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Abstract001

Large transformer based multilingual models002
have significantly advanced natural language003
processing (NLP) research. However, their004
high resource demands and potential biases005
from diverse data sources have raised concerns006
about their effectiveness across low-resource007
languages. In contrast, monolingual neural008
models, trained on a single language, may009
better capture the nuances of the target lan-010
guage, potentially providing more accurate re-011
sults. This study benchmarks the cross-lingual012
transfer capabilities from a high-resource lan-013
guage to a low-resource language for both,014
monolingual and multilingual models, focusing015
on Kinyarwanda and Kirundi, two Bantu lan-016
guages. We evaluate the performance of trans-017
former based architectures like Multilingual018
BERT (mBERT), AfriBERT, and BantuBERTa019
against traditional neural architectures such020
as BiGRU, CNN, and char-CNN. The mod-021
els were trained on Kinyarwanda and tested022
on Kirundi datasets of news sentiment clas-023
sification, with fine-tuning applied to assess024
the extent of performance improvement and025
catastrophic forgetting. AfriBERT achieved026
the highest cross-lingual accuracy of 88.3% af-027
ter fine-tuning, while BiGRU emerged as the028
best-performing traditional model with 83.3%029
accuracy. We also analyze the degree of forget-030
ting in the original language post-fine-tuning.031
While traditional monolingual models remain032
competitive, this study highlights that multi-033
lingual transformer models offer strong cross-034
lingual transfer capabilities by offering a com-035
parative analysis between the both in resource036
limited settings.037

1 Introduction038

Recent advancements in natural language process-039

ing (NLP) have led to the development of both040

monolingual and multilingual models, with sub-041

stantial progress in high-resource languages. How-042

ever, low-resource languages continue to face sig-043

nificant challenges due to limited data and corpus044

availability, which restrict the development and per- 045

formance of language models. Cross-lingual trans- 046

fer learning, where knowledge from a resource-rich 047

language is transferred to a lexically similar low- 048

resource language, has emerged as a promising 049

solution to this problem. 050

The multilingual architectures like multilingual 051

BERT (mBERT) (Devlin et al., 2018) are trained on 052

a variety of languages. This broad training pattern 053

allows them to generalize and recognize patterns 054

across several languages. Yet on the downside, 055

these models are highly influenced by the dataset 056

used. A biased training set inclined towards larger 057

corpus from a certain language can potentially lead 058

to sub-optimal performance on underrepresented 059

languages. Monolingual models, on the other hand, 060

are trained exclusively on a single language, al- 061

lowing them to capture finer linguistic details and 062

nuances. 063

To analyze the performance of these types, this 064

work studies the transfer from Kinyarwanda to 065

Kirundi (Bantu family) using both monolingual 066

and multilingual models. Instances of Multilin- 067

gual BERT (mBERT) (Devlin et al., 2018), AfriB- 068

ERT (Ogueji et al., 2021)and BantuBERTa (Parvess 069

et al., 2024; Parvess, 2023), are tested for the mul- 070

tilingual scenario. Convolutional Neural Networks 071

(CNN), Character-Level Convolutional Neural Net- 072

works (char-CNN), and Bi-Directional Gated Re- 073

current Units (BiGRU) are evaluated for the mono- 074

lingual scenario (Niyongabo et al., 2020). The 075

models are trained on Kinyarwanda and then tested 076

and benchmarked on Kirundi before and after fine 077

tuning. We also estimate the extent of catastrophic 078

forgetting of the models on the initial language after 079

fine tuning. We test our initial hypothesis of mono- 080

lingual models outperforming multilingual models 081

considering the linguistic similarity between the 082

two languages and the ability to capture intrinsic 083

nuances is tested. While existing research focuses 084

on monolingual and multilingual models separately, 085
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this study provides a comprehensive comparison086

