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ABSTRACT

Common Stochastic Gradient MCMC methods approximate gradients by stochas-
tic ones via uniformly subsampled data points. A non-uniform subsampling
scheme, however, can reduce the variance introduced by the stochastic approx-
imation and make the sampling of a target distribution more accurate. For this
purpose, an exponentially weighted stochastic gradient approach (EWSG) is de-
veloped to match the transition kernel of a non-uniform-SG-MCMC method with
that of a batch-gradient-MCMC method. If needed to be put in the importance
sampling (IS) category, EWSG can be viewed as a way to extend the IS+SG ap-
proach successful for optimization to the sampling setup. EWSG works for a
range of MCMC methods, and a demonstration on Stochastic-Gradient 2nd-order
Langevin is provided. In our practical implementation of EWSG, the non-uniform
subsampling is performed efficiently via a Metropolis-Hasting chain on the data
index, which is coupled to the sampling algorithm. The fact that our method has
reduced local variance with high probability is theoretically analyzed. A non-
asymptotic global error analysis is also presented. As a practical implementation
contains hyperparameters, numerical experiments based on both synthetic and real
world data sets are provided, to both demonstrate the empirical performances and
recommend hyperparameter choices. Notably, while statistical accuracy has im-
proved, the speed of convergence, with appropriately chosen hyper-parameters,
was empirically observed to be at least comparable to the uniform version, which
renders EWSG a practically useful alternative to common variance reduction treat-
ments.

1 INTRODUCTION

Many MCMC methods use physics-inspired evolution such as Langevin dynamics (Brooks et al.,
2011) to utilize gradient information for exploring posterior distributions over continuous parameter
space efficiently. However, gradient-based MCMC methods are often limited by the computational
cost of computing the gradient on large data sets. Motivated by the great success of stochastic
gradient methods for optimization, stochastic gradient MCMC methods (SG-MCMC) for sampling
have also been gaining increasing attention. When the accurate but expensive-to-evaluate batch
gradients in a MCMC method are replaced by computationally cheaper estimates based on a subset
of the data, the method is turned to a stochastic gradient version. Classical examples include SG
(overdamped) Langevin Dynamics (Welling & Teh, 2011) and SG Hamiltonian Monte Carlo (Chen
et al., 2014), all of which were designed for scalability suitable for machine learning tasks.

However, directly replacing the batch gradient by a (uniform) stochastic one without additional
mitigation will generally cause a MCMC method to sample from a statistical distribution different
from the target, because the transition kernel of the MCMC method gets corrupted by the noise of
subsampled gradient. In general, the additional noise is tolerable if the learning rate/step size is
tiny or decreasing. However, when large steps are used for better efficiency, the extra noise is non-
negligible and undermines the performance of downstream applications such as Bayesian inference.

In this paper, we present a state-dependent non-uniform SG-MCMC algorithm termed Exponen-
tially Weighted Stochastic Gradients method (EWSG), which continues the efforts of uniform SG-
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MCMC methods for better scalability. Our approach is based on designing the transition kernel of
a SG-MCMC method to match the transition kernel of a full-gradient-based MCMC method. This
matching leads to non-uniform (in fact, exponential) weights that aim at capturing the entire state-
variable distribution of the full-gradient-based MCMC method, rather than just providing unbiased
gradient estimator or reducing its variance. When focusing on the variance, the advantage of EWSG
is the following: recall the stochasticity of a SG-MCMC method can be decomposed into the intrin-
sic randomness of MCMC and the randomness introduced by gradient subsampling; in conventional
uniform subsampling treatments, the latter randomness is independent of the former, and thus when
they are coupled together, variances add up; EWSG, on the other hand, dynamically chooses the
weight of each datum according to the current state of the MCMC, and thus the variances do not add
up due to dependence. However, the gained accuracy is beyond reduced variance, as EWSG, when
converged, samples from a distribution close to the invariant distribution of the full-gradient MCMC
method (which has no variance of the 2nd type), because its transition kernel (of the corresponding
Markov process) is close to that of the full-gradient-MCMC method. This is how better sampling
accuracy can be achieved.

