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ABSTRACT

This paper proposes two bottom-up interpretable neural network (NN) construc-
tions for universal approximation, namely Triangularly-constructed NN (TNN)
and Semi-Quantized Activation NN (SQANN). The notable properties are (1) re-
sistance to catastrophic forgetting (2) existence of proof for arbitrarily high accu-
racies on training dataset (3) for an input x, users can identify specific samples of
training data whose activation “fingerprints” are similar to that of x’s activations.
Users can also identify samples that are out of distribution.

1 INTRODUCTION

Artificial neural networks (NN) have recently seen successful applications in many fields. Modern
deep neural network (DNN) architecture, usually trained through the backpropagation mechanism,
has been called a black-box because of its lack of interpretability. To tackle this issue, various studies
have been performed to understand how a NN works; see the following surveys Arrieta et al. (2020);
Gilpin et al. (2018); Tjoa & Guan (2020); Wiegreffe & Marasović (2021). This paper primarily
proposes two interpretable models, namely triangularly-constructed NN (TNN) and Semi-Quantized
Activation NN (SQANN). Both possess the following three notable properties: (1) Resistance to
catastrophic forgetting. (2) Mathematical proofs for arbitrarily high accuracy on training datasets;
experimentally demonstrable with python code and simple common datasets (see supp. materials).
(3) Detection of out-of-distribution samples through weak activations.

Concept disambiguation. Several concepts have multiple possible definitions. We clarify the defi-
nitions used in this paper.

1. Interpretability. We consider only fine-grained interpretation, i.e. we look at the meaning of each
single neuron or its activation in our models.

2. Universal approximation. Readers might be familiar with universal approximation of functions
on certain conditions, e.g. compact sets. Our models can be more general, e.g. user can freely
choose the interpolation function between 2 activations based on knowledge of the local manifold.
The function can even be pathological. See appendix A.2.1.

3. Catastrophic forgetting: the tendency for knowledge of previously learned dataset to be abruptly
lost as information relevant to a new dataset is incorporated. This definition is a slightly nuanced
version of Kirkpatrick et al. (2017). Hence, our models’ resistance to catastrophic forgetting is the
following. Given a training dataset D accurately modeled by an architecture M , a new dataset D′

(especially new, out of distribution dataset) can be incorporated into M without losing accuracy on
D. See appendix A.2.2 (analogy to biological system included).

Related works and interpretability issues. Recent remarkable studies on universal approximators
include the Deep Narrow Network by Kidger & Lyons (2020), DeepONet universal approximation
for operators by Lu et al. (2021) and the Broad Learning System by Chen et al. (2019); Hanin (2019);
Park et al. (2021); Johnson (2019). While insightful, they do not directly address the eXplainable
Artificial Intelligence (XAI) issue, especially the blackbox property of the DNN. Similarly, a number
of classical papers provide theoretical insights for NN as universal approximators, but interpretabil-
ity, transparency and fairness issues are not their main focus. The universal approximation theorem
by Cybenko (1989) asserts that a NN with a single hidden layer can approximate any function to
arbitrarily small error under common conditions, proven by asserting the density of that set of NN
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in the function space using classic mathematical theorems. In particular, its theorem 1 uses an ab-
stract proof by contradiction. From the proof, it is not easy to observe the internal mechanism of a
NN in a straight-forward manner; consequently modern works that depend on it (e.g. Deep Narrow
Network) might inherit the blackbox property. Bottom-up constructions for function approximation
using NN then emerged, though they also lack the interpretability (see appendix A.3 for more related
works). Also consider a demonstration in Nielsen (2015) that could help improve our understanding
of universal approximation.

Outline. This paper is arranged as the following. Section 2 shows explicit TNN construction,
related results, including a pencil-and-paper example for pedagogical purpose. Likewise, section
3 shows SQANN construction, statements regarding SQANN, another pencil-and-paper example,
then experimental results of its application, before we conclude the paper with limitations and future
works. Python codes and clearer figures are fully available in supp. materials (also see appendix).

2 TRIANGULARLY-CONSTRUCTED NN (TNN)

TNN is the prototype NN for our interpretable universal approximator. SQANN (next section)
partially borrows the concept from TNN which will be useful as an easy and manageable illustration
to deliver the following ideas: (1) organized activations of neurons and (2) the retrieval of α values
as the outputs. The model is TNN(x) = αTσ(Wx+ b) where x ∈ [0, 1], α, b ∈ RN and W ∈ RN ,
where we use sigmoid function σ for simplicity. We start with a simple scalar function y = f(x) ∈ R
for x ∈ [0, 1], thus TNN’s interpretability can be illustrated very clearly.

Assumption: Linear Ordering. It is constructed on a linearly ordered dataset containing N sam-
ples {(x(k), y(k)) ∈ Rn × R}Nk=1 such that x(N) < x(N−1) < · · · < x(1) and y(k) = f(x(k)), f
the true function that TNN will approximate. The interpretability comes from the linear ordering
property where higher value of x (≈ 1) will activate more neurons while lower values will activate
less neurons as shown in fig 1(A). Then α values will be retrieved in a continuous way through
dot product, eventually used to compute the output for prediction. In time series, such as ECG
(Electrocardiogram), signals can be approximated point-wise (although it is still preferable to have
a noise model during preprocessing to prevent overfitting the noise). Meaningful interpretation can
be given, for example, by mapping PQRST segments from ECG to specific neurons within TNN,
giving some neurons specific meaning and thus interpretability. For more remarks and definition of
formal linear ordering etc, see appendix A.4.

Figure 1: (A) Triangular construction is built by prioritizing interpretability of a neural network.
As x(k) decreases in “strength”, the neurons are “turned off” correspondingly. (B) Activations of
neurons for x(k), x(k+1) and their mid-point xmid,k. Not only will neuron activation be half at the
mid-point, the output ymid,k = 1

2 (y
(k) + y(k+1)) is also half the sum of its neighbours’.

Ordered activation. We would like x(1) to activate all neurons, while x(N) activates only 1 neu-
ron. In other words, ideally σ(Wx(1) + b) = [1, 1, . . . , 1, 1]T , followed by σ(Wx(2) + b) =
[1, 1, . . . , 1, 0]T and so on until σ(Wx(N) + b) = [1, 0, . . . , 0]T ; again, refer to fig. 1(A). With this
concept, we seek to achieve interpretability by successive activations of neurons depending on the
“intensity” of the input, with x(1) being the most intense. In general, the above can be written as

σ(k) ≡ σ(Wx(k) + b) = [1, . . . , 1︸ ︷︷ ︸
N−(k−1)

, 0, . . . , 0︸ ︷︷ ︸
k−1

]T (1)
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which is approximately achieved for k = 1, . . . , N at large a (and exactly if a→∞) with

(Wx(k) + b)j =

{
≤ −a, j ≥ N − k + 2

≥ +a , j ≤ N − k + 1
(2)

For more remarks, see appendix A.4 subsection ordered activation.

TNN construction: computing weights W, b, α. How then do we compute W, b to achieve the
ordered activation? Consider first (Wx(2)+b)N = −a and (Wx(1)+b)N = a and solve them. This
yields WN = 2a/∆(1) and bN = a −WNx(1) where ∆(1) = x(1) − x(2). Iterating through k, i.e.
solving (Wx(k+1) + b)N−k+1 = −a and (Wx(k) + b)N−k+1 = a we obtain WN−k+1 = 2a/∆(k)

and bN−k+1 = a − WN−k+1x
(k) where ∆(k) = x(k) − x(k+1). We can rewrite the indices so

that Wk = 2a/∆(N−k+1) and bk = a −Wkx
(N−k+1) whenever convenient. For ∆(N), we need a

dummy x(N+1) value or we can directly choose its value, e.g. 1
NΣN−1

k=1 ∆(k). The effect is illustrated
by the value near x = 0 in fig. 2(A1-3) and should not pose any problem; the chosen dummy value
will only affect the shape at the left end of the graph.

We compute α using the property of equation (1). From fig. 1(A), this means ideally y(1) =
ΣN

i=1αiσ(Wx(1) + b)i for a → ∞, and similarly y(2) = ΣN−1
i=1 αiσ(Wx(2) + b)i and so on until

y(N) = α1σ(Wx(N) + b)1. Putting them together as y = [y(1), . . . , y(N)]T , we get y = Aα where
A is an upper-left triangular matrix and the inverse A−1 exists. Thus, α = A−1y, a matrix such
that A−1

ij = 1 along the diagonal, A−1
i,i+1 = −1 and zeroes otherwise, which facilitates a convenient

computation. The triangular construction is complete:

TNN(x) = αTσ(Wx+ b) (3)

While Nielsen (2015) provides only visual demonstration, the following result shows rigorous proof
on universal approximation at work (python code also available).

Theorem 1 TNN achieves arbitrarily high accuracy on the training dataset. Proof: see appendix
A.4.1. Also see example results in fig. 2.

Figure 2: (A1-3) Three triangular constructions (orange plots) using different values of a. Higher a
results in more step-wise plots and more constant values around the data samples (blue points). (B1)
Plots of NNs approximated using triangular construction (smooth green plots) over scatter plots of
the corresponding true data (green open circles). The parameters are as the following A = 1, λ =
−1, C = 0 for all, (B2) A1 = 0.1, B1 = 20, C1 = 1 (B3) A1 = 0.1, B1 = 10, C1 = 1.

With the following proposition, test dataset that resembles training dataset will yield small error.
Otherwise, there are out-of-distribution (ood) samples A ⊆ D′, which can be incorporated into
the training dataset. Catastrophic forgetting is not a problem during re-training because when ood
samples from the test dataset are included as training points, each training point x ∈ D is still
identified with a neuron. By theorem 1, x is still approximated accurately. See appendix A.2.2 for
remarks on advantage over existing methods.

Proposition 1 Errors on monotonous interval. Given finite training, test datasets D,D′, there
exists A ⊆ D′ such that, using TNN constructed with D∪A, for all samples in test dataset (x′, y′) ∈
D′, sample-wise error e = |y′−TNN(x′)| has an upper bound max(|y′− y(k+1)|, |y′− y(k)|) for
some k. Proof: see appendix A.4.2.

There is also a mid-point property that can be exploited for generalizability to arbitrarily high ac-
curacy, where data must be sampled such that any instance xtest lies inside either (1) the training
dataset or (2) is equal to some mid-point of two neighbouring training samples; see the proposition
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below. Fig. 1(B) shows how the component of xmid,k at j = N − k + 1 is half-activated i.e. the
activation value is 0.5. Admittedly, this is an ideal condition for accurate generalizability.