which will aid future scholars to use the findings.087

2 Related work088

2.1 NLP for low resource languages089

Low resource languages (LRL) have gained in-090

creasing attention by researchers in recent years091

with the growth of Natural Language Processing092

tasks. Limited corpora, fewer linguistic tools, and093

a lack of digital resources have posed the need for094

research techniques to mitigate these challenges.095

(Magueresse et al., 2020) review past and future096

techniques such as transfer learning, data augmen-097

tation, sentence level alignment and multilingual098

embeddings providing general trends in processing099

LRL and giving an overview of techniques avail-100

able for our study. Data augmentation for LRL101

are explored by (Ragni et al., 2014) in their study102

using Assamese and isiZulu promising potential im-103

provement in model performance in low resource104

settings. (Karakanta et al., 2018) outline neural ma-105

chine translation between a high resource and low106

resource language by effectively back-translating107

monolingual LRL data to create an enhanced cor-108

pus. Their study provides a compelling technique109

to handle data limitations of LRL with structurally110

similar high resource language data.111

2.2 Transfer learning112

Cross-lingual transfer emerges as a powerful and113

practical approach to model resource limited lan-114

guages without abundant availability of linguisti-115

cally similar secondary language data. Utilization116

of existing resources for learning transfer offers117

faster convergence and multilingual downstream118

capability on the two or more languages. (Ra-119

sooli et al., 2018) analyse methods for sentiment120

classification for LRLs by introducing annotation121

project and direct transfer as two transfer learning122

approaches using partial lexicalization and LSTM123

architecture. Results indicated that single-source124

transfer from English generally outperformed the125

baseline for all languages. The direct transfer ap-126

proach opens a promising avenue when the source127

and target languages are from the same family as128

in our case. (Pham et al., 2024) propose UniB-129

ridge , an adapter based architecture incorporating130

embedding initialization and multi-source trans-131

fer. The experiment results in substantial perfor-132

mance improvement especially owing to the em-133

bedding initialization which allows better adapta-134

tion to low resource languages. (Niyongabo et al., 135

2020) explore NLP for Kirundi, focusing on mul- 136

ticlass classification using cross-lingual transfer 137

from Kinyarwanda. Two new datasets, KINNEWS 138

and KIRNEWS, were introduced, along with stop 139

word lists for both languages. For cross-lingual 140

text classification, Kinyarwanda embeddings were 141

used to train models, which were then tested on the 142

Kirundi corpus, leveraging the mutual intelligibility 143

of the languages. Results showed that BiGRU per- 144

formed best on KINNEWS, while CNN excelled 145

on KIRNEWS in cross-lingual settings, suggesting 146

that BiGRU requires a larger dataset for optimal 147

performance, presenting a compelling base paper 148

for this work. 149

2.3 Monolingual models for transfer 150

Monolingual models focus on a single language, 151

leveraging language-specific features and resources 152

to achieve higher accuracy for tasks like transla- 153

tion, text generation, and classification. By train- 154

ing solely on one language, these models can bet- 155

ter capture linguistic nuances. (Gogoulou et al., 156

2021) explore cross linugal transfer of monolin- 157

gual models. The study ulitlizes BERT models 158

from various languages and fine tuned using the 159

GLUE benchmark. The researchers study two 160

probing techniques namely, structural probing that 161

evaluates how the embeddings capture syntactic 162

structures and semantic probing to determine if 163

words are used with the same meaning in differ- 164

ent contexts. The probing results indicated that 165

knowledge from the source language enhanced the 166

learning of both syntactic and semantic aspects 167

in the target language. The research by (Artetxe 168

et al., 2019). examines cross-lingual representa- 169

tion learning by introducing a method that trans- 170

fers monolingual models to other languages with- 171

out requiring shared subword vocabularies or joint 172

pre-training along with the introduction of the 173

XQuaD dataset. The methodology involves pre- 174

training an English model and then learning new 175

subword embeddings for other languages. The find- 176

ings suggest that monolingual representations ef- 177

fectively generalize across languages. (Zhou et al., 178

2016) present the Bilingual Document Representa- 179

tion Learning model (BiDRL) learning document 180

representations using a joint learning algorithm 181

to capture both semantic and sentiment correla- 182

tions between bilingual texts using a shared em- 183

bedding space. BiDRL significantly outperformed 184

state-of-the-art methods across nine tasks involv- 185
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ing English (source language) and Japanese, Ger-186

