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ABSTRACT

Early Exit (EE) techniques have emerged as a means to reduce inference latency
in Deep Neural Networks (DNNs). The latency improvement and accuracy in
these techniques crucially depend on the criteria used to make exit decisions. We
propose a new decision criterion BEEM where exit classifiers are treated as ex-
perts and aggregate their confidence scores. The confidence scores are aggre-
gated only if neighbouring experts are consistent in prediction as the samples
pass through them, thus capturing their ensemble effect. A sample exits when
the aggregated confidence value exceeds a threshold. The threshold is set us-
ing the error rates of the intermediate exits aiming to surpass the performance of
conventional DNN inference. Experimental results on the COCO dataset for Im-
age captioning and GLUE datasets for various language tasks demonstrate that
our method enhances the performance of state-of-the-art EE methods, achiev-
ing improvements in speed-up by a factor 1.5× to 2.1×. When compared to
the final layer, its accuracy is comparable in harder Image Captioning and im-
proves in the easier language tasks. The source code is available at https:
//anonymous.4open.science/r/BEEM1-639C/README.md.

1 INTRODUCTION

Transformer-based models (Devlin et al., 2018; Radford et al., 2019; Cornia et al., 2020; Luo et al.,
2021; Li et al., 2022; 2023) have set new benchmarks in performance across diverse tasks and
domains through their prowess in capturing semantic information and dependencies using attention
mechanisms (Vaswani et al., 2017). However, the sheer scale and intricate structure of these models
pose a challenge, particularly in terms of inference speed, limiting their practicalities in resource-
constrained scenarios. Also, these models are susceptible to overthinking issues (Zhou et al., 2020;
Zhu, 2021) which degrades their performance in terms of accuracy and inference speed.

To address these challenges, various techniques have been proposed, including direct network prun-
ing (Zhu & Gupta, 2017; Fan et al., 2019; Michel et al., 2019), knowledge distillation (Sun et al.,
2019; Sanh et al., 2019; Jiao et al., 2019), quantization methods (Zhang et al., 2020; Bai et al., 2020;
Kim et al., 2021), and adaptive inference (Zhou et al., 2020; Xin et al., 2020b; Geng et al., 2021;
Liu et al., 2020). Early Exit (EE) methods (Teerapittayanon et al., 2016; Zhou et al., 2020; Fei et al.,
2022) is one of the adaptive inference methods where intermediate classifiers (exits) are added af-
ter every layer. The difficulty of the sample is determined using confidence in the prediction, and
the sample is inferred early based on the confidence score exceeding a pre-defined threshold. The
confidence score becomes a crucial part of the inference process and decides the sample hardness.

EE strategies either perform confidence-based exiting (Xin et al., 2020b) or a patience-based ex-
iting (Zhou et al., 2020) depending on the prediction consistencies treating each classifier equally.
Recently EEIC (Sun et al., 2021) decided on exiting based on majority voting between the exits.
This method also treats each classifier equally. These methods either consider the confidence of
individual exits or utilize the predictions made by exits to define the confidence scores. For instance,
in Fig 1, an input sample is currently processed till the third exit; for confidence-based exiting, it
checks the confidence at the third exit, ignoring all the information gathered from previous exits.
The patience-based exiting requires predictions of all exits to be consistent if it wants to make an
exit. Also, prediction from the first classifier is treated as important as the third, which should not
be the case as deeper layers have more information. Similar is the case with majority voting, where
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Figure 1: Comparison between (a) DeeBERT, which uses the confidence available at each exit as the
metric or deciding early inference (set to 0.9), (b) PABEE, which uses the consistency in prediction
as the confidence metric (set to 2) and (c) BEEM that uses the weighted confidence Si (weights
= [0.1, 0.2, . . . , 1.2]) and threshold α = 0.2. In BEEM, by appropriately considering information
from previous classifiers, a correct prediction is made early which was not the case with others.

all the classifiers are treated equally. They also do not utilize the confidence available from previous
layers, thus discarding available information.

This necessitates the requirement of an EE strategy that can utilize the information available at the
exits to effectively mitigate the overthinking issue while speeding up the inference. Also, the existing
methods do not offer any viewpoint or make strong assumptions, e.g., all the layers have the same
error rate, which makes them less desirable.

We present an EE mechanism named BEEM: Boosting Performance of Early Exit DNNs using
Multi-Exit Classifiers as Experts motivated by ensemble learning (Dong et al., 2020), to improve
performance of EE DNNs. We treat each intermediate exit classifier as an expert that outputs con-
fidence values on the labels for each input. This confidence score is then weighted based on the
expert’s accuracy in predictions or the associated prediction cost, i.e., higher weights to deeper ex-
its and vice versa. By treating each exit as an expert, BEEM ensures that the model leverages the
strengths of each exit and does not discard the scores of the previous layers if their predictions
are in agreement. To determine if a sample can exit at the ith classifier, we accumulate weighted
confidences of the immediate previous layers whose predictions are in agreement with the ith clas-
sifier. In case of disagreement with the immediate previous layer, the confidence score resets to the
score of the current exit, ignoring past aggregated values. This score is subsequently compared to a
predefined threshold for EE decisions.

