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Abstract

We study continually improving an extractive
question answering (QA) system via human
user feedback. We design and deploy an it-
erative approach, where information-seeking
users ask questions, receive model-predicted
answers, and provide feedback. We conduct ex-
periments involving thousands of user interac-
tions under diverse setups to broaden the under-
standing of learning from feedback over time.
Our experiments show effective improvement
from user feedback of extractive QA models
over time across different data regimes, includ-
ing significant potential for domain adaptation.

1 Introduction

The deployment of natural language processing
(NLP) systems creates ample opportunities to learn
from interaction with users, who can often provide
feedback on the quality of the system output. Such
feedback can be more affordable and abundant than
annotations provided by trained experts. It can
also be obtained throughout the system’s lifetime,
opening up opportunities for continual learning,1

where the system improves over time, and evolves
as the world and user preferences change.

The combination of human feedback and con-
tinual learning presents exciting prospects, but is
relatively understudied, partially because of the
challenges it poses. Mainly because it requires
deploying models with human users over many in-
teractions for both development and evaluation, for
example to study the interplay between the learning
signal and model design, the impact of the initial
model, and learning progression over time.

Focusing on extractive question answering (QA),
we study iteratively improving an NLP system by
learning from human user feedback over time. We

∗Equal contribution.
1The term continual learning is at times used to refer to

a scenario where models adapt to new tasks over time. We
study improving the model continually on its original task.

Figure 1: Illustration of our setup. We alternate between
interaction and learning phases. At the interaction phase, given
a user question and context paragraph, the model predicts the
question is unanswerable or a span in the paragraph as the
answer. The human user provides “correct”, “partially correct”
or “wrong” feedback to the model answer by validating the
answer in context. The system aggregates user feedback, and
the model learns from feedback data at the learning phase by
updating its parameters, with the goal of improving over time.

create and deploy an information-seeking scenario,
where users pose a question, receive a prediction
from a model which aims to answer the query given
a single evidence document, and provide feedback.
The system iteratively improves over rounds, where
each round is made of deploying the system to
interact with users, followed learning. Figure 1
illustrates our setup and learning paradigm. This
scenario has been studied for embodied agents in
constrained environments (Thomason et al., 2015;
Kojima et al., 2021; Suhr and Artzi, 2022), but QA
proposes new challenges for using such interaction
data, for example in its significantly richer lexical
space. To the best of our knowledge, ours is the
first study to show a QA system improving via
interaction with human users over time.

Our setup is designed to study practical interac-
tion with users. Following prior work on collect-
ing information-seeking queries (Choi et al., 2018;
Clark et al., 2020), we prompt users to ask ques-



tions that they do not know the answers to. This nat-
urally elicits questions that cannot be answered un-
der the fixed-evidence QA scenario (Kwiatkowski
et al., 2019). We observe that the presence of unan-
swerable questions dramatically impacts learning,
making the process sensitive to the model’s calibra-
tion on answerability. We address this by modeling
question answerability separately from span ex-
traction: our model first predicts if the question is
answerable and only then extracts an answer span.

We use a simple three-option feedback signal
(“correct”, “partially correct”, or “wrong”). While
less informative than more complex cues, such as
natural language, such feedback imposes little in-
teraction overhead. We map the feedback signal to
manually-specified reward values, and formulate
learning as a contextual bandit problem.

We conduct multiple studies, focusing on low
data regimes, with the aim of demonstrating robust-
ness to challenging scenarios where only a small
fraction of users provide feedback, and rapid im-
provement is necessary with little feedback. Over
nine rounds of deployment with over 1,800 user
interactions, our approach shows an overall im-
provement from 39 to 67 F1 score on our newly
collected Wikipedia-based data. We conduct ex-
tensive studies of our approach, including showing
effective domain adaptation from a different source
domain that does not even support unanswerable
questions. Taken together, our results demonstrate
the potential of NLP systems to learn from user
feedback over time, specifically for extractive QA.
Our data and codebase are publicly available at
https://github.com/lil-lab/qa-from-hf.

2 Related Work

Our use of human feedback is related to work
recently-termed reinforcement learning from hu-
man feedback (RLHF; e.g., Ziegler et al., 2019;
Stiennon et al., 2020; Nakano et al., 2021; Ouyang
et al., 2022; Scheurer et al., 2023). Largely, these
methods rely on soliciting pair-wise comparisons
from annotators, which are used to train a reward
model to be used in an RL process. We adopt a
different approach: soliciting feedback from users
on single outputs to their queries, and mapping
the feedback to reward values to be used in offline
contextual bandit learning. An important consider-
ation motivating our choice is that pair-wise com-
parison, although suitable for paid annotators, is
less suitable for soliciting feedback from actual

users. Head-to-head comparison between learning
a reward model and directly mapping feedback to
reward values, as we do, remains an important di-
rection for future work. Human feedback has also
been studied without RL (Xu et al., 2022; Thoppi-
lan et al., 2022). A critical distinction of our work
is the focus on continual learning (i.e., iteratively
running our process over many rounds) and the
dynamics it creates, whereas the work mentioned
above (both using and not using RL) focused on
improving models a single time.2

Learning from explicit or implicit feedback
for language tasks was studied beyond recent in-
terest in RLHF, including for machine transla-
tion (Nguyen et al., 2017; Kreutzer et al., 2018b,a),
semantic parsing (Artzi and Zettlemoyer, 2011;
Lawrence and Riezler, 2018), question answer-
ing (Gao et al., 2022), and chatbots (Jaques et al.,
2020). Similar to the work mentioned earlier,
this line of work did not explore iterative con-
tinual learning, as we emphasize. The iterative
process was studied in the context of embodied
instruction generation (Kojima et al., 2021) and
following (Thomason et al., 2015; Suhr and Artzi,
2022). In contrast, we study QA on a wide range of
Wikipedia articles, data with high lexical diversity.
Others obtained complete labels as feedback (Iyer
et al., 2017; Wang et al., 2016), a process with
higher overhead. RL using human feedback has
also been studied for non-language problems (e.g.,
Knox and Stone, 2015; Warnell et al., 2017; Mac-
Glashan et al., 2017; Christiano et al., 2017).