man, and French (target languages) achieving an187

accuracy of 81.34%. (Boudad et al., 2023) test188

cross-multilingual transfer for Moroccan sentiment189

analysis, focusing on Arabic specifc models and a190

monolingual model (DarijaBERT) using training191

and validation datasets. Among the models, Dari-192

jaBERT, despite being trained on a smaller scale of193

data, outperformed most of the multilingual mod-194

els, demonstrating the effectiveness of monolingual195

models for specific dialects.196

2.4 Multilingual models for transfer197

Multilingual models facilitate cross-lingual transfer198

by creating shared linguistic representations across199

different languages, enabling knowledge transfer200

from well-resourced languages to those with fewer201

resources. This approach is a promising area of202

research, offering significant potential for advanc-203

ing NLP in underrepresented languages. (Parvess,204

2023; Parvess et al., 2024) evaluates the state of205

current multilingual models and explores the po-206

tential of the Bantu language family due to its topo-207

graphical similarity. The study introduces Bantu-208

BERTa, a multilingual model primarily trained on209

low-resourced, topographically similar languages,210

and benchmarks it against AfriBERT, mBERT,211

and XLM-R. Results revealed that although Ban-212

tuBERTa had relatively lower scores compared to213

other models, indicated successful generalization214

between Bantu languages with an F1 score greater215

than 50%. (Savant et al., 2024) aims to develop216

a universal model for cross-lingual text classifi-217

cation in low-resource languages. IndicSBERT218

and LaBSE models were trained on samples from219

Tamil, Malayalam, Marathi, Oriya, and Telugu,220

and tested on Bengali, Kannada, Gujarati, and221

Punjabi. Results demonstrated that IndicSBERT222

generally outperforms LaBSE, showcasing strong223

multilingual and cross-lingual capabilities. (Fei224

and Li, 2020) evaluate the Multi-View Encoder-225

Classifier (MVEC) model against various mod-226

els like multilingual BERT (mBERT) and XLM227

for cross-lingual sentiment classification. MVEC228

outperformed these models in 8 out of 11 senti-229

ment classification tasks across five language pairs,230

employing unsupervised machine translation and231

language discriminator to align latent space be-232

tween languages. (Conneau et al., 2019) introduce233

XLM-R, a large-scale multilingual language model234

trained on 100 languages using two terabytes of235

CommonCrawl data. XLM-R offers better per-236

formance than models such as mBERT, particu- 237

larly in low-resource languages such as Swahili 238

and Urdu. The study also highlights increasing 239

the model’s capacity helps mitigate capacity chal- 240

lenges as the languages increase. (Abdul-Mageed 241

et al., 2020) introduce ARBERT and MARBERT, 242

two deep bidirectional transformer-based models 243

designed for Arabic language processing, focusing 244

on Modern Standard Arabic (MSA) and various 245

dialects. Results demonstrated that ARBERT and 246

MARBERT achieved new state-of-the-art perfor- 247

mance, with MARBERT excelling in social media- 248

related tasks due to its extensive training on dialec- 249

tal data. (Gupta et al., 2021) present a compara- 250

tive analysis of task-specific pre-training and cross- 251

lingual transfer techniques for sentiment analysis 252

in Dravidian code-switched languages, specifically 253

Tamil-English and Malayalam-English. The exper- 254

iments demonstrate that task-specific pre-training 255

consistently outperforms cross-lingual transfer in 256

both zero-shot and supervised settings. The study 257

also explores the potential of combining cross- 258

lingual transfer with task-specific pre-training by 259

fine-tuning TweetEval on the Hinglish dataset be- 260

fore adapting it to Tamil-English and Malayalam- 261

English. 262

2.5 Modelling for African languages 263

Modelling for African languages has gained in- 264

creasing attention due to the need for inclusive natu- 265

ral language processing (NLP) systems. These lan- 266

guages, often underrepresented in global datasets, 267

present unique challenges such as limited resources, 268

diverse linguistic structures, and dialectal varia- 269

tions. Recent advancements, including the develop- 270

ment of multilingual models and language-specific 271

datasets, have made significant strides in address- 272

ing these issues. (Mesham et al., 2021) explore 273

the performance of various language models, in- 274

cluding n-gram, AWD-LSTM, QRNN, and trans- 275

former architectures, specifically within the con- 276

text of South African languages. Their results in- 277

dicate that the AWD-LSTM and QRNN consis- 278

tently outperform other models, such as n-gram 279

and Basic-LSTM, across multiple datasets, achiev- 280

ing better bits-per-character metrics. Furthermore, 281

the study highlights the advantages of multilingual 282

training, where incorporating data from related lan- 283

guages significantly enhances model performance 284

for isiZulu and Sepedi. The research presented by 285

(Lakew et al., 2020) explores multilingual neural 286

machine translation (NMT) strategies for African 287
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languages. The findings highlight that while tradi-288