Our main demonstration of EWSG is based on 2nd-order Langevin equations (a.k.a. inertial, kinetic,
or underdamped Langevin), although it works for other MCMC methods too (e.g., Sec.F,G). To
concentrate on the role of non-uniform SG weights, we will work with constant step sizes only. The
fact that EWSG has locally reduced variance than its uniform counterpart is rigorously shown in
Theorem 3, and a global non-asymptotic analysis of EWSG is given in Theorem 4 to quantify its
convergence properties and demonstrate the advantage over its uniform SG counterpart.

A number of experiments on synthetic and real world data sets, across downstream tasks including
Bayesian logistic regression and Bayesian neural networks, are conducted to validate our theoretical
results and demonstrate the effectiveness of EWSG. In addition to improved accuracy, the conver-
gence speed was empirically observed, in a fair comparison setup based on the same data pass, to be
comparable to its uniform counterpart when hyper-parameters are appropriately chosen. The con-
vergence (per data pass) was also seen to be clearly faster than a classical Variance Reduction (VR)
approach (note: for sampling, not optimization), and EWSG hence provides a useful alternative to
VR. Additional theoretical investigation of EWSG convergence speed is provided in Sec. I.

Terminology-wise, ∇V will be called the full/batch-gradient, n∇VI with random I will be
called stochastic gradient (SG), and when I is uniform distributed it will be called a uniform
SG/subsampling, otherwise non-uniform. When uniform SG is used to approximate the batch-
gradient in underdamped Langevin, the method will be referred to as (vanilla) stochastic gradient
underdamped Langevin dynamics (SGULD/SGHMC)1, and it serves as a baseline in experiments.

2 RELATED WORK

Stochastic Gradient MCMC Methods Since the seminal work of SGLD (Welling & Teh, 2011),
much progress (Ahn et al., 2012; Patterson & Teh, 2013) has been made in the field of SG-MCMC.
Teh et al. (2016) theoretically justified the convergence of SGLD and offered practical guidance on
tuning step size. Li et al. (2016) introduced a preconditioner and improved stability of SGLD. We
also refer to Maclaurin & Adams (2015) and Fu & Zhang (2017) which will be discussed in Sec.5.
While these work were mostly based on 1st-order (overdamped) Langevin, other dynamics were
considered too. For instance, Chen et al. (2014) proposed SGHMC, which is closely related to 2nd-
order Langevin dynamics (Bou-Rabee & Sanz-Serna, 2018; Bou-Rabee et al., 2018), and Ma et al.
(2015) put it in a more general framework. 2nd-order Langevin was recently shown to be faster than
the 1st-order version in appropriate setups (Cheng et al., 2018b;a) and began to gain more attention.

Variance Reduction For optimization, vanilla SG methods usually find approximate solutions
quickly but the convergence slows down when an accurate solution is needed (Bach, 2013; Johnson
& Zhang, 2013). SAG (Schmidt et al., 2017) improved the convergence speed of stochastic gradient
methods to linear, which is the same as gradient descent methods with full gradient, at the expense of
large memory overhead. SVRG (Johnson & Zhang, 2013) successfully reduced this memory over-
head. SAGA (Defazio et al., 2014) furthers improved convergence speed over SAG and SVRG. For

1SGULD is the same as the well-known SGHMC with B̂ = 0, see (Chen et al., 2014, Eq (13) and section
3.3) for details. To be consistent with existing literature, we will refer SGULD as SGHMC in the sequel.
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sampling, Dubey et al. (2016) applied VR techniques to SGLD (see also (Baker et al., 2019; Chat-
terji et al., 2018)). However, many VR methods have large memory overhead and/or periodically
use the whole data set for gradient estimation calibration, and hence can be resource-demanding.

EWSG is derived based on matching transition kernels of MCMC and improves the accuracy of the
entire distribution rather than just the variance. However, it does have a consequence of variance
reduction and thus can be implicitly regarded as a VR method. When compared to the classic work
on VR for SG-MCMC (Dubey et al., 2016), EWSG converges faster when the same amount of data
pass is used, although its sampling accuracy is below that of VR for Gaussian targets (but well above
vanilla SG; Sec.5.1). In this sense, EWSG and VR suit different application domains: EWSG can
replace vanilla SG for tasks in which the priority is speed and then accuracy, as it keeps the speed
but improves the accuracy; on the other hand, VR remains to be the heavy weapon for accuracy-
demanding scenarios. Importantly, EWSG, as a generic way to improve SG-MCMC methods, can
be combined with VR too (e.g., Sec.G); thus, they are not exclusive or competitors.

