
A new perspective on probabilistic image modeling
Alexander Gepperth

Fulda University of Applied Sciences
Fulda, Germany

alexander.gepperth@cs.hs-fulda.de

Abstract—We present the Deep Convolutional Gaussian Mix-
ture Model (DCGMM), a new probabilistic approach for image
modeling capable of density estimation, sampling and tractable
inference. DCGMM instances exhibit a CNN-like layered struc-
ture, in which the principal building blocks are convolutional
Gaussian Mixture (cGMM) layers. A key innovation w.r.t. related
models like sum-product networks (SPNs) and probabilistic
circuits (PCs) is that each cGMM layer optimizes an independent
loss function and therefore has an independent probabilistic
interpretation. This modular approach permits intervening trans-
formation layers to harness the full spectrum of (potentially
non-invertible) mappings available to CNNs, e.g., max-pooling
or (half-)convolutions. DCGMM sampling and inference are
realized by a deep chain of hierarchical priors, where samples
generated by each cGMM layer parameterize sampling in the
next-lower cGMM layer. For sampling through non-invertible
transformation layers, we introduce a new gradient-based sharp-
ening technique that exploits redundancy (overlap) in, e.g., half-
convolutions. The basic quantities forward-transported through
a DCGMM instance are the posterior probabilities of cGMM
layers, which ensures numerical stability and facilitates the
selection of learning rates. DCGMMs can be trained end-to-end
by SGD from random initial conditions, much like CNNs. We
experimentally show that DCGMMs compare favorably to several
recent PC and SPN models in terms of inference, classification
and sampling, the latter particularly for challenging datasets such
as SVHN. A public TF2 implementation is provided as well.

Index Terms—Deep Learning, Gaussian Mixture Models,
Deep Learning, Deep Convolutional Gaussian Mixture Models,
Stochastic Gradient Descent

I. INTRODUCTION

This conceptual work is in the context of probabilistic image
modeling by a hierarchical extension of Gaussian Mixture
Models (GMMs), which we term Deep Convolutional Gaus-
sian Mixture Model (DCGMM). Main objectives are density
estimation, image generation (sampling) and tractable infer-
ence (e.g., image correction or in-painting).

Many recent approaches (e.g., GANs, VAEs) excel in image
generation by harnessing the full spectrum of CNN transfor-
mations, such as convolutions or pooling. An issues with these
models is however the lack of density estimation and tractable
inference capacity, i.e., explicitly expressing and exploiting
the learned probability-under-the-model p(x) of an image x.
In contrast, recent ”deep” probabilistic approaches like sum-
product-networks and probabilistic circuits [3], [15]–[17], [23]
have been explicitly designed to perform these functions for
high-dimensional visual problems. However, strong constraints
must be satisfied at every hierarchy level to maintain a global
probabilistic interpretation, which restricts the spectrum of

 1 / 4

G
M

M

P
o

ol
in

g

F
ol

di
ng

C
la

ss
if.

In
p

ut ...

G
M

M

Top-level control signal

2

1

Fig. 1. High-level structure of a typical DCGMM instance with principal
layer types. DCGMMs have two operation modes: 1©the forward mode which
estimates the probability of a presented data sample 2©the backwards mode in
which a top-level control signal is propagated in reverse direction to generate
a sample according to the learned model. The whole architecture is trained
end-to-end, with each trainable layer being independently optimized.

available transformations. In particular, overlapping convolu-
tions and pooling are excluded, with negative impact on, e.g.,
the capacity for realistic sampling. We aim at overcoming
these limitations by constructing deep hierarchies of convolu-
tional Gaussian Mixture Models (GMMs) in order to perform
density estimation, realistic sampling and inference within a
single model for large-scale, complex visual problems.

A. DCGMM: Model overview and salient points

DCGMM instances can operate in density estimation (”for-
ward”) and sampling (”backwards”) mode, and are realized
by a succession of convolutional Gaussian Mixture Model
(cGMM) and non-trainable transformation layers, see Fig. 1.
The most prominent novel point in DCGMMs is the optimiza-
tion of independent loss functions for each cGMM layer.
This ensures a proper probabilistic interpretation of all cGMM
layer outputs and removes the need for structural constraints as
they are imposed in related probabilistic models (see Sec. I-B)
which optimize a a single loss function for the whole hierarchy.
Since DCGMM relaxes the assumption of a single loss func-
tion, arbitrary transformations may be performed between
cGMM layers. In this article, we consider two standard
CNN operations: half-convolution and pooling, which are
non-invertible to different degrees.
In order to allow sampling through non-invertible oper-
ations, we exploit the fact that DCGMM convolutions are
unconstrained and can thus be overlapping as in CNNs. We
introduce a novel gradient ascent technique that exploits the
redundancy thus created to compensate for the information
loss due to non-invertible transformations.
The Gaussian Mixture Models used in DCGMMs are in-
herently convolutional in nature, see Fig. 2 and have a
natural synergy with half-convolutions. A cGMM layer with

parameters πk, Σk and µk models the channel content at a
certain position of a four-dimensional NHWC input tensor
(see Fig. 2), where the cGMM parameters are shared between
positions. The input tensor has usually been created by a
half-convolution layer, which dumps the content of each
overlapping patch of a NHWC tensor (mini-batch of images)
into the channel content at that patch’s position. This kind of
parameter sharing between positions allows powerful models
to be trained with relatively few trainable parameters in perfect
analogy to CNN layers.

As an important design choice, we chose to propagate cGMM
posterior probabilities (bounded and normalized) instead
of log-probabilities. Although slightly more expensive, this
choice provides numerical stability (no underflows), allows
virtually problem-independent learning rates, and avoids com-
plex gradient-clipping procedures.

DCGMM sampling realizes a deep chain of hierarchical
priors, see [9]: Since a cGMM layer forward-propagates prob-
ability estimates for its own latent variables, their distribution
is modeled by the next upstream cGMM layer. A sample drawn
from the upstream cGMM thus represents a likely realization
of these probabilities. As such, it naturally parameterizes the
multi-nomial distribution that selects the Gaussian component
to sample from. The generated sample, in turn, serves to
parameterize sampling in a lower cGMM layer.

Due to these conceptually novel points, DCGMMs can not
only perform density estimation and inference, but also gener-
ate realistic samples from highly complex visual problems,
such as represented by the Fruits and SVHN benchmarks1. To
the best of our knowledge, this has not been achieved before
by any related work on probabilistic image modeling.

