
Proceedings of Machine Learning Research vol 120:1–10, 2020

Tractable Reinforcement Learning of Signal Temporal Logic
Objectives

Harish Venkataraman KUMAA001@UMN.EDU

Derya Aksaray DAKSARAY@UMN.EDU

Peter Seiler SEILE017@UMN.EDU

Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN, USA

Abstract
Signal temporal logic (STL) is an expressive language to specify bounded time real-world robotic
tasks and safety specifications. Recently, there has been an interest in learning optimal policies
to satisfy STL specifications via reinforcement learning. Learning to satisfy STL specifications
often needs a sufficient length of state history to compute reward and the next action. The need
for history results in exponential state-space growth for the learning problem. Thus the learning
problem becomes computationally intractable for most real-world applications. In this paper, we
propose a compact means to capture state history in a new augmented state-space representation.
An approximation to the objective (maximizing probability of satisfaction) is proposed and solved
for in the new augmented state-space. We show the performance bound of the approximate solution
and compare it with the solution of an existing technique via simulations.
Keywords: Reinforcement Learning (RL), Formal Methods, Signal Temporal Logic (STL)

1. Introduction

Reinforcement learning (RL) for controlling unknown or partially known stochastic dynamical sys-
tems to satisfy complex bounded time objectives has gained good momentum in the robotics com-
munity, e.g., use of an aerial vehicle for infrastructure inspection or environmental monitoring while
maintaining a sufficient state of charge throughout the mission. Such complex objectives can be rig-
orously expressed by temporal logics (TL).

In the literature, there are numerous works on model-based control synthesis for the satisfaction
of TL specifications (e.g., Ding et al. (2014); Sadigh et al. (2014); Fu and Topcu (2014); Lahijanian
et al. (2015); Aksaray et al. (2015, 2016b)). Recently, model-free learning paradigm to satisfy TL
specifications has also gained a significant interest (e.g., using RL to find policies that maximize
the probability of satisfying a given linear temporal logic (LTL), Brazdil et al. (2014); Sadigh et al.
(2014); Fu and Topcu (2014); Li et al. (2017); Li and Belta (2019); Xu and Topcu (2019)). Q-
learning, a variant of RL has also been shown to be successful in learning policies satisfying signal
temporal logic specifications [Aksaray et al. (2016a)].

Signal temporal logic (STL) is a rich predicate logic that can specify bounds on physical pa-
rameters and time intervals [Maler and Nickovic (2004)]. For example, an autonomous UAV needs
to recharge itself periodically (every 15 minutes in a 2-hour mission) to avoid crashing onto the
ground. Such a bounded time objective can be expressed by STL as G[0,105 min]F[0,15 min] f (x,y) ∈ C
where f (x,y) ∈ C refers to the vehicle position (x,y) being inside a recharging station.

c© 2020 H. Venkataraman, D. Aksaray & P. Seiler.

STL LEARNING

STL does not have a graph representation such as an automaton to book-keep history. Thus,
Aksaray et al. (2016a) constructed a higher dimensional Markov Decision Process (MDP) model,
known as τ-MDP, for learning. This τ-MDP model stores the state history (including the current
state) over a finite window of length τ and enables to compute a reward and action at each time
step. For instance, if the specification requires visiting region B after region A within 10-time steps,
then STL satisfaction can be verified with the knowledge of at least 10-time steps. The number of
states in the τ-MDP model grows exponentially with the size of τ . For example, if the original MDP
has m states, τ-MDP has mτ states. This state-space explosion renders learning on τ-MDP model
impractical for real-world robotics problems with large state-space and long STL horizons.

The primary focus of this paper is to provide a new augmented system on which learning to
satisfy STL specifications is more computationally tractable and thus could scale to problems with
longer STL horizons. The basic idea is that both rewards and actions can be computed without exact
state history. The reward and the next action can be computed based on the current state and newly
defined notion of flags. The flags capture the historic knowledge of the partial satisfaction for each
STL sub-formula constituting the STL specification. The new augmented system is defined as a
new MDP known as F-MDP, which holds the actual system states and the flag states.