The exit decision at each layer is based on a cumulative confidence score exceeding a threshold
value. The thresholds play a pivotal role as they offer a means to model the trade-off between accu-
racy and latency. In Section 3.4, we introduce a novel approach to determine the threshold values
for different exits by converting the problem of choosing thresholds to a simple linear program. We
utilize the error rate of exits to set the threshold values, forcing the exit classifier to perform better
than the final classifier of DNNs. In Section 3.5, we also perform a theoretical analysis to derive a
condition based on the error rate of the intermediary layer under which BEEM performs better than
the vanilla DNN inference.

We experiment with widely adopted Pre-Trained Language Models (PLMs) and encoder-decoder
models to perform experiments on GLUE (Wang et al., 2019a) and COCO dataset (Lin et al., 2014).
We show that BEEM outperforms all the previous EE methods in terms of speed as well as accuracy.
BEEM increases the inference speed by 1.5× - 2.1× with accuracy close to the final layer. For easier
NLP tasks such as sentiment analysis, BEEM even outperforms the final layer in terms of accuracy.
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In summary, our contributions are as follows:

• We propose new criteria to make EE decisions in DNNs. It combines the confidence score
of the intermediary exit classifier to produce an ensemble effect to make PLMs more effi-
cient, robust, and adaptive.

• We provide a method to set threshold values in BEEM by analyzing the error rates of
exit classifiers (Section 3.4). This not only helps BEEM achieve better speed-up but also
improves accuracy compared to inference at the last layer. We also derive a condition under
which this performance is guaranteed.

• Extensive evaluation showed speed-up improvement in both GLUE and COCO datasets.
For the GLUE dataset, accuracy also improves with speedup due to a reduction in the
overthinking issues of the DNNs.

2 RELATED WORK

Early exit methods are applied for various tasks such as image classification, image captioning and
NLP tasks to reduce the computational resources and inference latency.

Early exits in Image tasks: For image classification tasks, BranchyNet (Teerapittayanon et al.,
2016) uses classification entropy at each attached exit to decide whether to infer the sample at the
side branch based on the entropy of prediction. Shallow-deep (Kaya et al., 2019) and MSDNet
(Huang et al., 2017) improve upon BranchyNet by effectively choosing the thresholds based on the
confidence distribution. Similar architectures (Pacheco et al., 2021; Dai et al., 2020) split the NN
to be deployed on edge and cloud. SEE (Wang et al., 2019c) work in service outage scenarios.
FlexDNN (Fang et al., 2020) and Edgent (Li et al., 2019) focus mainly on the most appropriate
Neural Network (NN) depth. Other works such as Dynexit (Wang et al., 2019b) focus on deploying
the multi-exit NN in hardware. It trains and deploys the NN on Field Programmable Gate Array
(FPGA) hardware while Paul et al. (Kim & Park, 2020) explains that implementing a multi-exit
NN on FPGA board reduces inference time and energy consumption. ZTW (Sun et al., 2021) uses
a combination of probability distribution to decide to exit and the combination is learned during
training reducing its generalization capabilities. JEI-DNN (Regol et al., 2023) on the other hand
uses a gating mechanism for inference where which gate will be opened for a sample is learned
during training. In a parallel vein, the MuE and DeeCap (Tang et al., 2023; Fei et al., 2022) model
employs a distinctive approach to apply early exits to image captioning. DeeCap only applies to the
decoder, while MuE applies to the encoder and the decoder.

Early exit in PLMs: Multiple approaches have been proposed to effectively apply early exits to
PLMs and solve multiple NLP tasks (Bapna et al., 2020; Elbayad et al., 2020; Liu et al., 2021a; Xin
et al., 2020a; Zhou et al., 2020; He et al., 2021; Banino et al., 2021; Balagansky & Gavrilov, 2022;
Sun et al., 2022; Ji et al., 2023; Bajpai et al., 2024; Bajpai & Hanawal, 2024). DeeBERT (Xin et al.,
2020a), ElasticBERT (Liu et al., 2021a) and BERxiT (Xin et al., 2021) are based on the transformer-
based (Vaswani et al., 2017) BERT model. BERxiT proposes an efficient fine-tuning strategy for the
BERT model with attached exits. DeeBERT is obtained by training the exit points attached before
the last module to the BERT backbone separately. In contrast, ElasticBERT is obtained by training
all the exit points attached to the BERT backbone jointly. PABEE (Zhou et al., 2020) is another
multi-exit model that makes the exit decision based on the stability of the predictions after different
exits. LeeBERT (Zhu, 2021) proposed a self-distillation framework that has similar exiting criteria
as PABEE. ETFEE (Ji et al., 2023) adds an adapter on top of the transformer layers and an (Entangled
Frame) ETF classifier to make intermediate exits learn better.

Our approach differs from past works as 1) Unlike previous studies, BEEM utilizes the ensemble
learning principles by treating each exit as an expert. 2) Our work proposes an early exiting method
that utilizes each expert based on its strengths. 3) We also provide a method to set the thresholds
using the error rates of the exit classifiers to perform better than the final classifiers.