B. Related Work

GANs and VAEs and related models The currently most
widely used models of image modeling and generation are
GANs [2], [6], [12] and VAEs. GANs are capable of sampling

1CIFAR is not considered a valid benchmark for image modeling, since
there are too few images per category and the categories themselves are too
variable

 4 / 4

W

C

 F(3,1)
 G(5) P(2,2) F(2,1) G(5)

positions

patch

Fig. 2. A simple DCGMM instance applied to a NHWC tensor with N and W
dimensions omitted. It contains max-pooling(P), half-convolution/folding(F)
and cGMM (G) layers, see text for details. Lower cGMM layers analyze local
image patches at different positions. The topmost cGMM layer is global in
the sense that it has a single output position only, in which the whole image is
described. Each cGMM layer provides a ”fresh” probabilistic interpretation,
indicated by uniform coloring for each position.

photo-realistic images [18], but are unable to perform density
estimation. Furthermore, GANs may suffer from what is
termed mode collapse, which is hard to detect automatically
due to the absence of a loss function [18]. VAEs show
similar performance when it comes to sampling, in addition to
minimizing a differentiable loss function. On the other hand,
density estimation with VAEs is problematic as well, although
the use of ELBO allows efficient outlier detection. Inference
with VAEs is possible but complicated and potentially inef-
ficient. Similar approaches, with similar strength in sampling
but lack of density estimation, are realized by the PixelCNN
architecture [14], GLOW [8] and their variants.

MFA MFA models [5], [11] are a generalization of GMMs
which interpolate between GMMs with diagonal –vs– full co-
variance matrices. Although MFA models are not hierarchical,
it is shown in [18] that they compare quite favorably to GANs
when considering image generation.

Hierarchical MFA/GMM Two related approaches are de-
scribed in [21], [22]. These approaches realize hierarchical
MFA as modular decompositions of single ”flat” MFAs, and
thus possess a single loss function that is optimized by variants
of Expectation-Maximization (EM). Closer to our approach
is the proposal of [19], which proposes to train an MFA
layer on the inferred latent variables of another, independent
MFA instance. Transformations occurring in these models are
global, i.e., affect all input variables. Local operations like
convolutions or max-pooling are not used, and the dimen-
sionality of samples treated in the experiments is low. A
preliminary version of DCGMMs was described in [1].

Probabilistic circuits and sum-product networks Probabilis-
tic circuits are deep directed graphs whose leaves compute
probabilities from inputs via tractable parameterized distribu-
tions. These probabilities are further processed at weighted-
sum- and product nodes, with the aim of obtaining a tractable
distribution at the root node. This is ensured if some structural
constraints are met, and the resulting PCs are often termed
Sum-Product Networks (SPNs, see, [17]). In particular, SPNs
allow efficient sampling, density estimation and tractable in-
ference even if graphs are very deep.

Similarly to neural networks, finding a graph structure
suitable for a particular learning task is challenging, especially
if data dimensionality is high. Several interesting ideas for this
have been put forward in [3], [15]–[17], [23]. An appealing ap-
proach is realized by RAT-SPNs [16] which construct random
SPNs that are then combined by a single root node, at the price
of additional hyper-parameters. The optimization of learning
and inference in SPNs is addressed by Einsum Networks [15]
where it is shown that successive sum and product nodes can
be efficiently combined into an Einsum operation, which is
particularly suited to GPU-friendly implementations.

SPNs suffer from the structural constraints required for
representing valid, tractable distributions. These constraints
exclude key CNN ingredients such as overlapping convolutions
or max-pooling. Convolutions can be performed by SPNs in

certain special cases [3], [23], but general CNN-like convolu-
tions remain inaccessible.

SPNs have been successfully be trained on large-scale,
high-dimensional visual problems [3], [16], [16], [23] like
the MNIST, FashionMNIST and SVHN benchmarks. Sam-
pling and inference in SPNs are mostly demonstrated for
the ”Olivetti faces” benchmark [3], [17], [23] which is high-
dimensional but contains only a few hundred samples. To the
best of our knowledge, sampling has not been demonstrated
for MNIST and FashionMNIST. In [15], training, sampling
and inference is demonstrated based on the SVHN benchmark
using a very simple SPN architecture and extensive data pre-
processing. Generated samples are of good quality but not yet
comparable to those produced by GANs or VAEs.

An interesting overview of the current research landscape
in terms of hierarchical generative mixture models is given in
[7]. All of these models are, in principle, capable of sampling
and density estimation although the quality of sampling, and
the data they can be trained on, vary considerably.

C. Objective, Contribution and Novelty

The objectives of this article are to introduce a deep GMM
architecture which exploits the same principles that led to the
performance explosion of CNNs. Novel points are:

• fundamentally new, modular approach for hierarchical mix-
ture modeling based on independent mixture models

• fundamentally new approach to sampling as a deep chain of
hierarchical priors

• use of arbitrary transformations like convolution and pooling
in probabilistic image modeling

• realistic sampling for complex visual tasks despite non-
invertible operations (pooling, convolutions)

• scalable and numerically robust end-to-end training by SGD
from random initial conditions (no k-means initialization)

• experimental comparison to various models based on sum-
product networks and probabilistic circuits

In addition, we provide a publicly available TensorFlow2
implementation.

II. DATASETS

For the evaluation we use the following image datasets:

MNIST [10] is the common benchmark for computer vision
systems and classification problems. It consists of 60 000
28× 28 gray scale images of handwritten digits (0-9).

FashionMNIST [24] consists of images of clothes in 10
categories and is structured like the MNIST dataset.

SVHN [13] contains color images of house numbers (0-9,
resolution 32× 32).

These datasets are not particularly challenging w.r.t. clas-
sification, but their dimensionality of 784 (MNIST, Fash-
ionMNIST) and 3072 (SVHN) is high, and the variability
of especially the SVHN is considerable, which poses strong
challenges for generative image modeling.

III. METHODS: DEEP CONVOLUTIONAL GAUSSIAN
MIXTURE MODELS

In order to introduce DCGMMs as a possible hierarchical
generalization of GMMs, we will first review facts about
vanilla GMMs and introduce the basic notation, which will
subsequently be generalized to a multi-layered structure.

A. Review of GMMs

GMMs are probabilistic models that aim to explain the
observed data X = {xn} by expressing their density as
a weighted mixture of K Gaussian component densities
N (xn;µk,Σk)≡Nk(xn):

p(xn) =

K∑
k=1

πkNk(xn). (1)

The normalized component weights πk represent another set
of GMM parameters, which modulate the overall influence of
each Gaussian density.

GMMs assume that each observed data sample {xn} is
drawn from one of the Gaussian component densities Nk. The
selection of this component density is assumed to depend on an
unobservable latent variable zn ∈ {1, . . . ,K} which follows
an unknown distribution. This is formalized for a GMM with
K components by formulating the complete-data likelihood
for a single data sample as:

p(xn, zn) = πznNzn(xn)

p(X, z) =
∏
n

p(xn, zn) (2)

For a single sample, we can compute the GMM posteriors or
responsibilities γ(xn):

γk(xn) = p(zn=k|xn) =
p(xn, zn=k)∑
j p(xn, zn=j)

=
πkNk(xn)∑
j πjNj(xn)

,

(3)

which can be computed without reference to the latent vari-
ables. Marginalizing the unobservable latent variables out of
Eq. (2) and taking the log, we obtain the incomplete-data
likelihood L:

L = log p(X) = log
∏
n

p(xn) = log
∏
n

∑
k

p(xn, zn=k) =

= log
∏
n

∑
k

πkNk(xn) =
∑
n

log
∑
k

πkNk(xn). (4)

The function L contains only observable quantities and is a
suitable loss function for optimization.