We formulate a learning problem over F-MDP in place of τ-MDP [Aksaray et al. (2016a)] and
propose a technique to learn the optimal policy maximizing the probability of satisfaction. The pro-
posed technique is shown to have polynomial space complexity as a function of τ . Empirical results
also support faster learning due to the compactness of F-MDP. The rest of this paper is organized as
follows: Sections 2 introduces the key concepts, Section 3 defines the problem formally, Section 4
describes the proposed technique in detail, analyzes the performance and computational complexity
of the proposed technique, Section 5 provides simulation results and finally Section 6 concludes
with future prospects.

2. Preliminaries

2.1. Signal Temporal Logic (STL)

In this paper, the desired system behavior is described by an STL fragment with the following syntax

Φ := F[a,b]φ |G[a,b]φ

φ := φ ∧φ |φ ∨φ |F[c,d]ϕ|G[c,d]ϕ

ϕ := ψ|¬ϕ|ϕ ∧ϕ|ϕ ∨ϕ,

(1)

where a,b,c,d ∈ R≥0 are finite non-negative time bounds; Φ, φ , and ϕ are STL formulae; ψ is
predicate in the form of f (s) < d where s : R≥0 → Rn is a signal, f : Rn → R is a function, and
d ∈ R is a constant. The Boolean operators ¬, ∧, and ∨ are negation, conjunction (i.e., and), and
disjunction (i.e., or), respectively. The temporal operators F and G refer to Finally (i.e., eventually)
and Globally (i.e., always), respectively. The reader is referred to Maler and Nickovic (2004) for
details on STL.

For any signal s, let st denote the value of s at time t and let (s, t) be the part of the signal that
is a sequence of st ′ for t ′ ∈ [t,∞). Accordingly, the Boolean semantics of STL is recursively defined

2

STL LEARNING

as follows:

(s, t) |= (f (s)< d) ⇔ f (st)< d ⇔ ((s, t) |= f (st)< d) = 1,
(s, t) |= ¬(f (s)< d) ⇔ ¬

(
(s, t) |= (f (s)< d)

)
⇔ ((s, t) |= f (st)< d) = 0,

(s, t) |= φ1∧φ2 ⇔ (s, t) |= φ1 and (s, t) |= φ2 ⇔ (min{(s, t) |= φ1,(s, t) |= φ2}) = 1,
(s, t) |= φ1∨φ2 ⇔ (s, t) |= φ1 or (s, t) |= φ2 ⇔ (max{(s, t) |= φ1,(s, t) |= φ2}) = 1,
(s, t) |= G[a,b]φ ⇔ (s, t ′) |= φ ∀t ′ ∈ [t +a, t +b] ⇔ (min

t ′∈[t+a,t+b]
(s, t ′) |= φ) = 1,

(s, t) |= F[a,b]φ ⇔ ∃t ′ ∈ [t +a, t +b] s.t. (s, t ′) |= φ ⇔ (max
t ′∈[t+a,t+b]

(s, t ′) |= φ) = 1.

where ((s, t) |= f (st) < d) = 1 implies that f (st) < d is true and ((s, t) |= f (st) < d) = 0 implies
that f (st)< d is false, with 0,1 ∈ R. For a signal (s,0), i.e., the whole signal starting from time 0,
satisfying F[a,b]φ means that “there exists a time within [a,b] such that φ will eventually be true”,
and satisfying G[a,b]φ means that “φ is true for all times between [a,b]”.

