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ABSTRACT

One important challenge in evaluating the robustness of vision models is to con-
trol individual nuisance factors independently. While some simple synthetic cor-
ruptions are commonly applied to existing models, they do not fully capture all
realistic distribution shifts of real-world images. Moreover, existing generative
robustness benchmarks only perform manipulations on individual nuisance shifts
in one step. We demonstrate the importance of gradual and continuous nuisance
shifts, as they allow evaluating the sensitivity and failure points of vision models.
In particular, we introduce CNS-Bench, a Continuous Nuisance Shift Benchmark
for image classifier robustness. CNS-Bench allows generating a wide range of
individual nuisance shifts in continuous severities by applying LoRA adapters
to diffusion models. After accounting for unrealistic generated images through
an improved filtering mechanism for such samples, we perform a comprehensive
large-scale study to evaluate the robustness of classifiers under various nuisance
shifts. Through carefully-designed comparisons and analyses, we find that model
rankings can change for varying shifts and shift scales, which is not captured
when averaging the performance over all severities. Additionally, evaluating the
model performance on a continuous scale allows the identification of model fail-
ure points, providing a more nuanced understanding of model robustness. Overall,
our work demonstrated the advantage of using generative models for benchmark-
ing robustness across diverse and continuous real-world nuisance shifts in a con-
trolled and scalable manner.

1 INTRODUCTION

Machine learning models are typically validated and tested on fixed datasets under the assumption of
independent and identically distributed samples. This, however, does not fully cover the true capa-
bilities and potential vulnerabilities of models when deployed in dynamic real-world environments.
The robustness in out-of-distribution (OOD) scenarios is important and decision-makers might need
to know how models perform under various distribution shifts and severity levels in safety-critical
scenarios. Therefore, it is crucial to continue building richer and more systematic benchmarks.

In the past few years, various benchmarks have been proposed to evaluate the robustness of computer
vision models. One line of benchmarks manually collects data with nuisance shifts (Zhao et al.,
2022; Hendrycks et al., 2021a; Wang et al., 2019; Geirhos et al., 2022; Barbu et al., 2019; Idrissi
et al., 2022; Hendrycks et al., 2021b; Recht et al., 2019). Yet, such approaches are not scalable and
often include only a small variety of nuisance shifts.

On the other hand, synthetic datasets offer opportunities to evaluate deep neural networks since
various instances of an object class with specified context and nuisance shifts can be generated.
While rendering pipelines allow precise control of several variables and are applied for bench-
marking (Bordes et al., 2024; Shu et al., 2020; Kar et al., 2022; Li et al., 2023c), some nuisance
shifts such as weather variations (e.g., snow) are very hard to perform using traditional pipelines.
While Hendrycks & Dietterich (2018) report accuracy drops for various types and levels of synthetic
corruptions, they lack relevant real-world nuisance shifts.

Recent developments in diffusion models have enabled the application of generative models for
training (He et al., 2022b; Fan et al., 2024) and benchmarking vision models (Mofayezi &
Medghalchi, 2023; Metzen et al., 2023; Vendrow et al., 2023; Zhang et al., 2024). However, all
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Figure 1: Benchmarking under continuous nuisance shifts. We evaluate the robustness of dif-
ferent models under gradually increasing nuisance shifts. This allows identifying the failure point
(highlighted in red) of a model.

previous approaches define categorical or binary nuisance shifts by considering the existence or ab-
sence of a shift, which contradicts their continuous realization in real-world scenarios. For example,
as shown in Fig. 1, the snow level in an environment can range from light snowfall to objects fully
covered with snow. While one model might fail at all snow levels, a different model might only fail
when the object is heavily occluded. In most real-world applications, it is important to know the
expected performance at specific nuisance shift levels, rather than just a global accuracy drop. For
instance, an autonomous driving company may need to determine the fog density at which system
performance falls below a critical threshold. Evaluating such failure points to probe the sensitivity
of models requires realizing continuous shifts.

To overcome this shortcoming, we establish a Continuous Nuisance Shift Benchmark for model
robustness, dubbed as CNS-Bench. Specifically, we apply LoRA (Hu et al., 2021) adapters to
diffusion models to perform a continuous variation of specified nuisance shifts, and use them to
benchmark a variety of classifiers along the following axes: (i) architecture, (ii) number of param-
eters, (iii) pre-training paradigm and data. In contrast to previous works conducting analysis on
binary or categorical shifts, our study advocates multiple scales of shifts. We caveat that model
rankings can change when considering several scales. It is also essential to consider failure points,
i.e., the shift severity at which a model fails. Thus, measuring robustness as a spectrum instead
of aggregating it into a single average metric allows a more comprehensive understanding of OOD
robustness (Drenkow et al., 2021; Hendrycks et al., 2021a). With our benchmark, we evaluate more
than 40 classifiers and demonstrate that a rigorously-designed generative benchmark allows system-
atically studying the robustness behaviors of vision models in a controlled and scalable manner.