At stationary points of Eq. (4), the component weights
represent the average responsibilities: πk = Enγk(xn). For
sampling, it is therefore common to first draw a latent variable
sample ẑ from a multinomial distributionM(π) parameterized
by the weights π, and then use the selected component density
Nẑ for generating the sample x̂:

ẑ ∼M(π)

t̂ ∼ Nẑ. (5)

Layer type Notation H W C

Folding F (f,∆) 1+H′−f
∆

1+W ′−f
∆

f2C′

Max-Pooling P (f,∆) 1+H′−f
∆

1+W ′−f
∆

C′

Classification C(S) 1 1 S
Conv. GMM G(K) H′ W ′ K

TABLE I
OVERVIEW OF DCGMM LAYER TYPES. THE THREE RIGHTMOST

COLUMNS INDICATE THE SHAPE OF ACTIVITIES IN FORWARD MODE IF THE
LAYER RECEIVES AN INPUT OF DIMENSIONS H′,W ′,C′ . FOR FOLDING

AND MAX-POOLING LAYERS, PARAMETERS ARE THE KERNEL SIZE f AND
THE STRIDE ∆. FOR CGMM LAYERS, THE PRINCIPAL PARAMETER IS THE

NUMBER OF COMPONENTS K .

B. DCGMM basics

The basic data format in a DCGMM instance (see Fig. 1)
are four-dimensional NHWC tensors. For conciseness, we will
omit the batch dimension (N) from all formulas. We will
denote the dimensions of the current layer L as H,W,C and
those of the preceding layer L−1 as H ′,W ′,C ′. Lower-case
indices are used similarly, and are sometimes grouped into
tuples ~m=[h,w,c]T or ~m′=[h′,w′,c′]T for brevity.

Contrary to DNNs, DCGMMs have two operational modes,
see Fig. 1: forward for density estimation, and backwards
for sampling. In forward mode, each DCGMM layer with
index L≥1 receives input from the preceding layer L−1, and
generates activities A(L) ∈ RH,W,C which serve as inputs to
the subsequent layer L+1. As per the usual convention, L=0
denotes the data samples themselves. In backwards mode,
each layer L receives a control signal T (L) ∈ RH,W,Cfrom
layer L+1 and produces another control signal T (L−1) ∈
RH’,W’,C’ for layer L−1. We define three DCGMM layer types:
folding layers implementing half-convolutions, max-pooling
layers (analogous to CNNs, but including backwards mode)
and convolutional GMM layers. Characteristics, notation and
principal parameters of all layer types are given in Tab. I.

In the following text, we will discuss how the different
DCGMM layer types implement computation of loss functions
(where applicable), activities and control signals.

C. Convolutional Gaussian Mixture Layer

cGMM layers are realized by GMMs, slightly modified to a
convolutional formulation. As with any GMM (see Sec. III-A),
this layer type is defined by weights π(L)

k , centroids µ(L)
k and

covariance matrices P (L)
k .

Forward mode In this mode, activities A(L) of the layer are
computed as a function of preceding layer activities A(L−1).
Specifically, activities are realized by GMM posteriors, see
Sec. III-A. Since the layer is convolutional, these posteriors are
computed from the channel content A(L−1)

hw,: at every position
h,w in the tensor of input activities A(L−1):

P
(L)
hw,k

(
A(L−1)) = p

(
A

(L−1)
hw,:

)
A

(L)
hw,k

(
P (L)

)
= γk

(
P

(L)
hw,:

)
(6)

Backwards mode In this mode, the cGMM layer generates
the control signal T (L−1) by sampling with an hierarchical

prior defined by the up-stream control signal T (L) as detailed
in Sec. III-A. Sampling is performed for each position h,w of
the up-stream control signal:

Ẑ
(L−1)
hw ∼M

(
T

(L)
hw,:

)
T

(L−1)
hw,: ∼ N

Ẑ
(L−1)
hw

(7)

In case there is no control signal (layer is topmost DCGMM
layer), the Ẑ(L−1)

hw are drawn from an uniform distribution.
Loss function For efficient and numerically stable training,
we use an approximation to the GMM log-likelihood, which
we term the max-component approximation. This approxima-
tion was validated in [4] and is analogous to Expectation-
Maximization training with hard assignments, see, e.g., [22].
As stated in Sec. I-A, each cGMM layer has a loss function
that is computed and optimized independently of other layers.
For a single sample, it reads:

L(L) = Eh,w log maxkP
(L)
hw,k (8)

An essential point about cGMM layers is that the activities
A(L) and control signals T (L−1), are computed using a
single set of centroids, weights and covariance matrices at
every position. Thus, these quantities are shared in the same
way CNN filters are shared across an image. In this way,
large images can be described while requiring relatively few
trainable parameters. If memory consumption is not an issue,
independent parameters can be used for each position as well.

D. Max-Pooling Layer

This layer type performs a complex, deterministic trans-
formation in both modes, which would normally render the
represented density intractable. It is the task of subsequent
cGMM layers to re-instate a tractable probabilistic interpre-
tation. Pooling is governed by a kernel size f and a step
size ∆, see Fig. 2, where we usually assume non-overlapping
pooling: f=∆. To formalize this, we assign to every position
~m a receptive field:

ν(~m) = {~m′ : h′∈[h∆, h∆+f [, w′∈[w∆, w∆+f [, c′=c}
(9)

In forward mode, this layer type behaves exactly like a CNN
max-pooling layer, see also Tab. I and Fig. 2. The relation is
A

(L)
~m = max~m′∈ν(~m)A

(L−1)
~m′ . In backwards mode, the pooling

layer aims at reconstructing a tensor that would have resulted
in the provided control signal. Numerous schemes are possible
due to the non-invertibility of the mapping. We choose to per-
form upsampling here: T (L−1)

~m′∈ν(~m)=T
(L)
~m . The non-uniqueness

of the backwards mapping must be counteracted by additional
measures such as sharpening, see Sec. IV-C.

E. Folding Layer

This layer type performs a deterministic non-invertible
mapping. Again, the represented density is rendered intractable
by this until the next cGMM layer.
Forward mode In this mode, folding layers perform a half-
convolution on their inputs, governed by a kernel size f and

a step size ∆, see also Tab. I and Fig. 2. The forward mode
transformation reads

κ(~m) =

 h∆ + c//(fC ′)
w∆ + (c//C ′)%f

c%C ′

 (10)

A
(L)
~m = A

(L−1)
κ(~m) , (11)

where // and % represent integer and modulo division.
Backwards mode Here, we invert κ(~m) to obtain a control
signal. Due to the one-to-many nature of the mapping κ(~m),
this can be done in J different ways, which we choose to
average over:

T
(L−1)
~m′ =

1

J

∑
~m

κ(~m)=~m′

T
(L)
~m . (12)

F. Classification Layer

This layer type implements a simple linear classifier for
S classes, and is usually situated at the top of a DCGMM
instance. Trainable parameters are the weight matrix W and
the bias vector b. In forward mode, it generates per-class
probabilities as p(L)s (x) = Ss (xW+b), where Ss represents
component s of the softmax function, and x=flatten

(
A(L−1)).

n backwards mode, it performs an approximate inversion
of this operation, transforming the top-level control signal
y∈RS≡T (L) into a control signal for layer L−1:

T (L−1) = reshapeH′W ′C′W
T
(

log(y)− b+ const.
)

(13)

The control signal y must contain a one-hot encoding of the
class that should be generated. The constant that arises due to
the ambiguity in inversing the softmax must be chosen such
that the control signal is positive, as it must be if it is to
represent GMM posteriors. Just as cGMM layers, classification
layers optimize an independent loss function given by standard
cross-entropy (which requires target values).

