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Abstract

Confidence calibration is central to providing accurate and interpretable uncertainty
estimates, especially under safety-critical scenarios. However, we find that existing
calibration algorithms often overlook the issue of proximity bias, a phenomenon
where models tend to be more overconfident in low proximity data (i.e., data lying
in the sparse region of the data distribution) compared to high proximity samples,
and thus suffer from inconsistent miscalibration across different proximity samples.
We examine the problem over 504 pretrained ImageNet models and observe that:
1) Proximity bias exists across a wide variety of model architectures and sizes;
2) Transformer-based models are relatively more susceptible to proximity bias
than CNN-based models; 3) Proximity bias persists even after performing popular
calibration algorithms like temperature scaling; 4) Models tend to overfit more
heavily on low proximity samples than on high proximity samples. Motivated by
the empirical findings, we propose PROCAL, a plug-and-play algorithm with a
theoretical guarantee to adjust sample confidence based on proximity. To further
quantify the effectiveness of calibration algorithms in mitigating proximity bias, we
introduce proximity-informed expected calibration error (PIECE) with theoretical
analysis. We show that PROCAL is effective in addressing proximity bias and
improving calibration on balanced, long-tail, and distribution-shift settings under
four metrics over various model architectures. We believe our findings on proximity
bias will guide the development of fairer and better-calibrated models, contributing
to the broader pursuit of trustworthy AI.

1 Introduction

Machine learning systems are increasingly deployed in high-stakes applications such as medical
diagnosis [30, 36, 9, 6], where incorrect decisions can have severe human health consequences. To
ensure safe and reliable deployment, confidence calibration approaches [10, 23, 28] are employed to
produce more accurate uncertainty estimates, which allow models to establish trust by communicating
their level of uncertainty, and to defer to human decision-making when the models are uncertain.

In this paper, we present a calibration-related phenomenon termed proximity bias, which refers to
the tendency of current deep classifiers to exhibit higher levels of overconfidence on samples of low
proximity, i.e., samples in sparse areas within the data distribution (see Figure 1 for an illustrative
example). In this study, we quantify the proximity of a sample (Eq. 1) using the average distance to
its K (e.g. K = 10) nearest neighbor samples in the data distribution, and we observe that proximity
bias holds for various choices of K. Importantly, the phenomenon persists even after applying
existing popular calibration methods, leading to different levels of miscalibration across proximities.

The proximity bias issue raises safety concerns in real-world applications, particularly for underrepre-
sented populations (i.e. low proximity samples) [30, 35]. A recent skin cancer analysis highlights
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(a) All Samples: Well-calibrated (b) High Proximity Samples: Underconfident (c) Low Proximity Samples: Overconfident

Figure 1: Samples with lower (higher) proximity tend to be more overconfident (underconfident).
The results are conducted using XCiT, an Image Transformer, on the ImageNet validation set (All
Samples). The sample’s proximity is measured using the average distance to its nearest neighbors
(K = 10) in the validation set. We split samples into 10 equal-size bins based on proximity and
choose the bin with the highest proximity (High Proximity Samples) and lowest proximity (Low
Proximity Samples).

this concern by revealing that AI-powered models demonstrate high performance for light-skinned
individuals but struggle with dark-skinned individuals due to their underrepresentation [11]. This
issue can also manifest in the form of proximity bias: suppose a dark-skinned individual has a
high risk of 40% of having the cancer. However, due to their underrepresentation within the data
distribution, the model overconfidently assigns them 98% confidence of not having cancer. As a
result, these low proximity individuals may be deprived of timely intervention.

To study the ubiquity of this problem, we examine 504 ImageNet pretrained models from the timm
library [43] and make the following key observations: 1) Proximity bias exists generally across a wide
variety of model architectures and sizes; 2) Transformer-based models are relatively more susceptible
to proximity bias than CNN-based models; 3) Proximity bias persists even after performing popular
calibration algorithms including temperature scaling; 4) Low proximity samples are more prone to
model overfitting while high proximity samples are less susceptible to this issue.

Besides, we argue that proximity bias is overlooked by confidence calibration. Revisiting its definition,
P(Y = Ŷ | P̂ = p) = p for all p ∈ [0, 1], we find that its primary goal is to match confidence with
the accuracy of samples sharing the same confidence level. However, Figure 1a reveals that although
the model seems well-calibrated within each confidence group, there still exists miscalibration errors
among these groups (e.g. low and high proximity samples) due to proximity bias.

Motivated by this, we propose a debiased variant of the expected calibration error (ECE) metric,
called proximity-informed expected calibration error (PIECE) to further capture the miscalibration
error due to proximity bias. The effectiveness is supported by our theoretical analysis that PIECE is
at least as large as ECE and this equality holds when there is no cancellation effect with respect to
proximity bias.

To tackle proximity bias and further improve confidence calibration, we propose a plug-and-play
method, PROCAL. Intuitively, PROCAL learns a joint distribution of proximity and confidence
to adjust probability estimates. To fully leverage the characteristics of the input information, we
develop two separate algorithms tailored for continuous and discrete inputs. We evaluate the algo-
rithms on large-scale datasets: balanced datasets including ImageNet [7] and Yahoo-Topics [49],
long-tail datasets iNaturalist 2021 [3] and ImageNet-LT [27] and distribution-shift datasets
MultiNLI [44] and ImageNet-C [15]. The results show that our algorithm consistently improves
the performance of existing algorithms under four metrics with 90% significance (p-value < 0.1).

Our main contributions can be summarized as follows:

• Findings: We discover the proximity bias issue and show its prevalence over large-scale
analysis (504 ImageNet pretrained models).

• Metrics: To quantify the effectiveness of mitigating proximity bias, we introduce proximity-
informed expected calibration error (PIECE) with theoretical analysis.

• Method Effectiveness: We propose a plug-and-play method PROCAL with theoretical
guarantee and verify its effectiveness on various image and text settings.

2 Related Work

Confidence Calibration Confidence calibration aims to yield uncertainty estimates via aligning
a model’s confidence with the accuracy of samples with the same confidence level [10, 25, 28].
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To achieve this, Scaling-based methods, such as temperature scaling [10], adjust the predicted
probabilities by learning a temperature scalar for all samples. Similarly, parameterized temperature
scaling [39] offers improved expressiveness via input-dependent temperature parameterization, and
Mix-n-Match [48] adopts ensemble and composition strategies to yield data-efficient and accuracy-
preserving estimates. Binning-based methods divide samples into multiple bins based on confidence
and calibrate each bin. Popular methods include classic histogram binning [46], mutual-information-
maximization-based binning [32], and isotonic regression [47]. However, existing calibration methods
overlook the proximity bias issue, which fundamentally limits the methods’ capabilities in delivering
reliable and interpretable uncertainty estimates.

Multicalibration Multicalibration algorithms [13, 21] aim to achieve a certain level of fair-
ness by ensuring that a predictor is well-calibrated for the overall population as well as different
computationally-identifiable subgroups. [33] proposes a grouping loss to evaluate subgroup calibra-
tion error while we propose a metric to integrate the group cancellation effect into existing calibration
loss. [21] focuses on understanding the fundamental trade-offs between group calibration and other
fairness criteria, and [13] proposes a conceptual iterative algorithm to learn a multi-calibrated predic-
tor. In this regard, our proposed framework can be considered a specific implementation of the fairness
objectives outlined in [13], with a particular focus on proximity-based subgroups. This approach
offers easier interpretation and implementation compared to subgroups discussed in [13, 21].

3 What is Proximity Bias?

In this section, we study the following questions: What is proximity bias? When and why does
proximity bias occur?

Background We consider a supervised multi-class classification problem, where input X ∈ X
and its label Y ∈ Y = {1, 2, · · · , C} follow a joint distribution π(X,Y ). Let f be a classifier with
f(X) = (Ŷ , P̂ ), where Ŷ represents the predicted label, and P̂ is the model’s confidence, i.e. the
estimate of the probability of correctness [10]. For simplicity, we use P̂ to denote both the model’s
confidence and the confidence calibrated using existing calibration algorithms.

Proximity We define proximity as a function of the average distance between a sample X and its
K nearest neighbors NK(X) in the data distribution:

D(X) = exp

− 1

K

∑
Xi∈NK(X)

dist(X,Xi)

 , (1)

where dist(X,Xi) denotes the distance between sample X and its i-th nearest neighbor Xi, estimated
using Euclidean distance between the features of X and Xi from the model’s penultimate layer. K is
a hyperparameter (we set K = 10 in this paper). We use the validation set as a proxy to estimate the
data distribution. That is, we compute any point’s proximity by finding its nearest neighbors in the
held-out validation set. Although the training set can also be employed to compute proximity, we
utilize the validation set because it is readily accessible during the calibration process.

The exponential function is used to normalize the distance measure from a range of [0, inf] to [0, 1],
making the approach more robust to the effects of distance scaling since the absolute distance in
Euclidean distance can cause instability and difficulty in modeling. This definition allows us to
capture the local density of a sample and its relationship to its neighborhood. For instance, a sample
situated in a sparse region of the training distribution would receive a low proximity value, while a
sample located in a dense region would receive a high proximity value. Samples with low proximity
values represent underrepresented samples in the data distribution that merit attention, such as rare
(“long-tail”) diseases, minority populations, and samples with distribution shift.

