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ABSTRACT

Current generative models have shown potential performance in many tasks,
which typically focus on generating samples that closely adhere to a given dis-
tribution. However, existing methods cannot simultaneously generate diverse and
high-quality samples, and they fail to produce optimal diverse solutions in intra-
batch diversity . Recognizing that maintaining “diversity” has been a longstanding
challenge in multiobjective optimization, we were inspired to introduce a multi-
objective optimization approach to enhance diversity in a single pass. This paper
utilizes the in-betweening human motion generation task as an example and in-
troduces the multiobjective generative models to produce a batch of diverse and
smooth human motion sequences in one pass. The resulting method, termed the
Multiobjective Generation Framework with In-Betweening Motion Model (MGF-
IMM), frames the human motion in-betweening task as a bi-objective optimiza-
tion problem. The designed in-betweening motion model is then integrated into
a multiobjective optimization framework to address this bi-objective optimiza-
tion problem. Through comprehensive experiments, MGF-IMM has surpassed
the state-of-the-art methods and validated its superiority in generating diverse in-
betweening human motions, without introducing additional training parameters.
Github

1 INTRODUCTION

Generative models Wei et al. (2024); Goodfellow et al. (2020); Ho et al. (2020); Shafir et al. (2024),
such as Variational Autoencoders (VAEs) Kingma et al. (2019), Generative Adversarial Networks
(GANs) Goodfellow et al. (2020), and Diffusion models Ho et al. (2020), have recently emerged
as a promising technique in many tasks, such as computer animation Harvey et al. (2020), virtual
reality Zhao et al. (2022), and human-computer interactions Mohammed et al. (2020). It aims to
learn the underlying distribution of the data, thus supporting the generation of new samples. For
example, in human motion generation fields, Wei er al. Mao et al. (2022) utilized a VAE-based
approach combined with Transformer network to fill long-term missing motion frames. Zhou et al.
Harvey et al. (2020) proposed a conditional GAN to learn in-betweening human motions. Tevet e?
al. Tevet et al. (2023) presented a human motion diffusion model for in-betweening human motion
generation, they adapted a classifier-free diffusion-based generative model for this task.

Despite achieving success in many applications, generative models still face challenges. For in-
stance, they struggle to consistently produce diverse and high-quality samples after a single training
process. Additionally, generative models are highly sensitive to hyperparameters. On large datasets,
setting training parameters appropriately is crucial, as retraining the model is resource-intensive and
time-consuming. This means that current generative models cannot guarantee intra-batch diversity .
It is important to note that the need for generating “multiple” and “diverse” outputs is quite common
in real-world scenarios. For example, in in-betweening human motion generation task Tevet et al.
(2023), the objective is to create a set of diverse and smooth sequences in one pass to interpolate
user-provided sequences, offering engineers a wide range of transitional human motions, which has
a wide range of applications in areas, such as Al for animation Xiao et al. (2024).
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Coincidentally, maintaining “diversity” is also a long-standing issue in the domain of multiobjective
optimization Guo et al. (2024); Song et al. (2014); Hua et al. (2021); Wang et al. (2014). In general,
multiobjective optimization problems involve multiple conflicting objectives, which means that no
single solution can simultaneously minimize or maximize all objectives Liu et al. (2022); Qiao et al.
(2022). This impressive characteristic leads us to transform the generative task into a multiobjective
optimization problem. Surprisingly, due to the implicit parallelism of the population-based search
strategy, evolutionary algorithms (EAs) Tian et al. (2020a) can not only provide multiple Pareto
optimal solutions in a single pass, but their well-designed diversity maintenance strategies also fa-
cilitate solutions that are well-distributed along the Pareto front. Thus EAs are utilized to optimize
the designed multiobjective problem and generate diverse samples. In this work, we employ in-
betweening human motion generation task as a showcase to report the effectiveness of the designed
multiobjective generative models.

Currently, it is difficult to capture human motion data, as all motion types and variations require a
tremendous amount of time and effort. Additionally, human motion exhibits a high degree of di-
versity, with significant individual differences. Therefore, efficiently generating diverse and smooth
in-betweening human motion sequences remains a significant challenge. While the diversity of gen-
erative models for human motion has been discussed in recent years Guo et al. (2020), they often fail
to guarantee that human motion sequences generated through batch sampling will differ significantly
from one another. Intra-batch diversity is crucial for users, who are typically more concerned with
the diversity of the sequences they receive. Therefore, this paper focuses on maintaining intra-batch
diversity to address this need.

Motivated by this consideration, this paper designs an Multiobjective Generation Framework with
In-Betweening Motion Model (MGF-IMM) for diverse in-betweening human motion task. We
demonstrate that, without introducing any additional training parameters, the proposed MGF-IMM
effectively guides the generation of diversity and smoothness in-betweening human motions. This
is supported mainly by the following three techniques:

* Multiobjective Modeling of Human Motion In-Betweening: We transform the human mo-
tion in-betweening task into a multiobjective optimization problem. We prove that for any
Pareto optimal solutions of the formulated problem, the corresponding human motion se-
quences can support smooth and diverse transitions to interpolate user-provided sequences.
Moreover, we also demonstrate that two points on the Pareto front that are far apart, usually
correspond to two motion sequences with different motion labels.

* Multiobjective Generation Framework: In the optimization process, a generative model
is incorporated into the multiobjective EA to generate diverse human motion sequences.
Specifically, the generative model is used to generate in-between motion frames between
the user-provided motion sequence frames, and environmental selection is employed to
guide the generated motions to evolve toward the Pareto optimal solutions.

* In-Betweening Motion Model: We developed a Transformer-based in-betweening motion
model within our multiobjective generation framework to facilitate the generation of in-
betweening motion sequences. While we primarily focus on the designed in-betweening
motion model based on the VAE generative model, the designed architecture is also adapt-
able to other generative methods such as GAN and DDPM. Our results indicate that, re-
gardless of whether the VAE, GAN, or DDPM architecture is employed, the designed mul-
tiobjective generation framework successfully guides diverse and smooth in-betweening
human motion sequences.