Prior work on learning from interaction for QA
used synthetic interactions and feedback simulated
from supervised data (Campos et al., 2020; Gao
et al., 2022). We study human feedback from
information-seeking human users who frequently
pose challenging questions which may be unan-
swerable from the given document. Li et al. (2022)
proposed a process that involves crowdworkers pro-
viding rating and explanation to given for given
question-answer pairs to improve a QA model post-
deployment. They control data quality with manual
reviewing and multiple annotations. Our setup has
lower interaction overhead, at the cost of providing
a less informative, and at times noisy signal. We
also go beyond one-time improvement in studying
iterative deployment, providing insight into how
the model improves over time.

2Ziegler et al. (2019) note that RLHF can be executed
iteratively, but do not report the details or analysis of doing so.

https://github.com/lil-lab/qa-from-hf


3 Interaction Scenario

We focus on the task of extractive QA, which cre-
ates an intuitive feedback solicitation scenario. It
is relatively easy to visualize the model output (i.e.,
a span of text) in the context it is extracted from
(i.e., the evidence paragraph), for the user to ver-
ify the answer. Automated evaluation is also well
understood (Bulian et al., 2022), allowing reliable
measurement of system performance over time.

We deploy our QA system in rounds. Each round
starts with an interaction phase, followed by a learn-
ing phase. At the interaction phase, users interact
with a fixed, deployed model and provide feed-
back. We aggregate this interaction data until we
collect a fixed amount of feedback data to enter a
learning phase. The feedback is collected during
natural user interactions (i.e., the model is deployed
to fulfil its task of answering user questions). At
the learning phase, we update the model parame-
ters based on the aggregated feedback data. Be-
cause we observe no new feedback data during the
learning phase, this creates an offline learning sce-
nario (Levine et al., 2020),3 which is practical for
deployed systems. Except data aggregation, it re-
quires no integration of the learning process into
the deployed interactive system. The separation
between deployment and training also enables san-
ity checks before deploying a new model, and for
hyperparameter tuning as in supervised learning.

Each interaction starts with a user posing a ques-
tion. The model computes an answer, and returns
it to the user alongside a visualization of it in the
context text from which it was extracted. The user
provides feedback, by selecting one of three op-
tions: “correct”, “partially correct” or “wrong”.
Table 1 shows examples from our studies.

Formally, let a question q̄ be a sequence of m
tokens ⟨q1, . . . , qm⟩ and a context text c̄ be a se-
quence of n tokens ⟨c1, . . . , cn⟩. A QA model at
round ρ parameterized by θρ computes two proba-
bility distributions: a binary distribution indicating
if the question is answerable or not by the context
text Pu(u|q̄, c̄; θρ), where u ∈ {ANS, UNANS}; and
a distribution over answer spans in the context text
Ps(i, j|q̄, c̄; θρ), where i, j ∈ [1, n] and i ≤ j. If
argmaxu∈{ANS,UNANS} Pu(u|q̄, c̄; θρ) = UNANS, the
model returns to the user that the question is unan-
swerable. Otherwise, the model returns the highest
probability span argmaxi,j Ps(i, j|q̄, c̄; θρ). Given

3Our overall iterative process can also be seen as batched
contextual bandit (Perchet et al., 2016).

Question: What did Saladin die from?
Answer: a fever
Context: Saladin died of a fever on 4 March 1193 (27 Safar
589 AH) at Damascus ...
Feedback: Correct

Question: Where does the name St Albans come from?
Answer: Alban
Context: St Albans takes its name from the first British
saint, Alban. The most elaborate version of his story, Bede’s
Ecclesiastical History of ...
Feedback: Partially Correct

Question: In Hindu mythology what were the names of
Radha’s lovers?
Answer: [Unanswerable given the context paragraph]
Context: Radha in her human form is revered as the milk-
maid (gopi) of Vrindavan who became the beloved of Kr-
ishna. One of ...
Feedback: Partially Correct

Question: What percentage of people in Reno are White?
Answer: [Unanswerable given the context paragraph]
Context: As of the census of 2010, there were ... The city’s
racial makeup was 74.2% White, 2.9% African American,
1.3% Native American, 6.3% Asian, 0.7% Pacific Islander,
10.5% some other race, and 4.2% ...
Feedback: Wrong

Table 1: User interaction examples: each example is composed
of user question, context paragraph, model-predicted answer,
and user feedback. Appendix C lists additional examples.

the model output, the user provides feedback
f ∈ {CORRECT, PARTIALLY-CORRECT, WRONG}.
Each user interaction generates a data tuple
(q̄, c̄, û, î, ĵ, f, θρ), where û is the binary answer-
ability classification, and î and ĵ are the start and
end indices of the extracted answer, if the question
is classified as answerable.

4 Method

We initialize the model with supervised data, and
improve it by learning from user feedback through
an offline contextual bandit learning process.

4.1 Model and Initialization
We use a standard BERT-style architecture (Devlin
et al., 2019). The input to the model is a concate-
nation of the question q̄ and the context text c̄. We
separately classify over the context tokens for the
answer span start and end to compute the span dis-
tribution Ps (Seo et al., 2017), and compute the
binary answerability distribution Pu with a classifi-
cation head on the CLS token (Liu et al., 2019).

We initialize the model parameters with DeBER-
TaV3 weights (He et al., 2023),4 and fine-tune us-

4We use the Hugging Face (Wolf et al., 2020) version of
DeBERTaV3 (He et al., 2023): microsoft/deberta-v3-base.



ing supervised data to get our initial model. This is
critical to get a tolerable experience to early users.
We usually use a small number of examples (≤512
examples), except when studying domain transfer.
The training loss sums over the three cross-entropy
classification losses, with a coefficient λ to weigh
the binary answerable classification term.

4.2 Bandit Learning

We learn through iterative deployment rounds. In
each round ρ, we first deploy our model to in-
teract with users (Section 3) and then fine-tune
it using the data aggregated during the interac-
tions. Each user interaction generates a tuple
(q̄, c̄, û, î, ĵ, f, θρ), where q̄ is a question, c̄ is a con-
text text, û is the answerability classification deci-
sion, î and ĵ are the returned span boundaries if a
span was returned, and θρ are the model parameters
when the interaction took place.