Proposition 2 Mid-point property. The mid-point xmid,k = 1
2 (x

(k) + x(k+1)) takes the value of
αTσ(Wxmid,k + b) = 1

2 (y
(k) + y(k+1)). Proof: see appendix A.4.3.

TNN pencil-and-paper example. Use TNN to fit the dataset (x, y) ∈ {(1, 1), (0.5, 2), (0, 3)}.
Then f(x) ≈ TNN(x) = 3σ(20x+ 5)− σ(20x− 5)− σ(20x− 15). See appendix A.4.4.

Remarks smoothness property, special case, scalability/complexity and generalizability to higher
dimensions can be found in appendix A.4.5. We proceed with SQANN, a universal approximation
inspired by TNN that allows multi-dimensional input, multi-layer stacking of neurons based on
relative strength of neuron activations.

3 SEMI-QUANTIZED ACTIVATION NEURAL NETWORK (SQANN)

SQANN architecture is a multi-dimensional universal approximator which (1) retains TNN’s idea
of using an organized sequence of activations to retrieve α, (2) remotely resembles a Radial Ba-
sis Function, but (3) has deep neural network properties, such as the possibility of deep learning
(multiple constructed layers) and neuron activations. The difference is, a neuron in SQANN corre-
sponds exactly to a data sample as SQANN stores its “fingerprints” as neurons’ nuclei as shown in
fig. 3(B). The neurons can be activated with different kinds of responses: (1) distinct peaks and (2)
half-activations and (3) weak/zero activations, made possible by double selective activation σdsa.
They are illustrated in fig. 3(A) and the sketch of proof of proposition 3 in appendix A.5.4, intuition
behind σdsa.

The aforementioned distinct types of activation are key to SQANN’s main result and give the model
an interpretability at least in the following sense: samples are highly/moderately/not recognizable if
their activation patterns strongly/moderately/weakly resemble the activation patterns of an existing
training sample x, where identifications are facilitated by the distinct regions of σdsa. The design
is “semi” quantized since σdsa has approximately “distinct” levels yet remains continuous. Since
SQANN incorporates multi-layer structure, it avoids being a non-generalizing model that nearest
neighbours methods suffer from; see the remark in (Pedregosa et al. (2011a)).

Notations. The order of data sample within the dataset matters, thus we define our own indexing
to prevent confusion. Let the finite training set be {(x(k), y(k)) ∈ X × Y : k = 1, 2, . . . , N}. We
create the SQANN model that predicts y(k) = SQANN(x(k)) with provably perfect accuracy and
generalizes well to similar test distribution. Subscript indicates layer, v denotes activation values
collected in the “synapses”, square bracket with subscript denotes vector component so that [v2]4
is the 4-th vector component of the activation of layer 2. Layer k consists of (Nk, αk), where
Nk = (η<1>

k , η<2>
k , . . . , η<nk>

k ) stores fingerprints/patterns, αk = (y<1>
k , y<2>

k , . . . , y<nk>
k )

stores output values. The angle bracket denotes the index after relabelling. Hence, if k-th data
sample before relabelling is (x(k), y(k)), k = 50 and it becomes the first node in layer 2, then we
write η<1>

2 = η
(50)
2 . Concatenation. To denote the addition of the new k-th node to the layer l, use

η<k>
l ← v, where v can be for example v(m)

2 the activation of the m-th data at layer 2. Alternatively,
Nl → concat(Nl, η

<k>
l ). We can speak about layer k using Nk if αk is not yet involved. However,

once concatenation of Nl is decided, always correspondingly concatenate the αl i.e. y<k>
l ← y(m).

Selective clustering of pk = (xk, yk) for k = 1, 2 is loosely defined for x1, x2 that are close to each
other such that: if y1, y2 are similar, then p1, p2 are clustered together, otherwise two distinct clusters
are created; see appendix for formal definition, its effects on interpolation and more remarks.

Double selective activation. Given selective activation π(x, a) = a
a+x2 and Super Gaussian

sg(x, a) = exp(−(x/a)2n), n = 4,r = 0.5, then the double selective activation is (fig. 3(A)):

σdsa(x, a1, a2, r) = (1− r)× π(x, a1) + r × sg(x, a2) (4)

Nodes activation. Denote the “synapse” or the activation value of node j at layer k by input v as:

[vk]j = σdsa

(
||v − η<j>

k ||
)

(5)
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where η<j>
k ∈ Nk for j = 1, . . . , nk and nk is the number of neurons/nodes in the layer. See fig.

3(B). In SQANN, activations will be forwarded layer by layer, i.e. [v1]j = σdsa

(
||x − η<j>

1 ||
)

where η<j>
1 ∈ N1 and [vk+1]j = σdsa

(
||vk − η<j>

k+1 ||
)

where v<j>
k+1 ∈ Nk+1.

3.1 SQANN CONSTRUCTION

Outline of SQANN construction with interpretations. SQANN is constructed without optimiza-
tion like gradient descent. Each indexed training data sample is converted into a “fingerprint” or
pattern of neuron activations, which undergoes one of the following:

1. Admission to layer k. Sample’s new/distinct fingerprint is added into layer k if the sample weakly
activates existing nodes in the layer (∀j, [vk]j < τad) and no collision occurs; see fig. 3(D.1).

2. Collision. A sample activates one or more neurons strongly i.e. ∃j, k, [vk]j > τact. The earliest
layer where collision occurs is denoted lc. Such sample is integrated into lc, thus very similar
samples are selectively clustered. See fig. 3(D.2); the concept is also illustrated in the sketch of
proof for proposition 3, appendix A.5.4.

3. Filtering into deeper layer occurs when neither of the above occurs (no strong activation, some
moderate activations). Such sample has features loosely similar to previously seen samples, but
we need to filter them further to distinguish its finer features.

Figure 3: (A) Double selective activation with different parameters. (B) SQANN schematic. Each
layer (Nk, αk) is stylized as a collection of neurons. A neuron stores the main “fingerprint” in
nucleus η<k>

l (dark brown) and its corresponding “output” in nucleus α<k>
l (dark red). When

strong activation is detected, the signal will be redirected to the dark red nucleus α<k>
l . (C) SQANN

used for a simple classification. (Left) The large filled dots are training samples, x marks are test
samples. Bright red indicates y = 1.0, dark red y = 0.5. (Right) Same as left but test samples that
are interpolated (i.e. no strong activation) are annotated with red open circles; colored lines indicate
which two training samples are used for the interpolation. Lines are marked with different colors
and styles for clarity. (D) Construction of SQANN when (D.1) admission occurs: a new neuron is
introduced, creating more connection analogous to mammalian brains. (D.2) collision occurs.

Layer 1 construction. To initialize, let N1 = (η<1>
1 ) and α1 = (y<1>

1 ) where η<1>
1 ← x(1) and

y<1>
1 ← y(1). Let τad, τact be the admission threshold and activation threshold respectively. We

typically set τad = 0.1, τact = 0.9. We extend the layer to tuples N1 = (η<1>
1 , . . . , η<n1>

1 ) and
α1 = (y<1>

1 , . . . , y<n1>
1 ) through sample-collection function in the pseudo code 1. To do this, take

a new sample (x(k), y(k)), k > 2 and we check N1 activation, i.e. let v(k)1 be the activation of current
layer by this new sample, i.e. [v(k)1 ]j = σdsa

(
||x(k) − η<j>

1 ||
)

for all η<j>
1 ∈ N1. Then, either: (1)

new sample is admitted to N1 as a new distinct node/neuron. If for all j such that [v(2)1 ]j < τad, then
N1 → concat(N1, x

(k)) and α1 → concat(α1, y
(k)). (2) collision occurs, when there exists j such
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that τact < [v
(k)
1 ]j < 1, thus sample is admitted via collision resolution mechanism. Exclusively

for layer 1, sample will simply be admitted into the layer for selective clustering. New sample
causing [v

(k)
1 ]j = 1 collision is unresolvable; see appendix on ill-defined datasets (3) or new sample

is filtered to deeper layers, when neither occurs. Finally, we complete the iteration over all training
data, N1 = (η<k>

1 : k = 1, . . . , n1) and α1 = (y<k> : k = 1, . . . , n1).

Lemma 1 Layer 1 of SQANN achieves arbitrarily high accuracy on training data subset N1×α1.

Proof: Let N1 = (x<1> = x(1), x<2>, . . . , x<n1>); note that x<k> is not necessarily x(k) except
for k = 1 for initialization. To prove the lemma, take a sample (x, y) ∈ N1 × α1. Then we must
have x = x<j>, y = α<j>

1 for some j = 1, . . . , n1. Since [v1]j′ = σdsa(||x − η<j′>
1 ||) and

η<j′>
1 = x<j′> for all j′ = 1, . . . , n1, we get exactly [v1]j = 1. Furthermore, for other i ̸= j, we

have [v1]i < 1 due to the admission conditions (1) and (2) used during check N1 process. Finally,
computing y = α<j>

1 where j = argmaxj′ [v1]j′ , we retrieve the exact value. □

At this point, it may be clearer to readers how SQANN is constructed. In short, for each layer,
representative activations become the neurons of the layer. In layer 1, representatives activations
are the samples themselves. In deeper layers, they are activations propagated to the layer.

Layer k construction. Layer k construction is similar to layer 1 construction, except collision
could occur at any layer lc ≤ k (next paragraph). Assume every layer l ∈ Λ = {1, . . . , k − 1}
have been constructed using Xi∈Λ ⊆ X . Assume there are still unused data samples i.e. U = X \
{
⋃k−1

i=1 Xi} is non-empty, obtained from samples that have been filtered to deeper layers. Let U =
{u<1>, u<2>, . . . } after re-labelling the indices, with corresponding output values {y<1>, . . . }.
Initialize by first checking v<1>

k , the activation of u<1> at layer k for collision; if collision occurs,
see next paragraph, otherwise, set Nk = (η<1>

k ), αk = (y<1>
k ) i.e. η<1>

k ← v<1>
k . Similar to layer

1 construction, perform check Nk activation on (u<i>, y<i>) for i > 1 by computing activation
v<i>
k and checking it against the existing nodes. One of the three cases occur (1) admission, when
[v<i>

k ]j < τad for all j = 1, . . . , nk and no collision (2) collision, when there exists index j at a
collided layer lc ≤ k such that [v<i>

lc
]j > τact or (3) otherwise. If (1) occurs, the activation v<i>

k is
added as a new neuron to the layer, Nk → concat(Nk, v

<i>
k ). If (3) occurs, filter the data sample

for deeper layer. Assuming no collision, the process is repeated for the next unused data sample
u<i> until all remaining data samples are checked. Once done, repeat the process for layer k + 1
construction.

