variant will
not be disclosed.
We also know the color of the phone and what it also will cost remains to be seen. With the Carrington
showdown, the new edition of the exclusive TVD features more pictures with Samsung.
—endoftext— Goodes
The Derby winner was named first-team of the Match on the BBC evening.
He feels his position as manager at Southall last season was a great honour and understands the
surarious delight in earning that he can’t complain about delivering an endless ovation.
The Newcastle coach knows how describes how people like their approach to games. As his biggest
fans, he has criticised Paul Cruy and traded barbs with Chris Froome.
And sad to admit, he admits he did not get everything right. He just betrayed them in his intention
and left an exasperation in others.
I’ve finished telling players that we’d get that, and they continued that attitude to how we didn’t think
we deserved the job ©Newcastle United Rovers manager Tony Wheeler
All this sound of being needed for interviews in various places.
“I’m quite pleased by the passion the fans have shown for me but believe me, I’m not the fan - I find
the person out. It would be an extremely nice position to be in.
Illuminate. We’d like to think, not to get a player based on Newcastle’s team when he does take
charge.
“My head coach says, ’Listen, it’s just too much to cry,’ Tony Wheeler told the BBC on Tuesday about
the injury he played in the Northern League final at Paroles.
“If the player is a part in the starting team, then I’m confident he would be put in there, but I also’ve
finished telling players we thought we’d get the job. We had good options to go in the squad.
“We had, obviously, the people that were always willing for us to get the best player we could because
as coaches we felt we had the best players, and we felt that no one had a choice.
“And the only thing [I] was just going on to say was that we were aware beforehand that it was an
unusual situation for us to hook him up with the potential of [Meagan] Forster.
“We like his game and he likes ours, and if he’s a good striker, he can go out there and play both for
the team and for ourselves.
“Stephen [Biggish] Jackson, who’s worked with here, obviously respects me with great respect and
likes his opinions, but I think [Tony Wheeler] can say that it’s satisfactory.
“We’ve got lots of many, and them combine them with Van Ferdinand. All three people we’ve been
approached to, they need to be taken.
“Could something be done to them? Not be done.”
United are certainly prepared to lose their star man for Tuesday’s Rovers clash, with Borby to take
charge of their trip to Dunferm on Saturday.
Although they have won five of their six games, they sit sixth in the Northern League, which includes
the Parkhead and the two assistant charges but on Tuesday their only goal of the season is worthy of
their reward.
United have more goals than Palace, scoring both goals this season despite the best form of Johnson
as new coach
Winger Darius Boyd joined Derby after replacing Marlon Wickham in June and recently, he stayed
for a year on loan until he joined Newcastle in defiance of Tony Wheeler.
Tom Williams, a future United captain, defender and striker, told BBC One Sports: “Being in Rovers
is great for them.
“They develop their chemistry very well in the dugout and they try to stay in good relationships
together.
“They’re unabashed about that you can play with both of them now, so they’ve stayed loyal.”
Brendan Rodgers, the current Newcastle United manager after Wheeler took over from Mick Jagger,
and succeeded David Moyes, as the most paid Premier League manager in 1997 while the Scot was
the highest paid Everton manager.
Leicester manager Leicester Leicester is yet to make terms with the joys of the job and has become
so indebted he offered to forgive Newcastle United’s owners for the cost of lost profits after buying a
stake in the club earlier this year.
—endoftext— Sometimes, I enjoy having colleagues “embarrassed” to compete in sports, especially
it comes to being a one-richen employee’s career. I can’t own the jobs of the colleagues that pressure
us from Chinese and Australian competitive athletes and even to compete in the United States. They
seem arrogant
—endoftext—

Figure 26: Sample from MDLM and T = 4096 diffusion steps. —endoftext— token is bolded to
emphasize the boundary between paragraphs.
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—endoftext— a component to renovating the park, but no one wants to involve others in it before
facing a backlash.
“We are going to stand up and try to make a real statement on this,” Thomas told reporters at a rally
Tuesday night. “I would much rather have that there be a consensus not just to make a decision, but
to have a very real discussion, and to begin to build a movement.”
The idea behind the proposal is a call to the public, council and the youth advisory board, which was
approved by residents on the first day of the meeting.
Thomas said the message will be important to Hamilton youth.
“It’s going to be very much about a number of people,” he said. “There will be arguments on both
sides. It is not going to be all about the type of person that you are or the committee member that you
are with a particular number of people.”
Thomas said that the plan is really about an initiative to help the community do both of those things.
“This isn’t going to be a positive thing, as it should be, but it’s going to put people in position to make
sure that our focus is not just about how to deal with poverty . . . and with homelessness. Our focus is
on keeping the people in our community affordable and to create opportunities for their families.
“We have —believe it or not —we have increased community involvement in our city,” Thomas said.
“I think it’s obvious from all of the issues now that we’ll consider resource-generating development
and how to devribute those resources.”
The renovated park is one of the 14 parks identified in the city’s 2008 map of the park’s 2-acre site,
which was opened up for a community arts festival.
City staff started coming up with the project in late December, but the public has yet to come to
terms.
For their part, residents sign the petition only to receive two differing opinions.
Although there are concerns that it would be an uphill battle that requires council approval, officials
said Tuesday that the process could eventually take shape, with councillors likely to support it.
Hamilton city hall spokesman John Little told reporters that the city would have to address a petition
from the public if there is one on site.
“We are not able to change the outcome because we are discussing it internally, so what we have has
not made an official decision,” Little said.
Thomas said staff wants to hear how the public feels about the project, and it must be incorporated in
such a prompt fashion that the city is looking at more permanent changes.
“We implemented a 30-year plan, about 10 years ago, and we will continue it this year,” Thomas said.
“We want to once again really emphasize community involvement. I mean, as we say we take this
kind of step, we don’t want to make separate efforts to change different things,” he said.
Any plans would be discussed with community boards, Conley said.
Hamilton city councillor Steve Cowen said if residents sign the petition, “actions have to be done,
knowing when these changes are needed and that we will have the right options to move forward.”
Cowen said two renovations along with suggestions for revenue set by the Hulbert Company, which
operates the Gerrard Elementary school theatre, will be included on city documents and website. They
would set aside $2 million more than the result of Washtenaw Park Plaza renovation plans, sparked
by the QEDA expansion that renovated the former Washtenaw Historic Restaurant and Bakery on
Gerrard.
The company has also purchased Gerrard and turned it into a New American Food, Inc. restaurant,
and brought the business before the city council in late 2015.
Hamilton city council has been having this conversation for more than a year, but it usually happens
only now.
“It’s really not, ’We need a meeting soon,’ why we need to do this,” Conley said. “It’s just a forum
where people can voice their views and inform council, and within the next year, hopefully council
will do the right thing to do.”
With John Elliott:
905-526-2431
mmelliott@thespec.com
—endoftext— Written by Steven B. Ollander
In the last five years, we have seen huge financial crises around the world, and not just economic
ones. We’ve also seen rapid changes in economic systems, in central and peripheral countries.
All these systems are in the hands of banks, but there are other forces that have also been used to
dump more money into other countries
—endoftext—