IV. ARCHITECTURE-LEVEL DCGMM FUNCTIONALITIES

A. End-to-end DCGMM training

A defining characteristic of DCGMMs is the fact that there
is no ”global” loss function. Instead, each trainable layer
independently optimizes its own loss function, and this would
usually be performed in a greedy layer-wise fashion as, e.g.,
the original denoising autoencoder models. In order to speed
up learning, we propose a joint training scheme, where all
layers are optimized at the same time. To avoid convergence
problems, we start adapting the trainable layer L at time
δ(L), which increases with the position in the hierarchy. Thus,
lower layers achieve some convergence before higher layers
start their adaptation process, which works extremely well in
practice for very small delays δ(L).

Training cGMM layers is performed by SGD from random
initial conditions as detailed in [4]. As explained in [4], SGD
parameters are very robust and are kept constant throughout
all experiments in this article.

 2 / 4

G
M

M

D

G
M

M ?

G
M

M

A

CB F
ol

di
ng

D

target layer
gradients

… B

A C
activitiesF

ol
di

ng

Fig. 3. The gradient-based sharpening procedure, see text for details. A©
Control signal sampled from folding layer B© forward propagation of control
signal to chosen target GMM layer C© back-propagated gradients applied for
modifying control signal D© final control signal passed to layer L−1.

B. Density estimation and outlier detection

This is the principal function performed in forward mode,
see Fig. 1. In contrast to, e.g., deep MFA or SPN instances,
see Sec. I-B where sample probability is computed from
the root node activation, any cGMM layer L in a DCGMM
instance expresses sample probability by its log-likelihood
L(L). Whereas cGMM layers low in the hierarchy usually
model the density of small image patches, higher cGMM
layers capture more of the global image structure. We therefore
assume that the highest cGMM layers are the best candidates
for density estimation. We will evaluate this by performing
outlier detection in Sec. VI-B.

C. Sampling and sharpening

Sampling is the principal function performed in backwards
mode, see Fig. 1. Triggered by a user-defined or uniform top-
level control signal, each layer L operates in backwards mode
generating controls signals T (L−1) until the sampling result is
read out for L=0. Just as density estimation in forward mode,
sampling in backwards mode can be efficiently conducted
in mini-batches. As detailed in [1], control signals can be
thresholded and renormalized to contain only the S highest
values, which controls the variability of sampling.

The max-pooling and folding layer types perform forward-
mode transformations that are not invertible. In backwards
mode, this means that they can generate control signals that
differ from the true data statistics. To rectify this, we first
observe that up-stream cGMM layers ”know” the correct
statistics of their inputs through training. Additionally, folding
layer outputs contain redundancies since their receptive fields
usually overlap, which can be exploited.

We therefore propose a generic statistics-correcting proce-
dure applied at each folding layer L, see Fig. 3: we first
select a target layer L′>L, which is normally chosen as the
next-highest cGMM layer in the DCGMM instance. First, we
operate the folding layer in backwards mode to obtain the
initial control signal T (L−1)(i=0). Then, we perform gradient
ascent for i < I iterations, maximizing the target layer loss
L(L′)(i) obtained by forward-propagating T (L−1)(i<I). In
this fashion, we obtain a statistics-corrected control signal
T (L−1)≡T (L−1)(i=I).

D. Conditional sampling

By training a top-level classification layer (see Fig. 1)
and providing an appropriate control signal (see Sec. III-F),

DCGMMs can be enabled to selectively sample from certain
classes only. This is very memory efficient since it removes
the need to duplicate structures for every class that should be
sampled from, as it is done in [16], [23].

E. Inference for variant generation and in-painting

Both functionalities are cases of tractable inference, which
is built-in since every cGMM layer has this ability. For variant
generation, an image sample is presented and the DCGMM
instance must generate ”similar” ones. In in-painting, we
present a partially occluded image and ask the DCGMM
instance to complete the missing part.

The procedure in both cases is to perform a forward pass
up to a certain cGMM layer X , and then perform a backwards
pass with T (X)=A(X) downwards from layer X . For in-
painting, X must correspond to a cGMM layer that depends on
all image variables, usually the topmost one, and the sampling
result for the unknown image part is used to complete the
input sample. For variant generation, X can be an intermediate
cGMM layer as well, which allows to control the global
variability of the generated variants.

V. METHODS: MODELS AND PARAMETERS

DCGMM We define 7 distinct DCGMM instances which are
summarized in Sec. IX. The instances differ in depth and by
their use of stepped folding –vs– max-pooling. The principal
hyper-parameters are the number of components in cGMM
layers, which are always chosen such that a batch size of
100 remain feasible. In several experiments, we use (or do
not use) parameter sharing between different input positions,
for specific layers. Learning rates and other SGD-related
parameters are kept exactly as described in [1], [4]. Since
these parameters do not appear to be task-dependent, we do
not vary them in the presented experiments. The training delay
for cGMM layer L is set to δ(L)=0.1(L), where L∈{1, 2, . . . }
indicates the number of cGMM layers below the current one.

RAT-SPN We implemented RAT-SPNs as described in the
original publication [16] using the implementation proposed in
[16]. As in [15], for every experiment we vary the following
parameters: number of distributions per leaf region/number
of sums per sum node I, S ∈ {5, 20, 40}, split depth D ∈
{1, 5, 9} and number of repetitions R ∈ {10, 25, 40}. To speed
up training, we employ binomial leaf distributions. Training is
conducted for 25 epochs. Variances are constrained as in [16].

Deep generalized convolutional SPNs (DGCSPNs) We im-
plemented the convolutional architecture for generative ex-
periments from the original publication [23] using libspn-
keras. The number of sums per sum layer is varied as
S ∈ {16, 32, 64}. Training is conducted for 15 epochs.
Accumulators are initialized by a Dirichlet distribution with
α = 0.1, the number of normal leaf distributions is set to 4,
and centroids are initialized from training data as described in
[23], where it is also suggested that variances be kept constant
at 1.0 for all normal leaves.

Fig. 4. Test losses for all 4 cGMM layers in the deep DCGMM-F instance for
MNIST(left) and FashionMNIST(right). Please note that individual cGMM
layers’ losses have different ranges, and that they are maximized (not
minimized) by DCGMM training!

Poon-Domingos SPN architecture As an SPN baseline, we
use PD-SPN, a very simple instance of the Poon-Domingos
architecture as described in [16] using the implementation
proposed in [15]. As in [15], we use ∆ = {8} for SVHN and
∆ = {7} for MNIST, along the horizontal dimension only.
We vary the number of distributions per leaf region/number
of sums per sum node: I, S ∈ {5, 20, 40}.