Importance Sampling (IS) IS employs nonuniform weights to improve SG methods for opti-
mization. Traditional IS uses fixes weights that do not change along iterations, and the weight com-
putation requires prior information of gradient terms, e.g., Lipschitz constants of gradient (Needell
et al., 2014; Schmidt et al., 2015; Csiba & Richtárik, 2018), which are usually unknown or diffi-
cult to estimate. Adaptive IS was also proposed in which the importance was re-evaluated at each
iteration, whose computation usually required the entire data set per iteration and may also require
information like the upper bound of gradient (Zhao & Zhang, 2015; Zhu, 2016).

For sampling, it is not easy to combine IS with SG (Fu & Zhang, 2017); the same paper is, to our
knowledge, the closest to this goal and will be compared with in Sec.5.3. EWSG can be viewed as a
way to combine (adaptive) IS with SG for efficient sampling. It require no oracle about the gradient,
nor any evaluation over the full data set. Instead, an inner-loop Metropolis chain maintains a random
index that approximates a state-dependent non-uniform distribution (i.e. the weights/importance).

3 UNDERDAMPED LANGEVIN: THE BACKGROUND OF A MCMC METHOD

Underdamped Langevin Dynamics (ULD) is
{
dθ = rdt

dr = −(∇V (θ) + γr)dt+ σdW
(1)

where θ, r ∈ Rd are state and momentum variables, V is a potential energy function which
in our context (originated from cost minimization or Bayesian inference over many data) is the
sum of many terms V (θ) =

∑n
i=1 Vi(θ), γ is a friction coefficient, σ is intrinsic noise ampli-

tude, and W is a standard d-dimensional Wiener process. Under mild assumptions on the po-
tential V (Pavliotis, 2014), Langevin dynamics admits a unique invariant distribution π(θ, r) ∼
exp

(
− 1
T (V (θ) + ‖r‖2

2 )
)

and is in many cases geometric ergodic. T is the temperature of system

determined via the fluctuation dissipation theorem σ2 = 2γT (Kubo, 1966).

The main reason for considering ULD rather than overdamped one is that ULD can converge faster
than overdamped Langevin, in particular in high-dimension space (e.g.,Cheng et al. (2018b;a); Tao
& Ohsawa (2020)). Like the overdamped version, numerical integrators for ULD with well captured
statistical properties of the continuous process have been extensively investigated (e.g, Roberts et al.
(1996); Bou-Rabee & Owhadi (2010)), and both the overdamped and underdamped integrators are
friendly to derivations that will allow us to obtain explicit expressions of the non-uniform weights.

4 MAIN WORK

4.1 AN ILLUSTRATION OF NON-OPTIMALITY OF UNIFORM SUBSAMPLING

In many applications, cases where data size n is larger than dimension d are not uncommon. In such
cases, {∇Vi}i=1,2,··· ,n ⊂ Rd are linearly dependent and hence it is likely that there exist probability
distributions {pi}i=1,2,··· ,n other than the uniform one such that the gradient estimate is unbiased.
This opens up the door to develop non-uniform subsampling schemes (weights may be θ dependent),
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which can help reduce introduced additional variance while maintaining unbiasedness. In fact, in a
reasonable setup, it turns out an optimal way of subsampling gradients, is far from being uniform:

Theorem 1 Suppose given θ ∈ Rd, the errors of SG approximation bi = n∇Vi(θ)−∇V (θ), 1 ≤
i ≤ n are i.i.d. absolutely continuous random vectors with possibly-θ-dependent density p(x|θ).
Define p ∈ Rn as a sparse vector if the number of non-zero entries in p is no greater than d + 1.
Then with probability 1, the optimal probability distribution p? that is unbiased and minimizes the
trace of the covariance of n∇VI(θ), i.e. p? which solves the following, is a sparse vector.

min
p

Tr(EI∼p[bIb
T
I ]) s.t. EI∼p[bI ] = 0, (2)

Despite the sparsity of p?, which seemingly suggests one only needs at most d+1 gradient terms per
iteration when using SG methods, it is not practical because p? requires solving the linear program-
ming problem (2) in Theorem 1, for which an entire data pass is needed. Nevertheless, this result
shows uniform SG can be far from optimal and motivates us to propose an exponentially weighted
stochastic gradient method, which has reduced local variance with high probability and at the same
time remains efficiently implementable without necessarily using all the data per parameter update.