As in Dokhanchi et al. (2014), let hrz(φ) denote the horizon of an STL formula φ , which is the
required number of samples to resolve any (future or past) requirements of φ . The horizon can be
computed recursively as

hrz(ψ) = 0,
hrz(φ) = b if φ = G[a,b]ψ or F[a,b]ψ,

hrz(F[a,b]φ) = hrz(G[a,b]φ) = b+hrz(φ),
hrz(¬φ) = hrz(φ),

hrz(φ1∧φ2) = hrz(φ1∨φ2) = max{hrz(φ1),hrz(φ2)},

where a,b ∈ R≥0, ψ is a predicate, and φ ,φ1,φ2 are STL formulae.
STL formula Φ as defined in (1) allows at most three layers of nesting. The first layer Φ

constitutes of just F[a,b]φ or G[a,b]φ . The second layer φ constitutes of more than one STL fragment
φi in conjunction using logical operators and their order of precedence of operation. The third layer
ϕi in φi allows more than one predicate in conjunction using logical operators and their order of
precedence of operation. The index variable i is used to specify each STL fragment in the second
layers of Φ. This formulation allows for specifying most complex bounded time objectives or safety
specifications, involving asymptotic and/or periodic behavior. Throughout the paper, we call Φ an
STL formula and its constituent φi is called the ith STL sub-formula.

2.2. Markov Decision Process

A Markov Decision Process (MDP) is used to model discrete-time, finite state and action space
stochastic dynamical systems as M = 〈Σ,A,P,R〉, where Σ denotes the state-space, A denotes the
action-space, P : Σ×A×Σ→ [0,1] is the probabilistic transition relation, and R : Σ → R is the
reward function. If σ ∈ Σ is the current state, then the next state σ ′ ∈ Σ on taking an action a ∈ A
is determined using the probabilistic transition function P. Given an initial state σ0 and action
sequence a0:T−1, we denote the state sequence generated by M for T time steps as σ0:T . Every state
σ ∈ Σ has a scalar measure of value given by the reward function R.

2.3. Reinforcement Learning: Q-learning

For systems with unknown stochastic dynamics, reinforcement learning can be used to design op-
timal control policies, i.e., the system learns how to take actions by trial and error interactions

3

STL LEARNING

with the environment [Sutton and Barto (1998)]. Q-learning is an off-policy model-free reinforce-
ment learning method [Watkins and Dayan (1992)], which can be used to find the optimal pol-
icy for a finite MDP. In particular, the objective of an agent at state σt is to maximize V (σt), its
expected (discounted) cumulative reward in finite or infinite horizon, i.e., E

[
∑

T
k=0 R(σk+t+1)

]
or

E
[

∑
∞
k=0 γkR(σk+t+1)

]
, where R(σ) is the reward obtained at state σ , and γ is the discount factor.

Also, V ∗(σ) = maxa Q∗(σ ,a), where Q∗(σ ,a) is the optimal Q-function for every state-action pair
(σ ,a). Starting from state σ , the system chooses an action a, which takes it to state σ ′ and re-
sults in a reward R(σ). Then, the Q-learning update rule is defined as Q(σ ,a) := (1−α)Q(σ ,a)+
α[R(σ)+γ max

a∗∈A
Q(σ ′,a∗)], where γ ∈ (0,1) is the discount factor and α ∈ (0,1] is the learning rate.

Accordingly, if each action a∈ A is repetitively implemented in each state σ ∈ Σ for infinite number
of times and α decays appropriately, then Q converges to Q∗ with probability 1 [Tsitsiklis (1994)].
Thus, we can find the optimal policy π∗ : Σ→ A as π∗(σ) = argmaxa Q∗(σ ,a).