VI. EXPERIMENTS

Compared models are DCGMM, RAT-SPN, PD-SPN and
DGCSPN, using parameter (ranges) as given in Sec. V. All
experiments were performed on a cluster of 50 off-the-shelf
PCs using nVidia GeForce RTX 2060 GPUs, and our own
TensorFlow-based implementation of DCGMMs. The used
libraries are referenced in Sec. XIV. Generally, we repeat
each experiment 5 times with same parameters but different
initializations. When grid-searching for feasible parameters,
we use the averaged performance measures to identify the
best settings. Where feasible, we report mean and standard
deviations for experiments.

A. DCGMM training dynamics

This experiment is conducted to demonstrate the basic
feasibility of DCGMM training, despite the fact that we
optimize a separate loss function for each cGMM layer. We
train DCGMM architecture F, see Sec. IV, on the full MNIST
and FashionMNIST dataset and record the test losses for
each of the cGMM layers over time. cGMM Parameters are
clamped for a certain percentage of training time in different
cGMM layers, see Sec. V. As we can observe in Fig. 4, each
cGMM layer achieves convergence after a certain time, starting
with the lowest one and proceeding to the highest one which
converges last. While a layer’s parameters are clamped, its
loss fluctuates, since it is impacted by parameter adaptation in
lower layers. We can observe the un-clamping of parameters
by the ”dips” in each layer’s loss, which occurs in a strictly
sequential fashion following parameter un-clamping of each
layer. The fact that losses are higher initially is explained by
the fact that these are test losses.

ID MNIST FashionMNIST ID MNIST FashionMNIST
A 95.4±0.2 62.2±0.3 E 92.8±0.4 74.9±0.2
B 93.3±0.5 72.2±0.2 F 84.1±0.4 68.1±0.1
C 94.2±0.2 74.3±0.1 G 77.4±0.3 62.7±0.1
D 92.5±0.3 68.1±0.1 - - -

TABLE II
OVERVIEW OF OUTLIER DETECTION CAPACITY OF VARIOUS DCGMM

INSTANCES, SEE SEC. IX, MEASURED BY THE MEAN AUC (IN %).

ID MNIST AUC in % FMNIST AUC in %
DCGMM-E 92.8± 0.4 74.9 ± 0.2
RAT-SPN 91.8 ± 0.7 39.2 ± 0.4
DGCSPN 90.6 ± 0.7 57.1 ± 0.9
PD-SPN 91.2± 0.6 48.5 ± 1.7

TABLE III
OUTLIER DETECTION PERFORMANCE FOR DCGMM-E AND SPN MODELS
FOR MNIST AND FASHIONMNIST, QUANTIFIED BY THE AUC MEASURE.

B. DCGMM outlier detection experiments

The goal of this experiment is to assess the outlier detection
capabilities of DCGMMs. In particular, we investigate which
DCGMM architectures are most suited for this purpose, and
which cGMM layer the outlier detection should be based
on. We construct outlier detection problems from classes 1–9
(inliers) –vs– 0 (outliers) of the MNIST and FashionMNIST
datasets. Test losses on inlier and outlier classes are recorded
for all layers in a DCGMM instance after training on the
inliers. Outlier detection is evaluated separately based on
each cGMM layer’s loss. By varying the threshold for outlier
detection (see Sec. IV-B), we obtain ROC-like outlier detection
plots, see Sec. XI. The area-under-the-curve (AUC) is used
as a quality measure. Results are summarized in Tab. III. We
find that it is always the highest cGMM layers which are most
suited for outlier detection, and that the depth of a DCGMM
instance tends to increase its outlier detection capacity. The
results with different outlier classes are comparable.

C. Outlier detection: model comparison

Here, we compare the outlier detection capacity of
DCGMM-E, the best DCGMM instance from Sec. VI-B, to
various RAT-SPN, PD-SPN and DGCSPN instances, using the
same procedures. To find the best parameters for each SPN
type, a grid search is conducted over parameters ranges as
stated in Sec. V, repeating each experiment 5 times with iden-
tical parameters. Best outlier detection capacities, measured as
in Sec. VI-B, are reported in Tab. III. We observe a clear edge
for DCGMM-E, in particular for FashionMNIST.

D. Demonstrations of DCGMM sampling and sharpening

To demonstrate how the sharpening procedure of Sec. IV-C
improves sampling through non-invertible operations, notably
max-pooling, we train DCGMM instances (B and D, see
Sec. IV) which perform max-pooling to sample from MNIST
and FashionMNIST. Then, we compare sampling results with
and without sharpening, see Fig. 5. When sharpening is used,
target layers are always the next-highest cGMM layers, and
gradient ascent is performed for I = 300 iterations using a
learning rate of 1.0. Fig. 5 shows that strong blurring effects

ID parameters MNIST acc. FMNIST acc.
DCGMM-A 38.416 98.2± 0.1 80.3± 2.6
DCGMM-B 293.657 98.7± 0.05 83.6± 1.7
DCGMM-E 40.850 99.1± 0.2 94.5 ± 1.7
DCGMM-F 50.850 99.9± 0.07 89.0 ± 2.5
RAT-SPN 1.187.840 99.2± 0.1 85.4 ± 1.9
DGCSPN 7.560.576 98.0± 0.1 80.4± 6.0
PD-SPN 515.683 97.2± 0.2 81.2± 2.4

TABLE IV
SAMPLE GENERATION CAPACITY FOR DCGMM AND SPN MODELS AS

MEASURED BY A CNN CLASSIFIER ON GENERATED SAMPLES, SEE TEXT
FOR DETAILS. WE OBSERVE THAT ALL MODELS PERFORM VERY

SIMILARLY ON MNIST, WHEREAS DCGMM-E OUTPERFORMS SPNS FOR
FASHIONMNIST. AVERAGES AND STANDARD DEVIATIONS ARE TAKEN

OVER 5 INDEPENDENT TRAINING RUNS OF THE CNN CLASSIFIER.

occur without sharpening, due to ambiguities in inverting
max-pooling layers. In contrast, sharpening removes these
ambiguities while maintaining diverse samples. This works
best for DCGMM-B with a single max-pooling layer, whereas
more max-pooling steps seem to destroy too much informa-
tion, leading to rather frayed-looking samples. We conclude
that ”softer” strategies than max-pooling may be required
for sampling with DCGMMs. The corresponding figures for
FashionMNIST are given in Sec. XI and corroborate this view.

E. Sampling: visual model comparison

In this experiment, we perform a visual comparison of
samples generated from DCGMM and the SPN models de-
scribed in Sec. V. SPN models are used in the configurations
given in the literature (see Sec. V) and the best parameters
found by grid-search in Sec. VI-C. Since the configurations in
the literature are tailored to certain datasets, we restrict this
investigation to the MNIST and FashionMNIST datasets. For
DCGMM, we selected DCGMM-F, see Sec. IX, an instance
without max-pooling, since this generally leads to more real-
istic samples, see Sec. VI-D.