4.2 EXPONENTIALLY WEIGHTED STOCHASTIC GRADIENT

MCMC methods or Markov processes in general are characterized by their transition kernels. In
traditional SG-MCMC methods, uniform SG is used, which is completely independent of the in-
trinsic randomness of MCMC methods (e.g. diffusion in ULD), as a result, the transition kernel of
SG-MCMC method can be quite different from that with full gradient. Therefore, it is natural to ask
- is it possible to couple these two originally independent randomness so that the transition kernels
can be better matched and the sampling accuracy can be hence improved?

Consider Euler-Maruyama (EM) discretization2 of Equation (1):{
θk+1 = θk + rkh

rk+1 = rk − (∇V (θk) + γrk)h+ σ
√
hξk+1

(3)

where h is step size and ξk+1’s are i.i.d. d-dimensional standard Gaussian random variables. De-
note the transition kernel of EM discretization with full gradient by PEM (θk+1, rk+1|θk, rk). If
∇V (θk) is replaced by a weighted SG n∇VIk(θk), where Ik is the index chosen to approximate full
gradient and has p.m.f P(Ik = i) = pi, denote the transition kernel by P̃EM (θk+1, rk+1|θk, rk).
It turns out that we can choose pi smartly to match the two transition kernels:

Theorem 2 Denote x = rk+1−rk+hγrk
σ
√
h

and ai =
√
h∇Vi(θk)

σ . If we set

pi = Ẑ−1 exp

{
−
‖x+

∑n
j=1 aj‖2

2
+
‖x+ nai‖2

2

}
(4)

where Ẑ is a normalization constant, then the two transition kernels are identical, i.e.,

P̃EM (θk+1, rk+1|θk, rk) = PEM (θk+1, rk+1|θk, rk)

We refer to this choice of pi Exponentially Weighted Stochastic Gradient (EWSG). Note the idea of
designing non-uniform weights of SG-MCMC to match the transition kernel of full gradient can be
suitably applied to a wide class of gradient-based MCMC methods; for example, Sec.F shows how
EWSG can be applied to Langevin Monte Carlo (overdamped Langevin), and Sec.G shows how it
can be combined with VR. Therefore, EWSG complements a wide range of SG-MCMC methods.

Thm.2 establishes the advantage of EWSG over vanilla SG, as this ideal version reproduces the dis-
tribution of a full-gradient MCMC method. As a special but commonly interested accuracy measure,
the smaller variance of EWSG is now shown with high probability3:

2EM is not the most accurate or robust discretization, see e.g., (Roberts et al., 1996; Bou-Rabee & Owhadi,
2010), but since it may still be the most used method, demonstrations in this article will be based on EM. The
same idea of EWSG can easily apply to most other discretizations such as GLA (Bou-Rabee & Owhadi, 2010).

3‘With high probability’ but not almost surely because Thm.3 is not tight as it can handle more general
weights, including not only the ideal EWSG weights (4) but also their appropriate approximations.

4



Under review as a conference paper at ICLR 2021

Theorem 3 Assume {∇Vi(θ)}i=1,2,··· ,n are i.i.d random vectors and |∇Vi(θ)| ≤ R for some
constant R almost surely. Denote the uniform distribution over [n] by pU , the exponentially
weighted distribution by pE , and let ∆ = Tr[covI∼pE [n∇VI(θ)|θ] − covI∼pU [n∇VI(θ)|θ]]. If
x = O(

√
h), we have E[∆] < 0, and ∃C > 0 independent of n or h such that for any ε > 0,

P(|∆− E[∆]| ≥ ε) ≤ 2 exp
(
− ε2

nCh2

)
.

It is not surprising that less non-intrinsic local variance correlates with better global statistical accu-
racy, which will be made explicit and rigorous in Section 4.4.

4.3 PRACTICAL IMPLEMENTATION

In EWSG, the probability of each gradient term is pi = Ẑ−1 exp

{
−‖x+

∑n
j=1 aj‖2

2 + ‖x+nai‖2
2

}
.