Suppose collision happens when we check u<m> at layer lc, we use the collision resolution
mechanism. We destroy all layers l > lc and put the collided sample into lc, i.e. Nlc →
concat(Nlc , v

<m>
k ) and αlc → concat(αlc , y

<m>
k ) (push-node in the pseudo code). No layer will

be destroyed if lc = k, the current layer. The data samples used in each destroyed layer are returned
to the list of unused samples in the same order they have been used during the construction (return-
index() in the pseudo code); we refer to this as order integrity. Once the colliding sample is added
to lc, effectively, the strong activation in this layer is now overshadowed by maximum activation
(selective clustering in action), since the exact neuron is now included as the representative of itself
and its locality. This is possibly a practically inefficient process, since we tear down intermediate
layers, but we only prioritize the completion of the construction for now.

Computing output via SQANN propagation (prediction). Let an input be x. The output y =
SQANN(x) is computed by propagating and processing signals through the layers; fig. 3(B).
Then [v1]j = σdsa

(
||x− η<j>

1 ||
)
. If there exists j such that v<j>

1 > τact, then set y = α<j>
1 where

j = argmaxj′ [v1]j′ . Otherwise, for subsequent layer k, recursively compute [vk]j = σdsa

(
||vk−1−

η<j>
k ||

)
for all j = 1, . . . , nk. If there exist j, k such that [vk]j > τact, then y = α<j>

k where
j = argmaxj′ [vk]j′ . If such layer k is not found, we have to perform interpolation.

Interpolations can be done in many different ways, and this paper implements a simple interpo-
lation using values from the two most strongly activated neurons. Suppose V1 = [vm]i and
V2 = [vn]j are the two most activated neurons, then the interpolated value can be, for example,
y =

V1[αm]i+V2[αn]j
V1+V2

. The form of interpolation can be adjusted according to the knowledge we
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have on the dataset, e.g. we can use TNN with high a if we know the dataset is locally constant. See
appendix A.5.2 for illustration and remarks.

Each training sample x admitted to layer Nk leaves a fingerprint, in the sense that it has a collection
of activations {vl|l = 1, . . . , k} as it is SQANN-propagated through the neural network. This
collection is unique amongst training samples, especially because of [vk]j = 1 where j is an index
within layer k it is admitted into. Furthermore, locality is preserved to the extent that if x′ ≈ x, then
activation [v′k]j ≈ 1 is around the peak and thus, by SQANN propagation, due to argmax, it is likely
we retrieve y, the ground-truth value corresponding to x. For now, we only use argmax, but more
subtle adjustment can be done to obtain y′ ≈ y but y′ ̸= y for x′ by incorporating information about
the manifold at that locality, if such knowledge is available. See appendix A.5.3 on good practice
for scalability.

Completing construction. Due to collisions, readers might wonder if the construction will complete
at all. During collision, layers are torn down and reconstructed. Suppose during layer k construction,
collision occurs at layer c for c < k. Upon reconstruction back to layer k, layer c may be torn down
again in the next collisions. Is it possible that collision occurs infinitely cyclically? The following
proposition addresses the concern through order integrity previously mentioned.

Proposition 3 SQANN construction completes with high probability p ≈ 1. See appendix A.5.4 for
(1) sketch of proof and a required assumption (2) stronger assumption needed for p = 1.

Arbitrarily high accuracy on training dataset D is relatively simple to prove in the following
theorem: roughly for each (x, y) ∈ D, there exist l, k such that x maximally activates the node
η<k>
l , thus the correct y is guaranteed to be fetched from αl. Catastrophic forgetting resistance is

proven similarly: when new samples are used for training, previous samples are not forgotten since
SQANN stores the particular fingerprint η<k>

l for each sample.

Theorem 2 Assume SQANN construction is completed. SQANN achieves arbitrarily high accuracy
on a training dataset. Furthermore, it is resistant to catastrophic forgetting. Proof: see appendix
A.5.5. Note: Our code provides experimental demonstrations showing zero errors on all training
samples; see example results in fig. 3(C).

SQANN pencil-and-paper example. With a1, a2 = 0.001, 0.5, τad, τact = 0.1, 0.9, create
SQANN universal approximator for indexed data X = [x(1), x(2), x(3), x(4)] =

[
1 1.2 −1 −1.2
1.2 0.8 −1 −1.2

]
and Y = [y1, y2, y3, y4] = [1, 1, 0, 0]. See appendix A.5.6 for more questions and solutions.

3.2 EXPERIMENT TO TEST GENERALIZABILITY OF SQANN

Test datasets with increasing spread from training distribution. The accuracy of SQANN on
high-dimensional dataset outside the training dataset is harder to formalize in theorems. Further-
more, real life data is often noisy and possibly not regularly structured. We avoid making any
related statements for SQANN for now. We instead provide empirical results on test datasets that
are similar to the training dataset, to the extent that each point in the test dataset is a training sam-
ple perturbed by uniform random values of increasing magnitude. We refer to the noise magnitude
as the test data spread. Fig. 4(A,A.2) show four domains X with different test data spread. Test
dataset that has larger test data spread contains data samples that are noisier and further away from
the training data points. Fig. 4(B,B.2) show that SQANN naturally performs better with smaller test
data spread. As the test data spread increases, larger errors are observed. Likewise, smaller spread
means smaller Ninterp, i.e. fewer data samples fail to activate neurons in SQANN strongly. For all,
training errors are 0 as expected from theorem 2.

Classification and visualization of SQANN’s special interpretability features. We show the use
of SQANN for a simple classification problem in fig. 3(C). The ring outside is labelled 0.5, while
the ring inside 1.0. With activation parameters a1 = a2 = 1, we achieve zero error not only
for training dataset (to be expected from theorem 2) but also on test dataset. A special feature in
SQANN is its ability to tell the user which data samples fail to activate any neurons strongly; such
samples’ output must be interpolated (see SQANN propagation). In fig. 3(C) right, points marked
with red open circles need interpolation. Each such point is interpolated using two training samples
whose “fingerprint” neurons are most strongly excited. These two samples are shown as the two
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points directly linked by colored straight lines to the open circle. This is possible because SQANN
systematically stores indices of training data samples within respective layers. The list of indices
organized by layers can even be explicitly printed e.g. see SQANN.ipynb, supp. materials.

SQANN is tested for regression on Boston Housing and Diabetes Datasets to demonstrate its
generalizability to unseen/test samples, as the following (simplified here): (1) A small subset of
samples D ⊆ D (the first 20% of full dataset D) is used to train SQANN and 9 other regression
methods. (2) Mean Squared Errors (MSE) values are measured on unused data Dtest on all 10
models; we expect large errors on some test samples. (3) SQANN’s activations are used to collect
samples with large absolute errors eτ (x) = |SQANN(x) − y0| > τ and we treat them as out-of-
distribution (OOD) samples. These samples are considered as new distinct samples to be integrated
into D as the new training dataset D′. (4) Train the 10 models, now with D′. (5) Then MSE is
measured again on Dtest (yes, there will be partial overfitting). From Boston dataset: for τ = 5,
SQANN MSE improved from 9.90 to 3.08. Decision tree improves the most with D′ (7.36 to 2.07);
see table 1. For more details and diabetes dataset, see the appendix A.5.7.

Figure 4: (A) Training/test (circles/x marks) data for demonstration. Smaller/larger test data spread
means test samples are closer/further to/from training samples. (B) Boxplots for data whose dis-
tributions are similar to (A). Column 1(3): (fractional) errors on test data samples. Column 2(4),
(fractional) errors on test data samples excluding interpolated samples. Column 5: no. of data
samples whose predicted values are interpolated. (B.2) Similar to top, but for (A.2).

4 CONCLUSION, LIMITATION AND FUTURE DIRECTION

Limitations and future directions. TNN is clearly limited in regards to its application to multi-
dimensional input data although it can be useful on different types of time series data. SQANN lim-
itation and possible future development currently include 1) simple sequential drawing of samples
that may result in the imbalance of layer size. In the future, more sophisticated ordering of training
samples can be used so that layers are constructed with meaningful and purposeful arrangement e.g.
deeper layers can be purposefully reserved for rare cases; more research on this is necessary to op-
timize the results 2) layer destruction during the treatment of collision cases might be an inefficient
mechanism, which can be improved in the future.

Conclusion, we have proposed TNN and SQANN, two interpretable NNs for universal approxi-
mation designed to (1) be resistant to catastrophic forgetting (2) have provably high accuracy on
training datasets and (3) can be used to handle out-of-distribution samples.

Buffer page. Just in case.

Table 1: Comparing MSE on different regression methods for Boston Housing dataset. Row o., or
original, shows MSE obtained from models trained on D. Row eT shows MSE from models trained
on D′ with τ = T . All are evaluated on Dtest.

Lin Ridge Lasso LSVR NuSVR SVR DTree kneigh MLP SQANN
o. 36.45 7.990 9.834 8.355 8.833 8.712 7.356 7.393 12.77 9.898
e5 5.139 5.135 7.068 5.950 6.295 6.068 5.026 4.798 3.481 7.998
e2 4.993 5.028 7.882 5.832 6.121 5.895 2.072 3.025 3.846 3.076
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Note on table 1. The entries in the header denote the models available in scikit-learn (Pedregosa
et al. (2011b)): Lin, Ridge and Lasso are the linear models: linear , Ridge (linear least square
with L2 regularization), Lasso (linear with L1) respectively; the Support Vector Regression models:
LinSVR, NuSVR, SVR are respectively linear SVR, ν-SVR and ϵ-SVR. DTree: Decision tree;
kneigh: k neighbours are selected from the best k = 2, 3, ..., 16, MLP: multi-layer perceptrons, or
the fully-connected neural network, with 2 layers, each layer having 64 neurons each trained for a
max of 12000 iterations (convergence is attained for both). For SQANN, the initial model trained
on D is kept after SQANN’ is trained on D′. Thus, we can choose results based on the strength of
activations between SQANN and SQANN’.