Proximity Bias To investigate the relationship between proximity and model miscalibration, we
define proximity bias as follows:
Definition 3.1. Given any confidence level p, the model suffers from proximity bias if the following
condition does not hold:

P
(
Ŷ = Y | P̂ = p,D = d1

)
= P

(
Ŷ = Y | P̂ = p,D = d2

)
∀ d1, d2 ∈ (0, 1], d1 ̸= d2.
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Figure 2: Proximity bias analysis on 504 public models. Each marker represents a model, where
marker sizes indicate model parameter numbers and different colors/shapes represent different
architectures. The bias index is computed using Equation (3) (0 indicates no proximity bias). Left:
We observed the following: 1) Models with higher accuracy tend to have a larger bias index. 2)
Proximity bias exists across a wide range of model architectures. 3) Transformer variants (e.g. DEiT,
XCiT, CaiT, and SwinV2) have a relatively larger bias compared to convolution-based networks (e.g.
VGG and ResNet variants). Right: Confidence calibrated by temperature scaling (Upper Right)
is similar to the original model confidence w.r.t proximity bias. Our PROCAL (Bottom Right) is
effective in reducing proximity bias. Analysis of other existing calibration algorithms can be found in
Appendix D.

The intuition behind this definition is that, ideally, a sample with a confidence level of p should have
a probability of being correct equal to p, regardless of proximity. However, if low proximity samples
consistently display higher confidence than high proximity samples (as shown in Figure 1), it can
lead to unreliable and unjust decision-making, particularly for underrepresented populations.

3.1 Main Empirical Findings

To showcase the ubiquity of this problem, we examine the proximity bias phenomenon on 504
ImageNet pretrained models from the timm library [43] and show the results in Figure 2 (see
Appendix D for additional figures and analysis). We use statistical hypothesis testing to investigate
the presence of proximity bias. The null hypothesis H0 is that proximity bias does not exist, formally,
for any confidence p and proximities d1 > d2:

P
(
Ŷ = Y | P̂ = p,D = d1

)
= P

(
Ŷ = Y | P̂ = p,D = d2

)
. (2)

To test the above null hypothesis, we first split the samples into 5 equal-sized proximity groups and
select the highest and lowest proximity groups. From the high proximity group, we randomly select
10,000 points and find corresponding points in the low proximity group that have similar confidence
levels. Next, we reverse this process, randomly selecting 10,000 points from the low proximity group
and find corresponding points in the high proximity group with matched confidence. We then merge
all the points from the high proximity group into BH and those from the low proximity group into BL,
with the BH and BL having similar average confidence. Finally, we apply the Wilcoxon rank-sum
test [24] to evaluate whether there is a significant difference in the sample means (i.e. accuracy) of
BH and BL. More implementation details can be found in Appendix C.

Inspired by the hypothesis testing, we define Bias Index as the accuracy drop between the confidence-
matched high proximity group BH and low proximity group BL to reflect the degree of bias:

Bias Index =

∑
(X,Y )∈BH

1{Ŷ = Y }
|BH |

−
∑

(X,Y )∈BL
1{Ŷ = Y }

|BL|
= Acc(BH)−Acc(BL). (3)

Note that BH , BL are obtained from the hypothesis testing process and hence have the same mean
confidence.
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The hypothesis testing results indicate that over 80% of 504 models have a p-value less than 0.05
(72% after Bonferroni correction [4]), i.e., the null hypothesis is rejected with a confidence level of at
least 95%, indicating that proximity bias plagues most of the models in timm.

We show the bias index of 504 models in Figure 2 and make the following findings:

1. Proximity bias exists generally across a wide variety of model architecture and sizes. Figure 2
shows that most models (80% of the models as supported by hypothesis testing) have a bias index
larger than 0, indicating the existence of proximity bias.

2. Transformer-based methods are relatively more susceptible to proximity bias than CNN-
based methods. In Figure 2, models with lower accuracy (primarily CNN-based models such as
VGG, EfficientNet, MobileNet, and ResNet [12] variants) tend to have lower bias index. On the other
hand, among models with higher accuracy, Transformer variants (e.g., DEiT, XCiT [1], CaiT [40], and
SwinV2) demonstrate relatively higher bias compared to convolution-based networks (e.g., ResNet
variants). This is concerning given the increasing popularity of Transformer-based models in recent
years and highlights the need for further research to study and address this issue.

3. Popular calibration methods such as temperature scaling do not noticeably alleviate proximity
bias. Figure 2 (upper right) shows that the proximity bias index remains large even after applying
temperature scaling, indicating that this method does not noticeably alleviate the problem. In contrast,
Figure 2c demonstrates that our proposed approach successfully shifts the models to a much closer
distribution around the line y = 0 (indicating no proximity bias). The bias index figures for more
existing calibration methods are provided in Appendix D.

4. Low proximity samples are more prone to model overfitting. Figure 4 in Appendix D shows
that the model’s accuracy difference between the training and validation set is more significant on
low proximity samples (31.67%) compared to high proximity samples (0.6%). This indicates that the
model generalizes well on samples of high proximity but tends to overfit on samples of low proximity.
The overconfidence of low proximity samples can be a consequence of the overfitting tendency, as
the overfitting gap also reflects the mismatch between the model’s confidence and its actual accuracy.

4 Proximity-Informed ECE

As depicted in Figure 1, existing evaluation metrics underestimate the true miscalibration level, as
proximity bias causes certain errors in the model to cancel out. As an example, consider a scenario:

Example 4.1. All samples are only drawn from two proximity groups of equal probability mass,
d = 0.2 and d = 0.8, with true probabilities of P(Y = Ŷ |X, f) being 0.5 and 0.9, respectively. The
model outputs the confidence score p = 0.7 to all samples.

We consider the most commonly used metric, expected calibration error (ECE) that is defined as
ECE = EP̂

[∣∣∣P(Ŷ = Y | P̂ )− P̂
∣∣∣]. In Example 4.1, the ECE is 0, suggesting that the model is

perfectly calibrated in terms of confidence calibration. In fact, the model has significant miscalibration
issues: it is heavily overconfident in one proximity group while heavily underconfident in the other,
highlighting the limitations of existing calibration metrics. The miscalibration errors within the
same confidence group are canceled out by samples with both high and low proximity, resulting in a
phenomenon we term cancellation effect.

To further evaluate the miscalibration canceled out by proximity bias, we propose the proximity-
informed expected calibration error (PIECE). PIECE is defined in an analogous fashion as ECE, yet
it further examines information about the proximity of the input sample, D(X), in the calibration
evaluation:

PIECE = EP̂ ,D

[∣∣∣P(Ŷ = Y | P̂ ,D)− P̂
∣∣∣] . (4)

Back to Example 4.1 where ECE = 0, we have PIECE = 0.2, revealing its miscalibration level
in the subpopulations of different proximities, i.e., the calibration error regarding proximity bias.
Additionally, we demonstrate in Theorem 4.2 that PIECE is always at least as large as ECE, with
the equality holding only when there is no cancellation effect w.r.t proximity. The detailed proof is
relegated to Appendix B.
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Theorem 4.2 (PIECE captures cancellation effect.). Given any joint distribution π(X,Y ) and any
classifier f that outputs model confidence P̂ for sample X , we have the following inequality, where
equality holds only when there is no cancellation effect with respect to proximity:

EP̂

[∣∣∣P(Ŷ = Y | P̂ )− P̂
∣∣∣]︸ ︷︷ ︸

ECE

≤ EP̂ ,D

[∣∣∣P(Ŷ = Y | P̂ ,D)− P̂
∣∣∣]︸ ︷︷ ︸

PIECE

.

5 How to Mitigate Proximity Bias?

In this section, we propose PROCAL to achieve three goals: 1) mitigate proximity bias, i.e., ensure
samples with the same confidence level have the same miscalibration gap across all proximity
levels, 2) improve confidence calibration by reducing overconfidence and underconfidence, and
3) provide a plug-and-play method that can combine the strengths of existing approaches with our
proximity-informed approach.

The high-level intuition is to explicitly incorporate proximity when estimating the underlying probabil-
ity of the model prediction being correct. In addition, existing calibration algorithms can be classified
into 2 types: 1) those producing continuous outputs, exemplified by scaling-based methods [10];
2) those producing discrete outputs, such as binning-based methods, which group the samples into
bins and assign the same scores to samples within the same bin. To fully leverage the distinct
properties of the input information, we develop two separate algorithms tailored for continuous
and discrete inputs. This differentiation is based on the observation that continuous outputs (e.g.,
those produced by scaling-based methods) contain rich distributional information suitable for density
estimation. On the other hand, discrete inputs (e.g., those generated by binning-based methods) allow
for robust binning-based adjustments. By treating these inputs separately, we can effectively harness
the characteristics of each type.

In summary, Density-Ratio Calibration (§5.1) estimates continuous density functions, and aligns
well with type 1) methods that produce continuous confidence scores. In contrast, Bin-Mean-Shift
(§5.2) does not rely on densities, making it more compatible with type 2) calibration methods that
yield discrete outputs. Together, these two calibration techniques constitute a versatile plug-and-play
framework PROCAL, applicable to confidence scores of both continuous and discrete types.

5.1 Continuous Confidence: Density-Ratio Calibration

The common interpretation of confidence is the likelihood of a model prediction Ŷ being identical
to the ground truth label Y for every sample X . Computing this probability directly with density
estimation methods can be computationally demanding, particularly in high-dimensional spaces.
To circumvent the curse of dimensionality and address proximity bias, we incorporate the model
confidence P̂ and proximity information D(X) to estimate the posterior probability of correctness,
i.e., P(Ŷ = Y | P̂ ,D). This approach is data-efficient since it conducts density estimation in a
two-dimensional space only, rather than in the higher dimensional feature or prediction simplex
space.