Although the term ‖x +
∑n
j=1 aj‖2/2 depends on the full data set, it is shared by all pi’s and can

be absorbed into the normalization constant Ẑ−1 (we still included it explicitly due to the needs of
analyses in proofs); unique to each pi is only the term ‖x + nai‖2/2. This motivates us to run
a Metropolis-Hasting chain over the possible indices i ∈ {1, 2 · · · , n}: at each inner-loop step, a
proposal of index j is uniformly drawn, and then accepted with probability

P (i→ j) = min

{
1, exp

(
‖x+ naj‖2

2
− ‖x+ nai‖2

2

)}
; (5)

if accepted, the current index i will be replaced by j. When the chain converges, the index will
follow the distribution given by pi. The advantage is, we avoid passing through the entire data sets
to compute each pi, but yet the index will still sample from the non-uniform distribution efficiently.

In practice, we often only perform M = 1 step of the Metropolis index chain per integration step,
especially if h is not too large. The rationale is, when h is small, the outer iteration evolves slower
than the index chain, and as θ does not change much in, say, N outer steps, effectively N ×M
inner steps take place on almost the same index chain, which makes the index r.v. equilibrate better.
Regarding the larger h case (where the efficacy of local variance reduction via non-uniform sub-
sampling is more pronounced; see e.g., Thm.4), M = 1 may no longer be the optimal choice, but
improved sampling with large h and M = 1 is still clearly observed in various experiments (Sec.5).

Another hyper-parameter is x, because pi essentially depends on the future state θk+1 via x, which
we do not know, and yet we’d like to avoid expensive nonlinear solves. Therefore, in our experi-
ments, we choose x =

√
hγrk
σ . That corresponds to a deterministic maximum likelihood estimation

of rk+1 = rk, which is a sufficient (but not necessary) condition for mimicking the statistical equi-
librium at which rk+1 and rk are equal in distribution. This approximation turned out to be a good
one in all our experiments with medium h and M = 1. Because it is only an approximation, when
h is large, the method still introduces extra variance (smaller than that caused by vanilla stochastic
gradient variant, though), and larger M may actually decrease the accuracy of sampling.

Sec.5.1 further investigates hyperparameters and if they affect our non-asymptotic theory in Sec.4.4.

EWSG algorithm is summarized in Algorithm 1. For simplicity of notation, we restrict the descrip-
tion to mini batch size b = 1, but an extension to b > 1 is straightforward. See Sec. E in appendix.
EWSG has reduced variance but does not completely eliminate the nonintrinsic noise created by
stochastic gradient due to these approximations. A small bias was also created by these approxima-
tions, but its effect is dominated by the variance effect (see Sec.4.4). In practice, if needed, one can
combine EWSG with other variance reduction technique to further improve accuracy. We showcase
how EWSG can be combined with SVRG in Sec.G of appendix.

4.4 NON-ASYMPTOTIC ERROR BOUND

The generator L of diffusion process (1) is L = (rT∇θ − (γr +∇V (θ))T∇r + γ∆r). Let X =

(θT , rT )T ∈ R2d. Given a test function φ(x), its posterior average is φ̄ =
∫
φ(x)π(x)dx, and we

approximate it by time average of samples φ̂K = 1
K

∑K
k=1 φ(XE

k ), where XE
k is the sample path

given by EM integrator. A useful tool in weak convergence analysis for SG-MCMC is the Poisson
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Algorithm 1 EWSG

Input: {the number of data terms n, gradient functions Vi(·), i = 1, 2, · · · , n, step size h, the
number of data passes K, index chain length M , friction and noise coefficients γ and σ}
Initialize θ0, r0 (arbitrarily, or use an informed guess)
for k = 0, 1, · · · , d KnM+1e do
i← uniformly sampled from 1, · · · , n, compute and store n∇Vi(θk)
I ← i
for m = 1, 2, · · · ,M do
j ← uniformly sampled from 1, · · · , n, compute and store n∇Vj(θk)
I ← j with probability in Equation 5

end for
Evaluate Ṽ (θk) = nVI(θk)

Update (θk+1, rk+1)← (θk, rk) via one step of Euler-Maruyama integration using Ṽ (θk)
end for

equation Lψ = φ− φ̄ (Mattingly et al., 2010; Vollmer et al., 2016; Chen et al., 2015). The solution
ψ characterizes the difference between test function φ and its posterior average φ̄.