One essential requirement when using synthetic images for benchmarking is to ensure that the con-
sidered images correspond to the class distribution. Manually checking the quality of images to
find those not aligned with the desired condition is still a common practice (Zhang et al., 2024).
However, it has difficulty in scaling up the analysis (Hastie et al., 2009; Angelopoulos et al., 2023).
Some approaches have been proposed for automatic filtering, but no standard datasets are available
to evaluate filtering strategies. With this in mind, we also provide a dataset with manually annotated
out-of-class (OOC) images. We show that our proposed filtering mechanism outperforms previous
strategies in removing such problematic samples.

In summary, our work makes the following contributions: 1) We propose CNS-Bench to benchmark
vision models under continuous nuisance shifts. We publish a dataset with 14 diverse and realistic
nuisance shifts that represent various style and weather variations at five severity levels. In addition,
we also provide trained LoRA sliders for all shifts that can be used to compute shift levels in a fully
continuous manner. 2) We collect an annotated dataset to benchmark OOC filtering strategies and
propose a novel filtering mechanism that achieves higher filter accuracies than previous methods.
3) We evaluate the robustness of more than 40 classifiers along different axes and reveal multiple
valuable findings, underlining the importance of considering continuous shift severities of real-world
nuisance shifts.
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2 RELATED WORK

Robustness. When referring to robustness, we consider the relative accuracy drop of a classifier
w.r.t. interventions that alter images from a base distribution, building upon the formalism introduced
in Drenkow et al. (2021). While the averaged accuracy drops provide an aggregated measure of
the robustness, we consider the robustness w.r.t. specific nuisance shifts that can be modeled as
causal interventions on the environment, the appearance, the object, or the renderer. We define such
continuous interventions on metric scale.

Benchmarking robustness. Early approaches for benchmarking the performance and gener-
alizability of models use fixed datasets, assuming independent and identically distributed sam-
ples (Deng, 2012; Deng et al., 2009; Lin et al., 2014). However, this lacks scalability and fails to
capture the performance in real-world applications facing OOD scenarios. To tackle this challenge, a
line of research involves manually collecting data with nuisance shifts (Zhao et al., 2022; Hendrycks
et al., 2021a; Wang et al., 2019; Geirhos et al., 2022; Barbu et al., 2019; Idrissi et al., 2022;
Hendrycks et al., 2021b; Recht et al., 2019). However, these methods are often time-consuming
and labor-intensive since they require data crawling and human annotations. Moreover, they usu-
ally capture only a subset of nuisance shifts that models may encounter in the real world and it is
challenging to ensure the disentanglement of these annotated nuisances.

Another line of research uses synthetic data for benchmarking, which offers the ability to generate
a large and diverse range of nuisance shifts with precise control (Hendrycks & Dietterich, 2018;
Bordes et al., 2024; Shu et al., 2020; Kar et al., 2022). However, these works are limited to nuisances
that can be easily modelled (e.g., lighting, fog, occlusions) or restricted to what can be expressed in
rendering pipelines. Recent developments in diffusion models shed light on creating realistic and
diverse synthetic benchmark datasets (Mofayezi & Medghalchi, 2023; Metzen et al., 2023; Vendrow
et al., 2023; Zhang et al., 2024) with realistic data and more possibilities to control nuisances (e.g.,
text-guided corruptions, counterfactual). In our work, we propose a framework to benchmark vision
models w.r.t. nuisance shifts under multiple severity levels. To address the need to remove OOC
images from generative models, which are essential for benchmarking applications, we additionally
propose a novel strategy to remove such samples from the dataset.

3 CONTINUOUS NUISANCE SHIFT BENCHMARK

In this section, we present how CNS-Bench is created. We first discuss the strategy to replicate
the in-domain distribution in Section 3.1. We then present our methodology to perform continuous
shifts to evaluate the model’s sensitivity to various nuisance factors in Section 3.2. Finally, we detail
our filtering dataset and the selected filtering strategy in Section 3.3.