tional single-pair NMT models (S-NMT) exhibit289

limitations, more advanced methodologies such290

as semi-supervised NMT (SS-NMT) and transfer291

learning (TL) significantly enhance performance,292

particularly in out-of-domain settings. Notably,293

the multilingual model (M-NMT) consistently out-294

performed S-NMT in multiple translation direc-295

tions, achieving particularly striking improvements296

for the least-resourced language pairs. The papers297

(Oladipo et al.; Muhammad et al., 2023) investigate298

the effectiveness of multilingual language mod-299

els pretrained on low-resource African languages,300

specifically Amharic, Hausa, and Swahili. The301

study reveals that multilingual models generally302

outperform monolingual ones in transfer effective-303

ness and emphasize the necessity for pre-training304

methods.305

3 Experiments306

We benchmark and evaluate the performance of the307

models on distinct datasets, namely Kinyarwanda308

and Kirundi, by following a training pipeline to309

train these models with their best hyperparame-310

ters. These languages share significant lexical and311

grammatical similarities (noun classes, verb conju-312

gations, and sentence structures) belonging to the313

Rwanda-Rundi dialect continuum, making them314

mutually intelligible to a fair extent despite their315

regional distinctions. The primary objective is to316

perform sentiment classification on news articles317

written in both languages.318

3.1 Dataset319

This study employs 2 distinct datasets, one in Kin-320

yarwanda and the other in Kirundi sourced from321

(Niyongabo et al., 2020).322

Field Description

label Numerical labels ranging from 1 to 14
en_label English labels
kin_label Kinyarwanda labels
kir_label Kirundi labels
url The link to the news source
title The title of the news article
content The full content of the news article

Table 1: Field descriptions of the raw dataset

For the Kinyarwanda dataset, news articles from323

various websites and newspapers were used. A total324

Field Description

label Numerical labels ranging from 1 to 14
title The title of the news article
content The full content of the news article

Table 2: Field descriptions of the cleaned dataset

of 21268 articles are distributed across 14 classes, 325

with a train:test split ratio as 17014:4254. Simi- 326

larly for the Kirundi dataset, a total of 4612 articles 327

are distributed across 12 classes, with a train:test 328

split ratio as 3690:922. For both Kinyarwada and 329

Kirundi, the cleaned versions of the datasets were 330

taken from the codebase affiliated with the research 331

paper (Niyongabo et al., 2020), which thereafter 332

served as the primary reference for our data prepro- 333

cessing steps. The cleaned dataset contains 3 main 334

fields: 1) Label, which comprises of numerical la- 335

bels ranging from 1 to 12 representing the common 336

category of the article from both languages, 2) Title, 337

which is the title of the news article and 3) Content, 338

the full content of the news article as summarised 339

in Table 1 and Table 2. 340

3.2 Transformer Models 341

We explore three large pre-trained architectures 342

: Multilingual BERT (mBERT) (Devlin et al., 343

2018), AfriBERT (Ogueji et al., 2021) and Ban- 344

tuBERTa (Parvess, 2023; Parvess et al., 2024) on 345

the pipeline given by Algorithm 1. Being an ex- 346

tension of the original BERT model with a pre- 347

trained corpus of Wikipedia data from 104 different 348

high resource and low resource languages, mBERT 349

promises effective cross-lingual transfer learning 350

use cases aided by its shared representations across 351

languages. AfriBERT, trained on a diverse cor- 352

pus of 11 African languages is designed to address 353

the unique linguistic characteristics and challenges 354

of African languages including Kinyarwanda and 355

Kirundi, the two languages tested in this work en- 356

couraging favourable transfer on the downstream 357

task. Bantu languages share certain linguistic fea- 358

tures, and BantuBERTa leverages these commonal- 359

ities to enhance performance in Natural Language 360

Processing within the language family. As opposed 361

to mBERT and AfriBERT, BantuBERTa is pre- 362

trained on a smaller dataset which puts its transfer 363

abilities and accuracy to test within this experiment. 364
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Algorithm 1 BERT Tuning: Tokenization, Train-
ing on Kinyarwanda, Fine-tuning on Kirundi, and
Cross-Lingual Evaluation