Consider a test sample X with proximity D = D(X) and uncalibrated confidence score P̂ , which
can be the standard Maximum Softmax Probability (MSP), or the output of any calibration method.
P(Ŷ = Y | P̂ ,D) can be computed via Bayes’ rule:

P
(
Ŷ = Y | P̂ ,D

)
=

P
(
P̂ ,D | Ŷ = Y

)
P
(
Ŷ = Y

)
P(P̂ ,D)

,

where Ŷ is the model prediction and Y is the ground truth label. This can be re-expressed as follows
by using the law of total probability:

P(P̂ ,D | Ŷ = Y
)

P
(
P̂ ,D | Ŷ = Y

)
+ P

(
P̂ ,D | Ŷ ̸= Y

)
· P(Ŷ ̸=Y )
P(Ŷ=Y )

.
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To compute this calibrated score, we need to estimate the distributions P
(
P̂ ,D | Ŷ = Y

)
and

P
(
P̂ ,D | Ŷ ̸= Y

)
, and the class ratio

P(Ŷ ̸=Y )
P(Ŷ=Y )

.

To estimate the probability density functions P
(
P̂ ,D | Ŷ = Y

)
and P

(
P̂ ,D | Ŷ ̸= Y

)
, various

density estimation methods can be used, such as parametric methods like Gaussian mixture models
or non-parametric methods like kernel density estimation (KDE)[31]. We choose KDE because it is
flexible and robust, making no assumptions about the underlying distribution (see Appendix C for
specific implementation details). Specifically, we split samples into two groups based on whether
they are correctly classified and then use KDE to estimate the two densities. To obtain the class ratio
P(Ŷ ̸=Y )
P(Ŷ=Y )

, we simply use the ratio of the number of correctly classified samples and the number of

misclassified samples in the validation set. The pseudocode for inference and training can be found
in Appendix 2 and 1.

5.2 Discrete Confidence: Bin Mean-Shift

The Bin-Mean-Shift approach aims to first use 2-dimensional binning to estimate the joint distribution
of proximity D and input confidence P̂ and then estimate P

(
Ŷ = Y | P̂ ,D

)
. Considering test

samples X with proximity D = D(X) and uncalibrated confidence score P̂ , we first group samples
into 2-dimensional equal-size bins based on their D and P̂ (other binning schemes can also be used;
we choose quantile for simplicity). Next, for each bin Bmh, we calculate its accuracy A(Bmh) and
mean confidence F(Bmh). Then, the confidence scores of samples within the bin are adjusted as:

P̂ours = P̂ + λ · (A(Bmh)−F(Bmh)) , (5)

where the shrinkage coefficient λ ∈ (0, 1] is a hyper-parameter, controlling the bias-variance trade-off.
Ideally, setting λ = 1 would ideally achieve our goal. However, in practice, we often encounter bins
with a smaller number of samples, whose estimate of A(Bmh)−F(Bmh) will have high variance
and therefore inaccurate. To reduce variance in these scenarios, we can set a smaller λ. In practice,
we choose λ = 0.5 as a reasonable default for all our experiments, which we find offers consistent
performance across various settings.

Note that our approach (i.e. applying a mean-shift in each bin) differs from the typical histogram
binning method (replacing the confidence scores with its mean accuracy in each bin). Rather than
completely replacing the input confidence scores P̂ (which are often reasonably well-calibrated), our
approach better utilizes these scores by only adjusting them by the minimal mean-shift needed to
correct for proximity bias in each of the 2-dimensional bins.

5.3 Theoretical Guarantee

Here we present that our method, Bin-Mean-Shift, can consistently achieve a smaller Brier Score
given a sufficient amount of data in the context of binary classification. The Brier Score [5] is a strictly
proper score function that measures both calibration and accuracy aspects [22], with a smaller value
indicating better performance. As illustrated below, our algorithm’s Brier Score is asymptotically
bounded by the original Brier Score, augmented by a non-negative term.
Theorem 5.1 (Brier Score after Bin-Mean-Shift is asymptotically bounded by Brier Score before
calibration). Given a joint data distribution π(X,Y ) and a binary classifier f , for any calibration
algorithm h that outputs score h(P̂ ) based on model confidence P̂ , we apply Bin-Mean-Shift to
derive calibrated score h̃(P̂ ) as defined in Equation (5). Let hc(P̂ ) = h(P̂ ) × 1{Ŷ = 1} + (1 −
h(P̂ ))× 1{Ŷ = 0} denote the probability assigned to class 1 by h(P̂ ), and define h̃c(P̂ ) similarly.
Then, the Brier Score before calibration can be decomposed as follows:

Eπ(X,Y )

[(
hc(P̂ )− Y

)2
]

︸ ︷︷ ︸
Brier Score before Calibration

= Eπ(X,Y )

[(
h̃c(P̂ )− Y

)2
]

︸ ︷︷ ︸
Brier Score after Calibration

+EB∼P(B)

[(
Â(B)− F̂(B)

)2
]

︸ ︷︷ ︸
≥0

+o(1),

where P(B) is determined by the binning mechanism used in Bin-Mean-Shift.
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Table 1: Calibration performance of ImageNet pretrained ResNet50 on long-tail dataset iNaturalist
2021. * denotes significant improvement (p-value < 0.1). ‘Base’ refers to existing calibration methods,
‘Ours’ to our method applied to calibration. Note that ‘Conf+Ours’ shows the result of our method
applied directly to model confidence. Calibration error is given by ×10−2.

ECE ↓ ACE ↓ MCE ↓ PIECE ↓
Method base +ours base +ours base +ours base +ours

Conf 4.85 0.78* 4.86 0.76* 0.55 0.18* 4.91 1.51*
TS 2.03 0.70* 2.02 0.78* 0.30 0.14* 2.34 1.43*

ETS 1.12 0.66* 1.15 0.77* 0.18 0.13* 1.79 1.38*
PTS 4.86 0.71* 4.90 0.86* 2.96 0.12 7.04 1.44*

PTSK 2.97 0.65* 3.01 0.82* 0.56 0.11* 4.66 1.41*
MIR 1.05 0.98 1.09 1.06 0.18 0.19 1.63 1.64

Remark. Note that when the calibration algorithm h is an identity mapping, it demonstrates that
Bin-Mean-Shift achieves better model calibration performance than the original model confidence,
given a sufficient amount of data. The detailed proof is relegated to Appendix A.

6 Experiments

In this section, we aim to answer the following questions:

• Performance across different datasets and model architectures: How does PROCAL
perform on datasets with balanced distribution, long-tail distribution, and distribution shift,
as well as on different model architectures?

• Inference efficiency: How efficient is our PROCAL? (see Appendix E.1)
• Hyperparameter sensitivity: How sensitive is PROCAL to different hyperparameters, e.g.

neighbor size K? (See Appendix F.2)
• Ablation study: What is the difference between Density-Ratio and Bin-Mean-shift on

calibration? How should the choice between these techniques be determined? (See Ap-
pendix F.1)

6.1 Experiment Setup

Evaluation Metrics. Following [10], we adopt 3 commonly used metrics to evaluate the confidence
calibration: Expected Calibration Error (ECE), Adaptive Calibration Error (ACE [29]), Maximum
Calibration Error (MCE) and our proposed PIECE to evaluate the bias mitigation performance. More
detailed introduction of these metrics can be found in Appendix C.

Datasets. We evaluate the effectiveness of our approach across large-scale datasets of three types
of data characteristics (balanced, long-tail and distribution-shifted) in image and text domains: (1)
Dataset with balanced class distribution (i.e. each class has an equal size of samples) on vision dataset
ImageNet [7] and two text datasets including Yahoo Answers Topics [49] and MultiNLI-match [44];
(2) Datasets with long-tail class distribution on two image datasets, including iNaturalist 2021 [3] and
ImageNet-LT [27]; (3) Dataset with distribution-shift on three datasets, including ImageNet-C [15],
MultiNLI-Mismatch [44] and ImageNet-Sketch [42].

Comparison methods. We compare our method to existing calibration algorithms: base confidence
score (Conf) [16], scaling-based methods such as Temperature Scaling (TS) [10], Ensemble Temper-
ature Scaling (ETS) [48], Parameterized Temperature Scaling (PTS) [39], Parameterized Temperature
Scaling with K Nearest Neighbors (PTSK), and binning based methods such as Histogram Binning
(HB), Isotonic Regression (IR) and Multi-Isotonic Regression (MIR) [48]. Throughout the experiment
section, we apply Density-Ratio Calibration to Conf, TS, ETS, PTS, and PTSK and apply Bin-Mean-
Shift to binning-based methods IR, HB, and MIR. HB and IR are removed from the long-tail setting
due to its instability when the class sample size is very small.

More details on baseline algorithms, datasets, pretrained models, hyperparameters, and implementa-
tion details can be found in Appendix C.
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Figure 3: Calibration errors on ImageNet across 504 timm models. Each point represents the
calibration result of applying a calibration method to the model confidence. Marker colors indicate
different calibration algorithms used. Among all calibration algorithms, our method consistently
appears at the bottom of the plot. See Appendix E Figure 11 for high resolution figures.

Table 2: We use RoBERTa models [26] fine-tuned on Yahoo and MultiNLI Match, respectively, as
their models. ‘Base’ refers to existing calibration methods and ‘Ours’ refers to our method applied to
existing calibration methods. Calibration error is given by ×10−2.