3. Problem Statement

In this paper, we assume that the dynamical system is abstracted as an MDP M = 〈Σ,A,P,R〉, where
Σ denotes the set of partitions over a continuous space, A is the set of motion primitives, and each
motion primitive a ∈ A drives the system from the centroid of a partition to the centroid of an adja-
cent partition. In real-world applications, many systems (e.g., robotic platforms) have uncertainty
in their dynamics that are difficult to model (e.g., uncertainty in actuation, gusts in the environment,
noises in sensors). In this aspect, we assume that the transition probability function P is unknown in
MDP M. In other words, given a state-action pair σt ,a, the probability distribution of state at next
time step σt+1 is unknown. Accordingly, a learning problem can be defined as follows:

Problem 1 (Maximizing Probability of Satisfaction) Given an STL specification Φ = F[0,T]φ or
G[0,T]φ with a horizon hrz(Φ) = T , a stochastic system model M = 〈Σ,A,P,R〉 with unknown P and

an initial partial state trajectory σ0:τ for τ =
⌈

hrz(φ)
∆t

⌉
+1, find a control policy

π
∗
1 = argmax

π
Prπ [σ0:T |= Φ] =

argmax
π

Eπ

[
max

t∈[τ−1,T]
σt−τ+1:t |= φ

]
, if Φ = F[0,T]φ

argmax
π

Eπ

[
min

t∈[τ−1,T]
σt−τ+1:t |= φ

]
, if Φ = G[0,T]φ

(2)

where Prπ [σ0:T |= Φ] is the probability of σ0:T satisfying Φ under policy π , and σt−τ+1:t |= φ is 0
or 1 depending on the satisfaction of σt−τ+1:t with respect to φ .

It is shown in Aksaray et al. (2016a) that the objective function in (2) is not in the standard form
of Q-learning. Hence, they have proposed an approximation of Problem 1.

Problem 2 (Maximizing Approximate Probability of Satisfaction, Aksaray et al. (2016a)) Given
an STL specification Φ = F[0,T]φ or G[0,T]φ with a horizon hrz(Φ) = T , a stochastic system model
M = 〈Σ,A,P,R〉 with unknown P, known reward function R, a log-sum-exp approximation constant
β > 0 and an initial partial state trajectory σ0:τ for τ =

⌈
hrz(φ)

∆t

⌉
+1, find a control policy

π
∗
2 =

argmax

π
Eπ

[T
∑

t=τ−1
eβ (σt−τ+1:t |=φ)

]
, if Φ = F[0,T]φ

argmax
π

Eπ

[
−

T
∑

t=τ−1
e−β (σt−τ+1:t |=φ)

]
, if Φ = G[0,T]φ

(3)

4

STL LEARNING

A new system model is defined using a τ-MDP Mτ = 〈Στ ,A,Pτ ,Rτ〉, with states σ τ
t = σt−τ+1:t

and solved using Q-learning in Aksaray et al. (2016a). This τ-MDP representation suffers from
exponential state-space growth with horizon τ (Curse of history). Hence, we intend to solve the
approximate objective (3), in a new system representation without the curse of history.

4. Proposed Technique

The proposed technique is based on the definition of a new compact system representation, which is
rich enough to capture the necessary history within a finite window horizon. The new representation
is sufficient to compute reward and action at each time step.

Let Φ be G[0,T]φ or F[0,T]φ , where Φ is the STL formula with the syntax given in (1). Suppose Φ

has n STL sub-formulae φi as G[0,t]ϕi or F[0,t]ϕi with horizon hrz(φi)= τi,∀i∈ [1,n]. Then, we assign
one discrete valued flag variable (fi ∈ Fi := {k/(τi−1),k ∈ [0,τ1−1]}) for each φi and proceed with
defining a flag state augmented MDP know as F-MDP, which captures current state and flags to test
for satisfaction of each STL sub-formula φi. Fi is the flag state set of the flag fi, i ∈ [1,n].

Definition 1 (F-MDP) Given MDP M = (Σ,A,P,R) and flag state sets Fi,∀i ∈ [1,n], an F-MDP is
a tuple MF = (ΣF ,A,PF ,RF), where

• ΣF ⊆ (Σ×
n

∏
i=1

Fi) is the set of finite states, obtained by the cartesian product between state set

and all n flag state sets. Each state σF ∈ ΣF holds the current σ ∈ Σ and fi ∈ Fi,∀i ∈ [1,n].