We now bound the error (in mean square distance between arbitrary test observables) for SG under-
damped Langevin algorithms (the bound applies to both EWSG and other methods e.g., SGHMC):

Theorem 4 Assume E[‖∇Vi(θEk )‖l] < M1,E[‖rEk ‖l] < M2,∀l = 1, 2, · · · , 12,∀i = 1, 2, · · · , n
and ∀k ≥ 0. Assume the Poisson equation solution ψ and up to its 3rd-order derivatives are
uniformly bounded ‖Dlψ‖∞ < M3, l = 0, 1, 2, 3. Then ∃ constant C = C(M1,M2) > 0, s.t.

E
(
φ̂K − φ̄

)2 ≤ C( 1

T
+
h

T

∑K−1
k=0 E[Tr[cov(n∇VIk |Fk)]]

K
+ h2

)
(6)

where T = Kh is the corresponding time in the underlying continuous dynamics, Ik is the index
of the datum used to estimate gradient at k-th iteration, and cov(n∇VIk |Fk) is the covariance of
stochastic gradient at k-th iteration conditioned on the current sigma algebra Fk in the filtration.

Remark: Mattingly et al. (2010) only discusses the batch gradient case, whereas our theory has
additional (non-uniform) stochastic gradient. Vollmer et al. (2016); Chen et al. (2015) studied the
effect of stochastic gradient, but the SG considered there did not use state-dependent weights, which
would destroy several martingales used in their proofs. In addition, our result incorporates the effects
of both local bias and local variance of a SG approximation. Unlike in Mattingly et al. (2010) but like
in Vollmer et al. (2016); Chen et al. (2015), our state space is not the compact torus but Rd. The time
average φ̂K , to which our results apply, is a commonly used estimator, particularly when simulating
a single Markov chain. Techniques in Cheng et al. (2018b); Dalalyan & Karagulyan (2017) might
be useful to further bound difference between the law ofXk and the target distribution π.

Variance and bias of the SG approximation were reflected in the 2nd and 3rd term in the above
bound, although the 3rd term also contains a contribution from the numerical integration error. Note
the 2nd term is generally larger than the 3rd due to its lower order in h, which means reducing local
variance can improve sampling accuracy even if at the cost of introducing a small bias. Since EWSG
has a smaller local variance than uniform SG (Thm.3, as a special case of improved overall statistical
accuracy), its global performance is also favorable.

5 EXPERIMENTS

In this section, the proposed EWSG algorithm will be compared with SGHMC, SGLD (Welling &
Teh, 2011), as well as several recent popular SG-MCMC methods, including FlyMC (Maclaurin &
Adams, 2015), pSGLD (Li et al., 2016), CP-SGHMC (Fu & Zhang, 2017) (closest method to IS
for sampling by SG-MCMC) and SVRG-LD (Dubey et al., 2016) (overdamped Langevin improved
by VR). Sec. 5.1 is a detailed empirical study of EWSG on simple models, with comparison and
implication of two important hyper-parameters M and x, and verification of the non-asymptotic
theory (Thm.4). Sec. 5.2 demonstrates the effectiveness of EWSG for Bayesian logistic regression
on a large-scale data set. Sec. 5.3 shows the performance of EWSG on Bayesin Neural Network
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(BNN) model. BNN only serves as a high-dimensional, multi-modal test case and we do not intend
to compare Bayesian against non-Bayesian neural nets. As FlyMC requires a tight lower bound of
likelihood, known for only a few cases, it will only be compared against in Sec. 5.2 where such
a bound is obtainable. CP-SGHMC requires heavy tuning on the number of clusters which differs
across data sets/algorithms, so it will only be included in the BNN example, for which the authors
empirically found a good hyper parameter for MNIST (Fu & Zhang, 2017). SVRG-LD is only
compared in Sec. 5.1, because SG-MCMC methods converge in one data pass in Sec. 5.2, rendering
control-variate based VR technique inapplicable, and it was suggested that VR leads to poor results
for deep models (e.g., Sec.5.3) (Defazio & Bottou, 2019)

For fair comparison, all algorithms use constant step sizes and are allowed fixed computation budget,
i.e., for L data passes, all algorithms are only allowed to call gradient function nL times. All experi-
ments are conducted on a machine with a 2.20GHz Intel(R) Xeon(R) E5-2630 v4 CPU and an Nvidia
GeForce GTX 1080 GPU. If not otherwise mentioned, σ =

√
2γ so only γ needs specification, the

length of the index chain is set M = 1 for EWSG and the default values of two hyper-parameters
required in pSGLD are set λ = 10−5 and α = 0.99, as suggested in Li et al. (2016).