2 RELATED WORK

2.1 MULTIOBJECTIVE OPTIMIZATION

Multiobjective optimization problems involve optimizing multiple conflicting objectives simultane-
ously. In general, the multiobjective optimization problem can be formulated as:

min : f(x) = (f1(x), ..., fur(x)) ey
where x = (z1,...,2p) € X C RP is the decision vector (e.g., a candidate motion sequence),
x; (i € {1, ..., D}) is the ith decision variable (e.g., a component of a motion sequance), D is the
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dimension of the decision vector, X is the decision space, f(x) € ) C RM is the objective vector,
fi(x)(i € {1,..., M}) is the ith objective, M is the number of objectives, and ) is the objective
space. Key concepts associated with the multiobjective optimization are as follows Deb (2011).
Pareto Dominance: For decision vectors X, and x;, if Vi € {1,2,...,m}, fi(x,) < fi(xp) and
35 €{1,2,...,m}, fj(xq) < f;(Xp), X, is said to Pareto dominate x,. Pareto-Optimal Solution: If
no decision vector in X Pareto dominates X, then x, is a Pareto-optimal solution. Pareto Set: The
set of all Pareto-optimal solutions forms the Pareto set in decision space. Pareto Front: The image
of the Pareto set in the objective space forms the Pareto front.

In recent decades, researchers have developed various algorithms and frameworks to address mul-
tiobjective optimization problems Li et al. (2023a); Vodopija et al. (2024); Pan et al. (2024); Lee
etal. (2018). EAs, due to their inherent parallelism and population-based search strategies, have be-
come a preferred method for converging towards a set of optimal solutions within a single optimiza-
tion run Branke (2008). Their impressive performance and straightforward implementation have
led to widespread applications across real-world multiobjective optimization problems Tian et al.
(2020bsa); Liu et al. (2021). One of the most appealing features of EAs is their ability to maintain
population diversity. Such mechanisms are crucial for discovering solutions that are well-distributed
along the Pareto front. Therefore, we are inspired to transform our task into a multiobjective opti-
mization problem.

2.2 DIVERSE IN-BETWEENING HUMAN MOTION TASK

Diverse in-betweening human motion task aims to generate diverse and smooth motion sequences
given user-provided sequences. A plethora of generative models, such as VAEs and GANSs, have
been applied to this task Mao et al. (2022); Fragkiadaki et al. (2015); Li et al. (2023b); Agrawal
et al. (2013). For example, Harvey et al. Harvey et al. (2020) utilized neural networks to gen-
erate plausible interpolation human motions between a given pair of keyframe poses. Tang et al.
Tang et al. (2022) built upon these findings by introducing a Convolutional Variational Autoen-
coder (CVAE) Mao et al. (2022), which utilizes the motion manifold and conditional transitioning
to generate real-time motion transitions. Motion DNA Zhou et al. (2020) proposed to automati-
cally synthesize complex motions over a long time interval given very sparse keyframes by users for
long-term in-betweening. However, VAEs assume a Gaussian distribution as the posterior, which
can limit the diversity of the generated samples. Meanwhile, GANs tend to mainly generate sam-
ples from the major modes while ignoring the minor modes, further restricting the overall diversity.
More recently, denoising diffusion models Ho et al. (2020); Lee et al. (2023); Guo et al. (2020)
have been extensively utilized for motion generation. MoFusion Dabral et al. (2023) proposed a
denoising diffusion-based framework to generate motion in-betweening by fixing a set of keyframes
in the motion sequence and reverse-diffusing the remaining frames. OmniControl Xie et al. (2024)
presents a novel method for text-conditioned human motion generation, which incorporates flexible
spatial control signals over different joints at different times. Their diffusion backbone is based on
the human motion diffusion method. Based on this, CondMDI Cohan et al. (2024) proposes a flexi-
ble in-betweening pipeline through random sampling keyframes and concatenating binary masking
during training. The above state-of-the-art methods handle diverse motion sequences by enhancing
generative models to produce a wide range of plausible samples. However, they overlook the issue
of ensuring intra-batch diversity in the sampling process. In contrast, this paper introduces a multi-
objective sampling method to ensure high intra-batch diversity. Our approach requires no additional
training and can be seamlessly integrated into various generative models as a plug-and-play solution.

3 MULTIOBJECTIVE MODELING OF THE HUMAN MOTION IN-BETWEENING
TASK

In this section, we present the modeling of the diverse human motion in-betweening task as a mul-
tiobjective optimization problem. The formulated multiobjective optimization problem consists of
bi-objective functions, which aim to control the diversity and smoothness of the generated motions,
referred to as the Diversity Component and Smoothness Component respectively.

Diversity Component: We assume the availability of a classifier C(Y) that can categorize the motion
type represented by a generated motion sequence Y. We consider D distinct types of motions, each
labeled as {0,1,...,D — 1}. Thus, for any sequence Y, we have C(Y) € {0,1,...,D — 1}. In
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Figure 1: The illustration of multiobjective generation framework for diverse in-betweening human motion
sequences. Y is the generated sequence. G denotes the pretrained generator of the generative model. F'
denotes the designed multiobjective function.

addition, the classifier can provide the probability that a given motion sequence belongs to each
categorized motion type. This probability is denoted as P.(Y"). Based on the above definition, the
diversity component is formulated as the following two functions o1 (Y) and a(Y):

(V) = (C0) + PY)). o
OLQ(Y) =1- Oél(Y).
Smoothness Component: A smoothness function 5(Y) is utilized to facilitate the smoothness of
adjacent motion sequences, which is formulated as follows:
AY) = [IXo[=1] = YOI + [[Y[-1] — X3[0]]], 3)
where X;[—1] and Y[—1] denote the last human pose of the user-provided motion sequence X
and the in-betweening sequence Y, respectively. X5[0] and Y'[0] denote the first human pose of the
motion sequence X5 and the generated in-betweening sequence Y, respectively. 3(Y") is utilized to
denote the offset between the generated in-betweening motion sequences Y and the adjacent motion
sequences (X7 and X5). This operation aims to guarantee that the changes between the adjacent
human motion poses are not too large, thereby enhancing the smoothness between different action
sequences.