• PF : ΣF ×A×ΣF → [0,1] is a probabilistic transition relation. Let σF = σ , f1, f2, .., fn and
σF ′=σ ′, f ′1, f ′2, .., f ′n. PF(σF ,a,σF ′)> 0 if and only if P(σ ,a,σ ′)> 0 and f ′i = update(fi,σ),∀i∈
[1,n]. where update(.) is the flag update rule:

f ′i =

1, if φi = F[0,t]ϕi and σ ′ � ϕi

min(fi−1/(τi−1),0), if φi = F[0,t]ϕi and σ ′ 2 ϕi

max(fi +1/(τi−1),1), if φi = G[0,t]ϕi and σ ′ � ϕi

0, if φi = G[0,t]ϕi and σ ′ 2 ϕi

∀i ∈ [1,n]. (4)

• RF : ΣF → R is a reward function.

From the update rule (4), we can see how each flag fi can only take on discrete values between
0 and 1 with a step size of 1/(τi−1). Number of states the flag fi can take is τi and thus Fi, has a
size equal to horizon τi of the STL sub-formula φi,∀i ∈ [1,n].

Given a σF = σ , f1, f2.. fn, the satisfaction function sat(σF ,φ) used to test for satisfaction of
STL formula φ and its constituent STL sub-formulae φi, is recursively defined as follows:

sat(σF ,φi) =

1, if fi > 0 or σ � ϕi for φi = F[0,t]ϕi

0, if fi = 0 and σ 2 ϕi for φi = F[0,t]ϕi

1, if fi = 1 and σ � ϕi for φi = G[0,t]ϕi

0, if fi < 1 or σ 2 ϕi for φi = G[0,t]ϕi

∀i ∈ [1,n],

sat(σF ,φ j ∧φk) = min(sat(σF ,φ j),sat(σF ,φk)),

sat(σF ,φ j ∨φk) = max(sat(σF ,φ j),sat(σF ,φk)),

(5)

5

STL LEARNING

where φ j,φk can be STL sub-formulae or their conjunction using logical operators ∧,∨. For ex-
ample, if φ = ((φ1 ∧ φ2)∨ φ3), first current state σF is evaluated with respect to sub-formulae
φi,∀i ∈ [1,3]. Then σF is evaluated with respect to φ j ∧ φk, j = 1,k = 2. Finally σF is evaluated
with respect to new φ j ∨φk, where φ j = φ1∧φ2 and k = 3.

The reward function RF of the problem in the new MDP MF is as follows:

r =

{
eβ sat(σF ,φ), if Φ = F[0,T]φ
−e−β sat(σF ,φ), if Φ = G[0,T]φ

(6)

where β > 0 is the log-sum-exp approximation constant.
The overview of the complete technique to solve (3) using F-MDP is as follows:

1) For any STL formula Φ in accordance with (1) (i.e., G[0,T]φ or F[0,T]φ), create one flag per STL
sub-formula φi in Φ and redefine the learning problem in a new flag state augmented state-space ΣF

which has new state dimensions corresponding to the flags.
2) Define the objective function such that the agent observes an immediate reward as a function
of current state in ΣF . After executing these steps, one can use standard Q-learning algorithm to
find the optimal policy π∗ : ΣF → A in the new F-MDP state-space. Overall, we aim to solve the
following problem.

Problem 3 (Maximizing Approximate Probability of Satisfaction with F-MDP) Let Φ be STL
formula with the syntax in (1), made up of STL sub-formulae φi,∀i ∈ [1,n]. Let T = hrz(Φ), τi =⌈

hrz(φi)
∆t

⌉
+ 1,∀i ∈ [1,n] and τ = max

i∈[1,n]
(τi). Given an unknown MDP M, and flag state sets Fi,∀i ∈

[1,n], F-MDP MF =
〈
ΣF ,A,PF ,RF

〉
can be constructed. Assume that initial τ-states σ0:τ−1 are

given from which σF
τ−1 can be obtained. Let β > 0 be a known approximation parameter. Find a

control policy π∗3 : ΣF → A such that

π
∗
3 =

argmax

π
Eπ

[T
∑

t=τ−1
eβ sat(σF

t ,φ)
]
, if Φ = F[0,T]φ

argmax
π

Eπ

[
−

T
∑

t=τ−1
e−β sat(σF

t ,φ)
]
, if Φ = G[0,T]φ

(7)

where sat(σF ,φ) is the satisfaction function as defined in (5).