5.1 GAUSSIAN EXAMPLES

Consider sampling from a simple 2D Gaussian whose potential function is V (θ) =
∑n
i=1 Vi(θ) =∑n

i=1
1
2‖θ−ci‖

2. We set n = 20 and randomly sample ci from a two-dimensional standard normal
N (0, I2). Due to the simplicity of V (θ), we can write the target density analytically and will use
KL divergence to measure the difference between the target distribution and generated samples.

For each algorithm, we generate 10000 independent realizations for empirical estimation. All
algorithms are run for 30 data passes with minibatch size of 1. Step size is tuned from 5 ×
{10−1, 10−2, 10−3, 10−4} and 5 × 10−3 is chosen for SGLD and pSGLD, 5 × 10−2 for SGHMC
and EWSG and 5 × 10−4 for SVRG-LD. SGHMC and EWSG use γ = 10. Results are shown in
Fig. 1a and EWSG outperforms SGHMC, SGLD and pSGLD in terms of accuracy. Note SVRG-LD
has the best accuracy4 but the slowest convergence, and that is why EWSG is a useful alternative to
VR: its light-weight suits situations with limited computational resources better.

When simulating a gradient-based Markov chain, large step size generally reduces autocorrelation
time5, yet leads to large discretization error. Figure 1b shows at the same autocorrelation time,
EWSG achieves smaller error than SGHMC, which demonstrates the effectiveness of EWSG.

Figure 1c shows the performance of several possible choices of the hyper-parameter x, including
the proposed option x =

√
hγrk/σ, x = 0, x = 1 and x = (−1 + hγ)rk/σ

√
h (corresponds

to setting rk+1 = 0). The result shows that the proposed option performs significantly better than
other alternatives and we suggest to use it by default.

Another important hyper-parameter in EWSG is M . As the length of index chain M increases, the
distribution approaches the distribution given by Equation (4), which by Theorem 4 introduces some
bias but also reduces variance. The tradeoff is clearly manifested in Figure 1d and 1e. M , regarded
as a hyper-parameter, controls this tradeoff and generally requires tuning to determine the best value.

The optimal value of M depends on the number of minibatches n
b . Large n

b implies each minibatch
is relatively small, and suggests large variance in stochastic gradient estimation of each minibatch
and hence a strong need to reduce variance, see the illustration in Figure 1i. For example, if we
increase the number of data in Gaussian example to n = 50 or 100 and keep mini batch size b = 1,
M that gives the best final accuracy increases to 19 in Figure 1g and 1h. In our experiments, we
empirically observe the choice M = 1 usually gives reasonably good performance and we fix it as
the default choice. See Sec. H.3 for additional experiments on tuning M and the batch size.

In Figure 1a, we see EWSG converges slightly slower than uniform SG. This is because in each iter-
ation, EWSG consumes M + 1 times the data used by uniform SG, and hence in a fair comparison
with fixed computation budget, EWSG runs M times iterations fewer than uniform SG. However,
EWSG can still achieve comparable speed of convergence with appropriately chosen hyper parame-

4For Gaussians, mean and variance completely determine the distribution, so appropriately reduced variance
leads to great accuracy for the entire distribution.

5Autocorrelation time is defined as τ = 1 +
∑∞

s=0 ρs, where ρs is the autocorrelation at time lag s.
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with default n = 20
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data size increased to n = 50
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Figure 1: Sampling from Gaussian target

ters; e.g., if uniform SG uses minibatch size b, then one can use a smaller minibatch size (e.g. b
M+1 )

for EWSG to ensure both algorithms consume the same number of gradient calls per iteration and
hence run the same number of iterations. See Sec. H.3 for more empirical studies on this.