Policy We formulate a policy that casts answer
prediction as generating a sequence of one or two
actions, given a question q̄ and a context c̄. This
sequential decision process formulation, together
with the multi-head model architecture, allow to
control the losses of the different classification
heads by assigning separate rewards to the answer-
ability classification and the span extraction. The
policy action space includes classifying if the ques-
tion is answerable (ANS) or not (UNANS) and actions
for predicting any possible answer span [i, j] in c̄.

The set of possible action sequences is con-
strained. At the start of an episode, the policy
first predicts if the question is answerable or not.
The probability of the action a ∈ {ANS, UNANS}
is Pu(a|q̄, c̄; θ). Span prediction action are not
possible, so their probabilities are set to 0. If the
UNANS action is selected, the episode terminates.
Otherwise, the second action selects a span [i, j]
from c̄ as an answer, and the episode terminates.
The probability of each span selection action is
Ps(i, j|q̄, c̄; θ). Answerability prediction actions
are not possible, so their probabilities are set to 0.

Reward Values We do not have access to a re-
ward function. Instead, we map the user feedback
f to a reward value depending on the action (Ta-
ble 2), and cannot compute rewards for actions not
observed during the interaction. The policy for-
mulation, which casts the prediction problem as a
sequence of up to two actions, allows to assign dif-
ferent rewards to answerability classification and

Action Feedback
CORRECT PARTIALLY-CORRECT WRONG

UNANS 1 0 -1
ANS 1 1 0
[̂i, ĵ] 1 0.5 -0.1

Table 2: The mapping of user feedback to specific actions to
reward values. [̂i, ĵ] is the span predicted during the interac-
tion, if one is predicted.

span extraction. For example, if we get WRONG feed-
back when an answer is given, we cannot tell if the
answerability classification was correct or not. Our
formulation allows us to set the reward value of
the first action to zero in such cases, thereby ze-
roing the answerability classification loss. The re-
ward values were determined through pilot studies.
For example, we observed that models overpredict
unanswerable, so we set a relatively large penalty
of -1 for wrongly predicting unanswerable.

Learning Objective We use a policy gradient
REINFORCE (Williams, 1992) objective with a
clipped inverse propensity score coefficient (IPS;
Horvitz and Thompson, 1952; Gao et al., 2022) and
an entropy term for the answerability binary classi-
fication. IPS de-biases the offline data (Bietti et al.,
2021), and also prevents unbounded negative loss
terms (Kojima et al., 2021). The entropy term reg-
ularizes the learning (Williams, 1992; Mnih et al.,
2016). If we substitute the policy terms with the
predicted model distributions, the gradient for an
answerable example with two actions with respect
to the model parameters θ is:

∇θL = α1r1∇Pu(û|q̄, c̄; θ) (1)

+ α2r2∇Ps(̂i, ĵ|q̄, c̄; θ) + γ∇H(Pu(·|q̄, c̄; θ))

α1 =
Pu(û|q̄, c̄; θ)
Pu(û|q̄, c̄; θρ)

; α2 =
Ps(̂i, ĵ|q̄, c̄; θ)
Ps(̂i, ĵ|q̄, c̄; θρ)

,

where the α1 and α2 are IPS coefficients for the
first (answerability classification) and second (span
extraction) actions, r1 and r2 are the corresponding
reward values, γ is a hyperparameter, and H(·) is
the entropy function. For examples the model pre-
dict as unanswerable, the second term is omitted.

Deployment and Learning Process Algorithm 1
outlines our process. Each round (Line 2) includes
interaction (Lines 4–14) and learning (Lines 15–
18) phases. During interaction, given a question
and context (Line 5), we classify if it is answerable
in the given context (Line 7) and extract the answer
span (Line 8). Depending on the classification, we



Algorithm 1 Deployment and Learning.
1: D ← ∅
2: for round ρ = 1 · · · do
3: Dρ ← ∅
4: for interaction t = 1 · · ·T do
5: Observe a question q̄(t) and context c̄(t)

6: Predict if answerable and answer span:
7: û(t) ← argmaxu Pu(u|q̄, c̄; θρ)
8: î(t), ĵ(t) ← argmaxi,j Ps(i, j|q̄, c̄; θρ)
9: if û(t) = ANS then

10: Display the span [̂i(t), ĵ(t)] from c̄(t) as answer
11: else
12: Display that the question is not answerable
13: Observe user feedback f (t)

14: Dρ ← Dρ ∪{(q̄(t), c̄(t), û(t), î(t), ĵ(t), f (t), θρ)}
15: for e = 1 · · ·E epochs do
16: for D′ = B

2
examples from Dρ do

17: D′ ← D′ ∪ { sample B
2

examples from D}
18: Update model parameters θ using D′ with the

gradient in Equation 1
19: D ← D ∪Dρ

either display the answer (Line 10) or return that
the question is not answerable in the given con-
text (Line 12), and solicit feedback (Line 13). We
aggregate the interaction data over time (Line 14).
During learning, we use rehearsal (Rebuffi et al.,
2017) for each update, creating a batch of size B by
mixing examples from the most recent interactions
(Line 16) and previous rounds (Line 17) to update
the model parameters (Line 18).

5 Experimental Setup

Deployment Setup We study our approach us-
ing Amazon Mechanical Turk. We use Wikipedia
data, a relatively general domain, thereby mak-
ing the data we observe lexically rich and topi-
cally diverse. Our interaction scenario is designed
to elicit information-seeking behavior. Following
prior work (Choi et al., 2018), users are not given
the context text when they pose the question, and
are instructed to ask questions they do not know
the answer to. This results in a significant num-
ber of questions that cannot be answered given the
evidence context. To increase user information-
seeking engagement, we do not dictate the topic
to ask about, but allow users to select a topic (e.g.,
“Saladin”) and an aspect (e.g., “Death”) from a
set that is generated randomly for each interac-
tion (Eisenschlos et al., 2021).5

Each topic-aspect pair is associated with an ev-
idence paragraph, which serves as context to the

5We concatenate the topic and aspect to the evidence para-
graph as input to the model, but do not allow selecting these
as answer spans.

model. We extract topics, aspects, and evidence
paragraphs from Wikipedia.6 We focus on learning
from natural user feedback, so we do not perform
posthoc filtering of noise beyond removing adver-
sarial crowdworkers (e.g., workers who always
ask the same question).7 Appendix B provides
more details about our interface and data collection.
Appendix A gives training implementation details
(e.g., hyperparameters).