3.1 REPLICATING THE IMAGENET DISTRIBUTION

We aim to evaluate a model’s robustness to specific nuisance shifts that alter the base ImageNet
(Deng et al., 2009) distribution p(XIN|c), which is conditioned on an ImageNet class c. For a
more accurate estimate of the robustness concerning a single considered shift, we desire a model
accuracy comparable to the in-domain (ImageNet) distribution. As pointed out by Vendrow et al.
(2023), the distribution of Stable Diffusion (SD) (Rombach et al., 2022) generated images p(XSD|c)
differs from the ImageNet distribution, resulting in lower classification accuracies of ImageNet-
trained classifiers. Therefore, we use the text embeddings provided by Vendrow et al. (2023) after
training them via textual inversion (Gal et al., 2023) on the ImageNet training dataset. We call this
distribution IN*: p(X|c) = p(XIN*|c).

3.2 CONTINUOUS NUISANCE SHIFTS FOR BENCHMARKING

To evaluate the robustness of vision models w.r.t. continuous nuisance shifts, the following character-
istics are desirable: (i) The severity of the considered shift can be controlled, allowing the estimation
of the shift scale where a considered model fails. (ii) Realizing a nuisance shift should not come
along with factors of variations that might alter the class identity. (iii) The variations should be
subtle, allowing a fine-grained analysis also for specific images.
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Figure 2: Qualitative examples for prompt-based and LoRA-based shifts with out-of-class sam-
ples. On the left, we present two images in a different a) style and b) weather condition generated
from a text prompt a) “fox in cartoon style” and b) “birdhouse in heavy snow”, respectively. On the
right, we show the gradual variation performed by our LoRA sliders. a) Unlike the prompt-based
shift, our LoRA sliders successfully generated images showing a gradual shift. b) Our LoRA sliders
sometimes result in out-of-class (OOC) samples for higher scales, as depicted with the orange box.

Realizing continuous nuisance shifts. A natural way to perform synthetic nuisance shifts
are methods based on text prompts (Metzen et al., 2023; Liu et al., 2023; Vendrow et al.,
2023). They follow the two prompt (2P) templates: “A picture of a <class>” and
“A picture of a <class> in <shift>”. However, this approach does not allow the
gradual increase of a nuisance for a given image. In addition, the generated shifts largely vary for
different seeds and classes when applying the prompt addition “in <shift>”—for some seeds,
the generated shift is more prominent, while for others, it is barely visible. Additionally, the seman-
tic structure of the generated image can be significantly changed.

We leverage LoRA (Hu et al., 2021) adapters that represent low-rank matrices added to the original
weight matrices to perform continuous shifts. Such adapters are trained to characterize the effect of
a considered nuisance shift. Gandikota et al. (2023) propose a strategy to learn concept sliders using
LoRA adapters that allow a continuous modulation of the considered concept, which is achieved by
learning low-rank matrices that increase the expression of a specific attribute when applied to a class
concept c. The low-rank parameters θLoRA that modify the original model parameters θ to θ∗ = θ+s·
θLoRA with scale s are trained to capture a concept of interest c+: Pθ∗(X|c)← Pθ(X|c)·Pθ(X|c+)η ,
where η refers to weighting factor that is fixed during training. Following Gandikota et al. (2023), we
optimize with the MSE objective (Sohl-Dickstein et al., 2015) using the Tweedie’s formula (Efron,
2011) and the reparametrization trick (Ho et al., 2020) by formulating the scores as a denoising
prediction ϵ(X, c, t) with the diffusion timestep t: MSE(ϵθ∗(X, c, t); ϵθ(X, c, t) + ϵθ(X, c+, t)).
We model the class concept c and the nuisance concept c+ by two text embeddings “<class>”
and “<class> in <shift>”. Different to (Gandikota et al., 2023), we specifically use class
concepts c that are acquired from the IN* distribution. After training, the learned LoRA adapters
capture the direction between the two language concepts, i.e., they characterize attributes of the
concept of interest c+. Weighting their effect using the scale s modulates the effect of the applied
shift. Gandikota et al. (2023) stated that the LoRA adapters generalize to other concepts and images.
We found that learning class-specific LoRA sliders produces higher-quality shifts. This choice also
allows capturing the class-specific characteristics and confounders of the considered shifts that occur
in the real world. Hence, we train separate LoRA adapters for each ImageNet class and shift. As
qualitatively shown in Fig. 2, applying these learned directions enables gradual nuisance shifts. We
show examples of more shifts in Fig. 33 and Fig. 34.