3 PROBLEM SETUP

We start with a pre-trained DNN and attach exit classifiers after each layer. We provide details on
training the PLMs for language tasks and the encoder-decoder backbone for image captioning.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1 PLMS

Training: BEEM requires the training of exit classifiers that provide predictions based on their
respective layer outputs. Let D denote the dataset distribution with the label class C employed for
backbone training. Given an input sample (x, y) ∼ D, the loss for ith exit is calculated as:

Li(θ) = LCE(fi(x, θ), y) +KL(pi, pL) (1)

where fi(x, θ) represents the output of the exit attached at the i-th layer, θ denotes the set of all
learnable parameters, LCE denotes the cross-entropy loss and KL is the KL-divergence loss used
to additionally train the exits with soft labels from the final layer. KL divergence (Kullback-Leibler
divergence) is used in knowledge distillation because it measures how well one probability distri-
bution (the student model’s predictions) approximates another (the teacher model’s predictions). In
the context of knowledge distillation, KL divergence serves as a key component to transfer ”soft
knowledge” from the teacher to the student. Let pi = Pi(c|x) denote the probability distribution
over the set of output classes at the ith layer, where Pi(c|x) denotes the estimated probability that
x belongs to class c. We simultaneously optimize parameters for all exit classifiers, following the
methodology proposed by Kaya et al. (2019). The loss function is defined as L =

∑L
i=1 iLi∑L
i=1 i

, con-
sidering the weighted average to account for the relative inference cost of each exit classifier where
L denotes the number of layers in the model. Note that the importance of KL-divergence loss is
well-explained in Zhu (2021). Following this training, the model is ready for inference.

Inference: We illustrate the inference process of BEEM in Fig. 1. As the input instance x goes
through layers 1, 2, . . . L sequentially, the classifier attached to that layer predicts a class label dis-
tribution. For ith exit classifier, let Ci denote the confidence in the estimate at the ith exit. We define
Ci as the maximum of the estimated probability class, i.e., Ci := maxc∈C Pi(c|x). We denote
ŷi = argmaxc∈C Pi(c|x), the prediction of ith exit. Based on the confidence scores we define a
weighted confidence score, denoted Si as:

Si =

{
Si−1 + wiCi if ŷi−1 = ŷi
wiCi if ŷi−1 ̸= ŷi

(2)

The inference process halts when Si ≥ α, where α represents a predefined threshold, and exits
with label ŷi. Otherwise, the sample is processed in the next layer and the process completes. If
this condition is never met at any exit classifiers, a label is assigned by the classifier at the final
layer. This allows a sample to exit the backbone early if the condition is satisfied, avoiding traversal
through all layers.

3.2 ENCODER-DECODER MODELS

Encoder-decoder model: For the image captioning task where the objective is to generate a caption
for an input image, we start with a pre-trained encoder and decoder model. We use the Swin Trans-
former (Liu et al., 2021c) as an encoder and GPT-2 (Radford et al., 2019) as a decoder. We attach
exits to the decoder of the backbone. The backbone is trained using cross entropy and KL-divergence
loss where loss for ith exit could be written as:

Li(θ) =

T∑
t=1

(LCE(fi(x, θ, y1:t−1), yt) +KL(pit, p
L
t )),

where θ is the collection of all the parameters, x is the input image, T is the caption length, y1:T
is the ground-truth caption. pit is the probability vector on the vocabulary V for ith exit. Its vth
component could be written as pit(v) = Pi(v|y1:t−1, x; θ) where Pi is the probability distribution
output over V by the ith exit. Note that L here is the number of layers in the decoder. Similarly, we
define pLt as the probability vector for the final decoder layer. The overall loss across all the exits is
the same as for the PLM training.

Caption inference: We predict the caption in an autoregressive manner. This entails making a
token-by-token prediction for a given image. In this case, the confidence could be formulated as
Ci = maxv∈V Pi(v|ŷ1:t−1, x; θ) where Pi is same as defined above and ŷ1:t−1 is the predicted
caption till (t− 1)th word. A token will be predicted at which exit is decided by equation 2. For an
input image x, we start the caption with begin of the sentence token and then the inference process
stops after the end of the sentence token is predicted.
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In Figure 1, confidence-based early exit methods like DeeBERT and ElasticBERT, relying on soft-
max scores, tend to be overly confident toward a single class and classifier. Such methods also
face the consequences of ignoring information obtained from previous classifiers as they progress
to the next one. This limitation is addressed by patience-based approaches like PABEE, which de-
cide to exit when predictions show consistency across multiple classifiers. However, patience-based
methods treat each classifier equally and underutilize valuable information available in terms of
prediction scores, which affects the adaptability of the model.

Contrarily, BEEM captures the confidence available at each exit and assigns weights to each clas-
sifier based on its accuracy or cost. It takes into account the consistency in predictions by reducing
the score to the current classifier’s weighted confidence when predictions are inconsistent. This
unique approach in BEEM incorporates both patience and confidence to make predictions. Note
that the confidence score Si given in equation 2 can predict hard samples early as if the predictions
of initial classifiers are consistent but with low confidence, the summed-up Si score makes them exit
early as shown in Figure 1. Also, it effectively mitigates errors arising from a single classifier while
considering the confidence in predictions and weighing them based on their performance.