As approximations are used in Alg.1, it is natural to ask if Thm.4 still applies. We empirically
investigate this question (using M = 1 and variance as the test function φ). Eq.(6) in Thm.4
has a nonasymptotic error bound consisting of three parts, namely an O( 1

T ) term corresponding
to the convergence at the continuous limit, an O(h/T ) term coming from the SG variance, and an
O(h2) term due to bias and numerical error. Fig.1j plots the mean squared error (MSE) against
time T = Kh to confirm the 1st (and the 2nd) term. Fig.1k plots the MSE against h in the small
h regime (so that the 2nd term dominates the 3rd) to confirm that the 2nd term scales like O(h)
with a fixed T . For the 3rd term in Eq. (6), we run sufficiently many iterations to ensure all chains
are well-mixed, and Fig.1l confirms the final MSE to scale like O(h2) even for large h (as the 2nd
term vanishes due to T →∞). In this sense, despite the approximations introduced by the practical
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Method SGLD pSGLD SGHMC EWSG FlyMC
Accuracy(%) 75.282 ± 0.079 75.079 ± 0.094 75.272 ± 0.069 75.293 ± 0.045 75.165 ± 0.079

Log Likelihood -0.525 ± 0.000 -0.527 ± 0.000 -0.525 ± 0.000 -0.523 ± 0.000 -0.523 ± 0.001

Table 1: Accuracy and log likelihood of BLR on test data after one data pass (mean ± std).
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Figure 2: BLR learning curve
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(b) CNN architecture

Figure 3: BNN learning curve. Shade: 1 std.

implementation, the performance of Algorithm 1 is still approximated by Theorem 4, even when
M = 1, and Theorem 4 provides reasonable guidelines for practical use of the EWSG algorithm.

5.2 BAYESIAN LOGISTIC REGRESSION (BLR)

Consider binary classification based on probablistic model p(yk = 1|xk,θ) = 1/(1 +
exp(−θTxk)). We set Gaussian prior N(0, 10Id) for θ and experiment with the Covertype data
set 6 (581,012 data points, 54 features). We use 80% of data for training and the rest for testing.

ULD based algorithms use γ = 50. After tuning, we set step sizes as {1, 3, 0.02, 5, 5} × 10−3

for SGHMC, EWSG, SGLD, pSGLD and FlyMC. All algorithms are run for one data pass, with
minibatch size of 50. 200 independent samples are drawn from each algorithm to estimate statistics.

Results are in Fig. 2a and 2b and Table 1. EWSG outperforms others, except for log likelihood
being comparable to FlyMC, which is an exact MCMC method.

5.3 BAYESIAN NEURAL NETWORK (BNN)

Bayesian inference is compelling for deep learning (Wilson, 2020). Two popular architecture of
neural nets are experimented – multilayer perceptron (MLP) and convolutional neural nets (CNN).
In MLP, a hidden layer with 100 neurons followed by a softmax layer is used. In CNN, we use
standard network configuration with 2 convolutional layers followed by 2 fully connected layers
(Jarrett et al., 2009). Both convolutional layers use 5×5 convolution kernel with 32 and 64 channels,
2×2 max pooling layers follow immediately after convolutional layer. The last two fully-connected
layers each has 200 neurons. We set the standard normal as prior for all weights and bias.

We test algorithms on the MNIST data set, consisting of 60000 training data and 10000 test data,
each datum is a 28×28 gray-scale image with one of the ten possible labels (digits 0 ∼ 9). For ULD
based algorithms , we set friction coefficient γ = 0.1 in MLP and γ = 1.0 in CNN. In MLP, the step
sizes are set h = {4, 2, 2}×10−3 for EWSG, SGHMC and CP-SGHMC, and h = {0.001, 1}×10−4

for SGLD and pSGLD, via grid search. For CP-SGHMC , we use K-means with 10 clusters to
preprocess the data set. In CNN, the step sizes are set h = {4, 2, 2} × 10−3 for EWSG, SGHMC
and CP-SGHMC, and h = {0.02, 8}× 10−6 for SGLD and pSGLD, via grid search. All algorithms
use minibatch size of 100 and are run for 200 data passes. For each algorithm, we generate 100
independent samples to estimate posterior distributions and make prediction accordingly.

The learning curve of training accuracy is shown in Figure 3a and 3b. We find EWSG consis-
tently improve over its uniform counterpart (i.e. SGHMC) and CP-SGHMC (an approximate IS
SG-MCMC). Moreover, EWSG also outperforms two standard benchmarks SGLD and pSGLD.
The improvement over baseline on MNIST data set is comparable to some of the early works (Chen
et al., 2014; Li et al., 2016). More results on this experiment can be found in Sec. H.2.

6https://archive.ics.uci.edu/ml/datasets/covertype
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