Evaluation Data It is critical for test data to
come from the distribution the users create while
interacting with the system for the evaluation to re-
flect the system performance. This makes existing
benchmarks of lesser relevance to our evaluation.
We collect a held-out testing set that matches the
observed distribution by interleaving the process
in our deployment. We design a data annotation
procedure based on our regular interaction task,
and randomly opt to ask workers to provide an
answer to the question they just posed rather than
showing them the model answer and soliciting their
feedback. This branching in the process happens
only after they ask the question, and workers see
no indication for it when posing the question, so
the questions we collect this way follow the same
distribution the systems see. We collect around 100
such annotated examples each round during each
of our experiments. This is a small set, but unified
across rounds within each experiment, it results in
a set large enough for reliable testing. To increase
the quality of the annotation, we separately collect
two additional annotations for each such test ques-
tion. Appendix B provides further details on the
test data collection and annotation.

We also evaluate our approach on the English
portion of TyDiQA (Clark et al., 2020) develop-
ment set (954 examples, excluding Yes/No ques-
tions), which was collected in a setting relatively
similar to our evaluation data. Each example in-
cludes a question, a context paragraph, and a set of
three human reference annotations.

Evaluation Metrics We focus on how different
measures develop throughout the system’s deploy-

6Our pool of topics is a subset of previously compiled
popular entities (Onoe et al., 2022) based on the number of
contributors and backlinks. Aspects of each topic correspond
to section titles on its Wikipedia page. Each topic in our pool
contains at least four sections, with each section shorter than
490 tokens (excluding subsections).

7Qualitative analysis of 100 randomly sampled examples
from the first round of our long-term study (Section 6.1) shows
a feedback noise rate of 18%.



ment. We compute deployment statistics on the
aggregated interactions, including answerability
prediction, feedback, and the reward values it maps
to. We use the testing data to compute various test-
ing statistics on each deployed model, including
token F1 and answerability classification accuracy.
For both datasets, we follow prior work (Clark
et al., 2020) to consolidate the annotations. When
the annotators disagree on the answerability of the
question, we take the majority vote as the ground
truth. We compute token-level F1 against the three
annotations by considering the reference answer
that will give the highest F1 score.

6 Results and Analysis

We conduct two deployment studies: a long-term
deployment to study the effectiveness and dynam-
ics of the process (Section 6.1), and a shorter-
term study to evaluate the impact of certain design
choices (Section 6.2). We also evaluate the dif-
ference between iterative rounds and a one-time
improvement (Section 6.3). Section 6.4 provides
an additional experiment analyzing the sensitivity
of our learning process to the observed data.

6.1 Long-Term Experiment

We deploy for nine rounds of interaction and learn-
ing, starting from an initial model trained on 512
SQuAD2 examples. Each round of interaction in-
cludes around 200 interactions with feedback. We
observe 1,831 interactions over the nine rounds.
We also concurrently collect about 100 test exam-
ples per round, a total of 869 examples.8 The total
cost of this study is 3,330USD.

Figure 2 shows statistics from the nine rounds of
deployment. The frequency of “correct” feedback
increases from 47.71% during the first round to
69.35% at the last round, with “wrong” feedback
decreasing (40.82→16.08%). The frequency of
“partially correct” remains stable.While the trend
is generally stable, we see that temporary dips in
performance occur (round 3 and rounds 5–7), even
though learning can recover from them. Reward
trends are similar, with the total reward increas-
ing (1.03→1.29), and both answerability classifi-
cation (0.58→0.77) and answer span (0.48→0.74)
rewards increasing.

Answerability prediction rates shed light on the
learning dynamics, especially early on, when we

8Exact numbers per round vary slightly because of how
workers capture tasks on Amazon Mechanical Turk.
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Figure 2: Statistics for the interaction data and the model
performance on test sets after training on interaction data from
each round. Our test set is the union of all test data collected
during the nine rounds.

observe dramatic changes. The initial model under-
predicts questions as unanswerable, as can be seen
by comparing prediction rates in the first round
(5.5%) to the ratio of unanswerable questions in
the test data (stable at 35–40%). This is followed
by a dramatic correction: the model slightly over-
predicts unanswerable in Round 2 (42%). Start-
ing from Round 3, the model stabilizes to predict
around 38% questions as unanswerable.9

Test performance on our concurrently collected
test data shows a similar positive trend, with both
F1 (39.22→66.56) and answerability classification
accuracy (65.02→80.32%) increasing over the nine
rounds. TyDiQA performance increases initially,
but shows a slight drop later on. The early improve-
ments using our feedback data indicate similarity
between TyDiQA and our user questions. However,
the later decrease shows TyDiQA is still somewhat
different, so as the model specializes given more

9Figure 6 and Figure 7 in the appendix show the statistics
on the answerable and unanswerable subsets partitioned based
on model prediction in the feedback data.



CORRECT PARTIALLY-CORRECT WRONG

Round 1 47.71 11.47 40.83
Round 9 47.85 14.35 37.80

Table 3: User adaptation study: feedback statistics to the initial
model deployed at Round 1 and Round 9.

feedback data, it is expected to see a drop on Ty-
DiQA, from which we observe no training signal.
This difference is evident, for example, in the rate
of answerable questions. Our test data maintains a
rate of about 35–40%, while 50% of the examples
in the TyDiQA data are unanswerable.

Further breaking down F1 performance based
on ground-truth answerability shows that the initial
model starts with non-trivial answerable F1 and
improves gradually (55.43→62). But, it starts with
very low performance on the unanswerable subset
(12.5). It improves over time on the unanswerable
subset as well (12.5→74.09), with a rapid improve-
ment at the very first round (12.5→64.02).