4.1. Theoretical Results

The optimal policy π∗1 of Problem 1, can be related to π∗3 of Problem 3 by the following theorem.

Theorem 2 Let Φ and φ be STL formula with the syntax in (1) such that Φ = F[0,.]φ or Φ = G[0,.]φ .

Let hrz(Φ) = T . Assume that a partial state trajectory s0:τ−1 is initially given where τ =
⌈

hrz(φ)
∆t

⌉
+

1. For some β > 0 and ∆t = 11, let π∗1 and π∗3 be the optimal policies obtained by solving Problems 1
and 3 respectively. Then, Prπ∗1 [s0:T |=Φ]− 1

β
log(T−τ+2) ≤ Prπ∗3 [s0:T |=Φ] ≤ Prπ∗1 [s0:T |=Φ].

1. ∆t = 1 is selected due to clarity in presentation, but it can be any time step.

6

STL LEARNING

Proof Proof 1 in Appendix of Venkataraman et al. (2019)

For a given MDP M and STL formula Φ as in (1), the F-MDP ΣF over which the Q-learning
is solved has |ΣF | = |Σ| ×Πn

1|Fi| number of states. Q-table used for Q-learning on F-MDP has
|ΣF | × |A| number of entries. The τ-MDP [Aksaray et al. (2016a)] on the other hand has |Σ|τ
elements in Στ and |Στ | × |A| entries in its Q-table. For most real-world problems, it is safe to
assume that both the number of states (|Σ|) and horizon (hrz(φ) = τ) is more than STL sub-formulae
horizons (hrz(φi) = τi,∀i ∈ [1,n]) and the number of STL sub-formulae (n) in φ respectively. The
above reasoning shows how the proposed technique has only polynomial growth of state-space with
horizon τ . Moreover, smaller Q-table also results in faster exploration. Thus for problems with
large horizon τ , the proposed technique with F-MDP, convergence to the optimal policy faster than
that with τ-MDP.

5. Simulation Results
N NE

E

SE S SW

W

NW

stay

Figure 1: Motion uncertainty
(red arrows) for an
action (blue arrow).

Suppose that an agent moves over a discretized environment il-
lustrated in Fig. 2 part (a). The set of motion primitives at each
state is A = {N,NW,W,SW,S,SE,E,NE,stay}. We model the
motion uncertainty as in Fig. 1 where, for any selected feasible
action in A, the agent follows the corresponding blue arrow with
probability 0.93 or a red arrow with probability 0.023. More-
over, the resulting state after taking an infeasible action (i.e.,
the agent tries to move towards a wall) is the current state. All
simulations were implemented in MATLAB on a laptop with a
quad core 2.4 GHz processor and 8.0 GB RAM.

We consider an STL defined over the environment as Φ =
G[0,12]

(
F[0,h](region A)∧F[0,h](region B)

)
, where region A rep-

resents x > 1∧ x < 2∧ y > 3∧ y < 4 and region B represents
x > 2 ∧ x < 3 ∧ y > 2 ∧ y < 3. Note that Φ expresses the
following: “for all t ∈ [0,12], eventually visit region A every
[t, t +h] and eventually visit region B every [t, t +h]”. Note that
Φ = G[0,12]φ where φ = φ1∧φ2 with φ1 = F[0,h](region A), hrz(φ1) = h and φ2 = F[0,h](region B),
hrz(φ2) = h. τ = h+1 if ∆t is 1.