3.3 ASSIGNING WEIGHTS

In this section, we provide methods to set the weights for the exits.

1) Cost vector: First, we consider weights as the cost of getting inference from the exit classifier
where the cost could be in the form of wi = λi where λ is the processing cost of the one exit and
since the layers are identical, the cost is a multiple of λ for deeper layers.

2) Accuracy: We can also consider the weights as the accuracy of each classifier. The accuracy
could be calculated on a validation dataset. This will provide weights to exits depending on how
much accurate a particular expert (exit) is.

Note that the major difference between the existing methods is the cost-based weights have a task
to reduce the overall cost while sacrificing some accuracy while the accuracy-based methods will
focus more on accuracy. Note that using accuracy-based weights can also improve the efficiency
that comes because of overthinking issues. As in the accuracy-based, we know the true capability of
each exit.

3.4 CHOICE OF THRESHOLDS α

We can choose the threshold values in two ways, one way is to choose the best-performing threshold
on the validation set, and the other is based on forcing error rates to be smaller than the error rate of
the final classifier.

1) Classical method: We choose the search space for threshold α ∈ S = {0.3, 0.6, 0.9, 1.2, 1.5}.
The values of wi ∈ [0, 1], Ci ∈ [0, 1] imply that Si ≤ L i.e. the score at any exit layer i cannot be
greater than the number of layers L as Si is a multiple of two values between 0 and 1, it becomes
very small and is added almost L times. We choose the best-performing threshold on the validation
set in terms of accuracy.

2) Using error rates: Let us consider that ctmisc represents the number of samples that exit at tth
classifier with a misclassification, ctstop represents the number of samples that exit at the tth classifier.
Note the cstop =

∑n
j=1 1{Cj≥α} can also be considered as the coverage of the tth classifier and

ctmisc =
∑n

j=1 1{ŷj ̸=y|Cj≥α}

cstop
, where n is the total number of samples in the dataset. p is the error

rate of the final classifier, then we observe that our algorithm will perform better than final layer if
ctmisc/c

t
stop < p for every exit classifier t. The above condition tells that the fraction of the samples

that have exited and misclassified (i.e., error rate) at tth classifier should be less than the error rate
of the final classifier. If the above condition is satisfied for all the exits then we are guaranteed that
BEEM can outperform the final classifier of the PLM. The objective is to maximize speedup while
satisfying the above condition.

Note that the error rate depends on the threshold α, a higher value of the threshold will lower the
error rate as then samples with higher confidence will exit reducing the chance of misclassifica-
tion. Observe that, we can find the threshold value αt for the tth classifier such that the condition

5
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ctmisc/c
t
stop < p is satisfied on the validation set. We define qαt

as the error rate associated with the
threshold αt for the tth classifier. We can set the threshold by solving the optimization problem.

minimize
αt∈S

αt

subject to qαt ≤ p,
(3)

where the set S = {0.5, 1, . . . , 5, L} is the search space for the thresholds. Note that we have added
L in the search space so that the problem always remains feasible. By solving Eq. 3, our method
finds the optimal threshold that has maximum speedup while performing better than the final layer.
Also, observe that the above problem has small computational complexity as the minimization is
over a very small finite set.

3.5 THEORETICAL ANALYSIS

Theorem 3.1. Consider an early exit PLM with L layers. Let p denote the error rate of the final
classifier and the error probability of ith exit classifiers be qi such that qi < ai

ai+((1/p−1)bi−1
i )

holds
for all exit layers i = 1, 2, . . . , L−1 where ai and bi are constants for a given exit i. Then, the error
probability of BEEM is better than p i.e., it performs better than the final layer.

The proof of the theorem is given in the Appendix A.1. Note that the above theorem proves the gen-
eral condition for better performance of BEEM and does not depend on the threshold values α. ai
denotes the ratio of the probability of exiting with one change in prediction to the probability of exit-
ing with zero changes in prediction till ith classifier and bi =

qmax
i

qmin
i

where qmax
i = max{q1, . . . , qi}

while qmin
i = min{q1, . . . , qi}. Observe that as we move deeper into the backbone the bound be-

comes tighter which makes sense as deeper layers are more likely to be accurate. Also, the bound is
inversely proportional to the error rate of the final layer, if the error rate of the final layer is smaller,
then the bound gets tighter. Previous method Zhou et al. (2020) had a very strong assumption while
providing a similar condition for their method, it assumed that all the classifiers have the same error
rate which is not true. If we impose the same condition the bound simplifies to qi <

ai

ai+((1/p−1))

which is a more simplified and stronger bound than PABEE (Zhou et al., 2020).

4 EXPERIMENTS

In this section, we provide the details of the experiments performed in this work.