User adaptation is a potential confounding factor,
where performance trends might be explained by
users changing their behavior (e.g., by simplifying
their questions) while the model does not actually
change its performance. We quantify user adapta-
tion by deploying the Round 1 (parameterized by
θ1) model alongside the final model at Round 9,
for the same number of interactions. Interactions
are assigned one of the models randomly with no
indication to the user. Table 3 shows the feedback
comparison for the two models. Except a small
difference in “partially correct” and “wrong” feed-
back, we observe no change in the initial model
performance, indicating user adaptation does not
explain the performance gain.

6.2 Analysis on Model Variants

We study the impact of various design decisions
by concurrently deploying five systems in a ran-
domized experiment, including re-deploying our
default configuration. Repeatedly deploying the
default configuration serves as a fair comparison
with other variants, being launched concurrently
and sharing the same user pool.

The different variants copy the design decisions
of the default configuration, unless specified oth-
erwise. Each interaction is assigned with one of
the systems randomly. Unless specified otherwise,
each system aggregates around 200 interactions
per round. We also concurrently collect a test set
of around 200 examples per round.8 This exper-

iment includes a total of 5,079 interactions, at a
total cost of 6572.88USD. Figure 3 summarizes
deployment and test statistics for this experiment,
showing test results on the test data concurrently
collected during this experiment. The reproduction
of the default setup shows similar improvement
trends to the long-term experiment (Section 6.1).
We experiment with four variations:

Weaker Initial Model We deploy a weaker ini-
tial model trained with a quarter of the training data
(128 examples). This variant shows effective learn-
ing, with significant increase in “correct” feedback
(26.67→55.61%) over the five rounds. However, it
still lags significantly behind the default setup with
its stronger initialization.

Fewer Interactions Per Round (Fewer Ex.) We
experiment with updating the model more fre-
quently, with each round including around 100 ex-
amples instead of 200. We deploy this system for
10 rounds, so the total number of interactions it ob-
serves is identical.10 This model performance is on
par with that of the default setup. However, the per-
centage of unanswerable examples is slightly less
stable than others, likely due to the larger variance
in data samples.

Answerability Classification (No CLS) We ab-
late using a separate answerability classification
head. Instead, this model always select a span, ei-
ther predicting an answer span in the context or in-
dicating unanswerable given the context paragraph
by predicting the CLS token (Devlin et al., 2019).
We use a reward value mapping that gives a reward
of 1 for CORRECT, 0.5 for PARTIALLY-CORRECT,
and -0.1 for WRONG. This model over-predicts
unanswerable in the first round, and afterwards
keeps showing a lower classification accuracy com-
pared to the default setup. Further analysis shows
that the final model predicts 29% unanswerable on
the ground-truth answerable subset, and only 65%
unanswerable on the ground-truth unanswerable
subset, significantly worse than the final model un-
der default setup (25% and 80%). This indicates
explicitly learning a separate head for answerability
prediction is crucial.

Domain Adaptation (NewsQA Initial) We train
an initial model on the complete NewsQA training

10The first 5 rounds are deployed concurrently with other
variants, and the last 5 rounds are deployed alone. We do not
collect test examples alongside the later 5 rounds.
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Figure 3: Interaction statistics (left) and model test perfor-
mance (right) in the short-term experiment. We report test
F1 and classification accuracy on the full test data collected
across five rounds of deploying those models concurrently.

dataset, a dataset with context texts that are sig-
nificantly different than ours. The initial model
is trained without a classification head, since
NewsQA only contains answerable examples. We
add a randomly initialized answerability classifi-
cation head, and randomly output “unanswerable”
for 10% of questions during Round 1, so that we
observe feedback for this classification option. The
model initialized with NewsQA shows promising
performance, as previously indicated in simulated
studies (Gao et al., 2022). In fact, it is the best-
performing model in this study. We hypothesize
that the model benefits from the larger initial train-
ing set, despite the domain shift, and only requires
relatively small tuning for the new domain.

6.3 One-round vs. Multi-round

Iterative rounds of deployment and learning is core
to our approach design. An alternative would be to
collect all the feedback data with the initial model,
and then update the model once. We compare our
design to this alternative.

Concurrent to the Round 1 deployment in Sec-
tion 6.2, we collect additional 500 feedback inter-
actions from the 512-SQuAD2 initial model, and
create a set of 800 interactions together with 100 ex-
amples from the experiment on fewer-interactions-
per-round experiment and 200 examples from the

F1 Ans. F1 Unans. F1 % Unans.

1-Round 56.57 60.73 49.70 24.97
4-Round 64.34 56.93 79.01 41.41
8-Round 63.13 56.98 75.31 40.79

Table 4: One-round vs. multi-round: we compare (from the
top) the model trained on around 800 examples in one round,
the model trained with four rounds of iterative improvement
(around 200 ex. per round), and the model with 8-round
of improvements (around 100 ex. per round). We report
overall F1, F1 on the ground-truth answerable subset, F1 on
the ground-truth unanswerable subset, and the percentage of
model-predicted unanswerable examples.

default experiment at the first round. We fine-tune
the initial model with this set, essentially doing a
single round with 800 examples, a quantity that
other models only see across multiple rounds.

Table 4 compares this one-round model with
the Round 4 model from the default setup and the
Round 8 model from the fewer-interactions-per-
round setup, both from Section 6.2. Overall, the
one-round model does worse on F1 score, illus-
trating the benefit of the multi-round design. The
higher F1 score on the answerable set the one-
round model shows is explained by the significant
under-prediction of questions as “unanswerable”.

6.4 Sensitivity Analysis

We characterize the sensitivity of the bandit learn-
ing process through controlling the set of feedback
data and the set of initial models.

Sensitivity Analysis of Round 1 Models Ana-
lyzing model sensitivity over multiple rounds of
interaction is prohibitively costly. We focus on
analyzing the sensitivity of the model at Round 1
relatively to the set of feedback examples it is be-
ing trained on. We collect 10 different sets of 200
examples and compare the learning outcomes.