For Boston Housing Dataset τ = 5 (i.e. e5 of table 1), using SQANN we integrated 211 samples
from the test dataset into training dataset, so |D′| = 311. Overall, 0.615 of the whole D is used for
new training. For τ = 2, i.e. e2 of table 1, using SQANN we integrated 319 samples, so |D′| = 419
i.e. 0.828 of the whole D is used for new training. With τ = 2, regression performance of SQANN
improves greatly compared to other methods, except for decision tree regression. We have thus
also seen that SQANN can be used to perform sample selections for data that appear to be out of
distribution; this has improved decision tree performance greatly. The performance of other models
have improved reasonably too, especially MLP. For MLP, however, the randomness used to achieve
convergence to some local minima might have led it to explore other minima; hence we get slightly
decreased performance for e2 compared to e5.

def fit data(X,Y):
# Main SQANN loop
l now=1 # layer now
while True:

ssig, collision = sample collection(X, Y, l now)
if ssig is ’no more data’:

break
elif ssig is ’collision’:

l c = collision[’collided layer’]
for l j from l c+1 to l now+1:

return index(l j)
kp = collision[’perpetrator index’]
push node(kp,X[kp,:],Y[kp],l c)
l now = l c

l now+=1

def sample collection(X,Y,layer):
i=unused indices[0]
x=X[i,:]
x, collision = forward cons(x,layer−1)
ssig, collision = check signal(collision)
nodes, node values = new nodes(x,Y[i])
remove index(i,layer)
for i in unused indices:

x=X[i,:]
x, collision = forward cons(x,layer−1)
ssig, collision = check signal(collision)
act=activate(x,nodes)
if all(act<admission threshold)

update nodes(x,Y[i],nodes,node values)
remove index(i,layer)

return ssig, collision

Pseudo code 1: Pseudo code for the construction of SQANN. The function activate corresponds to
equation 5. See appendix B.2 for mapping to python code.
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All codes are available in the supp. materials (to be released to public repository in case of ac-
ceptance). Results are easily reproducible even with without random number seeding since data
distributions are sufficiently controlled. Jupyter notebook for our particular results are also present.
Proofs are all included in the appendix, with sketch of proof and additional statement of assumptions
where applicable.

ACKNOWLEDGMENTS

Anonymous for now.

REFERENCES

Alejandro Barredo Arrieta, Natalia Dı́az-Rodrı́guez, Javier Del Ser, Adrien Bennetot, Siham
Tabik, Alberto Barbado, Salvador Garcia, Sergio Gil-Lopez, Daniel Molina, Richard Benjamins,

9



Under review as a conference paper at ICLR 2022

Raja Chatila, and Francisco Herrera. Explainable artificial intelligence (xai): Concepts, tax-
onomies, opportunities and challenges toward responsible ai. Information Fusion, 58:82 –
115, 2020. ISSN 1566-2535. doi: https://doi.org/10.1016/j.inffus.2019.12.012. URL http:
//www.sciencedirect.com/science/article/pii/S1566253519308103.

C. L. Philip Chen, Zhulin Liu, and Shuang Feng. Universal approximation capability of broad
learning system and its structural variations. IEEE Transactions on Neural Networks and Learning
Systems, 30(4):1191–1204, 2019. doi: 10.1109/TNNLS.2018.2866622.

C. K. Chui, Xin Li, and H. N. Mhaskar. Neural networks for localized approximation. Mathematics
of Computation, 63(208):607–623, 1994. ISSN 00255718, 10886842. URL http://www.
jstor.org/stable/2153285.

C. K. Chui, Xin Li, and H. N. Mhaskar. Limitations of the approximation capabilities of neural
networks with one hidden layer. Advances in Computational Mathematics, 5(1):233–243, Dec
1996. ISSN 1572-9044. doi: 10.1007/BF02124745. URL https://doi.org/10.1007/
BF02124745.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control,
Signals and Systems, 2(4):303–314, Dec 1989. ISSN 1435-568X. doi: 10.1007/BF02551274.
URL https://doi.org/10.1007/BF02551274.

L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal. Explaining explanations: An
overview of interpretability of machine learning. In 2018 IEEE 5th International Conference on
Data Science and Advanced Analytics (DSAA), pp. 80–89, 2018.

Boris Hanin. Universal function approximation by deep neural nets with bounded width and relu
activations. Mathematics, 7(10), 2019. ISSN 2227-7390. doi: 10.3390/math7100992. URL
https://www.mdpi.com/2227-7390/7/10/992.

Jesse Johnson. Deep, skinny neural networks are not universal approximators. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?
id=ryGgSsAcFQ.

Patrick Kidger and Terry Lyons. Universal approximation with deep narrow networks, 2020. URL
https://openreview.net/forum?id=B1xGGTEtDH.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hass-
abis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forget-
ting in neural networks. Proceedings of the National Academy of Sciences, 114(13):3521–3526,
2017. ISSN 0027-8424. doi: 10.1073/pnas.1611835114. URL https://www.pnas.org/
content/114/13/3521.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learn-
ing nonlinear operators via deeponet based on the universal approximation theorem of opera-
tors. Nature Machine Intelligence, 3(3):218–229, Mar 2021. ISSN 2522-5839. doi: 10.1038/
s42256-021-00302-5. URL https://doi.org/10.1038/s42256-021-00302-5.

H. N. Mhaskar. Neural networks for localized approximation of real functions. In Neural Networks
for Signal Processing III - Proceedings of the 1993 IEEE-SP Workshop, pp. 190–196, 1993a.

H. N. Mhaskar. Approximation properties of a multilayered feedforward artificial neural network.
Advances in Computational Mathematics, 1(1):61–80, 1993b. ISSN 1572-9044. doi: 10.1007/
BF02070821. URL https://doi.org/10.1007/BF02070821.

H. N. Mhaskar. Neural networks for optimal approximation of smooth and analytic functions. Neu-
ral Computation, 8(1):164–177, 1996.

H.N Mhaskar and Charles A Micchelli. Approximation by superposition of sigmoidal and radial
basis functions. Advances in Applied Mathematics, 13(3):350 – 373, 1992. ISSN 0196-8858. doi:
https://doi.org/10.1016/0196-8858(92)90016-P. URL https://www.sciencedirect.
com/science/article/pii/019688589290016P.

10

http://www.sciencedirect.com/science/article/pii/S1566253519308103
http://www.sciencedirect.com/science/article/pii/S1566253519308103
http://www.jstor.org/stable/2153285
http://www.jstor.org/stable/2153285
https://doi.org/10.1007/BF02124745
https://doi.org/10.1007/BF02124745
https://doi.org/10.1007/BF02551274
https://www.mdpi.com/2227-7390/7/10/992
https://openreview.net/forum?id=ryGgSsAcFQ
https://openreview.net/forum?id=ryGgSsAcFQ
https://openreview.net/forum?id=B1xGGTEtDH
https://www.pnas.org/content/114/13/3521
https://www.pnas.org/content/114/13/3521
https://doi.org/10.1038/s42256-021-00302-5
https://doi.org/10.1007/BF02070821
https://www.sciencedirect.com/science/article/pii/019688589290016P
https://www.sciencedirect.com/science/article/pii/019688589290016P


Under review as a conference paper at ICLR 2022

Michael A Nielsen. Neural networks and deep learning, Jan 2015. URL http://
neuralnetworksanddeeplearning.com/chap4.html.

Sejun Park, Chulhee Yun, Jaeho Lee, and Jinwoo Shin. Minimum width for universal approx-
imation. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=O-XJwyoIF-k.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Re-
search, 12:2825–2830, 2011a. URL https://scikit-learn.org/stable/modules/
neighbors.html.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011b.

Allan Pinkus. Approximation theory of the mlp model in neural networks. Acta Numerica, 1999.

M. A. Sartori and P. J. Antsaklis. A simple method to derive bounds on the size and to train multilayer
neural networks. IEEE Transactions on Neural Networks, 2(4):467–471, 1991.

Erico Tjoa and Cuntai Guan. A survey on explainable artificial intelligence (xai): Toward medical
xai. IEEE Transactions on Neural Networks and Learning Systems, pp. 1–21, 2020. doi: 10.1109/
TNNLS.2020.3027314.
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A APPENDIX

We have reorganized the content based on ICLR 2022 reviews. Also, contents that are less relevant
are moved to the Extra section B at the end of appendix.

A.1 ALGORITHM CODE AND SUPPLEMENTARY MATERIALS

All the codes are available in the supplementary material, and the link to the repository will be made
public if the paper is accepted. README.md lists the necessary commands to obtain the results
found in this paper. Results in Jupyter notebooks format are also included.

A.2 CONCEPT DISAMBIGUATION

Link back to main text introduction, section 1.

A.2.1 UNIVERSAL APPROXIMATION

Universal approximation by TNN and SQANN is not restricted to specific conditions. Traditional
approximation may require strong conditions e.g. Cybenko (1989) shows result on C(In), space
of continuous function. Continuous function that approximates two points necessitate continuous
interpolation for any point along the path between these two points. However, hypothetically, patho-
logical set of data points may exist where the value is not even continuous along the path. Our
SQANN, for example, can handle this since we allow user to choose the interpolation function in
the case interpolations are opted for output computation (e.g. during weak activations).

A.2.2 CATASTROPHIC FORGETTING

Catastrophic forgetting and online learning. Continual or online learning have posed some
known challenges. In Kirkpatrick et al. (2017), catastrophic forgetting is defined as “the tendency
for knowledge of previously learnt task(s) (e.g. task A) to be abruptly lost as information relevant to
the current task (e.g. task B) is incorporated”. In our context, we can distinguish task A from task
B as old and new dataset. Learning from the new dataset which has possibly different distribution
from the old dataset might degrade the performance of the model.

Analogy to biological system and resistance to catastrophic forgetting. Unlike artificial NN,
mammalian brain retains old information when it learns new information by protecting previously
acquired knowledge in neocortical circuits; see Kirkpatrick et al. (2017) and the references thereof.
As rats learn new skills, the volumes of dendritic spines in their brains increase (Yang et al. (2009))
while existing dendrites persist, thus they retain old memories. Both TNN and SQANN have similar
property. Particularly, SQANN increases the size of a layer as it progressively acquires new samples
during construction (learning). This inevitably increases the number of weights that connect the
layers; see fig. 3(D.1, D.2).

Furthermore, they exhibit resistance to catastrophic forgetting. In TNN, this is simply because
the old sample xold still yields activation with signature [1, 1, ..., 1, 0, 0, ..., 0], in which the last
activated neuron (taking the value 1) is still identified with the old sample. For SQANN, each old
sample is not forgotten since its exact “fingerprint” is already registered (i.e. input xold has been
converted) to a neuron’s nucleus η<k>

l for some l, k, as shown in fig. 3(B). The activation pattern
of a sample xold includes the value 1 in a specific node of a “synapse”, v<k>

l and the particular
combinations of values in other synapses.