ECE ↓ ACE ↓ MCE ↓ PIECE ↓
Method base +ours base +ours base +ours base +ours

Conf 4.56 0.51 4.56 0.54 0.84 0.09 4.73 1.32
TS 0.50 0.42 0.46 0.46 0.09 0.07 2.22 1.34

ETS 0.62 0.43 0.59 0.45 0.09 0.07 2.22 1.37
PTS 0.55 0.42 0.52 0.42 0.10 0.09 2.03 1.41

PTSK 0.61 0.47 0.51 0.51 0.13 0.09 2.15 1.38
HB 3.28 1.99 4.88 2.09 1.68 0.67 5.33 2.92
IR 0.64 0.84 0.64 0.77 0.13 0.19 2.08 1.75

MIR 0.63 0.72 0.54 0.61 0.11 0.18 2.08 1.65

(a) Yahoo Answer Topics

ECE ↓ ACE ↓ MCE ↓ PIECE ↓
Method base +ours base +ours base +ours base +ours

Conf 2.47 1.45 2.62 1.46 0.85 0.37 3.54 2.78
TS 1.70 1.22 1.76 1.35 0.41 0.40 3.03 2.78

ETS 1.58 1.24 1.56 1.26 0.66 0.39 3.04 2.77
PTS 7.53 2.42 7.50 2.46 4.21 0.93 7.78 3.56

PTSK 10.14 4.26 10.14 4.40 7.40 2.83 10.33 5.15
HB 1.11 1.05 1.17 1.50 0.36 0.25 3.76 2.51
IR 0.88 1.43 1.07 1.23 0.36 0.34 2.46 2.61

MIR 0.71 1.03 1.07 1.36 0.26 0.40 2.58 2.35

(b) MultiNLI Mismatch

6.2 Effectiveness

Datasets with the balanced class distribution. The results on ImageNet of 504 models from
timm [43] are depicted in Figure 3, where our method (red color markers) consistently appears at
the bottom, achieving the lowest calibration error across all four evaluation metrics in general. This
indicates that our method consistently outperforms other approaches in eliminating proximity bias
and improving confidence calibration. We also select four popular models from these 504 models,
specifically BeiT [2], MLP Mixer [38], ResNet50 [12] and ViT [8]. A summary of their results is
presented in Table 4 of Appendix E. Additionally, Table 2a and Table 5 present the calibration results
for the text classification task on Yahoo Answers Topics and the text understanding task on MultiNLI,
where our method consistently improves the calibration of existing methods and model confidence.
SeeAppendix E for more details.

Datasets with the long-tail class distribution. Table 1 shows the results on the long-tail image
dataset iNaturalist 2021. Our method (‘ours’) consistently improves upon existing algorithms (‘base’)
regarding reducing confidence calibration errors (ECE, ACE, and MCE) and mitigating proximity bias
(PIECE). Note that even when used independently (‘Conf+ours’) without combining with existing
algorithms, our method achieves the best performance across all metrics. This result suggests that our
algorithm can make the model more calibrated in the long-tail setting by effectively mitigating the bias
towards low proximity samples (i.e. tail classes), highlighting its practicality in real-world scenarios
where data is often imbalanced and long-tailed. ImageNet-LT results in Table 6 of Appendix E.3
show similar improvement.

Datasets with distribution shift. Table 2b shows our method’s calibration performance when
trained on an in-distribution validation set (MultiNLI Match) and applied to a cross-domain test set
(MultiNLI Mismatch). The results suggest that our method can improve upon most existing methods
on ECE, ACE and MCE, and gain consistent improvement on PIECE, indicating its effectiveness in
mitigating proximity bias. Moreover, empirical results on ImageNet-C (Figure 12) and ImageNet-
Sketch (Table 7) also demonstrate consistent improvements of our method over baselines. Besides,
compared to Bin-Mean-Shift, Density-Ratio exhibits more stable performance on enhancing the
existing baselines. More analysis on their comparison can be found in Appendix F.1.
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7 Conclusions and Discussion

In this paper, we focus on the problem of proximity bias in model calibration, a phenomenon wherein
deep models tend to be more overconfident on data of low proximity (i.e. lying in the sparse region
of data distribution) and thus suffer from miscalibration. We study this phenomenon on 504 public
models across a wide variety of model architectures and sizes on ImageNet and find that the bias
persists even after applying the existing calibration methods, which drives us to propose PROCAL for
tackling proximity bias. To further evaluate the miscalibration due to proximity bias, we propose a
proximity-informed expected calibration error (PIECE) with theoretical analysis. Extensive empirical
studies on balanced, long-tail, and distribution-shifted datasets under four metrics support our findings
and showcase the effectiveness of our method. 2

Potential Impact, Limitations and Future Work We uncover the proximity bias phenomenon
and show its prevalence through large-scale analysis, highlighting its negative impact on the safe
deployment of deep models, e.g. unfair decisions on minority populations and false diagnoses for
underrepresented patients. We also provide PROCAL as a starting point to mitigate the proximity bias,
which we believe has the potential to inspire more subsequent works, serve as a useful guidance in
the literature and ultimately lead to improved and fairer decision-making in real-world applications,
especially for underrepresented populations and safety-critical scenarios. However, our study also
has several limitations. First, our PROCAL maintains a held-out validation set during inference for
computing proximity. While we have shown that the cost can be marginal for large models (see
Inference Efficiency in Appendix E.1), it may be challenging if applied to small devices where
memory is limited. Future research can investigate the underlying mechanisms of proximity bias and
explore various options to replace the existing approach of local density estimation. Additionally, we
only focus on the closed-set multi-class classification problem; future work can generalize this to
multi-label, open-set or generative settings.
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A Proof of Theorem 5.1

Notation. Let π(X,Y ) denote the true underlying distribution of the sample X and its label Y . The
empirical dataset used for Bin-Mean-Shift is denoted by Dn = {(x1, y1), (x2, y2), . . . , (xn, yn)},
where n is the number of samples in the dataset, and each datapoint (xi, yi) is independently and
identically sampled from π(X,Y ).

A classifier f is defined as f(X) = (Ŷ , P̂ ), where Ŷ represents the predicted label and P̂ represents
the model’s confidence, i.e., the estimate of the probability of correctness [10].

We use h(P̂ ) to denote the output confidence score for class prediction Ŷ calibrated by any calibration
algorithm h. For example, in the simplest case, h can be the identity mapping, in which case h(P̂ )
represents the original model confidence.

To simplify notation, we use B = B(X) to denote the bucket to which X belongs. Given a bucket
B, we compute the empirical accuracy Ân(B) and mean confidence score F̂n(B) for samples in the
bucket, based on the empirical dataset Dn. Given the classifier f and calibrator h, they are computed
as follows:

Ân(B) =
1

|B|
∑

(x,y)∈Dn

1{(y = ŷ) ∧ (B(x) = B)} (6)

F̂n(B) =
1

|B|
∑

(x,y)∈Dn∧(x∈B)

h(P̂ ) (7)

Additionally, we use A(B) and F(B) to denote the expected confidence and actual accuracy of
samples from the underlying data distribution π(X,Y ) and belonging to the bucket B:

A(B) = Eπ(X,Y )

[
1{Y = Ŷ } | B(X) = B

]
(8)

F(B) = EX

[
h(P̂ ) | B(X) = B

]
(9)

With these definitions, our proposed Bin-Mean-Shift algorithm can be expressed as:

h̃(P̂ ) = h(P̂ ) + Ân(B)− F̂n(B), (10)

where B is the bucket that the input sample X belongs to, and h̃(P̂ ) is the score calibrated using our
Bin-Mean-Shift algorithm.

First we revisit the definition of Brier Score. The Brier Score [5] is a strictly proper score function
that measures both calibration and accuracy aspects [22], with a smaller value indicating better
performance. The Brier Score is defined as mean square loss as follows for binary classification:

Brier Score = Eπ(X,Y )

[(
hc(P̂ )− Y

)2
]
, (11)

where hc(P̂ ) is the probability assigned to class 1 by the calibration algorithm h:

hc(P̂ ) =

{
h(P̂ ) when Ŷ = 1

1− h(P̂ ) when Ŷ = 0
(12)

In short, this can be represented as hc(P̂ ) = h(P̂ )× 1{Ŷ = 1}+ (1− h(P̂ ))× 1{Ŷ = 0}.
Theorem A.1 (Brier Score after Bin-Mean-Shift is asymptotically bounded by Brier Score before
calibration). Given a joint data distribution π(X,Y ) and a binary classifier f , for any calibration
algorithm h that outputs a score h(P̂ ) based on model confidence P̂ , we apply Bin-Mean-Shift
to derive the calibrated score h̃(P̂ ) as defined in Equation (10). Let hc(P̂ ) = h(P̂ ) × 1{Ŷ =

1}+ (1− h(P̂ ))× 1{Ŷ = 0} denote the probability assigned to class 1 by h(P̂ ), and define h̃c(P̂ )
similarly. Then, the Brier Score before calibration can be decomposed as follows:

Eπ(X,Y )

[(
hc(P̂ )− Y

)2
]

︸ ︷︷ ︸
Brier Score before Calibration

= Eπ(X,Y )

[(
h̃c(P̂ )− Y

)2
]

︸ ︷︷ ︸
Brier Score after Calibration

+EB∼P(B)

[(
Ân(B)− F̂n(B)

)2
]

︸ ︷︷ ︸
≥0

+o(1),

where P(B) is determined by the binning mechanism used in Bin-Mean-Shift.
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Proof. First we prove the following equality which re-expresses the Brier score in an equivalent
form:

Eπ(X,Y )

[(
hc(P̂ )− Y

)2
]
= Eπ(X,Y )

[(
h(P̂ )− Ỹ

)2
]
, (13)

where Ỹ = 1{Y = Ŷ } is a binary variable representing whether the model’s prediction is correct:

Ỹ = 1{Y = Ŷ } =

{
1{Y = 0} = 1− Y, when Ŷ = 0

1{Y = 1} = Y, when Ŷ = 1
(14)

Then we consider hc(P̂ )− Y . By Eq. (12):

(hc(P̂ )− Y )2 =

{
(1− h(P̂ )− Y )2, when Ŷ = 0

(h(P̂ )− Y )2, when Ŷ = 1
(15)

=

{
(Ỹ − h(P̂ ))2, when Ŷ = 0

(h(P̂ )− Y )2, when Ŷ = 1
(16)

So we have (hc(P̂ )− Y )2 = (h(P̂ )− Ỹ )2 which completes the proof of the equality in Eq. (13).