In this case study, we chose three values for h := 2,4,5 with rest of the parameters remaining
the same. The sizes of the state-spaces are |Σ| = 36,36,36 and |ΣF |= 324,900,12962 for each
τ = 3,5,6 respectively. To implement the Q-learning algorithm, the number of episodes is chosen
as 10000 (i.e., 1≤ k≤ 10000), with β = 50, γ = 0.9999, and αk = 0.95k. After 10000 trainings, the
resulting policies π∗3 is used to generate 500 trajectories, which leads to Prπ∗3 [s0:14 |= Φ] = 0.6794
for h = 2, Prπ∗3 [s0:16 |= Φ] = 0.8237 for h = 4, and Prπ∗3 [s0:17 |= Φ] = 0.8432 for h = 5.

The time and space requirements for 10000 episode trainings on F-MDP and τ-MDP for each of
τ = 3,5,6 are provided in Table 1. As predicated, F-MDP state-space is very compact even for large
τ . Reduced space requirement also translates into faster execution time. Fig. 2 part (b) is histogram
plot of probability of satisfaction by 75 roll-outs with 10000 episodes each for τ = 3 using F-MDP

2. This indicates that there are 36× (h+1)× (h+1) F-MDP states, 36 system states, (h+1) f1 flag states and (h+1)
f2 flag states.

7

STL LEARNING

0 1 2 3 4 5 6

x

0

1

2

3

4

5

6

y

(a)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

40

50

60

70

80

-MDP
F-MDP

(b)

0 2 4 6 8 10 12 14

t

1.5

2

2.5

x

0 2 4 6 8 10 12 14

t

1.5

2

2.5

3

3.5

y

0 2 4 6 8 10 12 14 16
t

1.5

2

2.5
x

0 2 4 6 8 10 12 14 16
t

0

1

2

3

4

y

0 2 4 6 8 10 12 14 16 18
t

0.5

1

1.5

2

2.5

x

0 2 4 6 8 10 12 14 16 18
t

1

2

3

4

5

6

y

(c) (d) (e)

Figure 2: (a) Initial state and the desired regions (b) Distribution of probability of satisfaction of
75 different roll-outs with 10000 episodes each for τ = 3 using F-MDP in orange and
τ-MDP in blue (c) Sample trajectory generated by π∗A for τ = 3 (d) τ = 5 (e) τ = 6

in orange and τ-MDP in blue. In the problem with τ = 3, learning on τ-MDP required 10× longer
episode length to achieve similar return distribution as learning on F-MDP. Fig. 2 part (c), (d) and
(e) show sample trajectories generated by the optimal policy for τ = 3,5 and 6.

Table 1: Execution time (in minutes) and space requirements
Technique τ = 3 τ = 5 τ = 6
F-MDP 6 18 24
τ-MDP 21 290 *†

. †. Matlab run time error: preferred array size exceeded

Technique τ = 3 τ = 5 τ = 6
F-MDP 2.9×e3 8.1×e3 1.1×e4

τ-MDP 1.7×e4‡ 1.0×e6‡ 8.1×e6‡

. ‡. Pruned based on feasibility of transition

6. Conclusion

We have proposed a model-free learning technique to synthesize control policies for satisfying STL
specifications. The proposed technique remodels the system as an F-MDP, to capture the current
system state and history. The learning objective (maximizing probability of satisfaction) is approx-
imated and solved using Q-learning. We also proved that the computed optimal policy is arbitrarily
close to that of the desired policy. Finally, we demonstrated the tractability of the proposed tech-
nique in simulation. Future work will explore solving this problem using robustness degree metric.

8

STL LEARNING

References

Derya Aksaray, Kevin Leahy, and Calin Belta. Distributed multi-agent persistent surveillance under
temporal logic constraints. IFAC-PapersOnLine, 48(22):174–179, 2015.

Derya Aksaray, Austin Jones, Zhaodan Kong, Mac Schwager, and Calin Belta. Q-learning for robust
satisfaction of signal temporal logic specifications. In 2016 IEEE 55th Conference on Decision
and Control (CDC), pages 6565–6570. IEEE, 2016a.