Datasets: We evaluate our approach using the GLUE benchmark datasets (Wang et al., 2019a).
Our assessments encompass diverse tasks, such as sentiment classification using the Stanford Sen-
timent Treebank (SST-2), Natural Language Inference (NLI) tasks with Multi-Genre Natural Lan-
guage Inference (MNLI), Question Natural Language Inference (QNLI), and Recognizing Textual
Entailment (RTE). For Paraphrase Similarity Matching, we include Microsoft Research Paraphrase
Matching (MRPC) and Quora Question Pairs (QQP), while Linguistic Acceptability is measured us-
ing The Corpus of Linguistic Acceptability (CoLA). In instances where datasets comprise multiple
units, we report the arithmetic mean. We exclude the WNLI task, following previous works (Devlin
et al., 2018; Zhu, 2021; Zhou et al., 2020). For captioning, we use the COCO (Lin et al., 2014)
dataset.

Baselines: We compare against the vanilla DNN exiting and other techniques that speed up DNN
inference. The baselines are as follows:

1) Final layer: The final layer of the DNN model, referred to as the ”final layer” in Table 1.

2) Reducing layers: We use only the first 9 layers of the DNN model with a single output layer,
denoted as DNN-9L. This serves as a performance lower bound since it employs no EE techniques.

3) Early-exit models: DeeBERT (Xin et al., 2020b) and ElasticBERT (Liu et al., 2021b): Use
fixed confidence thresholds for early exits. FastBERT (Liu et al., 2020): Uses a self-distillation
framework to train intermediate exits. PABEE (Zhou et al., 2020) and LeeBERT (Zhu, 2021): uses
prediction stability, with LeeBERT incorporating knowledge distillation. ZTW (Sun et al., 2021):
combines the output probability outputs across all the layers and trains the weights provided as
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Model/Data SST-2 MNLI RTE QNLI QQP
Acc Speed Acc Speed Acc Speed Acc Speed Acc Speed

Dev set
ALBERT 92.4 1.00x 84.5 1.00x 77.9 1.00x 91.3 1.00x 90.6 1.00x

ALBERT-9L -1.6 1.33x -3.2 1.33x -2.5 1.33x -2.7 1.33x -1.5 1.33x
DeeBERT -2.3 1.72x -2.9 1.65x -3.1 1.78x -1.9 1.57x -2.5 1.81x

ElasticBERT -2.1 1.75x -2.3 1.71x -2.7 1.81x -1.7 1.66x -2.1 1.78x
FastBERT -1.1 1.85x -0.3 1.61x -0.2 1.79x -0.8 1.71x -0.3 1.88x

PABEE -0.1 1.87x -0.5 1.85x -0.7 1.64x -0.6 1.81x -0.2 1.68x
ZTW -0.2 1.64x -0.3 1.67x +0.2 1.63x -0.3 1.75x -0.1 1.71x

PCEEBERT +0.1 1.24x 0.0 1.31x +0.3 1.27x -0.1 1.21x +0.1 1.37x
LeeBERT 0.0 1.78x -0.2 1.74x -0.1 1.59x +0.1 1.79x -0.2 1.97x
PALBERT -0.4 1.54x -0.8 1.61x +0.3 1.45x -0.2 1.59x -0.1 1.63x
JEI-DNN -0.1 1.77x +0.1 1.67x 0.0 1.35x -0.1 1.43x +0.2 1.57x
BEEM-C 0.0 1.71x +0.1 2.03x +0.4 1.79x 0.0 1.90x 0.0 1.93x
BEEM-A +0.4 1.98x +0.3 1.96x +0.7 1.89x +0.2 1.92x +0.5 2.09x

Test set
ALBERT 92.3 1.00x 84.2 1.00x 72.1 1.00x 90.9 1.00x 80.1 1.00x

ZTW -0.4 1.61x -0.5 1.52x +0.1 1.64x -0.1 1.59x -0.5 1.81x
LeeBERT -0.5 1.79x -0.9 1.88x 0.0 1.68x -0.4 1.72x -0.3 1.86x
PALBERT -0.3 1.49x -1.1 1.72x +0.2 1.27x -0.4 1.51x -0.3 1.50x
JEI-DNN -0.1 1.35x -0.7 1.59x 0.0 1.36x -0.2 1.39x 0.0 1.47x
BEEM-C -0.2 1.98x -0.4 1.95x +0.1 1.74x +0.1 1.81x +0.1 1.97x
BEEM-A +0.4 1.91x -0.3 2.06x +0.6 1.77x +0.5 1.88x +0.2 1.95x

Table 1: Main results: This table compares BEEM against all the state-of-the-art early exiting base-
lines. We report the accuracy (Acc in %) and Speed-up (Speed).

Model/Data RTE CoLA
Acc Speed Acc Speed

BERT 69.3 1.00x 57.8 1.00x
BERT-9L -1.8 1.33x -2.1 1.33x
DeeBERT -2.5 1.47x -1.5 1.21x

ElasticBERT -2.2 1.52x -1.2 1.18x
FastBERT -0.8 1.44x -0.2 1.24x

PABEE -1.1 1.62x -0.1 1.16x
ZTW -0.7 1.52x -0.5 1.48x

LeeBERT -0.6 1.60x -0.1 1.28x
PALBERT -0.5 1.32x -0.6 1.19x
JEI-DNN -0.2 1.30x -0.3 1.18x
BEEM-C -0.1 1.63x +0.0 1.30x
BEEM-A +0.2 1.70x +0.3 1.49x

Table 2: Results on the BERT backbone on the GLUE datasets. We report accuracy (in %).

additional parameters for training. PCEEBERT (Zhang et al., 2022): Combines confidence and
patience metrics, similar to PABEE. MuE (Tang et al., 2023): Uses hidden representation similarity
for early exits, applied to the BERT-base model. PALBERT model (Balagansky & Gavrilov, 2022):
State-of-the-art methods that face adaptation challenges due to training dataset bias. PALBERT uses
Lambda layers (Banino et al., 2021). JEI-DNN (Regol et al., 2023) performs exiting using a gating
mechanism where it learns a probability distribution over all exits and decidesto exitg based on that.
DeeCAP (Fei et al., 2022) is specifically for image captioning that uses an imitation network to
mimic the behaviour of the decoder model.