Using this, we rewrite the Brier score as follows:

Brier Score = Eπ(X,Y )

[(
h(P̂ )− Ỹ

)2
]
, (17)

Second, we decompose the Brier score:

Eπ(X,Y )

[(
h(P̂ )− Ỹ

)2
]
= Eπ(X,Y )

[(
h(P̂ )− h̃(P̂ ) + h̃(P̂ )− Ỹ

)2
]

(18)

= Eπ(X,Y )

[(
h̃(P̂ )− Ỹ

)2
]

︸ ︷︷ ︸
(a)

(19)

+ Eπ(X,Y )

[(
h(P̂ )− h̃(P̂ )

)2
]

︸ ︷︷ ︸
(b)

(20)

+ 2Eπ(X,Y )

[(
h(P̂ )− h̃(P̂ )

)(
h̃(P̂ )− Ỹ

)]
︸ ︷︷ ︸

(c)

(21)

First note that term (a) is the Brier score after calibration (recalling our earlier equivalent form for the
Brier score). For term (b) we recall that h̃(P̂ ) = h(P̂ ) + Ân(B)− F̂n(B), which is our proposed
Bin-Mean-Shift algorithm in Equation (10). Note that X can be sampled by first sampling the bin B
and then sampling the point X from the corresponding bin. So term (b) can be expressed as:

Eπ(X,Y )

[(
h(P̂ )− h̃(P̂ )

)2
]
= Eπ(X,Y )

[(
h(P̂ )− h(P̂ )− Ân(B) + F̂n(B))

)2
]

= Eπ(X,Y )

[(
Ân(B)− F̂n(B))

)2
]

= EB∼P(B)EX∼P(X|B)

[(
Ân(B(X))− F̂n(B(X))

)2
]

= EB∼P(B)

[(
Ân(B)− F̂(B

)2
]

where Ân(B(X)) and F̂n(B(X)) remain the same for all samples following into the same bucket B.
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For term (c) we show that:

Eπ(X,Y )

[(
h(P̂ )− h̃(P̂ )

)(
h̃(P̂ )− Ỹ

)]
(22)

= Eπ(X,Y )

[(
F̂(B(X))− Â(B(X))

)(
h̃(P̂ )− Ỹ

)]
(23)

= EB∼P(B)E(X,Y )∼P(X,Y |B)

[(
F̂(B(X))− Â(B(X))

)(
h̃(P̂ )− Ỹ

)]
(24)

= EB∼P(B)

(Ân(B)− F̂n(B)
)
E(X,Y )∼P(X,Y |B)

[
Ỹ − h̃(P̂ )

]
︸ ︷︷ ︸

(d)

 , (25)

where in the last step (Ân(B)− F̂n(B)) is a function of B and thus can be moved out of the inner
expectation. For term (d) we have:

E(X,Y )∼P(X,Y |B)

[
Ỹ − h̃(P̂ )

]
(26)

= E(X,Y )∼P(X,Y |B)

[
Ỹ − h(P̂ )− Ân(B) + F̂n(B)

]
(27)

= E(X,Y )∼P(X,Y |B)

[(
Ỹ − Ân(B)

)
+
(
F̂n(B)− h(P̂ )

)]
(28)

=
(
E(X,Y )∼P(X,Y |B)

[
Ỹ
]
− Ân(B)

)
︸ ︷︷ ︸

(e)

+
(
F̂n(B)−F(B)

)
(29)

For term (e) we have:

E(X,Y )∼P(X,Y |B)

[
Ỹ
]
= E(X,Y )∼P(X,Y |B)

[
1{Y = Ŷ }

]
= A(B). (30)

By the Law of Large Numbers, the sample means converges to their expectations as follows:

lim
n→∞

F̂n(B) = F(B) and lim
n→∞

Ân(B) = A(B). (31)

This further leads to the following statement for term (c):

lim
n→∞

Eπ(X,Y )

[(
h(P̂ )− h̃(P̂ )

)(
h̃(P̂ )− Ỹ

)]
= 0. (32)

Then finally we have the statement:

lim
n→∞

Eπ(X,Y )

[(
h(P̂ )− Y

)2
]

︸ ︷︷ ︸
Brier Score before Calibration

−Eπ(X,Y )

[(
h̃c(P̂ )− Y

)2
]

︸ ︷︷ ︸
Brier Score after Calibration

−EB∼P(B)

[(
Ân(B)− F̂n(B)

)2
]

︸ ︷︷ ︸
≥0

= 0

Discussion This theorem shows that Bin-Mean-Shift (BMS) preserves the calibration properties of
the input scores P̂ ; i.e. if h(P̂ ) was already well-calibrated, the BMS-calibrated scores h̃(P̂ ) will
continue to be well-calibrated (up to an o(1) term). At the same time, BMS helps to correct for
miscalibrations with respect to any choice of buckets (represented by the (Ân(B)− F̂n(B))2 term).

Interestingly, this theorem implies that we can have theoretical guarantees for a pipeline of different
calibration methods: for example, consider a pipeline consisting of any calibration method h(P̂ ),
followed by one or more applications of BMS with different choices of binning schemes. Then this
theorem shows that the Brier score will decrease with each application of BMS (setting aside the
o(1) term). Thus, in contrast to the theoretical guarantees of existing calibration methods (such as
histogram binning), which only apply to a single calibration method, our approach points to the
theoretical benefits of such pipelines of calibration methods.
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B Proof of PIECE Guarantee

Recall that f is a classifier (e.g. neural network) with f(X) = (Ŷ , P̂ ), where Ŷ represents the
predicted label, and P̂ is the model’s confidence, i.e. the estimate of the probability of correctness [10].
Theorem B.1 (PIECE captures cancellation effect.). Given any joint distribution π(X,Y ) and any
classifier f that outputs model confidence P̂ for sample X , we have the following inequality, where
equality holds only when there is no cancellation effect with respect to proximity:

EP̂

[∣∣∣P(Ŷ = Y | P̂ )− P̂
∣∣∣]︸ ︷︷ ︸

ECE

≤ EP̂ ,D

[∣∣∣P(Ŷ = Y | P̂ ,D)− P̂
∣∣∣]︸ ︷︷ ︸

PIECE

.

Proof. Note that ECE [10] is defined as:

ECE = EP̂

[∣∣∣P(Ŷ = Y | P̂ )− P̂
∣∣∣] (33)

We first consider the formula within the expectation:∣∣∣P(Ŷ = Y | P̂ )− P̂
∣∣∣ = ∣∣∣EX,Y

[
I{Ŷ = Y } | P̂

]
− P̂

∣∣∣
=

∣∣∣EX,Y

[
I{Ŷ = Y } − P̂ | P̂

]∣∣∣
(a)
=

∣∣∣ED

[
EX,Y

[
I{Ŷ = Y } − P̂ | P̂ ,D

]]∣∣∣
(b)

≤ ED

[∣∣∣EX,Y

[
I{Ŷ = Y } − P̂ | P̂ ,D

]∣∣∣]
= ED

[∣∣∣EX,Y

[
I{Ŷ = Y } | P̂ ,D

]
− P̂

∣∣∣]
= ED

[∣∣∣P(Ŷ = Y | P̂ ,D)− P̂
∣∣∣]

(34)

where (a) is derived using the Law of Total Expectation and (b) is derived using Jensen’s Inequality.

The equality holds if and only if
∣∣∣P(Ŷ = Y | P̂ ,D)− P̂

∣∣∣ is a linear function in terms of D. This
condition is satisfied only when there is no cancellation effect with respect to proximity D, i.e. either
P(Ŷ = Y | P̂ ,D) ≥ P̂ or P(Ŷ = Y | P̂ ,D) ≤ P̂ hold for all choices of D.