Inputs:
BERT base model M
Kinyarwanda corpus DKinyarwanda

Kirundi corpus DKirundi

Output:
Evaluated cross-lingual metrics E

1: Pre-training Phase
2: Tokenize DKinyarwanda

3: Train M on tokenized DKinyarwanda for the
specified task (News classification)

4: Save trained model as Mtrained

5: Fine-tuning Phase
6: Load Mtrained

7: Tokenize DKirundi

8: Fine-tune Mtrained on tokenized DKirundi for
the downstream task

9: Save fine-tuned model as Mfinetuned

10: Evaluation Phase
11: Evaluate Mfinetuned on cross-lingual bench-

marks
12: Compute cross-lingual metrics E (accuracy, F1-

score)
13: Return E

3.3 Traditional Neural Models365

Convolutional Neural Networks (CNN), Character-366

Level Convolutional Neural Networks (char-CNN),367

and Bi-Directional Gated Recurrent Units (BiGRU)368

are the three traditional neural models evaluated369

for cross-lingual transfer in this study (Niyongabo370

et al., 2020) as described by Algorithm 2. While371

CNNs are widely recognized for their image pro-372

cessing capabilities, they also perform effectively373

in language tasks by treating text as a sequential in-374

put and applying filters to extract essential features375

across multiple layers as represented in Figure 1.376

Char-CNNs build on the CNN framework by focus-377

ing on characters rather than whole words, applying378

convolutional filters to individual characters. This379

approach is particularly useful for languages with380

complex morphological structures, as it allows the381

model to capture subtle linguistic details, enhanc-382

ing transfer performance. BiGRU as in Figure 2,383

is a recurrent neural network (RNN) designed to384

process sequential text data in both forward and385

backward directions, thereby capturing more com-386

prehensive contextual information, which is crucial387

for effective cross-lingual transfer.388

Algorithm 2 Monolingual Neural Model Training:
Embeddings, Fine-tuning, and Cross-Lingual Eval-
uation

Inputs:
Neural model M (CNN, BiGRU, etc.)
Kinyarwanda corpus DKinyarwanda

Kinyarwanda embeddings EKinyarwanda

Kirundi corpus DKirundi

Kirundi embeddings EKirundi

Output:
Evaluated cross-lingual metrics E

1: Pre-training Phase
2: Load pre-trained Kinyarwanda embeddings

EKinyarwanda

3: Tokenize Kinyarwanda corpus DKinyarwanda

4: Map tokenized DKinyarwanda to
EKinyarwanda

5: Train M on EKinyarwanda for the specified
task (e.g., News classification)

6: Save trained model as Mtrained

7: Fine-tuning Phase
8: Load Mtrained

9: Tokenize Kirundi corpus DKirundi

10: Map tokenized DKirundi to EKirundi

11: Fine-tune Mtrained on EKirundi for the down-
stream task

12: Save fine-tuned model as Mfinetuned

13: Evaluation Phase
14: Evaluate Mfinetuned on cross-lingual bench-

marks
15: Compute cross-lingual metrics E (accuracy, F1-

score, etc.)
16: Return E

3.4 Learning Scenario 389

For a unified text representation, title and content 390

fields were merged into a single field labeled ‘text’. 391

With a vector size of 50, window size of 5 and 392

word frequency threshold of 5, a Word2Vec model 393

was trained adopting a skip-gram model and hi- 394

erarchical Softmax to obtain word embeddings. 395

The labels were converted the zero based for eas- 396

ier model training and classification capabilities. 397

The three BERT architectures were loaded along 398

with its tokenizers and trained initially on the Kin- 399

yarwanda dataset preparing it for the downstream 400

task classification of 14 labels. The initial learn- 401

ing involved training for 8, 25 and 8 epochs for 402

the models mBERT, AfriBERT and BantuBERTa 403

respectively, with a batch size of 32. 500 warmup 404

steps were employed to stabilize training, while a 405
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Figure 1: Architecture for CNN implementation