By integrating the diversity and smoothness components, the multiobjective optimization problem
for the diverse human motion in-betweening task can be formulated as follows:

{min CF(Y) = ay(Y) + B(Y),

: “4)
min : F5(Y) = ax(Y) + 8(Y).

Next, we introduce two theorems to formally summarize the key characteristics of the modeled

multiobjective optimization problem.

Theorem 1 Let B = {Y3|Y, = argminy 8(Y)}. Assuming |B| > 2, we can state that any in-
betweening motion Y, € B is a Pareto optimal solution of the multiobjective optimization problem
defined in equation 4.

The proof of Theorem I can be found in the Appendix. Theorem I establishes that all in-betweening
human motion sequences that minimize the smoothness component 3(-) are Pareto optimal solu-
tions for the multiobjective optimization problem defined in equation 4. This result implies that
solving equation 4 to identify its Pareto optimal motions inherently favors those with low, or even
minimum, values of 3(-). Given that 3(-) governs the smoothness of transitions between an initial
human pose and subsequent in-betweening motions, the Pareto optimal solutions are expected to
facilitate smooth motion transitions, thereby ensuring that the generated motions exhibit continuity
and smoothness.

Theorem 2 Let B = {Y;|Y, = argminy B(Y)}, and Y1,Y> € B. If ||[F(Y1),F(Y2)|| > &, where
F() = (F1(+), Fx(")) and || - || is the Manhattan distance, then C(Y1) # C(Y5).
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The proof of Theorem 2 can be found in the Appendix. Theorem 2 demonstrates that, under the
condition of the smooth transition, if the Manhattan distance between two generated in-betweening
motions in the objective space exceeds %, the human motion sequences are likely to belong to
different motion categories. This finding suggests that a diverse set of Pareto optimal motions from
equation 4 not only maintains smooth transitions but also provides a variety of motion types. The
multiobjective optimization framework is particularly suited to achieving this goal, offering a robust

mechanism for generating smooth and diverse in-betweening motions.

4 MULTIOBJECTIVE GENERATION FRAMEWORK WITH IN-BETWEENING
MOTION MODELS

4.1 MULTIOBJECTIVE GENERATION FRAMEWORK

EAs are highly effective for solving multiobjective optimization problems. It is logical to employ
EAs to address the multiobjective optimization problem described in Section 4. However, it is cru-
cial to recognize that human motion sequences are represented by a high-dimensional set of vectors,
which introduces substantial challenges in the search for the Pareto optimal solutions. Furthermore,
these sequences must adhere to constraints to ensure physically meaningful representations. These
factors complicate the direct application of EAs for searching Pareto-optimal solutions within the
human motion space. A viable solution to these challenges involves utilizing generative models in
place of traditional EA operations, such as crossover and mutation, to produce offspring. Generative
models can encode high-dimensional data into a low-dimensional space, which avoids directly gen-
erating offspring within the high-dimensional human motion space and ensures that the generated
offspring comply with the necessary constraints Wong et al. (2023). Motivated by these considera-
tions, we propose a multiobjective generation framework for human motion in-betweening task.

The designed multiobjective generation framework is illustrated in Figure. 1. In general, it follows
the most common framework of genetic algorithms, including the following steps:

Step 1. Initialization: The pretrained generative model is employed to produce an initial popula-
tion of human motion sequences. These sequences are subsequently evaluated using the objective
functions defined in equation 4.

Step 2. Offspring Generation: Generating a set of offspring human motion sequences using the
pretrained generative model.

Step 3. Evaluation: Evaluating the offspring using the objective functions defined in equation 4.

Step 4. Environmental Selection: Performing fast nondominated sorting and calculating the crowd-
ing distance Deb et al. (2002) for the sequences in both the current population and the offspring
population. Subsequently, update the population through the elite selection.

Step 5. Repeating steps 2 to 4 until the termination condition is met.

The uniqueness of the proposed method lies in the incorporation of a generative model into the
multiobjective optimization process. Specifically, the generation process is formulated as follows:

G (Y| X1,X5) 1=0
}/Z[”] ~

o (Y v x X)) 1<i<T ©)
where G is the generative model, Yi[n] (n € {1,...,N}) is the nth human motion sequence in
the population at the ¢th iteration. It can be observed that in the first iteration, i.e., during the
initialization process, the human motion sequence is generated by the conditional generative model
on the user-provided sequences X; and X». In subsequent iterations, i.e., during the evolution
process, the generative model is conditioned not only by the user-provided sequences but also by
the sequences already generated and present in the current population. This approach allows the
generative model to search for Pareto-optimal sequences based on the elite sequences identified thus
far, thereby driving the evolution of the population. After achieving the max iterations, we can get
N optimal solutions, i.e., diverse and smooth in-betweening human motion sequences.

Moreover, to allow for more flexible in-betweening human motion generation, the length of the
generated motion sequence is variable, as different action sequences may require different transition



Under review as a conference paper at ICLR 2025

lengths. The desired motion length is estimated according to the following steps: 1) Calculating the
cosine similarity S € [0, 1] to measure the similarity between two given motion poses X;[—1] and
X5[0]. 2) Based on the preset minimum sequence length Y,,,;,, and the preset maximum sequence
length Y),,4., the desired length of the human motion sequence is set as follows:

Y—len - szn + L(Ymax - szn) X (]- - S)J . (6)
In our experiment, Y, is set to 5, Y4, is set to 15. In the generation of the offspring, the Y.,
is encoded into the pretrained generative model and has to be consistent with the training process

details. So we introduce a padding operation to the Y;.,, specifically, we repeat the last pose of the
Yern until it achieves the Y, 0.
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Figure 2: The illustration of pretrained generative model using VAE, which is utilized to generate human motion
sequences in multiobjective generation framework.