We utilized the codebases of existing methods to get the results, all the results were obtained using
the hyperparameters given in their available codes. Note that for the encoder-decoder model, we
extend the ideas of DeeBERT, FastBERT, PABEE, and LeeBERT to the decoder of the backbone.

4.1 EXPERIMENTAL SETUP

Our experiments are conducted on a single NVIDIA RTX 2070 GPU, The runtimes are given below.
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Models/Metric BLEU-1 BLEU-4 METEOR CIDEr SPICE ROUGE-L Speedup
Final-Exit 82.5 42.3 32.2 147.1 26.7 61.3 1.00x

Decoder-9L 76.5 37.1 29.3 134.8 23.2 57.9 1.33x
DeeBERT 70.1 32.3 26.9 110.2 20.9 50.7 1.35x

ElasticBERT 71.4 32.8 27.6 114.6 21.4 51.6 1.37x
PABEE 72.7 33.9 27.9 115.6 21.9 52.3 1.30x

FastBERT 75.0 35.6 28.2 119.5 22.1 53.7 1.42x
LeeBERT 77.3 38.7 29.4 129.2 23.0 55.9 1.39x
DeeCap 77.5 39.2 29.9 132.8 23.2 56.9 1.60x

MuE 79.3 40.5 30.9 139.4 24.9 59.7 1.64x
BEEM-C 81.8 41.5 31.7 145.1 25.9 60.1 1.71x
BEEM-A 82.4 42.1 32.0 146.5 26.3 60.9 1.67x

Table 3: Results showing that BEEM outperforms the other baselines on test split of COCO dataset.

Training. For the training phase, we augment the pre-trained BERT/ALBERT model with a linear
output layer after each intermediate layer to serve as an exit point. We conduct a grid search over
batch sizes of {8, 16, 32} and learning rates {2e-5, 3e-5, 4e-5, 5e-5} using the Adam (Kingma &
Ba, 2014) optimizer.

Incorporating an early-stopping mechanism, we select the best model based on the validation set.
These parameters are fixed to 16 batch size and 3e-5 learning rate for the encoder-decoder backbone.
The training time has an average GPU runtime of around 10 hours on a dataset, with the COCO
dataset exhibiting the highest runtime (∼ 26 hours).

Inference: Following the previous methodology on input-adaptive inference (Teerapittayanon et al.,
2016; Kaya et al., 2019), the inference is performed on a per-instance basis, setting the batch size
to 1. This aligns with scenarios where low latency is critical, such as processing individual requests
from different users (Schwartz et al., 2020). The reported values represent the median results from
5 runs with different seeds as small datasets such as CoLA and RTE have high variance in perfor-
mance. For performing inference, the average runtime was < 20 minutes for NLP datasets. For
COCO dataset the runtime was 5 hours on the Karpathy test split.

Metric. We report the speed-up ratio as a metric for measuring time reduction to remain consistent
with the previous methods. Speed-up could be defined as:

∑L
i=1 L×ni∑L
i=1 i×ni

where ni are the number of
samples exiting from the ith layer. For the image captioning task ni is the number of words exiting
from the ith layer. This metric could be interpreted as the increase in speed of the model as compared
to the naive (AL)BERT model. This metric can be converted to expected time reduction rate.

In Table 1 and 2, we present results wherein classifiers are assigned weights based on the cost of each
classifier denoted as BEEM-C and where the weights are set using the accuracy on the validation
set, we denote it by BEEM-A.

5 RESULTS

In this section, we highlight and discuss the key findings of our work. Tables 1 and 2 present the
results when ALBERT and BERT serve as the backbone models, respectively. BEEM consistently
outperforms all previous baselines by a significant margin. A major observation is a notable en-
hancement in BEEM as compared to the performance of (AL)BERT models, except for a minor
setback on the MNLI dataset. The improvement in accuracy by BEEM may be attributed to the
thresholds being chosen after solving the constraint optimization 3 exclusively on the validation
dataset. Table 3 shows results on the COCO dataset and observes significant improvements by using
BEEM.

The substantial accuracy drop observed in DeeBERT and ElasticBERT results from a direct compar-
ison with entropy, neglecting the information utilized by preceding classifiers. Conversely, PABEE,
LeeBERT, FastBERT, and ETFEE employ patience-based early exit criteria, posing a stringent cri-
terion for exiting. ZTW is one of the works that weights the classifier and utilizes the ensemble
techniques but suffers from poo generalization as weights are learned restricting better generaliza-
tion as well as adding complexity. JEI-DNN uses the gating mechanism to decide whether to exit and
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does not utilize the information of multiple available classifiers. Similar is the case with DeeCAP
and MuE, and for image captioning, they do not perform any knowledge distillation, further re-
ducing the performance. These methods do not account for the confidence available at each exit,
assigning them equal weight irrespective of their varying confidence level prediction. This lack of
consideration impacts the adaptiveness of early exit models.