Figure 2: Architecture for BiGRU implementation

weight decay of 0.01 was applied to prevent over-406

fitting. The model was evaluated based on steps407

with a log interval of 10. Given the computation408

on a Mac environment, MPS was opted due to the409

unavailability of CUDA for enhanced performance410

over CPU training, refer Table 3. Metrics were411

first evaluated on the Kinyarwanda test dataset to412

ensure that the models had effectively learned the413

language-specific features and performed well on414

the source language. The cross-lingual transfer was415

tested in three steps. One being the direct transfer,416

where the Kinywarnda trained model was directly417

applied on Kirundi to benchmark results, without418

fine tuning on Kirundi. The second step being419

post fine-tuning transfer, where the Kinyarwanda420

trained model was fine tuned on the Kirundi dataset421

after which evaluation was done. Lastly, Evaluating422

on Kinyarwanda again after fine tuning to under-423

stand the extent of forgetting the initial language424

calculated as percentage.425

For the traditional models, the preprocessed426

training dataset was loaded and divided into 90%427

training and 10% validation sets. This was fol-428

lowed by building the vocabulary using custom-429

trained Kinyarwanda embeddings with a vector size430

of 50. Initially, the models were trained on Kin-431

yarwanda and evaluated on the corresponding test432

set to assess intra-language learning. Subsequently,433

the trained model was evaluated on Kirundi both di-434

rectly and after fine-tuning. Finally, the fine-tuned435

model was tested again on Kinyarwanda to exam-436

ine any potential forgetting.437

Table 3: Parameters of BERT models

Parameter Value

Number of Labels 14
Input Sequence Length 128
Truncation True
Padding True
Device MPS
Number of Training Epochs:
mBERT 8
AfriBERT 25
BantuBERTa 8
Training Batch Size 32
Evaluation Batch Size 32
Warmup Steps 500
Weight Decay 0.01
Logging Steps 10
Load Best Model at End True
Evaluation Strategy steps

3.5 Evaluation Metrics 438

To comprehensively assess performance of the var- 439

ious architectures and compare it with overall per- 440

formance we utilize a set of evaluation metrics that 441

cover various aspects of effectiveness in all the 442

modalities. 443

Average Accuracy (%): This metric measures 444

the test-set accuracy across the downstream task at 445

the end of the learning process. It is calculated as: 446

F1 Score: For tasks involving multiple classifi- 447
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cation, we use the F1 score, which balances preci-448

sion and recall, offering a more nuanced view of449

the model’s performance. Where Precision is the450

ratio of correctly predicted positive observations to451

the total predicted positives and Recall is the ratio452

of correctly predicted positive observations to all453

observations in the actual class.454

Average Forgetting: This metric measures the455

average reduction in performance for previously456

learned tasks when new tasks are introduced. It457

quantifies how much the model forgets prior knowl-458

edge as it learns new information. Average for-459

getting can be calculated as the mean difference460

between the maximum accuracy achieved for each461

task and the final accuracy after all tasks have been462

learned.463

Forgetting (%) =(
Performancebefore − Performanceafter

Performancebefore
× 100

)
(1)