4.2 IN-BETWEENING MOTION MODELS

To enhance the generation of human motion sequences, we have designed a in-betweening motion
model. Notably, by simply altering the training strategy, our structure can be directly incorporated
into various types of generative models, such as GAN, or DDPM. In this paper, we primarily intro-
duce the generative model based on the VAE. The process is illustrated in Figure. 2. Specifically,
given the human motion sequence X1, X5 and Y, the encoder gy (Z|Y, X7, X5) is trained to encode
the human motions into latent space Z, which maps the human motion distribution into the latent
code distribution. Then the generator G (Y|Z , X1, X2) transforms the latent representation to the
data manifold. In terms of the structure, both the encoder and generator are implemented by the GRU
Chung et al. (2014) and Transformer Vaswani et al. (2017) network. The Transformer focuses on
the inter-dependencies among human joints within the same time step. For the Transformer process,
when modeling the human motion sequences at time ¢ (¢t € {1,2,...,T}), we project the whole
sequence of joint embedding E; into matrices @, K, and V by Wo, Wi, Wy. Q = E:Wg,
K = E;Wgk,and V = E,Wy. The number of used human joint is a (a € {1,2,...,A}). The
summary of the spatial joints E; is calculated by aggregating all the joint information using the
multi-head mechanism. The GRU, with parameter ¢ intends to capture the smoothness property of
human motions, and then encode the human motions into latent space Z. The formula for using the
encoder to map the human motions into latent space is computed as follows:

Attention(Q, K, V) = SOftmaz(QKT WV,
head; = Attention(QW, KW v (¥), (7

E, = Concat(heady, . . ., headH)W(O)7
Z <+ GRU4(Ey),

where W (©) denotes the concatenation weight matrix, the attention is computed by dot products
of the query Q with all keys K, divide each by /di, and apply a softmax function to obtain the
weights on the values V. In addition, the architecture of the generator is the same as the encoder.
The generator aims to map the latent space Z back to the reconstructed human motion sequence
Y. To train the VAE network, the reconstruction and KL divergence loss functions are utilized
to measure the difference between the reconstructed and the original motion sequences, which are
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defined as follows:
Lvar = Eyz)y,x,,x,) (log(p(Y|Z, X1, X2)) — KL(q(Z|Y, X1, Xo2)|Ip(Z|Y')), ®)
where the first term is expressed as reconstruction loss function. The second indicates the KL

divergence, ¢(Z|Y, X1, X2) and p(Z]Y") denote the posterior and prior distribution (commonly a
Gaussian distribution), respectively.

Remark: Although the backbone of the generator is primarily discussed in the context of a VAE,
the proposed structure can be directly applied to other generative models. This can be achieved by
aligning the loss functions and training details of models like GAN and DDPM with those of their
standard implementations Goodfellow et al. (2020); Ho et al. (2020).

Gaussian Distribution Yt
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DDPM) Initial in-betweening sequence

Sequence X, Diverse in-betweening human
motion sequences generation

Figure 3: The framework of our method. We first randomly sample from the Gaussian distribution, and use the
pretrained generator to generate the initial in-betweening motion sequence. Then, the designed multiobjective
generation framework is utilized to explore multiple optimal solutions for more diverse sequences.

4.3 A SUMMARY FOR THE PROPOSED METHOD

In summary, our task aims to generate diverse and smooth in-betweening human motions given the
user-provided human motion frames. The overflow of the proposed method is briefly described in
Figure. 3. Specifically, given the user-provided motion sequence X; and X5, we first generate the
initial in-betweening human motions Y through a designed and pretrained VAE model. We would
like to note that other generative models can also be used for this task, such as GAN and DDPM,
as our method can enhance the performance of these generative models. To alleviate the mode
collapse in VAE-based generation, while enhancing the diversity and smoothness of the generated
motion sequence, we transform this task into multiobjective optimization problem, and design a
multiobjective optimization function to optimize this process. We have demonstrated that for any
Pareto optimal solutions of the formulated problem, the corresponding human motion sequences
can support a smooth and natural transition to interpolate user-provided sequences. Therefore, the
multiobjective optimization process can capture multiple optimal solutions, i.e., generate diverse
in-betweening human motion sequences. Moreover, our method utilizes the generative model to
generate motion sequences. It is significant to note that the proposed method can enhance the diver-
sity of generated human motions based on generative models without introducing additional training
processes and parameters.

5 EXPERIMENTS AND DESIGN

5.1 DATASETS

The experiments are performed on four widely employed motion datasets: BABEL Punnakkal et al.
(2021), HumanAct12 Guo et al. (2020), NTU RGB-D Liu et al. (2019), GRAB Taheri et al. (2020).
The details can be found in Appendix.

5.2 PARAMETER SETTINGS

For the experiment settings, the batch size for training the VAE model is set to 128 and the number
of used human joints is 16. The Transformer uses 8 attention heads. The proposed method is imple-
mented using the PyTorch framework in Python 3.6. To ensure convergence, the Adam optimizer is
used to train the model, with an initial learning rate of 102 that decays by 0.98 every 10 epochs.
The training is conducted for 500 epochs. For the multiobjective generation framework, the I, 4, is
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Table 1: Quantitative comparison results. F'I Dy, and F'I D, refer to the FID scores obtained from the gener-
ation to train and test datasets, respectively. The best results are in bold.