Following (Mokady et al., 2023; Gandikota et al., 2023), we evaluate the shift severity
based on the CLIP similarity of the generated image to the text prompt describing the
shift, i.e., “A picture in <shift>”. Similarly, we also compute the CLIP (Radford
et al., 2021) similarity to the class prompt “A picture of a <class>”. To mea-
sure the performed shift, we compute the CLIP shift difference by ∆CLIPshift (Ik, I0) =
cos (CLIPimg (Ik) ,CLIPtext (“in {shift}”)) − cos (CLIPimg (I0) ,CLIPtext (“in {shift}”)) for the
generated image with scale 0 and scale k, and similarly for the class similarity.
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Figure 3: Average delta CLIP
evaluation for various scales of
the snow shift. Our sliders per-
form a gradual shift, while a naive
application (2P) only allows binary
shifts.

In contrast to simply applying a second text prompt (2P) to
perform a binary shift, our LoRA adapters allow performing a
variety of shift scales, as measured by the CLIP shift difference
(Section 3.2). This allows gradual shifts, as also illustrated in
Fig. 2.

Activating the LoRA adapter at different time steps throughout
the diffusion process will modulate the effect of the adapter on
the generation process. (Meng et al., 2021; Gandikota et al.,
2023) If the LoRA adapter is active for all noise steps, it will
significantly influence the semantic structure and the appear-
ance of the generated image, while deactivating the adapter
for earlier time steps will keep the semantic structure. Since
we aim to perform more fine-grained edits that do not heavily
change the semantic structure, we deactivate the LoRA adapter
for early steps. This allows realizing edits as, e.g., visualized
in Fig. 2 a), where the semantic structure is kept but only the
appearance changes.

Failure point concept. We define a failure point s = min{S ∈ R|f(X(S)) ̸= c} as the smallest
shift scale where a classifier f(X(s)) fails to correctly classify an image X(s) with a class c and a
scale s of a considered shift. The failure point distribution captures the ratio of failed samples for the
considered scales. We estimate this distribution in our work with a histogram, where the number of
elements in one bin Ik is computed by H(Ik) =

∑N
n=1 1Ik(sn) with the indicator function 1(·) and

the scale of the n-th element of the set of images with N images. We compute and report the ratio
of failure points for the scales s ∈ {0.5, 1, 1.5, 2, 2.5}, dividing H(Ik) by the number of considered
images N .

3.3 FILTERING DATASET AND STRATEGY

To evaluate filtering strategies for removing out-of-class (OOC) samples, we collect a manually
labeled dataset. This section presents this dataset and the selected filtering strategy.

Filtering of OOC samples. Current diffusion models allow the generation of diverse and realistic
images x ∼ p(X|z) that are conditioned on z = [c, si], which involves the considered ImageNet
class c ∈ N | 1 ≤ c ≤ 1000 and the variable si ∈ R corresponding to the severity of a considered
nuisance shift i. However, due to their probabilistic formulation, the generated sample might deviate
from the condition z. For benchmarking applications, we are particularly concerned about gener-
ated samples deviating from the original class c, i.e., the considered class cannot be characterized
anymore (c.f., Fig. 2). We call such samples “OOC” samples (Metzen et al., 2023). Evaluating the
sensitivity to specific nuisance shifts requires removing the OOC samples generated by the shift’s
application. Therefore, we collect a dataset of generated images to evaluate the sliding process and
strategies to automatically remove OOC samples.

Dataset for evaluating OOC filtering strategies. To evaluate various OOC filtering strategies, we
manually label a dataset consisting of 18k generated images with two shifts, five scales, and 100
random ImageNet classes. We select snow as one weather variation and cartoon as one style shift to
represent two rather different nuisance shifts. Before manually labeling the dataset, we remove easy
samples that have a high CLIP text alignment and are classified correctly by multiple classifiers.
Then, all hard images are labeled by two human annotators, where each annotator can choose from
the following labels: “class”, “partial class properties”, and “not class”. More details on the labeling
strategy and the dataset statistics are provided in Appendix A.6.

OOC filtering strategy. A filter serves its purpose if it removes all OOC samples, corresponding to a
high true positive rate (TPR), while not removing too many in-class samples, corresponding to a low
false positive rate (FPR). Instead of simply applying a CLIP threshold as in Vendrow et al. (2023),
we consider a combinatorial selection approach, which requires two out of four filters to be active.
For the first and the second filter, we consider text alignment to “A picture of a <class>”
and “A picture of a <class> in <shift>”, respectively, computed via CLIP. For the
third and fourth filter, we measure the cosine similarity to the starting images using the CLIP image
encoder and the class tokens of DINOv2 (Oquab et al., 2023), respectively. We select the filtering
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Figure 4: Accuracies and failure point ratios of a ResNet-50 classifier on OOD-CV and our
benchmark. Left: Accuracies on OOD-CV and various scales of our benchmark. Horizontal lines
show the average score for each weather nuisance of the OOD-CV test dataset , while our benchmark
allows identfying the performance drop at various shift scales. Right: Distribution of failure points.
While the OOD-CV dataset only provides the accuracy drop, our continuous nuisance shifts allow
identifying the shift scales that result in a failure. Note that models fail earlier for fog, potentially
due to heavier occlusions than snow and rain.

threshold for each filter such that 90% of the labeled OOC samples are removed. Note that none of
these filters are trained on ImageNet data.