Advantage over existing methods. Existing ML methods do not typically admit out-of-
distributions easily; i.e. even if we re-train them on the new ood samples, they may end up with
poor prediction on ood. As an illustration, a linear regression that includes ood samples may shift
the gradient a little, but ood sample is still far from the regression line. To make the matter worse,
when there are many ood enough to change the distribution of the data sample significantly, the
model may forget the previous distribution: we consider this catastrophic forgetting.

A.3 RELATED WORKS

Older works on the construction of universal approximators do not focus on interpretability as well,
thus readers have to observe for themselves the shape of the resulting networks from the components
used in the construction. For example, there are works related to spline functions like Mhaskar &
Micchelli (1992); Mhaskar (1993b;a); Chui et al. (1994); another example by Sartori & Antsaklis

12



Under review as a conference paper at ICLR 2022

(1991) where two-layer NN can be formed by arbitrarily choosing the weights of first layer and
computing the weights of second layer explicitly; and section 5 of Pinkus (1999) shows the equations
used to obtain weights and proves the existence of such solutions. In some of them and others such
as Mhaskar (1996); Chui et al. (1996), the focus lies in error quantification.

A.4 APPENDIX FOR TNN
Link back to main text section 2.
The traditional definition of NN with a single hidden layer is given by Σiαiσ(y

T
i x + bi) fol-

lowing equation (1) from Cybenko (1989), with x, yi ∈ Rn, bi ∈ R where σ is any sigmoidal
function with the property specified in the paper. A familiar example of a sigmoidal func-
tion is the sigmoid function 1/(1 + e−x). Compared to the traditional version, TNN has a slight
generalization on the weights W , which is also a form that has been used in modern implementation.

Assumption: linear ordering. Linear order is any binary relation with (1) reflexivity (2) transitivity
(3) anti-symmetricity (4) x ≤ y or y ≤ x. As is customary (Mhaskar (1993a)), the domain of
the function is limited to [0, 1]n where n is the number of dimensions of the input, justifiable for
practical dataset with finite domain easily scaled to [0, 1]. Some readers might ask how linear
ordering can be performed meaningfully. Also, if linear ordering is done by human, interpretability
is not improved, since human user already knows about ordering. To answer that, we again refer
to the ECG example we gave earlier: time series is a naturally linearly ordered data. Next, linear
ordering in TNN can be seen as a parameter strength tuning, useful for example when TNN is
incorporated in a larger system.

Ordered activation. Recall that we would like x(1) to activate all neurons, while x(N) activates
only 1 neuron, so that eventually we achieve something like fig. 1(A). To approximately fulfil the
ordered activation conditions stated in the main text, we first need (Wx(1) + b)j ≥ a for all j,
where sub-script j denotes the j-th component in the vector, to distinguish from superscript (k)
which denotes the k-th data sample according to the linear ordering. The next iteration will be
(Wx(2) + b)j ≤ −a for j = N and (Wx(2) + b)j ≥ a for j = 1, . . . , N − 1, and similarly for
other x(k) for k = 3, . . . , N . With this, we attain eq. (1) and (2).

Since we use sigmoid function, these conditions are ideal and not strictly attainable, because sig-
moid function asymptotically achieves 0 and 1 at infinities. Nevertheless, we show later that we
can achieve arbitrarily small error ϵ by adjusting activation threshold a. We define the activation
threshold to be the value a such that σ(a) = 1− δ, where δ is a small number. For this paper, fixing
a = 5 is sufficient. The shape of sigmoid function is convenient enough to be symmetrical in the
sense that σ(−a) = δ since 1/(1 + e−a) = 1− δ can be rearranged to 1/(1 + e−(−a)) = δ, useful
for the proof later.

A.4.1 TNN THEOREM PROOF

Theorem 1. TNN achieves arbitrarily high accuracy on the training dataset.
Proof: We need equations (1) and (2). In practical situation, where a is finite, we therefore have
σ
(k)
j ≥ 1 − δ for j ≤ N − (k − 1) and σ

(k)
j ≤ δ for j > N − (k − 1) and δ > 0. Then, define

sample error as e(k) = |y(k)− [A−1y]Tσ(k))| and average error per sample will be e = 1
NΣN

i=1e
(k).

Then e(k) ≤ δ(N + 1)U where U = maxk |y(k)| is the upper bound for the absolute value of the
function over all samples (see proof below). Hence, setting δ = ϵ

U(N+1) guarantees that e ≤ ϵ.
Since δ can be monotonously decreased by increasing a, we have shown that arbitrarily small error
ϵ can be achieved in this approximation; see fig. 2(B1-3) for plotted examples. Note that e(k) = 0
iff δ = 0 iff a =∞.
Show that e(k) ≤ δ(N + 1)U where U = maxk |y(k)|. We abbreviate σ(k) as σ, fixing k.
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e(k) = |y(k) − (A−1y)Tσ(k)| =
∣∣∣y(k) − (y(N)σ1 + (y(N−1) − y(N))σ2 + . . .

+ (y(k+1) − y(k+2))σN−k

+ (y(k) − y(k+1))σN−k+1

σj ≥ 1− δ

+ (y(k−1) − y(k))σN−k+2

+ (y(k−2) − y(k−1))σN−k+3 + . . .

+ (y(1) − y(2))σN

)∣∣∣
σj ≤ δ

which we can rearrange according to y(j) instead to

e(k) =
∣∣∣y(k) − (ΣN

j=k+1y
(j)[σN−j+1 − σN−j+2]

+ y(k)[σN−k+1 − σN−k+2] + Σk−1
j=2y

(j)[σN−j+1 − σN−j+2] + y(1)σN

)∣∣∣
Rewriting di = σi+1 − σi, we now have

e(k) =
∣∣∣ΣN

j=k+1y
(j)dN−j+1 + y(k)[1− (1− δ − δ)] + Σk−1

j=2y
(j)dN−j+1 + y(1)σN

)∣∣∣
As either σi ≥ 1− δ or σi ≤ δ, we have |di| ≤ δ for all applicable i, and using triangle inequality,

e(k) ≤|y(k)|δ +ΣN
j=1|y(j)|δ ≤ δ(N + 1)max

k
|y(k)|

and we are done. □

A.4.2 TNN ERROR BOUND AND RESISTANCE TO CATASTROPHIC FORGETTING

Proposition 1. Errors on monotonous interval. Given finite training, test datasets D,D′,
there exists A ⊆ D′ such that, using TNN constructed with D ∪ A, for all samples in
test dataset (x′, y′) ∈ D′, sample-wise error e = |y′ − TNN(x′)| has an upper bound
max(|y′ − y(k+1)|, |y′ − y(k)|) for some k.

Proof: Trivial cases occur for example when (1) most samples in test datasets are novel or out of
training dataset distribution. The proposition will hold true trivially because then A = D′ i.e. all
test data will be fit into TNN. (2) Most samples are already within the distribution, so sample-wise
error e is already within bound.
Consider non-trivial case. Since sigmoid function is monotonous, then for any x ∈ [xk, xk+1], we
have TNN(x) ∈ [yk, yk+1]. The error of a test sample is e = |y′ − TNN(x)|. If x′ ∈ [xk, xk+1]
and y′ ∈ [yk, yk+1], the sample-wise error upper-bound result already holds. We say that such
sample is approximately within the training dataset distribution. Note that if e turns out to be too
large, i.e. the gradient within the interval is too large, we can always include the test data sample in
the training dataset to make a more regular model.

Figure 5: Green circles: training data samples used in TNN. Green and red x: test data samples.
(A) The inclusion novel or unseen test sample into the training dataset (B) The inclusion of one test
sample (green x) causes another test sample (red x) to be out of distribution, and thus it needs to be
included also.

Otherwise, if y′ /∈ [yk, yk+1], then we say the sample is out of training distribution because
monotonicity of sigmoid function prevents the model from possibly making the correct prediction.
Sample-wise error upper-bound no longer holds. By including this sample to the training dataset
and recomputing the weights, we recover the upper-bound for this sample. Any such sample is then
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included as the family of subset A ⊆ D′. For each test data sample, check whether y′ ∈ [yk, yk+1]
for some k and include them into A if it is out of training distribution. This is shown in fig. 5(A).
However, the remaining test dataset U = D′ \ A does not automatically fall nicely into “within
training distribution” category. This is best illustrated in fig. 5(B). However, by repeatedly running
the same procedure to U and expanding A, we will eventually terminate at a point where all
(x′, y′) ∈ U is within the expanded training distribution D ∪A, or reaches the first trivial case. □

As seen above, TNN is resistant to catastrophic forgetting for clear reasons: each data sample in D
still corresponds to one exact neuron in TNN, even after adding A ⊆ D′.

A.4.3 TNN MID POINT

Proposition 2. Mid-point property. The mid-point xmid,k = 1
2 (x

(k) + x(k+1)) takes the value of
αTσ(Wxmid,k + b) = 1

2 (y
(k) + y(k+1)).

Proof: σmid
j ≡ σ(Wxmid,k + b)j = σ( 12 (Wx(k) + b) + 1

2 (Wx(k+1) + b))j . Then σmid
N−k+1 =

σ( 12a + 1
2 (−a)) = σ(0) = 0.5. For j ≤ N − k, σmid

j = 1, while for j ≥ N − k + 2, σmid
j = 0.

The resulting output of the neural network looks like αT [. . . , 1, 0.5, 0, . . . ]T , which is equal to
1
2α

T [. . . , 1, 1, 0, . . . ]T + 1
2α

T [. . . , 1, 0, 0, . . . ]T = 1
2 (y

(k) + y(k+1)) □.

A.4.4 TNN EXAMPLE

TNN pencil-and-paper example. Use TNN to fit the dataset (x, y) ∈ {(1, 1), (0.5, 2), (0, 3)}.
Then f(x) = 3σ(20x + 5) − σ(20x − 5) − σ(20x − 15). Suppose a = 5 and we have a dataset
{(1, 1), (0.5, 2), (0, 3)} so that N = 3 and x(1) = 1 > x(2) = 0.5 > x(3) = 0, which is evenly
spaced thus we can use the simplified formula, for example, Wk = 2 × 5 × (3 − 1) = 20 for
k = 1, 2, 3 and b1 = 5(3− 2× 1) etc. Then W = [20, 20, 20]T , b = [5,−5,−15]T and

α = A−1y =

(
0 0 1
0 1 −1
1 −1 0

)[
1
2
3

]
=

[
3
−1
−1

]
f(x) = αTσ(Wx+ b) = [3,−1,−1]σ([20, 20, 20]Tx+ [5,−5,−15]T )

where σ is applied component-wise, thus f(x) = 3σ(20x+ 5)− σ(20x− 5)− σ(20x− 15).