Derya Aksaray, Cristian-Ioan Vasile, and Calin Belta. Dynamic routing of energy-aware vehicles
with temporal logic constraints. In 2016 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 3141–3146. IEEE, 2016b.

Toma Brazdil, Krishnendu Chatterjee, Martin Chmelik, M.k, Vojtech Forejt, Jan Kretinsky, Marta
Kwiatkowska, David Parker, and Mateusz Ujma. Verification of markov decision processes us-
ing learning algorithms. In Franck Cassez and Jean-Franois Raskin, editors, Automated Technol-
ogy for Verification and Analysis, volume 8837 of Lecture Notes in Computer Science, pages
98–114. Springer International Publishing, 2014. ISBN 978-3-319-11935-9. doi: 10.1007/
978-3-319-11936-6 8. URL http://dx.doi.org/10.1007/978-3-319-11936-6_
8.

Xu Chu Ding, Stephen L Smith, Calin Belta, and Daniela Rus. Optimal control of markov decision
processes with linear temporal logic constraints. IEEE Trans. on Automatic Control, 59(5):1244–
1257, 2014.

Adel Dokhanchi, Bardh Hoxha, and Georgios Fainekos. On-line monitoring for temporal logic
robustness. In Runtime Verification, pages 231–246. Springer, 2014.

Jie Fu and Ufuk Topcu. Probably approximately correct MDP learning and control with tempo-
ral logic constraints. CoRR, abs/1404.7073, 2014. URL http://arxiv.org/abs/1404.
7073.

Morteza Lahijanian, Sean B. Andersson, and Calin Belta. Formal verification and synthesis for
discrete-time stochastic systems. IEEE Trans. on Automatic Control, 6(8):2031–2045, 2015. doi:
10.1109/TAC.2015.2398883.

Xiao Li and Calin Belta. Temporal logic guided safe reinforcement learning using control barrier
functions. arXiv preprint, 2019.

Xiao Li, Cristian-Ioan Vasile, and Calin Belta. Reinforcement learning with temporal logic rewards.
arXiv preprint, 2017.

Oded Maler and Dejan Nickovic. Monitoring temporal properties of continuous signals. In Yassine
Lakhnech and Sergio Yovine, editors, Formal Techniques, Modelling and Analysis of Timed and
Fault-Tolerant Systems, pages 152–166. Springer, 2004. doi: 10.1007/978-3-540-30206-3 12.
URL http://dx.doi.org/10.1007/978-3-540-30206-3_12.

Dorsa Sadigh, Eric S Kim, Samuel Coogan, S Shankar Sastry, and Sanjit A Seshia. A learning
based approach to control synthesis of markov decision processes for linear temporal logic spec-
ifications. In IEEE Conf. on Decision and Control, pages 1091–1096. IEEE, 2014.

9

http://dx.doi.org/10.1007/978-3-319-11936-6_8
http://dx.doi.org/10.1007/978-3-319-11936-6_8
http://arxiv.org/abs/1404.7073
http://arxiv.org/abs/1404.7073
http://dx.doi.org/10.1007/978-3-540-30206-3_12

STL LEARNING

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

John N Tsitsiklis. Asynchronous stochastic approximation and q-learning. Machine Learning, 16
(3):185–202, 1994.

Harish Venkataraman, Derya Aksaray, and Peter Seiler. Tractable reinforcement learning of signal
temporal logic objectives. arXiv preprint, 2019.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

Zhe Xu and Ufuk Topcu. Transfer of temporal logic formulas in reinforcement learning. arXiv
preprint, 2019.

10

	Introduction
	Preliminaries
	Signal Temporal Logic (STL)
	Markov Decision Process
	Reinforcement Learning: Q-learning

	Problem Statement
	Proposed Technique
	Theoretical Results

	Simulation Results
	Conclusion