4 EXPERIMENTS

In this section, we discuss our benchmark results. First, we compare our bechmarking strategy
with the OOD-CV benchmark. Then, we perform a large-scale analysis by evaluating more than 40
ImageNet classifiers on CNS-Bench.

4.1 COMPARING CONTINUOUS SHIFTS WITH OOD-CV DATASET

Zhao et al. (2022; 2024) introduce OOD-CV to measure out-of-distribution (OOD) robustness, a
benchmark dataset that includes OOD examples of ten object categories for five different individual
nuisance factors (e.g., weather) on real data. OOD-CV is the only real-world dataset that provides
accurate labels of various individual weather shifts. This allows comparing our generated images
with real-world weather realizations of the considered shifts. We use our trained LoRA adapters
to create a benchmark for the OOD-CV classes and scales up to 3.0 to directly compare with the
original manually labeled dataset. We refer to the supplementary for exemplary images of both
benchmarks and CLIP alignments to the considered shifts.

First, we train a ResNet-50 classifier on the training set of the OOD-CV benchmark. Then, we
evaluate the performance on our data and the OOD-CV benchmark. Fig. 4 presents the results for
each nuisance independently. The accuracies remain more or less constant with an accuracy around
95% up to a nuisance scale of 1.5. From a nuisance scale of 2.0, the accuracy starts dropping, with
the nuisance of fog having the biggest impact. This could be explained by the fact that fog can lead to
severe occlusion, while rain and snow can be considered as corruption factors. We hypothesize that
the partially bigger drop for the OOD-CV benchmark is due to a major limitation of its dataset: The
nuisances are not completely disentangled, and part of the accuracy drop originates from various
other factors (e.g., image quality, image size, and noise). In contrast, our benchmark allows for
fine-grained control of nuisances with multiple shift levels, leading to a more complete and scalable
analysis of the model’s performance.

4.2 EVALUATED MODELS AND EXPERIMENTAL SETUP

We use our large-scale benchmark to evaluate the models along the following axes:
(i) Architecture. To compare architectures with a comparable number of parameters, we consider
both CNN and ViT architectures with different training recipes: ResNet-152 (He et al., 2016), ViT-
B/16 (Dosovitskiy et al., 2020), DeiT-B/16 (Touvron et al., 2021), DeiT-3-B/16 (Touvron et al.,
2022), and ConvNeXt-B (Liu et al., 2022). All models are trained in a supervised manner.
(ii) Model size. For ViT, we consider the small, medium, base, large, and huge variants of DeiT-3.
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Figure 5: Classification accuracies on the labeled and the filtered datasets. The accuracy curves
of ResNet-50 and DINOv2 classifiers on the filtered and the labeled dataset of snow and cartoon
shift are comparable, demonstrating the effectiveness of our automatic filtering strategy. We provide
results for more classifiers in Fig. 8.

For CNN, we consider the ResNet variants: 18, 34, 50, 101, and 152.
(iii) Pre-training paradigm and data. We evaluate a set of models with the same backbone but dif-
ferent pre-training strategies. The following models are pre-trained on IN1k with a self-supervised
objective: MAE (He et al., 2022a), DINOv1 (Caron et al., 2021), and MoCov3 (Chen et al., 2021).
To study the impact of more data during training, we compare their performance to a supervised
model that is trained only on ImageNet-1k and a supervised model that is pre-trained on ImageNet-
21k. All Transformer-based models use ViT-B/16 as the backbone. Furthermore, we evaluate an
ImageNet-trained diffusion classifier (Li et al., 2023b) on a smaller subset due to its heavy compu-
tational cost.

Metrics. We typically report the average accuracy drops averaged over the images of one shift
or all shifts. In Table 1, we report the mean relative corruption error (rCE) as introduced by
Hendrycks & Dietterich (2018). It is defined by the average over all relative corruption errors
CEshift =

(∑
s E

f
shift,s − Ef

shift,0

)
/
(∑

s E
alex
shift,s − Ealex

shift,0

)
with the average error E for scale s,

model f , and a specific shift.