464

These evaluation metrics are utilized to assess465

the transfer performances, across all the varying466

models.467

4 Results468

The results depicted by Table 4 show that Afrib-469

ert outperforms mBERT and BantuBERTa in the470

tested transfer scenario. Post fine-tuning, AfriB-471

ERT attained the highest accuracy of 88.3% on472

the Kirundi test set suggesting its strong capability473

in learning the target language. The mBERT and474

BantuBERTa models performed competitively, at-475

taining an accuracy of 84.6% and 86.5% post fine-476

tuning on Kirundi. AfriBERT and BantuBERTa477

produced better metrics than mBERT during the478

initial testing on Kinywarnda proving their better479

suitability for African languages (refer Table 5a).480

When re-evaluated on the Kinyarwanda dataset af-481

ter fine tuning, AfriBERT and mBERT produced482

minimal forgetting of 5.14% and 3.03% favour-483

ing their cross-lingual transfer use-cases. On the484

contrary, BantuBERTa suffered from catastophic485

forgetting whose implications are discussed under486

limitations (refer Table 5).487

Among all the traditional models, the metrics in488

Table 4 show BiGRU emerging as a strong choice,489

attaining an accuracy of 83.3% on Kirundi after490

fine-tuning. CNN and Char-CNN both offer av-491

erage performance in the transfer with 59.1% and492

48.7% accuracy scores respectively. All three archi- 493

tectures undergo catastrophic forgetting as given 494

by Table 5 when evaluated on Kinywarnda post 495

fine-tuning. Regardless, BiGRU and CNN present 496

compelling metrics when trained and tested on Kin- 497

yarwanda directly demonstrating its monolingual 498

capabilities. 499

Figure 3: Performance (Accuracy and F1) on Kin-
yarwanda before and after fine-tuning

Figure 3 portrays a graphical representation of 500

forgetting and improvement after fine-tuning, for 501

Kinyarwanda. 502

5 Conclusion 503

This study of benchmarking cross-lingual trans- 504

fer between Kinyarwanda and Kirundi across 505

both transformer based multilingual and traditional 506

monolingual architectures reveals that multilin- 507

gual models consistently outperform their mono- 508

lingual counterparts. Multilingual architectures 509

such as mBERT, AfriBERT, and BantuBERTa dis- 510

play better accuracy and F1 scores both before 511

and after fine-tuning (FT). In particular, AfriBERT 512

achieves the highest post-FT performance, high- 513

lighting its effectiveness in low-resource Bantu lan- 514

guages. Monolingual models like BiGRU, CNN, 515

and Char-CNN, although improving post-FT, lag 516

significantly behind in their initial cross-lingual 517

performance, underscoring the limitations of rely- 518

ing solely on monolingual architectures for cross- 519

lingual tasks. This research affirms the potential 520

of multilingual models in enhancing cross-lingual 521

understanding, particularly in linguistically simi- 522

lar language pairs like Kinyarwanda and Kirundi. 523

This study provides a comprehensive comparison 524

of both multilingual and monolingual models, of- 525

fering insights into their respective strengths and 526
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Model Accuracy before FT F1 before FT Accuracy after FT F1 after FT

mBERT 0.5872 0.5917 0.8462 0.8422
AfriBERT 0.7421 0.7474 0.8830 0.8787
BantuBERTa 0.7454 0.7375 0.8657 0.8606
BiGRU 0.2404 0.2300 0.8332 0.8790
CNN 0.2190 0.2320 0.5913 0.5732
Char-CNN 0.1916 0.1621 0.4879 0.4764

Table 4: Metrics describing cross-lingual testing on Kirundi

(a) Performance on Kinyarwanda before fine tuning

Model Accuracy F1 score

mBERT 0.7884 0.7747
AfriBERT 0.8498 0.8447
BantuBERTa 0.8601 0.8555
BiGRU 0.8851 0.8434
CNN 0.8740 0.8660
Char-CNN 0.6930 0.6823

(b) Performance & Forgetting post fine tuning

Model Accuracy Forget %

mBERT 0.7645 3.03
AfriBERT 0.8061 5.14
BantuBERTa 0.2172 74.00
BiGRU 0.2329 73.68
CNN 0.2207 74.86
Char-CNN 0.1968 71.50

Table 5: Comparison of metrics testing on Kinyarwanda

limitations in cross-lingual transfer, which is the527

core contribution of our research.528

6 Limitations529

The small size of the training data for both lan-530

guages limits the model’s generalizability to larger531

datasets or other low-resource Bantu languages.532

We also did not incorporate continual learning sce-533

narios to mitigate catastrophic forgetting, which534

could have enhanced performance. While models535

such as AfriBERT and BantuBERTa have shown536

promising results, their limited pre-training on537

Bantu languages may impede their ability to fully538

captures the linguistic intricacies of Kinyarwanda539

and Kirundi. Furthermore, focusing only these two540

languages may restrict the broader applicability of541

our findings to other Bantu languages.542
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