Figure 4 shows the performance of models
learned from those 10 different sets. The overall
F1 score, F1 on the answerable subset, and classifi-
cation accuracy present relatively smaller variance
(standard deviation σ 3.32, 2.89, and 2.44) on the
full test set from Section 6.1. We observe a larger
variance in the F1 on the unanswerable subset and
in the percentage of predicted unanswerable exam-
ples (σ 11.51 and 9.55). This variance may be due
to the challenge of improving the binary classifi-
cation head on unbalanced data: the percentage
of model-predicted unanswerable examples in the
feedback data is 7% on average across 10 different
sets during the first round.
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Figure 4: Performance of Round 1 models learned from 10
different sets of feedback examples on the full test set: F1,
F1 on the ground truth answerable subset (Ans. F1), F1 on
the ground truth unanswerable subset (Unans. F1), classi-
fication accuracy (CLS Acc.), and percentage of predicted
unanswerable outputs (%Unans.). Bars represent variance,
and are centered at the mean value.
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Figure 5: Performance of initial models trained on 10 different
sets of 128 or 512 SQuAD2 examples on our full test set and
the SQuAD2 development set. Bars represent variance, and
are centered at the mean value.

Sensitivity Analysis of Initial Models The ini-
tial models used in our study are initialized us-
ing either 512 or 128 supervised examples from
SQuAD2 dataset. We analyze the variance they
may present. We randomly sample different sets
of supervised examples from the SQuAD2 training
data to study the sensitivity of the initial model to
its supervised training data.

Figure 5 shows the performance of initial models
trained on 10 different sets of 512 or 128 SQuAD2
examples on our full test set from Section 6.1 and
SQuAD2 development set. On SQuAD2 devel-
opment set, 512-SQuAD2 models show a smaller
variance in F1 than 128-SQuAD2 models (standard
deviation σ 2.2 vs 4.7). On our test set, we ob-
serve a different result: 512-SQuAD2 models have
a larger variance in F1 than 128-SQuAD2 models
(σ 6.9 vs 2.1). We find that the larger variance in
512-SQuAD2 model performance on our test set
is due to the large variance in F1 on the ground-
truth unanswerable subset: σ 24.4. In contrast,
F1 on the ground-truth unanswerable subset for
128-SQuAD2 models have standard deviation 6.4,
but with a much lower mean (13.6 vs 38.6). 128-

SQuAD2 models on average only predict 11.9%
unanswerable outputs on our test set.

7 Conclusion

We deploy an extractive QA system, and improve it
by learning from human user feedback, observing
strong performance gains over time. Our experi-
ments show such continual improvement of sys-
tems is compelling for domain adaptation, provid-
ing a practical avenue for practitioners to bootstrap
NLP systems from existing academic datasets, even
when the domain gap is relatively large. We also
study the effects of the update schedule (i.e., how
frequently to train and re-deploy a new model) and
model design (i.e., by using a separate answerabil-
ity classification head). Through our focus on a
lexically-rich user-facing scenario, we hope our
study will inspire further research of NLP prob-
lems in interactive scenarios and the learning poten-
tial user interactions provide. Important directions
for future work include learning from other, more
complex signals (e.g., natural language feedback),
studying non-extractive scenarios, and developing
robustness to adversarial behaviors (e.g., attempts
to sabotage the system through feedback).

Limitations

We simulate information-seeking users with paid
crowdworkers. This has limitations as far as reflect-
ing the behaviors and incentives of real users. For
example, it is not clear how often real users will
provide feedback at the end of the interaction, or
how much effort they will put into validating the
system output. On the other hand, crowdworkers
have less incentive to design their questions so that
they will be able to get a satisfying answers, as op-
posed to real users who likely require the answers
to achieve their intent. Also, changes in user popu-
lation and preferences are unlikely to be reflected
in crowdworkers behavior.

We only elicit cooperative interactions in our
experiments. Our approach does not address po-
tential adversarial behavior, implicitly assuming
collaborative users. However, real-life scenarios
are unlikely to allow such assumptions. In general,
adversarial user behavior forms a security risk for
learners that rely on user feedback, and even more
when user input is part of the process, allowing
users stronger control on how they may adversar-
ially attempt to steer the system. This aspect of
NLP systems is currently not broadly studied. We



hope our work will enable further work into this
important problem.

Other aspects constraining the generality of our
conclusions, but are not strictly limitations of our
specific work, are our focus on extractive QA,
where the output is relatively easy to visualize for
validation, and our simple feedback mechanism,
which is not as information rich as other potential
modes of feedback (e.g., natural language). We
hope our work will serve as a catalyst for studies
that cover these important problems.

Legal and Ethical Considerations

Section 5 and Appendix A detail our experimental
setup, hyperparameter search, and computational
budget to support reproducibility. Our data and
codebase are released at https://github.com/
lil-lab/qa-from-hf. SQuAD2 and TyDiQA
that we use for initial training and evaluation are
publicly available datasets from prior work.

The content shown to crowdworkers in our stud-
ies is from Wikipedia articles, so we expect crowd-
workers participating in our task to be free from
exposure to harmful content and the content to
not pose intellectual property issues. While our
data does not contain harmful content, we cannot
predict its impact when it or our models are used
beyond research context similar to ours. We urge
such uses to be accompanied by careful analysis
and appropriate evaluation.

In general, learning from user feedback, espe-
cially on user-generated data, poses risks for divert-
ing the system behavior in unwelcome directions.
Identifying and mitigating such risks are open and
important problems for future work to study.
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A Training Details

Training Initial Models We randomly sample
512 training examples from the SQuAD2 training
set and use a learning rate of 3e-5 with a linear
schedule, batch size 10, and 10 epochs. The loss
terms for span prediction and answerability clas-
sification are simply added. We use the same hy-
perparmeter setup for training the initial model on
128 SQuAD2 examples except that we add a coef-
ficient of 10 to the answerability classification loss.
For the initial model trained on NewsQA, we use
a learning rate 2e-5 with a linear schedule, batch
size 40, and 4 epochs.