Then applying this formula to Equation 33, we have:

ECE = EP̂

[∣∣∣P(Ŷ = Y | P̂ )− P̂
∣∣∣]

≤ EP̂

[
ED

[∣∣∣P(Ŷ = Y | P̂ ,D)− P̂
∣∣∣]]

= EP̂ ,D

[∣∣∣P(Ŷ = Y | P̂ ,D)− P̂
∣∣∣]

= PIECE

(35)

C Experimental Setup

Evaluation Metrics. Following [10, 29], we adopt three commonly used metrics to evaluate the
confidence calibration: Expected Calibration Error (ECE), Adaptive Calibration Error (ACE [29]),
Maximum Calibration Error (MCE) and our proposed PIECE to evaluate the bias mitigation perfor-
mance. To compute these metrics, we first divide samples into M = 15 bins and compute every
bin’s average confidence and accuracy. Then we compute the absolute difference between each bin’s
average confidence and its corresponding accuracy. The final calibration error is measured using the
weighted difference (the fraction of samples in each bin as the weight). The key distinction between
ECE and ACE lies in the binning scheme: ECE divides bins with equal-confidence intervals while
ACE uses an adaptive scheme that spaces the bin intervals to contain an equal number of samples in
each bin. In addition, PIECE splits the bin both based on confidence and proximity. It splits samples
into M = 15 equal-number bins based confidence and then split every confidence group into H = 10
equal-number bins based on proximity. MCE chooses the bin with the largest difference between
average confidence and accuracy and output their absolute difference as the final error.
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Datasets. We evaluate the effectiveness of our approach across large-scale datasets of three types
of data characteristics (balanced, long-tail and distribution-shifted) in image and text domains: (1)
Dataset with balanced class distribution (i.e. each class has an equal size of samples) on vision dataset
ImageNet [7] and two text datasets including Yahoo Answers Topics [49] and MultiNLI-match [44];
(2) Datasets with long-tail class distribution on two image datasets, including iNaturalist 2021 [3] and
ImageNet-LT [27]; (3) Dataset with distribution-shift on three datasets, including ImageNet-C [15],
MultiNLI-Mismatch [44] and ImageNet-Sketch [42].

Comparison methods. We compare our method to existing calibration algorithms: base confidence
score (Conf) [16], scaling-based methods such as Temperature Scaling (TS) [10], Ensemble Temper-
ature Scaling (ETS) [48], Parameterized Temperature Scaling (PTS) [39], Parameterized Temperature
Scaling with K Nearest Neighbors (PTSK), and binning based methods such as Histogram Binning
(HB), Isotonic Regression (IR) and Multi-Isotonic Regression (MIR) [48]. Throughout the experiment
section, we apply Density-Ratio Calibration to Conf, TS, ETS, PTS, and PTSK and apply Bin-Mean-
Shift to binning-based methods IR, HB, and MIR. HB and IR are removed from the long-tail setting
due to its instability when the class sample size is very small.

Pretrained Models. For the proximity bias analysis in section 3 and the balanced ImageNet
evaluation, we use 504 pretrained models from timm [43] (the list of models are shown in the code
repository). For ImageNet-LT evaluation, we use the model ResNext50 pretrained by Liu et al. [27]
using classifier re-training technique. For iNaturalist 2021, we directly use the ImageNet pretrained
backbone ResNet [12] which we follow this paper [41] and download from the repo3.. For Yahoo
Answers Topics and MultiNLI datasets, we use pretrained RoBERTa from HuggingFace API and
fine-tuned on the corresponding datasets with 3 epochs.

Hyperparamerters. Regarding nearest neighbor computation, we use indexFlatL2 from faiss [18].
Except the Hyperparamerter sensitivity experiments, we use K = 10 for the proximity computation.
Regarding our method, for Density-Ratio, the kernel density estimation for two variables are im-
plemented using statsmodel library [37]. For the Bin Mean-Shift method, we set the regularization
parameter λ = 0.5. For the calibration setup, we adopt a standard calibration setup [10] with a
fixed-size calibration set (i.e. validation set) and evaluation test datasets. Specifically, we randomly
split the hold-out dataset into calibration set and evaluation set nc = ne = 25000 for ImageNet,
nc = ne = 50000 for iNaturalist 2021 and nc = ne = 5000 for ImageNet-LT. For Yahoo and
MultiNLI-Match dataset, we sample 20% data from the training dataset as calibration set and use the
original test dataset as the test dataset. For the evaluation, we use random seed 2020, 2021, 2022,
2023, 2024 and compute the mean (this does not apply to NLP dataset for its fixed test set).

Details on Statistical Hypothesis Testing. The statistical hypothesis testing requires that for two
samples with the same confidence but different proximity, their probability of being correct is the
same. To achieve this, we aim for every pair of high and low proximity samples to have the same
confidence levels. However, there is indeed an observable difference in the average confidence of
BH and BL, with high proximity samples BH having higher average confidence. This leads to
certain samples that do not have a counterpart with equivalent confidence in the other proximity
group. To address this issue, we employ a nearest neighbor search combined with a rejection policy.
Specifically, pairs with a confidence difference greater than 0.05 are discarded. This ensures that we
are only pairing samples from different proximity groups that have the closest possible confidence
levels to one another. When implementing this algorithm, users can also visualize the confidence
distribution to verify whether the confidence of two proximity groups have evident overlapping. If
their confidence levels have no overlap, we suggest reducing the number of splits from 5 to 3 to
ensure low/high proximity groups have similar confidence but different proximity.

Details on KDE For its simplicity and effectiveness, we use the KDEMultivariate function from
the statsmodel library for density estimation. This function employs a Gaussian Kernel and applies
the normal reference rule of thumb (i.e. bw=1.06σ̂n− 1

5 ) based on the the standard deviation σ̂ and
sample size n to select an appropriate bandwidth. While it is possible to use other density estimation
kernels such as Exponential Kernel in Scikit Learn, we found that the Gaussian kernel coupled with

3https://github.com/visipedia/newt/blob/main/benchmark/README.mdv
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Figure 4: The model’s accuracy difference between the training and validation set is more significant
on low proximity samples (31.67%) compared to high proximity samples (0.6%). The discrepancy in
accuracy between the training and validation sets increases as the samples approach to low proximity
regions, despite the training dataset and validation set have overlapping proximity distributions.

the normal reference rule for bandwidth selection generally yields better performance across various
models and datasets.

D Additional Empirical Findings

D.1 Low proximity samples are more prone to model overfitting

To study the behavior of low proximity samples and high proximity samples, we compute their
accuracy difference between training dataset and validation set. Figure 4 reveals a clear tendency:
the model’s accuracy difference between the training and validation set is more significant on low
proximity samples (31.67%) compared to high proximity samples (0.6%). This indicates that the
model generalizes well on samples of high proximity but tends to overfit on samples of low proximity.
The overconfidence of low proximity samples can be a consequence of the overfitting tendency, as
the overfitting gap also reflects the mismatch between the model’s confidence and its actual accuracy.

D.2 Proximity Bias Across A Variety of Models

Here we present the bias index of several popular calibration algorithms on 504 models on ImageNet.
As depicted in Figure 5, most models have a bias index larger than 0, indicating the existence of
proximity bias across a variety of models. Notably, even after applying temperature scaling, as
demonstrated in Figure 6, the calibrated model confidences still exhibit proximity bias. This tendency
is further corroborated by Figure 7 (after multi isotonic regression calibration) and Figure 8 (after
ensemble temperature scaling). In stark contrast, Figure 9 reveals the effectiveness of our proposed
approach in mitigating proximity bias.

D.3 Confidence and Accuracy Are Positively Correlated With Proximity

Our initial investigation delves into the relationship between sample proximity, confidence, and
accuracy across a variety of deep neural network models. We observe a clear trend wherein the
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Figure 5: Proximity bias analysis of the model confidence on 504 public models. Each marker
represents a model, where marker sizes indicate model parameter numbers and different colors/shapes
represent different architectures. The bias index is computed using Equation (3) (0 indicates no
proximity bias).
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Figure 6: Proximity bias analysis of the model confidence calibrated using temperature scaling on
504 public models. Each marker represents a model, where marker sizes indicate model parameter
numbers and different colors/shapes represent different architectures. The bias index is computed
using Equation (3) (0 indicates no proximity bias).

model’s confidence and accuracy exhibit an upward trajectory from low proximity samples to high
proximity samples. This trend is illustrated in Figure 10.

This tendency suggests that the model is less confident with samples from low proximity regions,
where training samples are sparse. From the perspective of distribution, as samples move towards
sparse regions, they are stepping out of the main mass of the training distribution and are considered
as out-of-distribution (OoD) samples. This aligns with the general expectation that out-of-distribution
data points should have high uncertainties and thus, low confidence estimates.

20



0.60 0.65 0.70 0.75 0.80 0.85 0.90
Model Acc

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Bi
as

 In
de

x

Bias Index of Multi Isotonic Regression
well-calibrated
Various
DEiT
XCiT
CaiT
SwinV2
ViT
MLP Mixer
EfficientNet
MobileNet
VGG
ResMLP
ResNet
ResNext
RegNet

Figure 7: Proximity bias analysis of the model confidence calibrated using multi isotontic regression
on 504 public models. Each marker represents a model, where marker sizes indicate model parameter
numbers and different colors/shapes represent different architectures. The bias index is computed
using Equation (3) (0 indicates no proximity bias).
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Figure 8: Proximity bias analysis of the model confidence calibrated using ensemble temperature
scaling on 504 public models. Each marker represents a model, where marker sizes indicate model
parameter numbers and different colors/shapes represent different architectures. The bias index is
computed using Equation (3) (0 indicates no proximity bias).

However, Figure 10 also shows that the slopes of the accuracy and confidence change are not the
same, resulting in a larger miscalibration gap between low proximity and high proximity samples.
Furthermore, commonly used calibration techniques such as temperature scaling and histogram
binning seems not alleviate this issue. This motivated us to study how proximity information relates
to calibration.
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Figure 9: Proximity bias analysis of the model confidence calibrated using our proposed PROCAL on
504 public models. Each marker represents a model, where marker sizes indicate model parameter
numbers and different colors/shapes represent different architectures. The bias index is computed
using Equation (3) (0 indicates no proximity bias).

Figure 10: Relations between proximity and its corresponding accuracy, confidence and calibrated
confidences. The result shows that confidence and accuracy drop as the sample’s proximity decreases.