Method BABEL HAct2
FID, | FID,.] ACCT ADE] APDT FID, | FID,.| ACCT ADE| APDT
RMI Harvey et al. (2020) 37.09 30.15 151 121 079 24535 29806 2451 138 0.60
MITT Qin et al. (2022) 3221 27.10 0.73 0.99 091 25472 14371 2273 1.39 0.53
Motion DNA Zhou et al. (2020)  27.04 2325 162 112 067 24768 13989 2446 1.34 0.87
ACTOR Petrovich et al. (2021) 2934 3031 409 229 271 24881 38156 4441 1.54 0.95
WAT (RNN) Mao et al. (2022)  22.54 2239 496 147 1.74 12995 16438  59.02 1.23 0.96
WAT (Trans.) Mao et al. (2022)  20.02 19.41 395 1.40 1.82 141.85 13982  56.87 1.26 0.88
MultiAct Lee et al. (2023) 16.39 1912 7367 1.77 542 17476 24382 68.62 1.35 1.76
MoFusion Dabral et al. (2023)  15.49 1512 7471 1.07 6.45 12541 13414 6714 1.07 145
MGE-IMM (VAE) 1413 1571 7421 12 614 11536 13526 6727 121 181
MGE-IMM (GAN) 14.46 1449 7516 1.10 6.96 11636 13049 6891 1.20 1.92
MGF-IMM (DDPM) 14.32 1365 7732 101 8.45 11616 12134 7026 117 2.45
Method NTU GRAB
FID, ] FID,.] ACCT ADE] APD{ FID, | FID,] ACCT ADE| APDT
RMI Harvey et al. (2020) 14498 11361 663 Il 119 13228 10254  75.1 124 79
MITT Qin et al. (2022) 15111 15754 706 1.20 121 16234 14832 621 121 1.19
Motion DNA Zhou et al. (2020)  147.64 14792 68.7 1.19 1.09 15799  146.18  60.7 1.08 0.97
ACTOR Petrovich etal. (2021) ~ 355.69 19358  66.3 1.49 207 34273 18145  78.1 1.45 2.13

WAT (RNN) Mao et al. (2022) 72.18 111.01 76.0 1.20 2.20 70.12 101.24 76.0 1.18 2.05
WAT (Trans.) Mao et al. (2022) 83.14 114.62 713 123 2.19 79.17 114.52 69.1 1.23 2.19

MultiAct Lee et al. (2023) 374.73 530.09 63.9 1.41 2.73 374.73 530.09 64.3 1.32 2.54
MoFusion Dabral et al. (2023) 75.46 108.12 77.71 1.06 2.75 68.12 95.01 79.21 1.09 2.01
MGF-IMM (VAE) 81.64 107.16 74.9 1.09 272 69.46 98.16 78.5 1.13 2.37
MGF-IMM (GAN) 79.47 107.51 76.4 1.05 2.86 67.19 96.49 80.1 1.08 242
MGF-IMM (DDPM) 71.90 107.32 79.8 1.03 2.94 65.32 94.72 85.9 1.04 2.59

Table 2: Ablation studies for the influence of different lengths on the BABEL dataset.

Fixed length N = 20 Variable length
FID, | FID..| ACCt ADE|] APD?t FIDy, ] FID,, | ACCT ADE] APDTY
RMI Harvey et al. (2020) 37.09 30.15 1.51 1.21 0.79 36.87 30.03 291 0.59 1.51
MITT Qin et al. (2022) 3221 27.10 0.73 0.99 0.91 31.62 26.64 1.66 0.65 1.61

CMIB Kim et al. (2022) 21.07 23.60 1.96 1.21 2.46 20.42 21.34 2.04 0.91 2.94
MultiAct Lee et al. (2023) 16.39 19.12 73.70 1.77 3.01 15.98 13.62 73.99 0.61 542
MGF-IMM (DDPM) 14.91 13.72 75.81 1.09 7.24 14.32 13.65 77.32 1.01 8.45

set to 20, the nondominated sorting and the crowding distance Deb et al. (2002) are utilized in the
environment selection. The population size is set to 20. All the inference processes are conducted
on the NVIDIA Tesla A100 GPU. The keyframes of the user-provided sequence are set to 5 in our
experiment, and can be variable according to different tasks.

5.3 METRICS

The accuracy and diversity of the generated motion sequences are essential for in-betweening mo-
tion task. For comparison, we employ the metrics to facilitate the evaluation of MGF-IMM, i.e.,
Frechet Inception Distance (FID), Action Accuracy (ACC) and Average Displacement Error (ADE).
The details about these metrics can be found in Appendix. Specifically, APD aims to evaluate the
diversity performance of MGF-IMM. ACC, FID and ADE aim to evaluate the accuracy performance
of MGF-IMM. For APD and ACC metrics, a higher value is better. For FID and ADE metrics, a
lower value is better.

5.4 BASELINE METHODS

In this work, we compare the proposed method with the state-of-the-art human motion in-
betweening generation methods as baseline methods, including RMI Harvey et al. (2020), MITT
Qin et al. (2022), Motion DNA Zhou et al. (2020), ACTOR Petrovich et al. (2021), WAT Mao et al.
(2022), MultiAct Lee et al. (2023), MoFusion Dabral et al. (2023).

6 RESULTS AND ANALYSIS

6.1 QUANTITATIVE RESULTS

Table 1 summarizes the comparative performance of the proposed MGF-IMM method against var-
ious baselines for in-betweening motion generation task. The results demonstrate that the MGF-
IMM method achieves state-of-the-art performance across all evaluation metrics. Specifically, the
diversity metric (APD) improvements are more obvious than the accuracy metrics. This superior-
ity highlights the effectiveness of the multiobjective optimization framework. By formulating the
in-betweening task as a multiobjective problem, MGF-IMM can generate motion sequences that
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Table 3: Ablation studies for the influence of the multiobjective generation framework on the performance of
our methods. w.o. means “without”, w. means “with”.