A.4.5 MORE REMARKS

Smoothness. From the construction, assuming sigmoid function as the activation function, it is
obvious that the function is continuous for finite a. As a increases, the function becomes more and
more constant around each data sample as shown in fig. 2(A1-3), i.e. becoming more step-wise.

Special case. When the dataset is evenly spaced, x(k) = 1−(k−1)∆, k = 1, ..., N,∆ = 1/(N−1),
the results simplify to Wk = 2a(N − 1) and bk = a(3 − 2k). Not only equation
(2) is fulfilled, we also get (Wx(k) + b)j = a(1 + 2[N − k + 1 − j]). For the k-
th data sample, the activation will then be well-spaced in an interval of 2a, so that
σ(k) = σ([. . . ,−3a,−a, a, 3a, . . . ])T ≈ [. . . , 0, 0, 1, 1, . . . ]T .

Scalability and complexity. The bulk of memory space usage comes from W ∈ RN×n. N is
the number of available data points, and this is an unusual feature compared to modern DNN
architecture. Since N in common datasets can grow very large, the space complexity becomes
Ω(Nn + mn), still linear w.r.t N . Since it is more likely that m < N , it is reasonable to
simplify to just Ω(Nn). To reduce the complexity, we can pick a set of representative data points
Xrep = {xrep} for NN construction. The selection of representatives depends on our error
tolerance, and it can be done through other machine learning methods, such as clustering. Other
data points can then be used for validation. The resulting complexity Ω(Nrepn) will thus highly
depend on the variability and the structure of the dataset where Nrep = |Xrep|. Time complexity
is almost irrelevant for now, since we are not able to find any meaningful way to compare with the
training process of modern DNN. As far as we know, there is no decisive rule on how many epochs
are necessary for a DNN training through back-propagation.

Generalizability to n-dimensional output. Generalization to scalar input and multi-dimensional
output is relatively simple. From equation (3), we can treat α as the coefficients for the only

15



Under review as a conference paper at ICLR 2022

component of one-dimensional y. Generalizing to y ∈ Rm,m > 1, identify each vector αi with the
component yi. Stacking them up, we can redefine α = [αT

1 ;α
T
2 ; . . . ] where a semi-colon denotes

the next row, and the construction is done. Note that now α ∈ Rm×N .

Further generalization to n-dimensional input has been unsatisfactory (see later section of appendix,
B.1). Instead, SQANN has been developed with additional mechanism that TNN does not possess.

A.5 APPENDIX FOR SQANN
Link back to main text section 3.

A.5.1 SELECTIVE CLUSTERING

Selective clustering has been loosely defined in the main text for reasons that will be clear after
this. Formally and more generally, selective clustering is defined as the following. Let A = X × Y
be a set, and (x, y) be a point. Define d(A, x) as the minimum distance between x and all points in
X , x1 = argminx′∈X |x− x′|; let (x1, y1) ∈ A. Given error tolerances δ, ϵ > 0. Let d(X,x) ≤ δ.
If output values are similar (first case), |y − y1| ≤ ϵ, then add (x, y) as a new member of A.
Otherwise (second case), if output values are distinct, |y − y1| > ϵ, let (x, y) form its own cluster.
In short, a new cluster is created (at least nominally) if we have neighbours with distinct y values;
they are neighbours, but we may be looking at points at different sides of classification boundaries.
This can be easily generalized such that (x, y) is added to another set B where |y − y2| < ϵ for
(x2, y2) ∈ B.

As mentioned in the main text, this does have a role for interpolation during SQANN propagation.
If y, y1 are similar, then approximation is likely good. Suppose xz is near both x and X . In the
first case (output values are similar), taking interpolation between strongly activated neurons within
X (including x) will yield approximately the same value as taking argmax (the most strongly ac-
tivated neuron). This is the nice case. However, in the second case (output values are distinct),
we can get unstable result. This is because argmax might tilt between the two different values in,
while interpolation could yield the “averaged” value which may not reside in either cluster. The
concept selective clustering is thus introduced with the express purpose of talking about such sit-
uation. During collision, if two samples strongly activate the neurons but have distinct values, we
must be careful about using argmax or deciding to select our interpolation methods. In this paper,
only argmax is used; other variations will be left for further studies. For example, when xz causes
activation of 0.99 on one neuron and 0.92 on another. Both are strong activations, but with argmax-
based selective clustering, xz is treated as a member of the first neuron’s strong activation cluster,
thus the y attached to the first neuron will be used as the output. There might be no best universal
choice of selective clustering, considering that the shape of local manifold may change depending
on the dataset distribution. Hence, we leave it for further studies.

Figure 6: (A) Strong activation at layer 2 node 3 (yellow circle with red boundary). The output is
taken as [α2]3 (B) No strong activation, only 2 moderate activations (circles with darker shades of
oranges). The output shown is a weighted average.

A.5.2 COMPUTING OUTPUT VIA SQANN PROPAGATION (PREDICTION)
Fig. 6 shows two cases occurring during SQANN propagation Case (A) shows a case when strong
activation occurs at layer 2 node 3, i.e. [v2]3 > τact, near 1 or even exactly 1 (if x is the exact
training sample used during construction). Then y = [α2]3. In case (B), no nodes are strongly
activated. The α values of the two most strongly activated neurons are used for weighted average
based on the strength of activations [v2]3 and [v3]2, i.e. interpolation is performed. Clearly, we can
explore different variations, for example, taking three most strongly activated neurons etc.
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Link back to main text section 3.

A.5.3 GOOD PRACTICE FOR SCALABILITY

For both TNN and SQANN, if there are 1 million training data, there will be 1 million neurons.
Do we need all 1 million data? Probably not, since it might be fair to assume that some data points
in the training dataset may have similarities. This is where pre-processing can be done to ideally
root out data that are redundant. SQANN itself can be used to check how redundant they are; for
example, a subset of the data can be collected and a smaller SQANN can be constructed for testing
purposes. We can check how the subset of ‘similar data’ activates each other’s neuron within this
mini SQANN.

Link back to computing output via SQANN: go to lemma 1.

Figure 7: More a1, a2 variations of double selective activation.

A.5.4 SQANN CONSTRUCTION CAN COMPLETE

Proposition 3. SQANN construction completes with high probability p ≈ 1.

We start with the sketch of proof: the precise proof will need a strong assumption on data
distribution. Note: we exclude any dataset which is ill-defined, i.e. when there exists two identical
x(k) = x(k′) having different y(k) ̸= y(k

′). This results in unresolvable collisions, and is not
suitable for any function.

Let the activation space A be a high dimensional space of pattern activations illustrated in fig.
8. An element of alk ∈ A is a collection of [vl]k, and distances between alk, al′k′ can be, for
example, Euclidean. In SQANN construction, however, you might have noticed that the “distance”
is expressed by eq. (5), i.e., only the between the activations at the relevant layer (during layer k
check for admission, it will be layer k; during collision, it will be the collision layer. Let red x be
any activation alk in A stored in SQANN currently being used to test a new sample in a check Nk

activation process during construction. Let black open circles be pattern activations of other sample
points already incorporated into SQANN layers. Suppose we test a new training sample. From the
main SQANN construction, we have seen that 3 possibilities can occur. (1) Admission of sample
to layer Nk, if the sample weakly activates the existing node without collision, like the green +
mark in fig. 8(B) (2) collision if it activates an existing node very strongly, like the red + mark (3)
filtering into deeper layer if neither occurs, i.e. like blue + mark.
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The concern related to the completion of SQANN construction mainly stems from the collision
problem. During collision, layers are torn down, and the red + mark is now added beside the red x
mark; thus SQANN now can distinguish similar looking points that might be characterized differ-
ently (selective clustering in action). The question is, will the black open circles be reconstructed
back to the previously destroyed layers in the same manner as they were? The answer is, they will
NOT be exactly the same as before since the new activations now need to consider a new node
contributed by red + mark.

Intuition behind σdsa, double selective activation. However, there is a high probability that they will
come back in the same order. This is the exact reason why double selective activation has a narrow
band of strong activation (small red area in fig. 8) distinguished from a band of moderate activation
by steep gradient, that is in turn distinguished from near zero activation by steep gradients. With
such characteristic, A will have a small red region of strong activation, a large orange buffer
region of moderate activation and weak activation everywhere else. The main idea revolves around
the fact that the buffer region reduces the probability that existing black open circles are too
close to red + mark. Hence, the activation characteristic of each black open circle that has been
temporarily removed from the torn down layer (because of collision) will be similar to the activation
characteristic it has before i.e. it will not suddenly strongly activate a node it previously did not
activate. For example, if sample u weakly activates all existing neurons with values 0.01 before,
after red + mark is added into the layer, u still weakly activates all existing neurons with values
0.01, including red + mark which is close to red x mark. More precisely, if u gives rise to v before
collision (let us denote its component by [vi], i = 1, . . . , nl, then after resolving collision, the new
activation at the same layer is v′ such that [v′i] ≈ [vi], i = 1, . . . , nl, although now [v′i] has the
(nl + 1)-th component since the collided sample has been added into the layer.

Figure 8: (A) Visualization of a SQANN node η in the activation space, marked as red x. Black open
circles are the fingerprints of other nodes that are already integrated into SQANN. (B) A data sample
whose activation lies within the red/orange region such as red/blue plus mark is strongly/moderately
activating the particular node η. Otherwise, it is weakly activating it, e.g. green plus mark. A dataset
and SQANN construction settings are desirable if for every training data u, there is a reasonably
large d such that the probability that complication occurs is pcu ≈ 0. When a data sample x′ strongly
activates node η (red plus mark), it will cause collision. If this happens, x′ will be integrated into the
collision layer as η′, i.e. collision is resolved, hence shifting the effective shape of activation shape
of η shape (blue arrow). What used to strongly excite η might now excite η′ more strongly (say, if it
is nearer to η′).

Probability of complication. Moving on from the illustration, let any sample u ∈ U where U is the
subset of dataset not yet used during SQANN construction. If its activation v < τact on all existing
nodes (i.e. are not activating any existing nodes too strongly), then, if any new sample s1 activates
s strongly, then u does not activate s1 strongly. Intuitively, this is because s1 is near s, which is far
from u because there is a buffer region, thus there is a high probability that u is also far from s1
(note: by far, we mean distance in the activation space). It is only with high probability, because
complication may occur, as the following. In real dataset, there may be a non-zero probability
that there are black circles lying at the edges very close to the boundary of red x mark and red +
mark happens to activates that region. Let the probability that a complication occurs for u ∈ U be pcu.