Typical samples generated by these instances are shown
in Fig. 6. We observe that the DCGMM samples generally
look smoother and more realistic than SPN-generated ones.
Instances from other DCGMM instances, and the correspond-
ing FashionMNIST samples, are shown in Sec. XII.

F. Sampling: quantitative model comparison

Since visual appearance can be deceptive, this experiment
aims to provide a quantitative comparison of the sampling
capacity of DCGMMs and SPNs, relying on MNIST and
FashionMNIST. We first train a CNN classifier on both
datasets to deliver state-of-the-art accuracy for CNNs (details
in appendix Sec. X). DCGMMs and SPNs are separately
trained on each class in both datasets, and asked to generate
1000 samples from all 10 classes. The quality measure is
the CNN’s classification accuracy on the generated samples.
Results are shown in Tab. IV. We observe that DCGMM
sampling seems to produce samples that more accurately
match the real data than SPN-based models.

Fig. 5. Effects of sharpening on sampling quality. Sampling results from left to right: DCGMM-B (no sharpening), DCGMM-B (sharpening), DCGMM-D
(no sharpening), DCGMM-D (sharpening). The most beneficial effect of sharpening is observed for the shallow DCGMM-B instance.

Fig. 6. Visual comparison of samples between DCGMM-E and several SPN models. Upper row, left to right: DCGMM-F, RAT-SPN, PD-SPN, DGCSPN.

Fig. 7. Sampling on SVHN. Left to right: a) SVHN samples b) VAE c) DCGMM-A d) DCGMM-B. Please note similar performance between b) and d).

G. Sampling for large-scale visual problems: SVHN

Here, we demonstrate that DCGMMs can be trained on
large-scale, complex and high-dimensional visual problems
and generate high-quality samples when compared to SPNs.
To our knowledge, the only attempt to train SPNs on SVHN
is described in [15], where a simplified instance of the Poon-
Domingos (PD) architecture is trained on each of 500 clusters
obtained by k-means treatment of the SVHN data. DCGMM
instances A and B (the latter with the lowest cGMM layer
weight-sharing mode, see Sec. III-C) are separately trained
on each SVHN class, and then used for sampling. When
comparing DCGMM samples to each other and to the PD-
SPN samples shown in [15], we observe that the deeper
DCGMM-B instance generates more diverse images, and that
DCGMM samples do not exhibit the ”stripe” artifacts present
in [15], which are due to non-overlapping scopes in the PD
architecture. DCGMM-B samples even compare favorably to
samples generated by a VAE, see Sec. XI.

H. Inference: variant generation and in-painting

We perform inpainting as a special case of inference (see
Sec. IV-E) on MNIST samples from which the right half was
erased. In-painting has the same complexity as sampling, i.e.,

Fig. 8. Examples of in-painting the erased right half of an image with
different DCGMM instances. Left: DCGMM-A, right: DCGMM-F.

linear in the number of cGMM layers. Results for the shallow
DCGMM-A and the deep DCGMM-F instance are shown in
Fig. 8. We observe that completion fits the original image
better with a deep DCGMM instance. This is natural since
DCGMM-A is essential a vanilla GMM and can just replicate
its limited set of components, with added Gaussian noise. A
deep DCGMM instance, in contrast, exhibits much greater
variability since each cGMM layer adds (guided) randomness
in the choice of the component to sample from.

model MNIST acc. in % FMNIST acc. in %
DCGMM-B 98.0 ± 0.1 89.6 ± 0.2
RAT-SPN 98.19 89.52
DGCSPN 98.66 90.74

TABLE V
CLASSIFICATION ACCURACIES IN % OBTAINED FOR MNIST AND

FASHIONMNIST. FOR RAT-SPNS AND DGCSPNS, MEAN ACCURACY
OVER 5 RUNS IS TAKEN FROM [23].

I. Generative-discriminative learning

An advantage of optimizing independent loss functions
for each layer is the fact that discriminative training of a
top-level classification layer does not influence unsupervised
training in lower layers, since no back-propagation is applied.
Thus, a DCGMM trained to classify MNIST digits will still
be able to sample, in contrast to an SPN that optimizes a
single cross-entropy loss. DCGMM classification accuracies
are comparable if slightly inferior to those obtained using
DGCSPN and RAT-SPN from the literature ([23]), see Tab. V.
To boost DCGMM classification performance, we generally
find it advantageous to use activities of the 2 highest cGMM
layers as input to the classifier layer, not only the highest one.

VII. DISCUSSION AND CONCLUSION

Concerning DCGMMs, the experiments described in this
article allow the following conclusions:
Sample probability This quantity is best expressed by the
topmost cGMM layer of a DCGMM instance, see Sec. VI-B. A
reasonable condition is that all image variables lie in the scope
of this layer. This is an important results since DCGMMs
optimize several loss functions, each of which provides a
different (local) model of the data distribution.
Max-pooling We find that this operation is feasible in DCG-
MMs due to the sharpening procedure (see Sec. VI-D), and
produces good results for outlier detection (see Sec. VI-B).
However, in deep DCGMM instances, the information loss
arising from max-pooling is too severe for good sampling
performance. Here, stepped, overlapping half-convolutions are
found to be a better choice.
Parameter sharing is very effective for reducing the number
of model parameters especially in lower layers, and does not
seem to impair sampling performance (see Sec. VI-G). This
is probably because the local ”visual alphabet” (see Sec. XIII)
is nearly position-invariant in lower layers and thus can be
shared between positions with little loss.
Parameter stability All experiments, regardless of dataset
and classes, were conducted with the same set of DCGMM
hyper-parameters, in particular learning rates, with no adverse
effects. The only exception was the number of cGMM com-
ponents K, which obeys a strict ”the more the better” depen-
dency and is thus easy to select. We see this parameter stability
as an effect of propagating bounded and normalized cGMM
posterior probabilities instead of unbounded and unnormalized
log probabilities as it is done in SPNs.

The principal related work concerning DCGMMs are sum-
product networks (SPNs) and Probabilistic Circuits (PCs)

[15]–[17], [23]. With respect to these works, our experiments
make the following points:

Realistic sampling Although the samples presented in, e.g.,
Sec. VI-D are not as realistic as those produced by, e.g., GANs,
they have a clear edge w.r.t. samples produced by SPNs. This
shows that DCGMMs can capture the overall probability dis-
tribution of image data quite well, and that linking independent
probabilistic descriptions (the cGMM layers) by a deep chain
of hierarchical priors is feasible.

Large-scale visual problems We showed in Sec. VI-G that
simple DCGMMs can be trained on SVHN to generate sam-
ples of higher visual quality than shown in [15] for SPNs. One
may speculate that the fact of having multiple independent
probabilistic models of the data leads to greater expressive
power, while requiring far fewer parameters.

Classification In DCGMMs, classification is achieved by
adding a linear classifier layer at the top of a DCGMM
instance. Due to the modular construction of DCGMMs, the
classifier layer is optimized independently from the cGMM
layers, which permits competitive classification(see Sec. VI-I)
and sampling within the same instance. As reported in [23],
RAT-SPNs and DGC-SPNs can perform competitive classifi-
cation when trained using cross-entropy. However, since such
training affects the whole network, the generative capabilities
like sampling and inference are lost in this case.