Method BABEL HAct12
FID, ] FID,] ACCYT ADE] APD?T FID, | FID.] ACCT ADE] APDT
w.o. EMG 16.45 18.45 73.14 1.42 3.46 13427 147.62 58.14 1.36 0.86
MGE-IMM (VAE) w. EMG 14.13 15.71 74.21 1.12 6.14 115.36 135.26 67.27 1.21 1.81
w.o. EMG 16.13 17.16 73.56 1.36 4.02 125.86 137.94 66.13 1.35 1.74
MGE-IMM (GAN) w. EMG 14.46 14.49 75.16 1.10 6.96 116.36 130.49 68.91 1.20 1.92
w.o. EMG 1551 14.61 75.04 1.07 6.84 124.65 131.74 67.46 1.36 1.84
MGF-IMM (DDPM) w. EMG 14.32 13.65 77.32 1.04 8.45 116.16 121.34 70.26 1.17 2.45
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Figure 4: Pareto front of the optimization process under the “Sit” motion sequences. The blue points denote
the initial population. The red points denote the final population.

satisfy the proposed different objectives. Interestingly, the MGF-IMM method exhibits relatively
weaker performance on the NTU RGB-D dataset compared to other datasets. This is likely due to
the higher level of noise and artifacts present in NTU RGB-D, which poses additional challenges for
MGF-IMM. On the other datasets, the MGF-IMM method demonstrates substantial improvements
in both the accuracy and diversity metrics. This is a direct result of the multiobjective optimization
approach, which can explore and provide a diverse set of solutions between the competing objective
functions. Overall, the comprehensive evaluation on multiple human motion datasets shows the su-
periority of the proposed MGF-IMM method for in-betweening human motion generation task. The
multiobjective optimization function proves to be a highly effective technique for this task.

In addition, the results in Table 1 also report the performance of MGF-IMM using different genera-
tive models. Specifically, the table compares MGF-IMM when using VAE, GAN, and DDPM as the
base generative models. The results reveal that the MGF-IMM approach consistently outperforms
other in-betweening methods regardless of the specific generative model. This indicates that the
multiobjective optimization method introduced in MGF-IMM effectively enhances performance of
the generated human motions.

Table 4: Ablation studies for the influence of the intra-class difference. w.o. means “without”, w. means “with”.

BABEL HAct12
Method FID, | FID,| ACCT ADE| APDT FID, | FID,] ACCT ADE| APDT
R A S /e LI
I G N N N T B
(L B I LI

6.2 ABLATION STUDIES

The paper conducts ablation studies to analyze the contributions of the different components within
the proposed MGF-IMM method. As shown in Table 2, experiments compare the influence of
different methods under variable and fixed length of transition sequences, including RMI Harvey
et al. (2020), MITT Qin et al. (2022), MultiAct Lee et al. (2023) and CMIB Kim et al. (2022). The
comparison results clearly show that allowing variable length transition sequence generation leads
to enhanced performance compared to the fixed length. This indicates the importance of flexibility
in the length of in-betweening motions for achieving high-quality results.

Table 3 aims to assess the impact of the introduced multiobjective generation framework. Specif-
ically, we evaluated the performance of the multiobjective generation framework combined with
various generative models, including VAE, GAN, and DDPM. The results show that the inclusion of
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Figure 5: The generated diverse in-betweening human motion sequences.

the multiobjective generation framework consistently improves performance, particularly in terms
of the diversity of the generated motion sequences within a bath process. These ablation findings
further report the effectiveness of our design choices.

In addition, Table 4 reports the influence of the intra-class difference within the same human mo-
tions based on different generative models. The second term of «; in the objective function 2 aims to
capture the intra-class difference within the same motion, which denotes different probabilities cor-
responding to the same action label. From the comparison results, we can observe that introducing
this intra-class difference term into the optimization process can effectively enhance the performance
of the generated motion sequences. This finding highlights the importance of explicitly modeling
the inherent variations within the same motion class.

6.3 QUALITATIVE RESULTS

In the qualitative analysis, we first visualize the Pareto front obtained from the multiobjective op-
timization process. Figure. 4 plots the distribution of the 20 population solutions. The blue points
denote the initial population, which is the generated motion sequence without the multiobjective
generation framework. The red points represent the generated in-betweening human motion se-
quences after the optimization process. As shown in this figure, the initial population is unable to
approximate the Pareto front effectively, and the distribution of the solutions is rather irregular. In
contrast, the MGF-IMM approach is much more effective in locating multiple optimal solutions
along the Pareto front. In addition, we show two points on the Pareto front that are far apart, which
correspond to two human motion sequences. This demonstrates its superior ability to balance the
trade-offs between the competing objectives during the in-betweening human generation task.

In addition, we also visualize the in-betweening human motion sequences given the user-provided
motion sequences. As illustrated in Figure. 5, the left side of the figure shows the transition from
the “Run” to the “Hop” action, while the right side displays the transition from the “Hop” to the
“Place” action. Since the two actions on the left have a small difference, the generated transition
motion sequence is relatively short. The comparison results show that our method can generate
variable lengths in-betweening human motion sequences. These qualitative results demonstrate that
our method can generate more diverse human motion sequences under the introduced multiobjective
generation framework.

7 CONCLUSION

This paper introduces the multiobjective optimization into the generative models and takes the in-
betweening human motion task as a showcase to report the effectiveness of the proposed method
MGF-IMM. We transform in-betweening human motion task into a multiobjective optimization
problem, and design a multiobjective function to enhance the diversity and smoothness of the gen-
erated motion sequences. In addition, multiobjective EA is utilized to explore the Pareto front so-
lutions. The designed generative model is utilized to generate the motion sequence. Note that the
multiobjective generation framework works in the inference process, therefore, the proposed method
is capable of enhancing the diversity and accuracy of this task without introducing additional pa-
rameters. Comprehensive experiments have been conducted to demonstrate the effectiveness of the
proposed method.
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APPENDIX

A PROOF OF PROPOSITION 1

The proof of Theorem 1.