Assumption for formal proof. Formal result can thus be stated for p ≈ 1 if we have an assumption
on data distribution; recall from the statement of the proposition that p is the probability that
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construction is completed. Suppose W,U are subsets of dataset that respectively have already and
not already been used for SQANN construction . Let A(x) be the set of points strongly activating
x (in the illustration, this is the area covered by the small red circle). Also let d (illustrated in fig.
8(B)) denote the minimum distance between u ∈ U and any points within A(w) for any w ∈ W .
The required assumption is: for a given τact, τad and the current ordering of dataset, there exists
d > 0, such that for any u ∈ U , for any w ∈ W , if the minimum distance between A(w) and u is
greater than d, then the probability of complication u ∈ A(w1) for any w1 ∈W is pcu ≈ 0.

Assumption can be weak; defining the strong assumption. With this assumption, each sample at
risk of behaving differently after the addition of red + mark contributes to 1 − pcu probability of
reconstructing the same SQANN layer previously torn down. But if there are many collisions and
p = Πu∈U (1 − pcu) = 1 − δ, then δ might blow up easily, especially if there are many data points
close to each other. In this case, what we really need to consider are (1) our selection of τad, τact
might be unsuitable, since they cause too many overlaps. As a rule of thumb, decrease τad and
increase τact to enable constructions with less overlaps between samples’ activations (2) there are
too many similar data in the samples that could have been represented equally well with a fraction
of available data. In this case, it might be better to remove some data from the samples and create
smaller subsets for SQANN layer construction, which is beneficial, since the remaining data can
be used for validations. With these two fixes, the collision distances between two data points are
relatively increased, and, there might exist d such that pcu = 0. The strongest assumption is thus
when there exists d such that pcu = 0 for all unused training sample u at any time, i.e. assume no
complication.

Proof for p = 1 with the strongest assumption: assume there is no complication at each sample
checking step. Suppose layer 1, . . . , k − 1 have been constructed, and j − 1 nodes have been added
to the latest layer k that is being constructed. Recall and note the difference between x(k) and x<k>.
Suppose sample x(j) causes collision in layer c ≤ k − 1. Then we tear down all layers after layer
c; here is where we will use the order integrity: let Xtemp = {x<r>, x<r+1> . . . , x<j−1>} be
the set of samples that have been returned to the list of unused indices in the same order they have
been put into SQANN layer (likewise Ytemp) e.g. (x<r>, y<r>) is the first sample in layer c + 1.
Then, resolve the collision by concatenating (x(j), y(j)) to (Nc, αc) of layer c. The reconstruction
of subsequent layers will occur as the following. Check x<r> for admission, add it into layer c+ 1,
then checking x<r+1> the same way it was added through “layer k construction” process in the main
text, and so on up to x<j−1>. They will be returned to their previous positions the same way they
were added to the torn down layers. By the no-complication assumption, samples will not collide
with (x(j), y(j)). More verbosely, samples admitted via “admission to Nk” will again be admitted
to the same Nk at the same node, while sample admitted through collision with some node η<j′>

k′

will collide with the same node, and there is no collision with the node of activation corresponding
to (x(j), y(j)) because of no complication assumption. As a consequence, we can always proceed
with x(j+1), even if there is a need for multiple reconstructions of layers. Thus, the construction can
complete. □

A.5.5 SQANN MAIN THEOREM

Theorem 2. Assume SQANN construction is completed. SQANN achieves arbitrarily high accu-
racy on a training dataset. Furthermore, it is resistant to catastrophic forgetting.
Proof: Let the training dataset be D = X × Y . For any x ∈ X , perform SQANN propagation.
If x ∈ N1, then, by lemma 1, we obtain the arbitrarily high accuracy. If x ∈ Nk, k > 1, the
heavy-lifting is in fact already done through the SQANN construction algorithm. By SQANN
construction, there exist index j and layer k > 1 such that either (1) the activation of x undergoes
admission to Nk as η<j>

k or (2) pushed into layer Nk during collision. One of the two must occur,
otherwise SQANN construction is not completed, contradicting the assumption. In either process,
we have vk−1 = η<j>

k thus [vk]j = σdsa(||vk−1 − η<j>
k ||) = σdsa(0) = 1 > τact where recursive

computation [vl]i = σdsa

(
||vl−1−η<i>

l ||
)

for all i = 1, . . . , nl is performed from layer l = 1, . . . , k
with v0 ≡ x. Since such strongly activated neuron exists at layer k, by SQANN propagation, retrieve
y = α<j>

k where j = argmaxj′ [vk]j′ . To ensure that j is unique, we reasonably assume that there
is no duplicate x with different y values that is admitted through collision, otherwise the dataset is
ill-defined (as previously mentioned). The uniqueness is made possible because double selective
activation is, by definition, has a peak with unique value 1 and in the locality of the peak, to each
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side, it is one-to-one and onto, i.e. there is no interval of constant value around the peak. Finally, j
is indeed the index from argmax, because the peak value of double selective activation is 1 by design.

Resistance to catastrophic-forgetting. For each new training sample added into SQANN, previous
samples still exist as nodes stored in the SQANN layers. Previously learned samples will therefore
not be forgotten. More precisely, suppose SQANN construction is not yet complete. Let Dk ⊂ D be
the subset of dataset whose samples have either been admitted to layers 1, 2, . . . , k through normal
admission or by resolving collision. Then for pk = (x(k), y(k)) ∈ Dk can be exactly queried
by obtaining activation at some layer l ≤ k for some j so that v = σdsa(||vl−1 − η<j>

l ||) is
exactly 1 and l, j exist exactly at the layer and node where pk is admitted into SQANN through the
main mechanism of layer construction. By SQANN propagation, as before, we retrieve the output
α<j>
l = yk stored exactly at l, j node through the main SQANN construction algorithm as well,

hence, SQANN remembers the previously stored value. Furthermore, if SQANN construction with
D has been completed and new training dataset D′ is available, construction with all samples in
D by drawing samples in the same order will result in the same SQANN. Any new samples from
D′ can be admitted into SQANN in the same way specified in layer k reconstruction after all D
samples are used up. In this manner, previously learned samples from D will remain inside SQANN
layers, i.e. like before we can find l, j node corresponding to each sample previously admitted into
SQANN. Hence no forgetting will occur. □

A.5.6 SQANN EXAMPLE

SQANN pencil-and-paper example. With a1, a2 = 0.001, 0.5, τad, τact = 0.1, 0.9, create
SQANN universal approximator for indexed data X = [x(1), x(2), x(3), x(4)] =

[
1 1.2 −1 −1.2
1.2 0.8 −1 −1.2

]
and Y = [y1, y2, y3, y4] = [1, 1, 0, 0]. (A) Show layer 1 stores the fingerprints of (x(1), x(3))
and layer 2 stores (v(2), v(4)) i.e. activations of (x(2), x(4)). (B) Use SQANN propagation to
verify that we indeed get zero errors on X × Y . (C) Test SQANN on the test dataset Xtest =

[x
(1)
t , x

(2)
t , x

(3)
t ]
[
1.25 −1.25 −1
1.25 −1 −1.4

]
and plot the results, marking the interpolations made by SQANN.

Figure 9: (A) Training samples are in closed circles, test samples are in x. (B) Open circles show
samples that need interpolation, and the corresponding lines point towards the samples from which
they are interpolated.

Note that the following can be matched with the demonstration in jupyter notebook
SQANN small example.ipynb.
(A) SQANN construction. We start by putting x1, y1 into the first layer, so put it into the first layer
of SQANN, N1 = (x1), α1 = (y1). Now check (x(2), y(2)) for admission to N1: if it activates a
node in N1, then we filter it to a deeper layer, otherwise, we add it into N1, α1 as well. We show
that the latter occurs. We only have one node in SQANN now, so the only possible activation is
[v

(2)
1 ]1 = σdsa(||x(2) − x(1)||) = 0.3344 ≥ τad. Admission to N1 only occurs if [v(2)1 ]1 < τad

hence it is filtered to a deeper layer.

20



Under review as a conference paper at ICLR 2022

Now we check (x(3), y(3)) for admission to N1 and get [v(3)1 ]1 = 5.655× 10−5. It does not activate
any node in the layer, thus this is a distinct sample we will admit into N1.
Now we check (x(4), y(4)) for admission to N1. We have two nodes, so we have to compute both:
[v

(4)
1 ]1 = σdsa(||x(4) − η<1>

1 ||) = 4.450× 10−6 and [v
(4)
1 ]2 = σdsa(||x(4) − η<2>

1 ||) = 0.5676 >
τad. It does activate a node in N1, which is η<2>

1 . Hence it is filtered to a deeper layer. We have
shown that N1 stores (η<1>

1 = x(1), η<2>
1 = x(3)), and not the other samples. Note: since the

activation < τact, no node has been activated strongly (otherwise we will have collision). Recall
that each time we store x(k) into Nl, we also store y(k) into αl, so now α1 = (y(1), y(3)).
We have gone through the training dataset once. The unused data are {(x(k), y(k)), k = 2, 4}, as
they have been filtered to deeper layer. We now proceed with layer 2 construction. Since it is
empty, we put the activation of x(2) (not the sample itself) into N1 since no collision occurs, i.e.
η<1>
2 = v

(2)
2 =

[
[v

(2)
2 ]1, [v

(2)
2 ]2

]
. To show no collision, i.e. no strong activations in N1, similar to

before, we compute [v
(2)
1 ]1 < τact, which is previously done, and [v

(2)
1 ]2 = 6.187× 10−5 < τact.

The last sample x(4) is admitted into N2 by checking collisions against all N1 (previously done),
and then checking activation against existing N2 node, η<1>

2 , i.e v
(4)
2 = σdsa(||v(4)2 − η<1>

2 ||) =
0.00732 < τad. Hence, it is admitted to N2. We have used up all data points, hence we have shown
N2 = (v

(2)
2 , v

(4)
2 ).