E Additional Experimental Results

E.1 Inference Efficiency

Runtime Efficiency To verify the time efficiency of our method, we compare the inference time
with baseline methods. The result is reported in Table 3. Compared to the confidence baseline,
our method, Bin-Mean-Shift, exhibits a slight increase of 1.17% in runtime, while Density-Ratio
introduces a modest overhead of 12.3%. These results demonstrate that our method incurs minimal
computational overhead while achieving comparable runtime efficiency to the other baseline methods.
In addition, it is worth noting that the cost of computing proximity has been reduced due to the recent
advancement in neighborhood search algorithms. In our implementation, we employ indexFlatL2
from the Meta open-sourced GPU-accelerated Faiss library [18] to calculate each sample’s nearest
neighbor. This algorithm enables us to reduce the time for nearest neighbor search to approximately
0.04 ms per sample (shown in Table 3). The computation overhead beyond the neighbor search is
actually quite similar to isotonic regression (IR) and histogram binning (HB), which leads to the total
time being roughly twice that of isotonic regression (0.04 + 0.05 ≈ 0.1s).

Memory Efficiency Similar to K-nearest-neighbor-based methods [17, 45], our method requires
maintaining a held-out neighbor set for proximity computation during inference. To achieve memory
efficiency, we employ these three techniques: 1) Reduce the size of the held-out neighbor set since it
is unnecessary to utilize the entire raw neighbor-set, such as the entire training dataset, particularly
when dealing with large-scale data in practical scenarios. For instance, our experimental results
on ImageNet [7] are obtained using a neighbor-set comprising 25,000 randomly sampled images
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Table 3: Average inference time(ms) per image on ImageNet on 10 runs using a ViT/B-16@224px
model on a single Nvidia GTX 2080 Ti. ∗ denotes our method (BIN*: Bin Mean-Shift; DEN*:
Density-Ratio Calibration). NS indicates the computational time consumed by the nearest neighbor
search algorithm.

NS Conf TS ETS PTS PTSK HB IR MIR BIN* DEN*

Time(ms) 0.04 5.60 5.60 5.64 5.61 5.66 5.63 5.65 5.84 5.70 6.29

from the validation set. 2) Leverage pre-computed feature embeddings instead of full images, such
as ResNext101 embeddings (d = 1024), which consumed a mere 229MB in our experiments. 3)
Leverage memory-efficient neighbor search algorithms to further enhance memory efficiency [34, 19].

E.2 Effectiveness on Datasets with Balanced Class Distribution.

First, we present high-resolution figures of Figure 3 illustrating the results of 504 models from
timm [43] on ImageNet. In Figure 11, our method (indicated by red color markers) consistently
demonstrates the lowest calibration error across all four evaluation metrics, maintaining a consistently
superior performance.
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Figure 11: Calibration errors on ImageNet across 504 timm models. Each dot represents the
calibration results of applying a calibration method to the model confidence. Marker colors indicate
different calibration algorithms used. Among all calibration algorithms, our method consistently
appears at the bottom of the plot.

Second, we select four widely used ImageNet pre-trained models from the pool of 504 models
depicted in Figure 11. We compare the performance of our proposed approach with baseline
calibration algorithms, namely BeiT, MLP Mixer, ResNet50 and ViT. The detailed results are
presented in Table 4, showcasing the effectiveness of our methods in mitigating proximity bias
and enhancing calibration performance compared to existing calibration techniques. Additionally,
even when applied to the most successful base calibration algorithm, our method achieves a notable
reduction in calibration errors. This consistent improvement is particularly remarkable, especially in
scenarios where the original calibration methods fail to enhance or even worsen performance.
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Table 4: Comparison of calibration errors in 10−2 between existing calibration methods (‘base’) and
our proximity-informed framework (‘ours’), on ImageNet dataset. (∗ means p = 0.01)

ECE ↓ ACE ↓ MCE ↓ PIECE ↓
Model Method base +ours base +ours base +ours base +ours

BeiT

Conf 3.6137 0.8573* 3.5464 0.7205* 1.5801 0.2866* 4.2348 1.5379*
ETS 2.1318 0.9930* 2.1862 0.9023* 1.2155 0.4333* 2.9592 1.5872*
HB 4.8765* 5.5631 6.1728 5.9747 1.8383* 4.1239 7.2174 6.2886*
MIR 0.4509 0.536 0.5376 0.5455 0.1065 0.1395 1.8039 1.2645*
PTS 1.2685 0.9787 1.2744 0.8106 0.4858 0.4240 1.9782 1.6890
PTSK 1.8861 1.0288 1.9150 0.8582* 0.7934 0.5022 2.7093 1.6168*
TS 2.9894 1.3277* 3.1132 1.2493* 0.7388 0.7046 3.5366 1.9264*

Mixer

Conf 10.9366 2.8498* 10.9337 2.7162* 5.1519 1.0944* 11.0164 3.6485*
ETS 1.9381 1.3586* 2.1859 1.2210* 0.3204 0.2986 4.1034 2.2010*
HB 9.1774 6.7207* 9.7965 7.4825* 3.5964* 4.3997 12.9240 7.8672*
MIR 1.1128 0.9272 1.2190 0.9360* 0.2628 0.1430* 3.3912 2.2112*
PTS 5.7741 2.2208 5.8027 2.1298 2.8498 0.6940 9.3215 3.0623*
PTSK 6.6610 1.9466* 6.6173 1.7905* 3.1011 0.6131* 8.3148 2.7503*
TS 5.1937 1.6499* 5.0234 1.4455* 2.0189 0.4255* 5.8958 2.4809*

ResNet50

Conf 8.7246 2.7752* 8.6852 2.6344* 4.6122 1.3005* 8.9113 3.4224*
ETS 2.7620 1.6548* 3.6581 1.6627* 0.6624 0.5676 3.5750 2.4579*
HB 7.6311 6.1812* 9.3289 7.5380* 2.6377* 4.3484 10.1849 7.7372*
MIR 1.0281 0.9533 0.9643 0.8436 0.2062 0.2095 1.9751 1.8776*
PTS 2.2196 1.0138* 2.2098 1.0278* 0.6319 0.2529 4.0331 2.0445*
PTSK 4.4100 1.6015* 4.3761 1.5015* 1.8375 0.4980 5.4413 2.5003*
TS 5.1181 1.7964* 5.0864 1.7300* 2.5503 0.6881* 5.4640 2.5721*

ViT

Conf 1.1815 0.9016* 1.1839 0.7554* 0.3489 0.2543 1.9984 1.7540*
ETS 1.1080 0.9074 1.1791 0.7732* 0.2745 0.2684 1.9273 1.7533
HB 4.6920* 6.8776 7.1771 7.5824 2.4332* 4.8925 7.3239* 7.7552
MIR 0.8934 0.8638 0.8180 0.8537 0.1893 0.2182 1.7695 1.6818
PTS 1.0609 0.7940 1.0257 0.7124 0.3937 0.2600 2.0929 1.7510*
PTSK 1.6493 0.8966 1.5874 0.8139 0.6035 0.2957 2.5798 1.8211
TS 1.4905 0.9047* 1.4465 0.7880* 0.5069 0.2806* 2.1462 1.7562*

Third, we present the outcomes of our approach on the Natural Language Understanding task,
specifically on the MultiNLI Match dataset, as displayed in Table 5. The results demonstrate that our
method can improve confidence calibration performance in balanced datasets and achieve comparable
performance in addressing proximity bias.

Table 5: Results of MultiNLI Match dataset on RoBERTa-base Model that is fine-tuned on MultiNLI
Match. ‘Base’ refers to existing calibration methods and ‘Ours’ refers to our method applied to
existing calibration methods. Calibration error is given by ×10−2.

ECE ↓ ACE ↓ MCE ↓ PIECE ↓
Method base +ours base +ours base +ours base +ours

Conf 2.39 1.71 2.68 2.03 0.54 0.36 4.07 3.70
TS 1.68 1.53 1.96 1.86 0.49 0.40 4.19 3.45

ETS 1.88 1.57 2.08 1.76 0.70 0.44 3.97 3.61
PTS 9.28 3.48 9.25 3.49 5.86 1.13 9.44 5.29

PTSK 11.94 6.10 11.91 6.15 10.24 4.03 12.23 6.80
HB 2.07 1.80 2.10 2.10 1.03 0.67 4.63 3.67
IR 1.30 1.23 1.71 1.54 0.30 0.45 3.70 3.66

MIR 1.02 1.04 1.22 1.22 0.34 0.32 3.73 3.35

E.3 Effectiveness on Datasets with the Long-tail Class Distribution.

To evaluate our method in large-scale long-tail datasets, we conduct experiments on long-tail datasets
ImageNet-LT, and iNaturalist 2021. Table 6 shows our method’s performance on ImageNet-LT,
showing that our algorithm improves upon the original calibration algorithms in most cases under
all four evaluation metrics, particularly on ECE, ACE, and PIECE. This suggests that our algorithm
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Table 6: Performance of our proposed framework against base methods on ImageNet-LT using the
pretrained ResNet50 model with classifier re-training techniques [20]. The symbol ∗ denotes that the
method is significantly better than the other one with a confidence level of at least 90%.