Assuming that there exist an in-betweening motion sequence Y;* that can Pareto dominate Y}, in
problem equation 4, then we have:

B (Y)) < Fu(Yy), F2(Yy") < Fo(Yh). ©)

Thus, we can obtain that
F(Y)) + P2 (Yy) < Fi(Yy) + Fa(Y5)
=a1(Vy) + aa(Vy) + 28(Yy") < a1(Vp) + aa(¥s) + 26(Y5)
=14+28(Y)) < 1+28(Ys)
=BYy") < B(V),
where line 2 and line 3 in equation 10 are obtained based on the equation 2. It should be noticed
that, we have 5(Y;*) < B(Y}) from equation 10, and this contradicts the assumption that Y}, € B.

Therefore, there is no in-betweening human motion sequence that can Pareto dominate Y;, which
demonstrates our proof.

(10)

B PROOF OF PROPOSITION 2

The proof of Theorem 2.

Considering that Y7, Y> € B, we have 5(Y1) = 5(Y2) = miny S(Y"). According to equation 4, we
have the following equations:

(Y1)~ Fi(¥a) = 1 (C(V) + (V) — C(¥s) — Po(Y3)) .
1

Py (Y1) = Fa(Yz) = == (C(Y1) + Pe(Y1)) + %(O(Yﬁ + Pe(Y2))

D
Then, we can obtain that
[[F(Y1) — F(Ya)||

—IR(V) ~ F(Y3)| + [B(%) — F(¥a)| > 5

4

= |5 (€00 + P(Ti) = O - R(3a)| + | (C0%) + P.(¥a) = C1) - i) > 5

=2 ‘11) (C(V1) + P.(Y1) — C(Ys) — PC(YQ))‘ > %

=|C(Y1) + P.(Y1) — C(Y2) — P.(Ys)| > 2
=|C(Y1) = C(Y2)[ > 2 — |P(Y1) — Pe(Y2)| -

Considering that both P.(Y7) and P.(Y>) are probabilities, i.e., P.(Y1) € [0,1] and P.(Y>) € [0,1],
thus we have

‘Pc(yl)_Pc(}/Q” S ]-7 (13)

thus resulting in |C'(Y1) — C(Y2)| > 1. Given that C(Y") is the result of the classifier C' applied to
sequence Y and that its value is an integer, we can obtain the conclusion that |C'(Y;) —C(Y2)| > 1is
equivalent to C'(Y7) # C(Y2). This shows that sequence Y] and sequence Y5 correspond to different
kinds of motions.
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C DATASET

BABEL is a subset of the AMASS dataset with per-frame action annotations. In this work, we split
the dataset into two parts: single-action sequences and transition sequences between two actions. We
downsample all motion sequences to 30 Hz. For single-action motions, we divide the long motions
into several short ones. Each short motion performs one single action, and the remove too short
sequences (< 1 second). We also eliminate the action labels with too few samples (< 60) or overlap
with other actions. After processing, we have 20 action categories.

HumanAct12 contains 12 subjects in which 12 categories of actions with per-sequence annotation
are provided. The sequences with less than 35 frames are removed, which results in 727 training and
197 testing sequences. Subjects P1 to P10 are used for training, P11 and P12 are used for testing.

NTU RGB-D originally contains over 100,000 motions with 120 classes whose pose annotations are
from MS Kinect readout, which makes the data highly noisy and inaccurate. To facilitate training,
our operation is consistent with the operation in Kocabas et al. (2020), which re-estimates the 3D
positions of 18 body joints (i.e. 19 bones) from the point cloud formed by aligning synchronized
video feeds from multiple cameras. Note the poses are not necessarily matched perfectly to their
true poses. It is sufficient here to be perceptually natural and realistic.

GRAB consists of 10 subjects interacting with 51 different objects, performing 29 different actions.
Since, for most actions, the number of samples is too small for training, we choose the four action
categories with the most motion samples, i.e., Pass, Lift, Inspect and Drink. We use 8 subjects (S1-
S6, S9, S10) for training and the remaining 2 subjects (S7, S8) for testing. In all cases, we remove
the global translation. The original frame rate is 120 Hz. To further enlarge the size of the dataset,
we downsample the sequences to 15-30 Hz.

D METRIC DEFINITIONS

1. Frechet Inception Distance (FID). FID is the distribution similarity between the predicted
sequences and the ground-truth motions:

FID = Hﬂgen - NgtHz + TT(Egen + Ygt — Q(denzgt)l/z)v 14

where 11 € RY and ¢ € RF*F are the mean and covariance matrix of perception features
obtained from a pretrained motion classifier model with /' dimension of the perception
features. T'r(-) denotes the trace of a matrix. In the experiment, we report the FID of
generation to train (F'I Dy,.) and test (F'I D;.) datasets, respectively.

2. Action Accuracy (ACC). To evaluate motion realism, we report the action recognition ac-
curacy of the generated motions using the same pretrained action recognition model.

3. Average Displacement Error (ADE). ADE is the L2 distance between the predicted motion
and ground-truth motion to measure the accuracy of the whole sequence:

T
1 . )
ADE = 1 _ Yi _ Y 15

i:<1,rzr,1§,r~l~~,N>T’;|| B Ykl (15)

where Y is the Ground Truth motion sequence. Y is the predicted motion sequence. N is
the final number of predicted motion sequences.