Slider details. As pointed out in Section 3.1, we use textual inversions to replicate the ImageNet
distribution. To evaluate the relevance of this approach, we generate 200 images of 100 randomly
selected ImageNet classes using standard SD2.0 and SD2.0 with the textual inversions of IN*. To
illustrate the distribution gap, we compute the accuracies for ResNet-50 (DeiT). They achieve an
accuracy of 68.2% (71.6%) for the SD distribution and 74.1% (79.1%) for the IN* distribution,
which equals accuracy drops of 6% (8%) for both classifiers. This is significantly closer to the
performance on the original ImageNet distribution. We perform all the following experiments using
the IN* distribution. We use SD2.0 and we activate the LoRA adapters with the selected scale for
the last 75% of the noise steps.

Due to the computational complexity, we perform sliding for 100 classes. To get an estimate of
the robustness on the full scale of ImageNet, we classify based on 1000 classes using off-the-shelf
classifiers without applying classifier masking, as done by Hendrycks et al. (2021a). We ablate how
the number of classes influences the robustness evaluations in Appendix A.5.2.

The selection of the shifts is mainly inspired by ImageNet-R Hendrycks et al. (2021a) (8 shifts)
and the OOD-CV dataset Zhao et al. (2022) (6 shifts) to consider a diverse set of nuisance shifts
that modulate the appearance and style or the background and occlusion. Specifically, we consider
the following 14 shifts: cartoon style, plush toy style, pencil sketch style, painting style, design of
sculpture, graffiti style, video game renditions style, style of a tattoo, heavy snow, heavy rain, heavy
fog, heavy smog, heavy dust, and heavy sandstorm.

Filtering details. Our OOC filtering mechanism reaches a TPR of 87.9% and an FPR of 12.0% with
an accuracy of 88.0%, while the naive CLIP-based thresholding reaches a TPR of 89.9% and an FPR
of 35.7% with an accuracy of 65.1%. We plot the classification accuracy of DINOv2-R and ResNet-
50 for the labeled and the filtered versions in Fig. 5. We observe comparable accuracy drops on
both the manually-labeled and the filtered datasets. To further support the realism of our generated
images, we fine-tune ResNet-50 with our data and show more than 10% gains on ImageNet-R (see
Appendix A.3).
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Table 1: rCE along the model axes. We choose the average relative corruption error Hendrycks
& Dietterich (2018) as a single metric to measure the performance of a model on our benchmark
(lower is better). We provide results for all models in Table 2.

Architecture Size Pre-Training

ConvNext 0.686 DeiT3-S 0.747 DINOv1-IN1k 0.636
DeiT3 0.610 DeiT3-M 0.758 MAE-IN1k 0.732
DeiT 0.746 DeiT3-B 0.610 MoCov3-IN1k 0.669
RN152 0.790 DeiT3-L 0.574 SUP-IN1k 0.926
ViT 0.926 DeiT3-H 0.583 SUP-IN21k-1k 0.722
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(a) Accuracy drops averaged over the whole benchmark. Architecture (left): We show models with the same
training data and similar parameter counts. The selection of the architecture influences the accuracy drop.
Model size (center): We show DeiT3 with various numbers of parameters. Increasing the model capacity results
in lower accuracy drops. Pre-training paradigm and data (right): We show different pre-training paradigms:
supervised, self-supervised (MAE, DINO, MoCo), and more data (IN21k), all using ViT-B/16. We present
results for all shifts in Fig. 9.
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(b) Accuracy drops for three selected shifts. Models exhibit varying performance changes depending on the
considered shifts. For snow and painting shifts, the ranking of the models changes. In contrast, the cartoon
style shift results in a consistent model ranking. However, the OOD performance on cartoon-shifted images is
drastically worse than the other shifts.
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(c) Ratio of failure points per scale for various models and shifts. The distribution allows inferring at which
scales various models fail most often. Different models fail at varying stages depending on the considered
shifts. While the number of failure points gradually increases for the snow shift, most failure points occur
around scale 1.5 for the cartoon style shift. We present results for all shifts in Fig. 10.

Figure 6: Evaluation of accuracy drops and failure points. We plot the averaged accuracy drops
and failure points of selected models and provide the results of all evaluated models in Appendix A.2.
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Figure 7: Relation between ID and OOD accuracy. We report the slope of the linear fit between
ID and OOD accuracy using 16 supervised ImageNet-trained models for all evaluated shifts. The
relation varies for different shifts and scales between 0.5 and 2.5.