Bandit Learning We use batch size 35, and per-
form hyperparameter search with a linear schedule
of learning rates (5e-5, 3e-5, 1e-5, 9e-6, 7e-6, 5e-6,
3e-6), number of epochs (14, 20, 24, 30), and en-
tropy penalty coefficients γ (1.5, 1.7, 1.9, 2.0, 2.1,
2.3, 2.5, 3.0, 5.0). We pick the checkpoint with
highest F1 on our development set, a set of 402
examples annotated during early pilot studies. At
each round, these hyperparameter searching exper-
iments take around 105h on one NVIDIA GeForce
RTX 2080 Ti.

B User Study Setup

We design an interface where users ask information-
seeking questions and provide feedback to model-
predicted answers to their own questions.11 Fig-
ure 8 shows screenshots of our interface. We use
this interface throughout our studies.

We familiarize workers with our task and criteria
using detailed guidelines and examples of reason-
able questions and user feedback. Before doing
our tasks, workers must pass a qualification pro-
cess by correctly answering at least 9/10 questions
regarding the task. The examples we use to guide
workers and the qualification tests for both the feed-
back and test data annotation tasks are available
at https://github.com/lil-lab/qa-from-hf/
tree/main/data-collection.

Question Writing Guidelines We encourage
workers to ask information-seeking questions by
having them pick a topic they find interesting
among four topic randomly selected from a pool,
and then choose one aspect out of four regarding
the chosen topic. For topic selection, we provide a

11We customize a UI design from CodingNepal on “Create
a Quiz App with Timer using HTML CSS & JavaScript”.

short introduction to each topic. After selecting a
topic and an aspect, workers are instructed to ask a
relevant question that they do not have an answer
to. We explicitly guide workers to avoid yes-or-no
questions and questions that obviously cannot be
answered by a short single sentence.

Feedback Guidelines We explicitly guide work-
ers to read the context paragraph in full to give
feedback when the model returns “unanswerable”,
and to give “partially correct” feedback if the an-
swer contains irrelevant information. Beyond that,
we guide workers through examples that express
the following guidelines:

• “Correct” if the answer highlighted in the con-
text paragraph correctly answers the question,
or points out that the question cannot be an-
swered by a single span in the paragraph.

• “Partially Correct” if the given answer only
partially answers the question.

• “Wrong” if the given answer highlighted in
the paragraph does not answer the question
at all, or if the output is “unanswerable given
the paragraph” when the question can be an-
swered by a span in the paragraph.

Test Data Annotation We collect test examples
with ground-truth answer annotation. We ask work-
ers to annotate answers to their questions instead
of providing feedback to model-predicted answers.
Workers are instructed to either select a single span
in the paragraph as an answer or indicate that the
question is unanswerable given the context para-
graph. We intentionally combine this annotation
task with the main feedback task, so that work-
ers do not know whether they will provide anno-
tation to their own question or provide feedback
to a model answer. In order to have three annota-
tions per test example, we design an additional task
to collect two extra annotations per test example:
workers are given a question and context paragraph,
and provide answer annotation. We qualify workers
by providing examples of reasonable annotations
and only work with workers who correctly pass a
qualifier composed of three questions.

During early pilot studies, we collect a small set
(402 examples) of annotated examples. We use this
set for hyperparameter tuning during development.

Worker and Study Details For both feedback
task and annotation task, we work with turkers
that have a HIT (Human Intelligence Task) rate
greater than 98% with at least 500 completed HITs.

https://github.com/lil-lab/qa-from-hf/tree/main/data-collection
https://github.com/lil-lab/qa-from-hf/tree/main/data-collection
https://www.codingnepalweb.com/quiz-app-with-timer-javascript/
https://www.codingnepalweb.com/quiz-app-with-timer-javascript/
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Figure 6: Percentage of user feedback received at every round
during the long-term experiment. Left column shows the
subset where the model predicts unanswerable, and the right
column shows the complement.
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Figure 7: Statistics of question types per round in the long-
term experiment. Left column shows the subset where the
model predicts unanswerable, and the right column shows the
complement.

Across all experiments, 103 turkers have passed our
qualification test and participated in our tasks. No
turker has done more than 5% of the HITs in total.
We pay $0.65 USD for each feedback example
and $0.4 USD for each additional annotation. The
estimated hourly pay for both tasks are $15 USD.
Our user study spans from February 8th to April
25th, 2023.

Question: How large was the sea at its peak volume?
Answer: [Unanswerable given the context paragraph]
Context: The Amu Darya river flowed into the Caspian
Sea via the Uzboy channel until the Holocene. Geogra-
pher Nick Middleton believes it did not begin to flow
into the Aral Sea until that time.
Feedback: Correct

Question: Who was the original inventor or program-
mer of Solaris?
Answer: [Unanswerable given the context paragraph]
Context: In 1987, AT&T Corporation and Sun an-
nounced that they were collaborating on a project to
merge the most popular Unix variants on the market
at that time ... On September 4, 1991, Sun announced
that it would replace its existing BSD-derived Unix,
SunOS 4, with one based on SVR4. This was identified
internally as SunOS 5, but a new marketing name was
introduced at the same time: Solaris 2 ...
Feedback: Partially Correct

Question: Who was the person most suspected of be-
ing Jack the Ripper?
Answer: an educated upper-class man, possibly a doc-
tor
Context: The concentration of the killings around
weekends and public holidays and within a short dis-
tance of each other has indicated to many that the
Ripper was in regular employment and lived locally.
Others have opined that the killer was an educated up-
per-class man, possibly a doctor or an aristocrat who
ventured into Whitechapel from a more well-to-do
area. Such theories draw on cultural perceptions such
as ...
Feedback: Partially Correct

Question: In which state is Ulm located in?
Answer: Bavaria
Context: Ulm lies at the point where the rivers Blau and
Iller join the Danube, at an altitude of 479 m (1,571.52
ft) above sea level. Most parts of the city, including the
old town, are situated on the left bank of the Danube;
only the districts of Wiblingen, Gogglingen, Donaustet-
ten and Unterweiler lie on the right bank. Across from
the old town, on the other side of the river, lies the twin
city of Neu-Ulm in the state of Bavaria, smaller than
Ulm and, until 1810, a part of it ...
Feedback: Wrong

Table 5: User interaction examples: each example is composed
of user question, context paragraph, model-predicted answer,
and user feedback.