Figure 27: Sample from MDLM+DFM and T = 4096 diffusion steps. —endoftext— token is
bolded to emphasize the boundary between paragraphs.
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—endoftext— The Audi D3 is one of the fastest and most capable sports cars we’ve seen on the
market. The retractable front wings were added to make the D3 R a more sporty car. The front wing
design is painted yellow, which is a big surprise. It looks like the A4 R in a completely different color
scheme.
While the front wings retract, the cooling system is a drag for sure. The front and rear seats are
also light-weighted, which is also convenient for a racing driver. The car also features replaceable
steering wheels for higher stability and better handling. D3 R is easy to drive and easy to use thanks
to adaptive suspension technology.
Here are a few of the other features Audi had in mind:
Top speed is only four seconds higher, but more turbocharged engine power has been added to make
it even faster.
By means, you reach 60 mph in five seconds with strong acceleration. The front wing design makes
the engine a higher strength, making it just more powerful.
Speaking of power, D3 R is equipped with a 3.0 litre V8 with Adaptive Brake Control, which means
you won’t complain if you may have to move around it in wet conditions. The engine has been also
upgraded, making a 204.26 horsepower.
This is a 2-liter V8, which means it can easily produce as much as 132 bhp.
By comparison, a 3.0 litre V8 produces 227.4 bhp which is a bit too much for sporty cars. If you
want a sporty car, your only choice is to use this kind of engine in the guise of the D3 R.
Other innovative changes that create better handling in the car are the retractable rear wing and the
front suspension. The forks, front and rear, are fold-down. The 17-inch adjustable steering wheel
makes it easier for the driver. The car also sports a sport seats, which is quite different from the A4 R.
Behind the steering wheel, the sport driving mode has a full black screen touch option. You can move
the car up and down by taping the button. The buttons can be mounted on the display, giving you
more input of the screen. With the game on, you can walk to the steering wheel and then the interior
button to start. The push button is an optional feature, similar to A4’s push button.
The car also has a dedicated battery option that allows you to start the sport mode if the car is on the
clock. In addition to these features, the car also has four different lights on the dashboard.
The car also has an Assist Compensate Brake function that lets you drive the car in a more controlled
way by depending if the car is stopped. This is a nice feature if you are a more advanced driver.
D3 R comes with two different driving systems. The advanced driving system features a side-by-side
aggressive driving mode that lets you drive the car more aggressively at low speeds or by braking at
higher speeds. It also includes a complimentary steer-by-wire braking function.
When driving the car, you can take control of the headlights by simply turning on the headlights
and turning on the gearbox to speed up. When you’re in the park, you can press the manual park
controller, and you’ll see the power gauge on the steering wheel.
It produces 211.4 bhp which is higher than the power made by the first-generation sporty in cars like
the R8 V6. The car is able to push the limits and create dynamic performance that can take on power
and drag extremely quickly.
The D3 and A4 R come with four different modes of driving. The four modes are being labeled as
Focus, Safety, and Defensive Proactive.
Additionally, there are four different lights on the dashboard. One is an LED display directly next to
the other lights in the car. Another is a 17-inch display located behind the steering wheel. When you
press it on the wheel, the display then shows the performance of the car again.
Compared to the Audi A4, you’ll get better fuel economy, fewer accidents, and less noise. The D3 R
is Audi’s most balanced car, and we’re happy to say that the D3 R stands as the single most overall
balanced sports car on the global market.
PHOTOS by Sportscar365
Links:
Please note that the user name is the source for this article. Local or media images may be removed.
—endoftext— Written by Nick Ohr and James Chablofsky
In its 13-episode second season, the comedy The Good Wife blends action with the real world,
bringing the story of a couple: Arianna (Garrett Rossi) and Michelle (Amy Braid) and Caitlin
—endoftext—

Figure 28: Sample from ReMDM and T = 4096 diffusion steps. —endoftext— token is bolded to
emphasize the boundary between paragraphs.
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