Implementation aspects It is difficult to compare SPNs and
DCGMMs in terms of learning and inference speed since it is
not clear what constitutes equivalent models. Due to parameter
sharing in DCGMMs, they generally have significantly less
parameters (see Tab. IV). For models of roughly equal outlier
detection performance, as those compared in Sec. VI-C, we
find that an epoch of DCGMM training is performed roughly 2
times faster, depending on SPN implementation. On the other
hand, SPN training generally converges much faster since EM
is used instead of SGD. As a consequence, SPNs training is
generally faster. The picture changes when taking into account
that online EM training quickly diverges if parameters are
not tuned to a particular task. Here, the parameter stability
of DCGMMs saw to it that only a single learning rate could
be used for all experiments.

VIII. REPRODUCIBILITY STATEMENT

All experiments in this paper are implemented in Python,
based solely on publicly available software packages. No
assumptions about a certain operating system or hardware
configuration are made, although experiments will be
accelerated significantly by GPU support. The software
packages (and how to obtain them) used for SPN experiments
are listed in Sec. XIV. We provide our TensorFlow2-based
implementation of DCGMM as an anonymous repository,
as indicated in Sec. XIV. Instructions how to run key
experiments of this article can be found there as well.

REFERENCES

[1] anonymous citation.
[2] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative

adversarial networks. In International conference on machine learning,
pages 214–223. PMLR, 2017.

[3] C. J. Butz, J. S. Oliveira, A. E. dos Santos, and A. L. Teixeira.
Deep convolutional sum-product networks. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages 3248–3255,
2019.

[4] A. Gepperth and B. Pfülb. Gradient-based training of gaussian mixture
models for high-dimensional streaming data. Neural Processing Letters,
2021.

[5] Z. Ghahramani and G. E. Hinton. The EM Algorithm for Mixtures of
Factor Analyzers. Compute, pages 1–8, 1997.

[6] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets.
Advances in Neural Information Processing Systems, 3(January):2672–
2680, 2014.

[7] P. Jaini, P. Poupart, and Y. Yu. Deep homogeneous mixture models:
Representation, separation, and approximation. In NeurIPS, pages 7136–
7145, 2018.

[8] D. P. Kingma and P. Dhariwal. Glow: generative flow with invertible 1×
1 convolutions. In Proceedings of the 32nd International Conference on
Neural Information Processing Systems, pages 10236–10245, 2018.

[9] A. Klushyn, N. Chen, R. Kurle, B. Cseke, and P. van der Smagt.
Learning hierarchical priors in vaes. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

[10] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2323, 1998.

[11] G. McLachlan and D. Peel. Mixtures of Factor Analyzers. pages 238–
256, jan 2005.

[12] M. Mirza and S. Osindero. Conditional Generative Adversarial Nets.
pages 1–7, 2014.

[13] Y. Netzer and T. Wang. Reading digits in natural images with unsuper-
vised feature learning, 2011.

[14] A. v. d. Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves, and
K. Kavukcuoglu. Conditional image generation with pixelcnn decoders.
arXiv preprint arXiv:1606.05328, 2016.

[15] R. Peharz, S. Lang, A. Vergari, K. Stelzner, A. Molina, M. Trapp,
G. Van den Broeck, K. Kersting, and Z. Ghahramani. Einsum networks:
Fast and scalable learning of tractable probabilistic circuits. In Inter-
national Conference on Machine Learning, pages 7563–7574. PMLR,
2020.

[16] R. Peharz, A. Vergari, K. Stelzner, A. Molina, X. Shao, M. Trapp,
K. Kersting, and Z. Ghahramani. Random sum-product networks:
A simple and effective approach to probabilistic deep learning. In
Uncertainty in Artificial Intelligence, pages 334–344. PMLR, 2020.

[17] H. Poon and P. Domingos. Sum-product networks: A new deep
architecture. In 2011 IEEE International Conference on Computer Vision
Workshops (ICCV Workshops), pages 689–690. IEEE, 2011.

[18] E. Richardson and Y. Weiss. On GANs and GMMs. Advances in Neural
Information Processing Systems, 2018-December(NeurIPS):5847–5858,
2018.

[19] Y. Tang, R. Salakhutdinov, and G. Hinton. Deep mixtures of factor
analysers. Proceedings of the 29th International Conference on Machine
Learning, ICML 2012, 1:505–512, 2012.

[20] M. S. Tanveer, M. U. K. Khan, and C.-M. Kyung. Fine-tuning darts for
image classification. In 2020 25th International Conference on Pattern
Recognition (ICPR), pages 4789–4796. IEEE, 2021.

[21] A. Van Den Oord and B. Schrauwen. Factoring variations in natural
images with deep Gaussian mixture models. Advances in Neural
Information Processing Systems, 4(January):3518–3526, 2014.

[22] C. Viroli and G. J. McLachlan. Deep Gaussian mixture models. Statistics
and Computing, 29(1):43–51, 2019.

[23] J. Wolfshaar and A. Pronobis. Deep generalized convolutional sum-
product networks. In International Conference on Probabilistic Graph-
ical Models, pages 533–544. PMLR, 2020.

[24] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: a Novel Image
Dataset for Benchmarking Machine Learning Algorithms. pages 1–6,
2017.

IX. APPENDIX A: DCGMM ARCHITECTURES

Precise layer configurations of the various DCGMM in-
stances used in this article are given in Tab. VI. As a rule,
cGMM components were chosen as high as possible while
respecting memory constraints during training. All cGMM
layers are assumed to use parameter sharing, otherwise the
number of trainable parameters will be higher. We observe
that the number of trainable parameters actually decreases as
more cGMM layers are added. As with CNNs, this is because
the number of parameters mainly scales with the filter size of
folding layers, which can be kept small in deep architectures.

ID Configuration parameters
A F(28,1)-(49) 38416
B F(8,2)-G(49)-F(11,1)-G(49) 293657
C F(8,1)-G(49)-P(2,2)-G(49) 243236
D F(3,1)-G(25)-P(2,2)-F(4,1)-G(25)-P(2,2)-F(5,5)-G(49) 40850
E F(3,1)-G(25)-F(4,2)-G(25)-F(12,1)-G(49) 186625
F F(3,1)-G(25)-F(4,2)-G(25)-F(4,2)-G(25)-F(5,1)-G(49) 50850
G F(3,1)-G(25)-P(2,2)-F(3,1)-G(25)-P(2,2)-F(3,1)-. . .

. . .G(25)-P(2,2)-F(2,1)-G(49) 16375
TABLE VI

OVERVIEW OF DCGMM CONFIGURATIONS USED IN THE EXPERIMENTS.
LAYER TYPES ARE F (HALF-CONVOLUTION LAYER), G (CGMM LAYER)

AND P(MAX-POOLING LAYER). OPTIONALLY, A LINEAR CLASSIFIER
LAYER CAN BE ADDED AT THE TOP OF EACH INSTANCE FOR CONDITIONAL

SAMPLING.