BEEM-C and BEEM-A are the two variants of our proposed method. In the results, we can observe
that BEEM-A consistently outperforms BEEM-C for all the datasets in terms of accuracy and most
of the datasets in terms of speed-up. This gain for BEEM-A could be attributed to the assumption
in BEEM-C that the cost of exits (experts) was set by assuming that it is directly proportional to
the accuracy but this is not true due to the overthinking issue. Still BEEM-C performs better than
previous baselines on the datasets in which the overthinking issue is minimal. The main advantage
of BEEM-C is that since the thresholds are fixed in our setup, we can still tune the cost λ based on
the speed-up (see section A.3) needed which is unavailable in BEEM-A.

6 ABLATION STUDY AND ANALYSIS

In this section, we provide the results of our method on (AL)BERT large models. In the Appendix,
we perform an analysis of the behaviour of parameters α and λ (see Appendix A.2, A.3). This
analysis shows that our methods not only have better performance but also better models for the
accuracy-efficiency trade-off i.e., the drop in accuracy of BEEM was lower when speedup increases
as compared to others.

6.1 PLM SIZE

Data RTE CoLA QQP
Acc Spd Acc Spd Acc Spd

AB-L 80.5 1.00x 60.9 1.00x 91.1 1.00x
Our-A +1.8 2.04x +1.3 2.85x +0.1 3.33x
B-L 70.9 1.00x 64.3 1.00x 91.2 1.00x

Our-A +0.5 1.81x +0.9 1.71x +0.3 2.51x

Table 4: This table provides results on the large variants
of (AL)BERT models compared with BEEM-A. AB-L is
ALBERT-Large and B-L is BERT-Large.

In Table 4, we analyze BEEM’s per-
formance on ALBERT-Large models,
each with 24 layers.

Our results show a significant acceler-
ation in processing speed, especially
for larger models, due to their inher-
ent overparameterization. This effi-
ciency gain underscores BEEM’s po-
tential for optimizing large architec-
tures.

Furthermore, BEEM notably im-
proves accuracy by mitigating
overthinking, where models focus on irrelevant features. This issue is more pronounced in larger
models, making BEEM particularly effective. Our findings demonstrate that BEEM enhances
performance and speedup for large-scale transformer-based PLMs, becoming increasingly effective
with larger model sizes.

6.2 CHOICE OF THRESHOLDS

In table 5, we compare results when the thresholds are chosen based on the equation 3 and when
the thresholds are set using the vanilla method i.e. best-performing on the validation set. We can
observe that, there is a significant increase in the performance in both ALBERT models attributed to
the choice of thresholds made by equation 3. Observe that setting thresholds by solving the equation
can improve both speedup as well as accuracy, this is as the equation finds the smallest threshold
that can improve the accuracy from the final layer. The thresholds are set such that each of them
perform equivalent to the final layer.

7 CONCLUSION

In conclusion, our study introduces a novel framework BEEM designed to enhance the efficiency,
robustness, and adaptability of early exiting strategies in DNNs. By leveraging multiple exit classi-
fiers, where each exit is treated as an ‘expert’, and their outputs are combined to create an ensemble

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Method SST-2 QQP
Our method Acc Spd Acc Spd

Base w/o fix 92.4 1.81x 90.4 2.05x
w fix 92.6 1.98x 91.1 2.09x

Large w/o fix 93.1 2.19x 91.1 2.95x
w fix 93.4 2.31x 91.3 3.33x

Table 5: This table compares the setting of thresholds based on the best-performing threshold on the
validation dataset (w/o fix) and fixing the threshold after solving equation 3 (w fix) on ALBERT-
Base/Large models.

effect. Our approach considers both prediction confidence and patience, leading to improved perfor-
mance and reduced latency, particularly advantageous in scenarios with strict latency requirements.
Additionally, we propose a method for threshold selection, further enhancing the effectiveness of
our approach. We also perform theoretical analysis to provide deep insights into our method. We
experimentally validate that the speed-up observed was 1.5× - 2.1× for various NLP and image
captioning tasks.

8 LIMITATIONS

While the performance of our method is better than the final layer for NLP tasks, it takes a hit for
difficult tasks such as image captioning. It happens as the thresholds are being set on the validation
dataset that might not generalize well on the test dataset i.e., the solution to the optimization problem
3 might not work for the test dataset. However, as our objective is to minimize the performance
loss, BEEM effectively does that and performs better than all the existing early exit models and
comparable to the final layer of DNNs with a large improvement in inference speed.