ECE ↓ MCE ↓ ACE ↓ PIECE ↓
Method base +ours base +ours base +ours base +ours

conf 7.4933 1.8724* 0.8672 0.3380* 7.4610 2.0168* 7.9229 3.9776*
TS 2.1965 1.8541 0.3100 0.3956 2.0580 1.7472 3.8407 3.8478
ETS 2.2704 1.8642 0.3264 0.3926 2.0648 1.7622 4.0024 3.8520
PTS 5.0023 1.7300* 0.6512 0.3160 4.9927 1.7401* 7.6502 3.9018*
PTSK 9.1862 1.8558 1.7478 0.3475 9.2080 1.9875 11.4242 3.9175*
HB 13.4644 12.9257* 7.5672 7.5670 13.5931 13.4697 16.2915 15.3259*
IR 8.0541 8.5778 1.0642 1.0508 7.9947 8.5546 8.8631 9.3678
MIR 1.6207 1.5063 0.3205 0.3217 1.6562 1.5310 3.7481 3.6285

can effectively mitigate the bias towards low proximity samples (i.e. tail classes), highlighting its
practicality in real-world scenarios where data is often imbalanced.

E.4 Effectiveness on Datasets with Distribution Shift

To further evaluate the effectiveness of our proposed method in handling distribution shifts, we
conduct experiments on the ImageNet Corruption dataset [14]. The base models are trained on
the ImageNet dataset without any distribution shifts and are subsequently tested on the corrupted
dataset. The results, shown in Figure 12, indicate that our method is able to consistently improve
the performance of the original model even in the presence of distribution shifts. This is particularly
notable in the case of data with distribution shifts that tend to fall in the low proximity region, where
current algorithms tend to be poorly calibrated, but our method effectively addresses this problem.

Figure 12: The calibration error reduction in PIECE aachieved by integrating our method with
existing calibration algorithms. Different colors indicate different base calibration algorithms. Each
color represents a different base calibration algorithm. The bar indicates the difference in calibration
error between the base algorithm and the one enhanced by our approach.

To explore the issue of domain shift, where test data has a shifted distribution not seen in training, we
conduct experiments using ImageNet (training set) and ImageNet-Sketch (test set). The datasets are
chosen because all ImageNet images are real-world photos, while all ImageNet-Sketch images are
sketches, collected using Google Search with class label keywords and "sketch", similar to the case
of skin color example provided in the introduction. We employ a Vision Transformer backbone from
TIMM, trained on the ImageNet. Then we train our ProCal using the validation set from ImageNet and
tested it on the 50,000 images from ImageNet-Sketch. The result shown in Table 7 shows that ProCal
effectively improves upon existing algorithm in many cases. While we observe a slight increase in
ECE, ACE, and MCE when ProCal is paired with with PTS and PTSK, this is probably attributed to
the original methods suffering from the cancellation effect, where positive and negative calibration
errors within the same confidence bin cancel out each other (see section 6.1). Under the PIECE
metric that captures the cancellation effect, our method consistently outperforms all methods by large
margins and effectively mitigates their proximity bias.
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Table 7: Calibration performance of ViT-Large (vit_large_patch14_clip_336) from timm [43] on
ImageNet-Sketch dataset. Calibrators are trained using ImageNet validation set and tested on
ImageNet-Sketch. ‘base’ refers to the methods, ‘+ours’ shows the performance after integrating our
method. Note that ‘Conf+Ours’ shows the result of our method applied directly to model confidence.
Calibration error is given by ×10−2.

ECE ↓ ACE ↓ MCE ↓ PIECE ↓
Method base +ours base +ours base +ours base +ours

Conf 3.91 1.96 3.92 1.92 0.95 0.35 6.33 2.92
TS 7.60 2.38 7.57 2.38 1.42 0.57 7.95 3.27

ETS 3.16 2.07 3.22 2.03 0.37 0.39 4.92 2.97
PTS 1.62 1.60 1.65 1.66 0.34 0.25 3.89 2.74

PTSK 3.14 1.15 3.16 1.11 0.96 0.13 5.71 2.58
MIR 0.28 1.22 0.23 1.19 0.12 0.22 4.24 2.73

F Ablation Study

F.1 Comparison between Density-Ratio and Bin-Mean-shift.

Our comparison of Density-Ratio and Bin-Mean-shift reveals that Density-Ratio performs better
in scaling-based methods while Bin-Mean-Shift demonstrates general robustness and adaptability
in both continuous and discrete settings. This can be attributed to the fact that Density-Ratio can
be thought of as an infinite binning-based method, enjoying good expressiveness, but it relies on
density estimation which may not be as accurate when dealing with discrete outputs. In contrast,
Bin-Mean-shift does not make any assumptions about the output. Therefore, it is important to note
that both techniques have their own strengths and weaknesses, and the choice of which one to use
should be based on the specific task at hand.

F.2 Hyperparameter Sensitivity

In this section, we evaluate the sensitivity of our method to various hyperparameter choices. Specifi-
cally, we examine the impact of the choice of distance metric and the number of neighbors in the local
neighborhood. To evaluate the performance of our method under different hyperparameter settings,
we use ResNet50 [12] as our base model and compare its calibration performance of the integration
of our method and existing popular claibration algorithms under different hyperparameters. This
study aims to provide a guideline for selecting appropriate hyperparameters when using our method.

Effect of Neighbor Size K In this study, we examine the influence of the number of neighbors (K)
on the performance of our proposed method. We assess the performance by varying the number of
neighbors from K = 1 to K = 1000 and comparing the results. Figure 13 illustrates the impact of
neighbor size K on performance. The results reveal a V-shaped relationship between the number of
neighbors and performance. Initially, an increase in the number of neighbors from 1 yields increasing
performance improvement. However, when the number of neighbors exceeds a certain threshold
(e.g. K > 50), performance begins to deteriorate as the neighborhood becomes more global rather
than local, eventually reaching a saturation point. Notably, a small neighborhood size of K = 10
is sufficient to capture the local neighborhood, and further increasing the neighborhood size does
not yield additional benefits. This finding aligns with previous works [17, 45] that demonstrate the
insensitivity of proximity to the choice of K. Based on these findings, we recommend employing a
moderate range of neighbors, specifically between 10 and 50, to achieve optimal performance.

Effect of Distance Measure In this study, we explore the impact of different distance measures
on the performance of our method. We compare the performance under four distance measures: L2
(Euclidean distance), cosine similarity, IVFFlat, and IVFPQ. L2 distance and cosine similarity are
widely used measure in machine learning. IVFFlat and IVFPQ are approximate nearest-neighbor
search methods implemented using the faiss library [18]. IVFFlat is memory-efficient and suitable
for high-dimensional datasets, while IVFPQ is optimized for datasets with a large number of points
and high-dimensional features. The results are depicted in Figure 14. Overall, we observe minimal
performance differences across the various distance measures. Specifically, the use of cosine similarity
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Figure 13: Hyperparameter sensitivity of the number of neighbors used in computing proximity. The
results reveal a V-shaped relationship between the number of neighbors and performance. Initially,
an increase in the number of neighbors from 1 yields increasing performance improvement. However,
when the number of neighbors exceeds a certain threshold (e.g. K > 50), performance begins to
deteriorate.

and L2 distance yields comparable performance across the four calibration metrics. Additionally,
employing IVFFlat results in slightly smaller calibration errors. However, the performance disparity
is not significant. Different distance measures, including the approximation methods, offer similar
performance improvements. This is because the density function for proximity values is smooth,
and small measurement noise does not significantly impact the final density estimation. Considering
efficiency, we recommend utilizing IVFFlat due to its favorable efficiency characteristics. However,
it is important to note that the choice of the best distance measure depends on the specific problem
and dataset, as each measure may exhibit varying performance in different scenarios.

G Pseudo-codes

We present the procedural steps of our approach in the form of a pseudocode. Algorithm 1 encom-
passes the general inference phase:

Algorithm 1 Inference procedure.

Require: Test sample x ∈ Rn, held-out embeddings E ∈ RN×d, classifier f (calibrated or un-
calibrated), number of nearest neighbors K, nearest neighbor search algorithm S using Faiss
library, PROCAL calibrator C

1: procedure INFERENCE(x)
2: ex, p̂, ŷ ← f(x) ▷ get feature embedding, prediction and confidence
3: d← S.search(ex,K)
4: dx ← exp{−mean(d}) ▷ proximity as the average distance to K nearest neighbors
5: return C(p̂, dx) ▷ return calibrated confidence
6: end procedure

Algorithm 2 encapsulates the Density-Ratio Calibration algorithm.
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Figure 14: Hyperparameter sensitivity of several proximity measure under four evaluation metrics.

Algorithm 2 Density-Ratio Calibration.

Require: Pre-trained model M , validation set with pre-computed proximity Dval = {X ,Y,D}, test
set with pre-computed proximity Dtest = {Xtest,Ytest,Dtest},

1: procedure DENSITYRATIOCALIB(x)
2: D+

val = ∅,D
−
val = ∅

3: for i = 1, . . . , |X | do
4: ŷi, pi ←M(xi), xi ∈ X ▷ get predicted class label and confidence
5: if ŷi = y then ▷ split Dval based on prediction correctness
6: D+

val ← D
+
val ∪ {< pi, di >}

7: else
8: D−

val ← D
−
val ∪ {< pi, di >}

9: end if
10: end for
11: KDE+ ← KDE(D+

val) ▷ 2-dimension KDE given confidence and proximity
12: KDE− ← KDE(D−

val)

13: γ ← |D−
val|

|D+
val|

14: for j = 1, . . . , |Xtest| do
15: ŷj , pj ←M(xj), xj ∈ Xtest

16: sj =
KDE+(Dj ,pj)

KDE+(Dj ,pj)+γ×KDE−(Dj ,pj)
▷ compute re-calibrated score for test sample

17: end for
18: return sj , j = 1, . . . , |Xtest|
19: end procedure
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