X. APPENDIX B: CNN FOR MEASURING CONDITIONAL
SAMPLING

The CNN classifier used in Sec. VI-F has a layer structure
as given in Tab. VII. It is implemented in TensorFlow2/Keras
and trained for 15 Epochs on either MNIST or FashionMNIST,
using an Adam optimizer, a learning rate of 0.01 and a
batch size of 100. For MNIST, this is sufficient for state-of-
the-art performance (> 99%), whereas for FashionMNIST, a
performance of roughly 91% can be reached. While this is
inferior to the performance obtained by more refined models
(e.g., [20]), we accept it here for simplicity, and also because
the CNN classifier is just a tool to detect differences in the
distributions of real and generated samples.

Type Kernel Prob. channels/neurons
Dropout 0.1

Conv/ReLU 3 64
Conv/ReLU 3 64

Pooling 2
Conv/ReLU 3 64

Pooling 2
Conv/ReLU 3 64

Pooling 2
Dense/ReLU 350

Dropout 0.1
Dense/ReLU 350
Dense/ReLU 350

Dense/Softmax 10
TABLE VII

HYPER-PARAMETERS OF THE CNN USED FOR ASSESSING SAMPLING
PERFORMANCE.

XI. APPENDIX C: DCGMM SHARPENING FOR
FASHIONMNIST

Sharpening behaves similarly for the FashionMNIST dataset
as it was found for MNIST in Sec. VI-D. Namely, the shal-
lower DCGMM-B instance profits strongly from a sharpening
through a single max-pooling layer, but sees deterioration
of sampling performance when more max-pooling layers are
involved, as in instance DCGMM-D. Fig. 9 shows this quite
nicely.

APPENDIX D: MORE DETAILS ON OUTLIER DETECTION

Outlier detection in quantified using a ROC-like curve,
plotting kept inliers against rejected outliers while varying
the separation threshold that is applied to the log-likelihoods.
Typical examples of such curves are shown in Fig. 10.

APPENDIX E: VARIATIONAL AUTOENCODER DETAILS

Table Tab. VIII gives details about the convolutional VAE
used to generate SVHN samples. It was trained for 100 epochs
on all SVHN classes using the Adam optimizer and a learning
rate of 0.0001.

Type Kernel Stride channels/size
Encoder

Conv/ReLU 3 1 64
Conv/ReLU 3 2 128
Conv/ReLU 3 2 256
Conv/ReLU 2 2 512

Flatten - - 4096
Dense 2*64

Decoder
Dense/ReLU 4*4*128

Reshape 4,4,128
Conv2DT /ReLU 4 1 1024
Conv2DT /ReLU 5 1 512
Conv2DT /ReLU 4 2 256
Conv2DT /ReLU 5 1 128
Conv2DT /ReLU 3 1 128
Conv2DT /ReLU 3 1 3

TABLE VIII
HYPER-PARAMETERS OF THE VAE USED FOR SVHN SAMPLING.

XII. APPENDIX F: ADDITIONAL SAMPLING RESULTS

. This appendix gives MNIST sampling results in a more
complete fashion, that is, including more DCGMM instances,
in Fig. 11. Fig. 12 gives samples from the same DCGMM
instances for FashionMNIST, whereas Fig. 13 shows Fashion-
MNIST samples generated by SPNs.

XIII. APPENDIX G: VISUAL ALPHABET

The lower cGMM layers of a cGMM instance usually
model small image patches extracted by a preceding folding
layer. With parameter sharing enabled, the cGMM therefore
describes all positions within an image using a single set
of parameters. This makes the most sense for low-hierarchy
layers, since local image content tends to be similar across
image at small patch sizes. The cGMM prototypes there form
a kind of ”visual alphabet”, a set of centroids that, together,
best describe local image content. We exemplarily show this

Fig. 9. Effects of sharpening for two different DCGMM instances. From left to right: DCGMM-B(no sharpening), DCGMM-B(sharpening), DCGMM-D(no
sharpening), DCGMM-D (sharpening).

Fig. 10. ROC-like curves for outlier detection on MNIST. Left: DCGMM-A (MNIST), middle: DCGMM-E (MNIST), right: DCGMM-A(FashionMNIST).
The area under these curves is taken to be a measure of outlier detection capacity.

Fig. 11. Samples from several DCGMM instances for MNIST. Upper
row: DCGMM-A(left), DCGMM-B(right). Lower row: DCGMM-E(left),
DCGMM-F(right).

for MNIST and FashionMNIST by visualizing the centroids
of the lowest cGMM layer in instance DCGMM-B, which
models 8x8 image patches. We observe in Fig. 14 that the basic
building blocks of both datasets are faithfully represented.

XIV. APPENDIX H: USED LIBRARIES

For implementing RAT-SPN and PD-SPN, we made
use of the public code provided under https://github.

Fig. 12. Samples from several DCGMM instances for FashionMNIST. Upper
row: DCGMM-A (left), DCGMM-B (right). Lower row: DCGMM-E (left),
DCGMM-F (right).

com/cambridge-mlg/EinsumNetworks which relies mainly
on PyTorch. DGCSPNs are implemented using libspn-
keras which TensorFlow2-based and can be obtained from
https://github.com/pronobis/libspn-keras. VAEs and CNNs
are self-implemented in TensorFlow2/Keras. TensorFlow2-
Code for DCGMM can be found under https://github.com/
anon-scientist/iclr22-submission.

https://github.com/cambridge-mlg/EinsumNetworks
https://github.com/cambridge-mlg/EinsumNetworks
https://github.com/pronobis/libspn-keras
https://github.com/anon-scientist/iclr22-submission
https://github.com/anon-scientist/iclr22-submission

Fig. 13. SPN samples for FashionMNIST. From left to right: RAT-SPN, PD-SPN, DGCSPN.

Fig. 14. Visualization of centroids in the lowest cGMM layer of DCGMM-B.
Left: training on MNIST, right: training on FashionMNIST.

	Introduction
	DCGMM: Model overview and salient points
	Related Work
	Objective, Contribution and Novelty

	Datasets
	Methods: Deep convolutional Gaussian Mixture Models
	Review of GMMs
	DCGMM basics
	Convolutional Gaussian Mixture Layer
	Max-Pooling Layer
	Folding Layer
	Classification Layer

	Architecture-Level DCGMM functionalities
	End-to-end DCGMM training
	Density estimation and outlier detection
	Sampling and sharpening
	Conditional sampling
	Inference for variant generation and in-painting

	Methods: models and parameters
	Experiments
	DCGMM training dynamics
	DCGMM outlier detection experiments
	Outlier detection: model comparison
	Demonstrations of DCGMM sampling and sharpening
	Sampling: visual model comparison
	Sampling: quantitative model comparison
	Sampling for large-scale visual problems: SVHN
	Inference: variant generation and in-painting
	Generative-discriminative learning

	Discussion and conclusion
	Reproducibility statement
	References
	Appendix A: DCGMM architectures
	Appendix B: CNN for measuring conditional sampling
	Appendix C: DCGMM sharpening for FashionMNIST
	Appendix F: Additional sampling results
	Appendix G: Visual alphabet
	Appendix H: Used libraries