4. Average Pairwise Distance (APD). APD is the average L2 distance between all the gener-
ation pairs, it is used to measure the diversity:

1 N N o
APD:mZ Z 1Y) = (Y)]], (16)

i=1 =157

E ADDITIONAL EXPLANATION OF THE INTRODUCED MULTIOBJECTIVE
MODELING

Although we provide two theorems in Section 3 to elucidate the capability of our multi-objective
modeling method to preserve the diversity of a sequence set, these theorems may not be immedi-
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ately intuitive. For readers without a background in multi-objective optimization, this section might
pose significant challenges. To improve comprehension, we present two examples that illustrate
the meaning of the Pareto dominance relationship and the principle of diversity preservation in the
proposed method. Before proceeding, it is important to clarify that our approach diverges from the
conventional idea which uses a single indicator function to evaluate and enhance diversity within
a batch of human motion sequences. Instead, we translate the diversity of the sequence batch into
diversity in the objective space of multi-objective optimization. Leveraging the well-established
ability of evolutionary algorithms to maintain diversity in the objective space, our method effec-
tively generates batches of diverse motion sequences.

E.1 PARETO DOMINANCE RELATIONSHIP

4
FZ Category 1

B, B(Ya) = €

+

1 Y}y «————Category 2

vl vl w

| B, B(Yp) ~ 0

>
>

Fy

ainvpb--------
alw -

(a)

Figure 6: Examples of Pareto dominance relationship in the proposed multi-objective modeling approach. In
the example, we assume there are motion sequences Y,, Y3, Y., and Yy. For Y, and Y3, we assume that
C(Ya)=1,C(V) =2, P.(Y')=1Land B(Y') =0,Y’ € {YV,,Y,}). Meanwhile, for Y, and Yy, we assume
that C'(Y;) = 1, C(Ya) = 2, P.(Y') = 1, and B(Y') > ¢,Y' € {Y,, Ya}), where € is a positive value. The
objective space illustrates that the full smooth motion sequences Pareto dominates non-full smooth sequence,
i.e., Y, Pareto dominates Y., and Y}, Pareto dominates Y.

First, we introduce the concept of Pareto dominance in the context of the proposed multi-objective
optimization problem. Assume there are four motion sequences, Y,, Y3, Y., and Y. Specifically, Y,
and Y}, are motion sequences belonging to the first and second categories, respectively (i.e., C(Y,) =
1 and C(Y;) = 2), with absolute category memberships (i.e., P.(Y') = 1,Y’ € {Y,,Y;})). Further-
more, Y, and Y}, are assumed to exhibit full smoothness (i.e., 5(Y’) = 0,Y" € {Y,,Y,})). Addi-
tionally, consider two other motion sequences, Y. and Y, which satisfy C(Y,) = 1 and C(Yy) = 2,
but cannot guarantee full smoothness (i.e., 5(Y”') > €, Y’ € {Y., Yy}), where € is a positive value).
As shown in Figure 6, the objective space illustrates that Y, Pareto dominates Y, and Y} Pareto dom-
inates Yy. This is because the objective function values corresponding to Y, and Y} are superior to
those of Y, and Yy, respectively. Evidently, the Pareto dominance outcome is influenced by whether
the motion sequence ensures complete smoothness. The smaller the /3 function value, which deter-
mines smoothness, the less likely the motion sequence is to be dominated in the objective space.
Therefore, for the multi-objective optimization problem we have defined, obtaining Pareto-optimal
sequences inherently favors the generation of smooth motion sequences.

E.2 DIVERSITY KEEPING FROM THE OBJECTIVE SPACE

We now provide an example to demonstrate how diversity in the objective space translates into the
intra-batch diversity. Consider two batches, ), = {Yl(l), o Y1(5)} and )y = {Yz(l), ce Y2(5)},
each consisting of five motion sequences. In ), the contained sequences belong to five different
motion categories, whereas in )5, all sequences belong to a single category (category 0). Clearly,
Y1 exhibits significantly greater diversity than ). Assume that for all sequences in ); and ), their
category membership is absolute (P.(Y') = 1,Y”’ € V4 U )»), and smoothness is fully guaranteed
(BY') = 0,Y" € Y1 UDs). The representations of these two batches in the objective space are
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Figure 7: Examples of diversity preservation in the proposed multi-objective modeling approach. In the exam-
ple, we show the representation of motion sequences in the objective spaces corresponding to the constructed

multi-objective optimization problem. We assuming there are two batches, V1 = {Yl(l), R Yl(s)} and

Vo = {YQ(U, R Y2(5>}, each consisting of five motion sequences. In ), the contained sequences belong to
five different motion categories, whereas in ), all sequences belong to a single category (category 0). Assume
that for all sequences in )i and s, their category membership is absolute, i.e., PC(Y') =1,Y €YV U)s,
and smoothness is fully guaranteed, i.e., 3(Y') = 0,Y’ € V1 U )». (a) Representation of motion sequences
in the objective space for the batch ));. (b) Representation of motion sequences in the objective space for the
batch Vs.
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Figure 8: The illustration of multi-class classifier model.

depicted in Figure 7. As shown in Figure 7(a), the batch ));, characterized by high diversity, also
demonstrates excellent diversity in the objective space, comprehensively covering the Pareto front
of the established multi-objective optimization problem. In contrast, for ), all five sequences cor-
respond to overlapping points in the objective space, as illustrated in Figure 7(b). This indicates
that for batches with poor diversity, like ), maintaining diversity in the objective space fails. The
above example illustrates that for the multi-objective optimization problem we have formulated,
diversity preservation in the objective space translates into motion sequence diversity within the
batch itself. Maintaining diversity in the objective space has been extensively studied in the field
of evolutionary algorithms, with well-established strategies. By integrating our multi-objective op-
timization problem with these evolutionary algorithm techniques, the proposed method effectively
ensures intra-batch diversity.

F MULTI-CLASS CLASSIFIER MODEL

In Figure 8, we provide the network structure of the multi-class classifier model used for the Diver-
sity Component. This model consists of GRU layers to encode the temporal information and MLP
layers to produce the final classification results. The model is then trained for 500 epochs using the
ADAM optimizer with an initial learning rate of 0.001.
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