4.3 ANALYSIS AND FINDINGS

In this subsection, we discuss the main findings on our benchmark. Following Hendrycks et al.
(2021a), we report the accuracy drops for 5 scales averaged over 14 diverse shifts as a measure
of robustness in Fig. 6a. Table 1 compares models using the average relative corruption errors as
proposed by Hendrycks & Dietterich (2018). We also provide results for three exemplary shifts
in Fig. 6b. In addition, we report the distribution of failure points in Fig. 6c. We provide more
evaluations in Appendix A.2.

Considering multiple scales of a shift allows a more nuanced analysis of OOD robustness. We
present the accuracy drops for multiple scales and classifiers along the architecture axis in Fig. 6b.
The results indicate that the model rankings measured by the accuracy drop change for different
scales and shifts. For example, while the rankings remain consistent for the cartoon style (right) for
all scales, the model rankings change significantly for the painting style shift: Here, ViT outperforms
the other models on a lower scale but performs worse on large shift scales. Varying rankings also
occur for other shifts (see Fig. 9 in the supplementary). To validate the observation of changed model
rankings, we also evaluate multiple corruption levels of an examplary ImageNet-C corruption and
show the results in Fig. 23 in the supplementary.

We conclude from this observation that the average accuracy drop and the accuracy drops at spe-
cific nuisance scales do not always indicate the same model behavior, which provides experimental
evidence for the need for a multi-scale robustness benchmarking dataset and adequate metrics.

Model failure points differ across different types of shifts. A failure point captures at which
scale a model fails for the first time. Comparing the failure point distribution of various models
largely differs for different shift types, as shown in Fig. 6c. We provide more results in Fig. 10 in
the supplementary. Weather shifts, such as snow, typically correspond to slight appearance changes
and mainly add a disturbance factor or occlusions to the image. Therefore, the failure rate increases
gradually compared to some style shifts, for which models tend to fail more abruptly at a specific
scale, as, e.g., for the cartoon style at scale s = 1.5. An exemplary explanation for the abrupt shift
for the cartoon shift might be the wrong classification of a class as the ImageNet class comic book.

The relation between ID and OOD accuracy depends on the considered nuisance factor and
its scale. Miller et al. (2021) formalize the positive correlation between ID and OOD accuracy—
classifiers tend to have a better OOD accuracy if they perform better on the training data (“Accuracy-
on-the-line” phenomenon). To analyze the linear relation between ID and OOD accuracy for our
benchmark, we compute the slope of the linear fit between ID and OOD accuracies of 16 ImageNet-
trained models. Miller et al. (2021) have already shown that the slope varies for different datasets. In
Fig. 7, we further observe that not only the considered shift but also its severity influence the slope
of the linear fit. Refer to Appendix A.2.3 for the test statistics. We believe using our benchmark to
investigate this relation more extensively is an interesting direction for future work.

Transformers with modern training recipes outperform modern CNNs across all shift sever-
ities. We present the average accuracy drops of various models with the same training data and a
comparable number of parameters in Fig. 6a (left). DeiT3 consistently achieves the highest robust-
ness on our benchmark, increasing the gap towards DeiT and ViT for stronger shifts. Interestingly,
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ResNet-152 is more robust than the standard ViT variant, but ConvNeXt outperforms the ResNet-
152 architecture. A modern CNN (ConvNext) outperforms vision transformers (ViT,DeiT) of the
same size but it is less robust than a transformer with modern training recipes (DeiT3), despite
having a higher ID accuracy. This observation is in line with the performance on ImageNet-R. How-
ever, our benchmark shows that the gap between ConvNext and DeiT3 does not increase for stronger
shifts. We can observe that this behavior is not consistent for all shifts. Consider, e.g., the failure
point distribution in Fig. 6c (Painting Style), where DeiT3 has a gradually increasing failure point
rate, while ConvNext depicts a sharp increase for scale s = 1.5.

Self-supervised pre-training improves the OOD robustness. To study the impact of the pre-
training paradigm, we compare different learning objectives with the same ViT-B backbone and the
same training data in Fig. 6a (right). We consider both the supervised and self-supervised (MAE,
DINOv1, and MoCov3) paradigms. Using a self-supervised objective for pre-training followed
by a fine-tuning protocol results in a better robustness for the same training data and model size.
Considering the rCE metric in Table 1, the fine-tuned DINOv1 model achieves the best performance.

Diffusion classifiers are less robust than discriminative models. In addition, we also compare the
robustness of an ImageNet-trained diffusion classifier (Li et al., 2023b) on our benchmark. Due to
the heavy computational cost, we evaluate the accuracy drop of the DiT-based diffusion classifier for
1k images on a subset of our dataset (around 12k images) for the snow and the cartoon style shift.
We apply the L1 loss computation strategy as proposed by Li et al. (2023b) since it results in the best
performance. We compute the average accuracy drops as 0.106 / 0.07 / 0.05 for DiT / supervised
ViT / MAE. Comparing on the smaller dataset with discriminative models, the diffusion classifier
demonstrates a lower robustness on the evaluated shifts than the compared discriminative models
despite having substantially more parameters. The gap is increasing for larger severity levels. We
present more results in Fig. 21 in the supplementary.