9 REPRODUCIBILITY STATEMENT

The experimental results can be reproduced using the link https://anonymous.4open.
science/r/BEEM1-639C/README.md for the NLP tasks and for the image captioning tasks,
the results could be obtained using the repository https://anonymous.4open.science/
r/CapEEN-3D40/README.md.
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A APPENDIX

A.1 PROOF OF THEOREM 3.1

Proof. For simplicity, we prove it for the binary classification case. For the samples that are not
inferred at intermediate exits, the misclassification probability will remain the same with or without
BEEM. Therefore, we only need to consider the case when the sample exits early and misclassified.
We denote the probability that the sample exits early from exit t as pstopt and the probability that the
exiting sample is misclassified as pmisc

t . We next look for conditions under which pmisc
t

pstop
t

< p, i.e.,
the fraction of samples early exiting being misclassified is less the error rate of the final classifier.
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Let us consider two random variables Xt and Yt where Xt = 1 if the sample exits at tth classifier
else 0 and Yt = 1 if the prediction at tth classifier is correct else 0. Now the probability that a sample
exits at the tth classifier could be written as:

P (Xt = 1) = P (S1 < α, . . . St−1 < α, St ≥ α) (4)

Let qmin
t = min{q1, q2, . . . , qt−1} and qmax

t = {q1, q2, . . . , qt−1}. We denote the prediction of
classifier t as ŷt. Note that P (y∗ = ŷt) = 1− qt. We define a counter Yt as:

Yt =

{
1 if ŷt−1 = ŷt
0 if ŷt−1 ̸= ŷt

(5)

We define Ct =
∑t

i=1 Yi. Note that Ct monitors the number of times the prediction has been
changed till the tth classifier.

pstopt = P (Xt = 1) =

t∑
c=0

P (Xt = 1|Ct = c)P (Ct = c) (6)

We denote P (Xt = 1|Ct = c) as Ac
t . We have

pstopt = P (Xt = 1) =

t∑
c=0

Ac
tP (Ct = c).

By Total Probability law, we can say that

P (Xt = 1) = P (Xt = 1|mc)P (mc)

+ P (Xt = 1|cc)P (cc) (7)

where mc is misclassified and cc is correctly classified. The ratio is now:

pmisc
t

pstopt

=

P (Xt = 1|mc)P (mc)

P (Xt = 1|mc)P (mc) + P (Xt = 1|cc)P (cc)
< p (8)

Simplifying this, we have,

P (Xt = 1|cc)
P (Xt = 1|mc)

>
1

p
− 1

For P (Xt = 1|mc), from the definition of the confidence score 5, we observe that the highest prob-
ability of exiting at tth layer with misclassification is if all the previous predictions are consistent,
i.e., St will be highest when all the previous exits misclassified. Hence we have

P (Xt = 1|mc) < tA0
t q1q2 . . . qt < tA0

t (q
max
t )t−1qt

For P (Xt = 1|cc), we observe that again by definition of the confidence score, we can lower bound
it, since the lowest probability of exiting with correct classification at tth classifier will be when
all the previous classifiers had a misclassification and then at tth classifier the prediction reversed.
Hence, we have that
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P (Xt = 1|cc) >
tA1

t q1q2 . . . (1− qt) > tA1
t (q

min
t )t−1(1− qt) (9)

Now we have inequality as

tA1
t q

t−1
min(1− qt)

tA0
t q

t−1
maxqt

>
1

p
− 1

We get the desired result by simplifying the above inequality for qt. We denote the constant term
A1

t

A0
t

as at. Hence, we finally show with bt =
qmax
t

qmin
t

:

qt <
at

at + ((1/p− 1)bt−1
t )

(10)

where at and bt are constant for each t.

This concludes the proof.

A.2 ANALYSIS OF THRESHOLDS α

In table ??, we compare BEEM-A where thresholds are set by optimizing Eq 3 against the case
where threshold values are chosen using the validation dataset and are constant for all exits. We
provide the comparison on (AL)BERT-base as well as large models. We can observe a significant
difference in accuracy and speedup. The improvement in accuracy and speedup is explained by the
formulation of the optimization problem in Sec. 3.4.

Also, in Fig 2a, we plot the accuracy-speedup trade-off curves. We can observe that the change rate
of decrease of the accuracy of BEEM by increasing speed-up is smaller as compared to previous
baselines. This extra stability by BEEM could be attributed to its characteristic of confirming the
predictions from multiple exits (experts). Note that Fig 2a does not assume the thresholds are fixed
and varies them to show the stability of the approach.

A.3 ANALYSIS OF COST λ AND # PARAMETERS

In BEEM-C, we introduce weights representing costs associated with utilizing exits. Figure 2b il-
lustrates how altering these costs influences accuracy and speed-up trade-offs. As the cost attributed
to each exit classifier increases, we observe a slight decline in accuracy accompanied by a more sig-
nificant enhancement in speed-up. This hyperparameter thus offers a mechanism for modeling the
trade-off between accuracy and speed-up, particularly as the thresholds α remain fixed. It’s worth
noting that adjusting the value of λ impacts the quantity qαt defined in Section 3.4. Consequently,
modifications to λ may induce changes in the values of αt.

Note that BERT-base/Large has 110/340 Million Parameters with exits and ALBERT-base/Large has
13/19 Million parameters with exits.
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(a) Accuracy-speedup trade-off for α.
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(b) Trade-off by varying λ.
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