(B) Using SQANN propagation on x(k), k = 1, 3, we get σdsa(||v(k)1 − η<j>
1 ||) = σdsa(0) = 1 >

τact where j = 1, 2 respectively. Since they are strongly activated, we get y = α<j>
1 = y(1), y(3)

for j = 1, 2 respectively. Thus the errors are zero.
For x(2), we already previously computed v

(2)
2 =

[
[v

(2)
2 ]1, [v

(2)
2 ]2

]
, which becomes η<1>

2 thus we
will also get the distance of activation value from itself as stored in N2, σdsa(||v(2)2 − η<1>

2 ||) =

σdsa(0) = 1. Likewise x(4).
(C) SQANN testing. For x

(1)
t , we expect its fingerprint to be close to x(1) or the activation

of x(2) since their values are similar. It turns out we get the following activations in layer 1,
v
(1)
t,1 = [0.5053, 4.938× 10−5], not strongly activating layer 1 nodes. For layer 2, we have[v(1)t,2 ]1 =

σdsa(||vt,1 − v
(2)
2 ||) = 0.5165 and [v

(1)
t,2 ]2 = 0.0009896. There is no strong activation anywhere,

and this is the case when interpolation is needed. Notice that of all the activations we computed,
the strongest are [v

(1)
t,1 ]1 and [v

(1)
t,2 ]1, which are the first nodes in both layer, due to x(1) and x(2)

respectively as we have expected. Using SQANN propagation, we fetch its α values, both of which
are 1., thus using linear interpolation, y = 0.5053∗1+0.5165∗1

0.5053+0.5165 = 1.

The next sample in the test dataset x(2)
t does activate the SQANN. We expect it to activate either x(3)

or the activation of x(4). First, get v(2)t,1 = [5.049 × 10−5, 0.5059], i.e. no strong activation, so x(3)

is not strongly activated. But we get σdsa(||v(2)t,1 − η<2>
2 ||) = 0.9880 > τact, thus we do get strong

activation due to the fingerprint of x(4). By SQANN propagation, we get y = α<2>
2 = y(4) = 0.

The last test sample needs interpolation too, and we leave it for the reader. The plot of results are
shown in fig. 9.

A.5.7 EXPERIMENTAL DATA

For all experimental data, we perform no pre-processing beyond simple normalization. We test all
the data in nearly their raw forms.
Experimental data in fig. 4(A). [Top row] Training Training samples X are x ∈ R2 with
components drawn from uniform r.v. (random variable) x1 = x2 = t ∼ U(−1., 1.) plus Gaussian
noise. Test samples are X plus r.v. from U(−s, s) where s is the test data spread. Also, y = ||x||
is indicated by the color. [Bottom row] similar to top row, but x ∈ X with x = R[cos(t), sin(t)]T

where t ∼ U(0,≈ 2π), R ∼ U(0.8, 1.2) and y = cos(t). For both experiments in the top and
bottom rows , 128 training data samples are used for SQANN construction and tested on 128 test
data samples.

SQANN is tested for regression on Boston Housing and Diabetes Datasets to demonstrate its
generalizability to unseen (test) samples. The procedure is as the following. Let Boston Dataset be
D = {(x(k), y(k)), k = 1, . . . , 506}. (1) A small set of samples D = {(x(k), y(k)), k = 1, ..., 100}
is used to train SQANN and 9 other regression methods; recall that ordered sequence of data
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Table 2: Comparing MSE on different regression methods for Diabetes dataset. Notations similar to
table 1.

Lin Ridge Lasso LSVR NuSVR SVR DTree kneigh MLP SQANN
o. 58.57 57.60 59.21 94.65 84.34 81.04 76.73 66.95 108.86 93.80
e40 54.15 54.18 55.65 70.92 74.39 73.57 40.52 53.06 54.17 53.96

is used for SQANN construction. (2) Mean Squared Errors (MSE) values are measured on
unused data Dtest = D\D on all 10 models listed in table 1. We expect large errors on some
test samples, since the training dataset might be too small to be representative. (3) SQANN’s
activations are used to collect samples with large absolute errors eτ (x) = |SQANN(x)− y0| > τ
and we treat them as out-of-distribution (OOD) samples. These samples are considered as
new distinct samples to be integrated into D as the new training dataset D′. (4) Train the
10 models, now with D′. (5) Then MSE is measured again on Dtest (yes, there will be partial
overfitting). Repeat the process for diabetes dataset, where |D| = 442; we also start with |D| = 100.

Results for Boston Housing dataset has been described in the main text.

For Diabetes Dataset, τ = 40 yields relatively competitive performance. using SQANN we inte-
grated 218 samples, so |D′| = 318 so 0.719 of the whole D is used for new training. From the
results of linear models, the dataset appears to have a somewhat strong linear structure; but non-
linear models still can perform better.

B MORE COMMENTS

This section consists of contents that we have considered less important, thanks to comments by
reviewers in ICLR 2022.

B.1 ON DIRECT GENERALIZATION OF TNN
As mentioned in appendix section A.4.5, our attempts at generalizing TNN directly to high-
dimensional input data are unsatisfactory. Readers can skip this without losing any information
required for understanding this paper. For the record, we still list these attempts here. Now, we
consider multi-dimensional input x ∈ Rn, n > 1 with one dimensional output y for TNN. If the
well-known space-filling curve can be constructed for the input data, generalization is immediately
done. Otherwise, variable separability might help with modelling a system partially using TNN.
For example, given an ideal two-variable model F (x, y) = f(x)g(y). Suppose it fits the experi-
mental data poorly. Assuming that f is correct, correction can be applied to g by replacing it with
g(y) +NN(y) to account for the errors. Computing TNN(y) = F (x,y)

f(x) − g(y) yields the y values
to be used for weight computations in our triangular construction. Clearly, error correction can be
performed on f similarly, though we now have to determine how to allocate values to each factor.
One way to order multi-dimensional data samples will be ordering by the magnitude of the vector
x = [x1, ..., xN ]T → [r, x2, ..., xN ]T where r =

√
Σix2

i . The sign of x1 can be generally dealt
with once we include discrete variables (such as binary variables) in the vector, where weights could
be toggled to different values according to the discrete variables. More generally, weights that vary
with a continuous variable may be a powerful modification to the current method of construction
which uses constant weights. This will lead to the loss of linear ordering, in the sense of “larger” vs
“smaller” in the inequality of real number, leaving us with more relaxed conditions, possibly partial
order. However, they will not be within the scope of this paper.
For now, assume we have already defined a linearly ordering for the dataset, we can now generalize
the construction. Now W ∈ RN×n, where N,n are still respectively the number of data samples
and dimensions. Similar to the earlier sub-section computing weights, (Wx(k+1) + b)N−k+1 = −a
and (Wx(k) + b)N−k+1 = a. By subtracting them, we now get [W (x(k) − x(k+1))]N−k+1 = 2a.
Spelling it out and rewriting component-wise difference as ∆(k)

i = x(k) − x(k+1), we have

Σn
i=1WN−k+1,i∆

(k)
i = 2a (6)
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Since ∆
(k)
i can be zero, we only need to carefully choose WN−k+1,i to satisfy equation (6). This is

simply done by setting

WN−k+1,i =

{
0 if ∆

(k)
i = 0

2a

N1∆
(k)
i

otherwise
(7)

where N1 is the number of non-zero ∆
(k)
i over all i for the particular k. Finally,

bN−k+1 = a−WN−k+1x
(k) and likewise α = A−1y in the same manner.

The difficulty is in selecting the choice of the linear ordering. We are not able to provide any sensible
ordering for high dimensional dataset, though a meaningful ordering we may still exist. Thus we
ask does there exist any linear ordering so that TNN can be used for high accuracy classification?
The proposition indicates that there is.

Proposition 4 . Given a standard DNN for C classes classification with atr training accuracy, then
there exists a linear ordering for TNN to achieve atr accuracy. Test accuracy atest of DNN can be
achieved by TNN with high probability through squeezed linear ordering.

Proof: In the stringent case, classification is performed by taking c = argmaxiyi where
y = DNN(x), x the image to be classified, and y ∈ RC the output from the last layer of the neural
network DNN . Suppose C = 10 and c = 0, 1, . . . , 9. Partition the unit interval [0, 1] such that the
ten classes are evenly distributed, i.e. Ic = [ cC , c+1

C ]. For each class c, collect all the training data
samples that are classified as c by the DNN, denote this set as Pc. Then perform the following linear
ordering: map pc to c+0.5

C where pc is the data point with the highest yc component at the last layer
of DNN. Let Rc = {ri ∈ Pc\{pc} : DNNc+1(ri) ≥ DNNc−1(ri)}. Then, continue constructing
the linear ordering pc < r1 < r2 < . . . so that rk < rk+1 whenever DNNc(rk) ≥ DNNc(rk+1),
i.e. going to the right of the interval, a data sample has the less probability of being classified as c
and it is also more likely classified as c + 1 than c − 1 if c is excluded. Let Lc be the remaining
set of data samples classified as c, i.e. Pc\(Rc ∪ {pc}). Set · · · < l2 < l1 < pc so that lk+1 < lk
whenever DNNc(lk) ≥ DNNc(lk+1). The linear ordering for training dataset is done and TNN
will yield atr.

Squeezed linear ordering. We can map the ordered samples to the interval Ic arbitrarily, so long
as the order is preserved. However, placing each Rc, Lc nearer to pc increases TNN chances of
achieving atest, i.e. we squeeze the linear ordering towards the centers pc for all c. This is because,
ordering test data samples into the linear order made by training samples, we may get the situation
where test sample has max yc (thus likely classified as c), but lies beyond the extreme end of Rc

or Lc. Conversely, such sample is beyond the extreme end of Lc+1 or Rc−1 respectively. By
squeezing, large spaces (the grey area) are reserved between the extreme ends of two classes. Data
samples could fall into these intervals, and we reduce the possibility of misclassifying edge cases,
e.g. by letting users treat them separately when TNN indicates that these samples lie in the grey
area. □

Since TNN can achieve arbitrary accuracy on the training dataset, we will recover the same accuracy
as the DNN from the newly ordered training data. We do not quantify the exact probability of
attaining high atest because distribution of test dataset may not be exactly the same as the training
dataset. With DNN as the encoder mapping the raw data into the unit interval is ironic since
the hardwork is already spent on training the deep neural network. However, this shows that, in
principle, there exist encodings that can achieve linear ordering for TNN to attain high accuracy
classifications. Notes: when clashes occur, e.g. rk and rk+1 have the same DNNc components, for
the purpose of this simple construction, simply randomly assign order between them. We only aim
to prove the existence of linear ordering here.

B.2 MORE REMARKS ON SQANN
Regarding the pseudo code. Mapping names from pseudo code to python code:
sample collection→ layer k sample collection.
push node→ push node to layer.
forward cons→ forward to layer k for reconstruction.
ssig→ STOP SIGNAL

23



Under review as a conference paper at ICLR 2022

collision→ COLLISION.
remove index → remove index to layer node check signal, new nodes and update nodes are
placeholders for simple check and update sequences in python code.
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