More training data improves the robustness. In Fig. 6a (right), we observe that more training data
benefits OOD robustness for all scales. For example, compared with the supervised model trained on
IN1k, pre-training on IN21k has a positive impact on the OOD robustness for small and large scales.
This might be explained by the fact that the tested distribution is less OOD for the model (Miller
et al., 2021).

In summary, we show that benchmarking with generative continuous shifts allows systematically
studying the model robustness via easily scalable synthetic data. Our study underscores that con-
sidering multiple-scale nuisance shifts provides a more nuanced view of the model robustness, as
the performance drops can vary across different nuisance shifts and scales. Besides, the relation
between ID and OOD accuracy not only depends on the considered nuisance factor but also on its
severity. Therefore, instead of aggregating the robustness evaluation into a single metric, we mo-
tivate the community to report the accuracy with different shift scales and the failure points for a
more comprehensive understanding of model robustness.

5 CONCLUSION

The key advantage of using generative models for benchmarking is the ability to perform diverse
nuisance shifts in a controlled and scalable way. This work filled a gap in generative benchmarking
by introducing CNS-Bench, an evaluation method that performs diverse, realistic, fine-grained, and
continuous nuisance shifts at multiple scales. We further added a new dimension for benchmark-
ing robustness by introducing the concept of failure points. Our systematic evaluation of classifiers
revealed new insights along three axes (architecture, number of parameters, pre-training paradigm
and data) and demonstrated the importance of continuous shifts in assessing the model robustness.
Furthermore, we studied the necessity of removing out-of-class samples when benchmarking with
diffusion-generated images. We hope this benchmark can encourage the community to adopt gener-
ated images for evaluating the robustness of vision models.
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6 REPRODUCIBILITY STATEMENT

All steps of our benchmarking pipeline are reproducible: We provide our datasets and implemen-
tation as part of the supplementary material, which includes code to reproduce training of LoRA
adapters, generation of images, filtering, and evaluation of all classifiers. We also include all evalu-
ated classification results for all images of the dataset in the shared code. All classifiers are evaluated
in a standardized way using the easyrobust (Mao et al., 2022) framework.

The supplementary material contains more details about the implementation, the computation of
metrics, the labeling, and the filtering strategies.

We also refer to our datasheet in Appendix B.
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Hal Daumé III au2, and Kate Crawford. Datasheets for datasets, 2021.

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. Wichmann, and
Wieland Brendel. ImageNet-trained CNNs are biased towards texture; increasing shape bias
improves accuracy and robustness, 2022. URL http://arxiv.org/abs/1811.12231.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer Series in Statistics. Springer New York, NY, 2 edition,
2009.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In CVPR, 2022a.

Ruifei He, Shuyang Sun, Xin Yu, Chuhui Xue, Wenqing Zhang, Philip Torr, Song Bai, and Xiao-
juan Qi. Is synthetic data from generative models ready for image recognition? arXiv preprint
arXiv:2210.07574, 2022b.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-
ruptions and perturbations. In International Conference on Learning Representations, 2018.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
analysis of out-of-distribution generalization. In ICCV, 2021a.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
examples. In CVPR, 2021b.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Infor-
mation Processing Systems, volume 33, pp. 6840–6851. Curran Associates, Inc., 2020.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Badr Youbi Idrissi, Diane Bouchacourt, Randall Balestriero, Ivan Evtimov, Caner Hazirbas, Nico-
las Ballas, Pascal Vincent, Michal Drozdzal, David Lopez-Paz, and Mark Ibrahim. Imagenet-
x: Understanding model mistakes with factor of variation annotations. arXiv preprint
arXiv:2211.01866, 2022.
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Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learn-
ing robust visual features without supervision. TMLR, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, 2021.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
generalize to imagenet? In ICML, 2019.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, pp. 10684–10695, 2022.

Michelle Shu, Chenxi Liu, Weichao Qiu, and Alan Yuille. Identifying model weakness with adver-
sarial examiner. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp.
11998–12006, 2020.

13

http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312
https://github.com/alibaba/easyrobust
https://github.com/alibaba/easyrobust


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In Proceedings of the 32nd International
Conference on International Conference on Machine Learning, pp. 2256–2265. JMLR, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
ICML, 2021.
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