C Data in Long-Term Experiment

Interaction Examples Table 5 lists additional in-
teraction examples from our long-term study (Sec-
tion 6.1).

User Feedback Figure 6 visualizes the distribu-
tion of user feedback at every round, partitioned
based on whether the model predicts unanswerable
or an answer span. The percentage of “correct”
feedback is increasing on both subsets, illustrating



that the model is improving over time.

QA Data Figure 7 visualizes the distribution of
question types, partitioned based on whether the
model predicts unanswerable or an answer span.
The distribution over question types varies at each
round, with the majority of questions starting with
“what“ and “when”. The model mostly predicts a
span in the context to answer questions regarding
“where”, while it chooses the unanswerable option
more often towards counting-related questions.



Instructions

★ This task includes 4 steps: 
    1. Choose a topic that interests you from a list of topics. We provide a brief intro to each topic. 
    2. Select one aspect of the chosen topic to ask a question about. 
    3. Ask a question that you are curious to know more about. The question must be about the topic and
aspect you selected. 
    4. We will generate an answer to your question, and highlight it in a paragraph, or show
“[Unanswerable given the paragraph below]”. You will provide feedback on our response given the
paragraph (correct, partially correct or incorrect.).
★ When asking your question, it is critical that: 
    ☆ You ask a question that can be answered by a short single sentence. We can only answer such
questions. 
    ☆ Do NOT ask a yes-or-no question. 
    ☆ Put a question mark at the end of your question. Otherwise, the button to the next step will not show
up. 
★ When providing feedback to the given answer, keep in mind that: 
    ☆ We may return "[Unanswerable given the paragraph below]". 
    ☆ If the given answer is “unanswerable”, please read the full paragraph to make sure that this
paragraph cannot answer your question. If you find a correct answer in the paragraph, please indicate
our no-answer output as “incorrect”. 
    ☆ If the given answer could answer your question but contains irrelevant content, label it as "partially
correct". 
★ Please read our example google doc.

    
★ First-time users need to successfully complete a qualifier questionnaire before starting the task.
★ Keyboard shortcuts: 
    ☆ 1, 2, 3, 4: numbered options in each single selection 
    ☆ Enter: go to the next step, or submit after completing all steps 

    
★ Please read our consent form before starting the task. By continuing with this task, you acknowledge
that you understand our consent form, and agree to take part in this research.

Start ↵

Select a topic that interests you:

1. Wrigley Field Wrigley Field is a Major League Baseball (MLB) stadium located on the North
Side of Chicago, Illinois. It is the home of the Chic...

2. Lighthouse of Alexandria The Lighthouse of Alexandria, sometimes called the Pharos of Alexandria (;
Ancient Greek: ὁ Φάρος τῆς Ἀλεξανδρείας, contemporary K...

3. Andrew Cuomo Andrew Mark Cuomo ( KWOH-moh; Italian: [ˈkwɔːmo]; born December 6,
1957) is an American lawyer and politician who served as the 56...

4. Battle of Okinawa The Battle of Okinawa (Japanese: 沖縄戦, Hepburn: Okinawa-sen),
codenamed Operation Iceberg,: 17  was a major battle of the Pacific W...

Optional discussion forum: Discord

1 of 4 Steps Instructions

Topic Selection



If needed, below is a brief intro to Wrigley Field  :

Wrigley Field is a Major League Baseball (MLB) stadium located on the North Side of Chicago, Illinois. It is the
home of the Chicago Cubs, one of the city's two MLB franchises. It first opened in 1914 as Weeghman Park for
Charles Weeghman's Chicago Whales of the Federal League, which folded after the 1915 baseball season.
The Cubs played their first home game at the park on April 20, 1916, defeating the Cincinnati Reds 7–6 in 11
innings. Chewing gum magna...

Select an aspect that interests you:

1. Accessibility and transportation

2. History

3. Commemorative stamps

4. Features

Optional discussion forum: Discord

2 of 4 Steps Instructions Restart

Aspect Selection

If needed, below is a brief intro to Wrigley Field  :

Wrigley Field is a Major League Baseball (MLB) stadium located on the North Side of Chicago, Illinois. It is the
home of the Chicago Cubs, one of the city's two MLB franchises. It first opened in 1914 as Weeghman Park for
Charles Weeghman's Chicago Whales of the Federal League, which folded after the 1915 baseball season.
The Cubs played their first home game at the park on April 20, 1916, defeating the Cincinnati Reds 7–6 in 11
innings. Chewing gum magna...

Ask a question about History  :

When was Wrigley Field built?

Optional discussion forum: Discord

3 of 4 Steps Instructions Restart Next Step ↵

Question



Question:

When was Wrigley Field built?

Answer:

April 23, 1914

Context:

Baseball executive Charles Weeghman hired his architect Zachary Taylor Davis to design the park,
which was ready for baseball by the home opener on April 23, 1914. The original tenants, the
Chicago Whales (also called the Chi-Feds), came in second in the Federal League rankings in 1914,
and won the league championship in 1915. In late 1915, Weeghman's Federal League folded. The
resourceful Weeghman formed a syndicate including the chewing gum manufacturer William Wrigley
Jr. to buy the Chicago Cubs from Charles P. Taft for about $500,000. Weeghman immediately moved
the Cubs from the dilapidated West Side Grounds to his two-year-old park. In 1918, Wrigley acquired
the controlling interest in the club. In November 1926, he renamed the park Wrigley Field. In 1927,
an upper deck was added, and in 1937, Bill Veeck, the son of the club president, planted ivy vines
against the outfield walls after seeing the ivy planted at Perry Stadium, Indianapolis.

How do you evaluate the highlighted answer?

1. Correct

2. Partially correct

3. Wrong

Optional discussion forum: Discord (Feel free to ask questions regarding your HIT.)
Optional comment:

Any comments or feedback about this task? Type here...

4 of 4 Steps Instructions

Feedback

Figure 8: Snapshots of our interface for feedback task.


