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ABSTRACT

Long-tailed semi-supervised learning (LTSSL) suffers from class imbalance-
induced biases in both training and inference. Existing debiasing methods typ-
ically rely on distribution priors, which fail to capture two critical dynamic fac-
tors: the pseudo-labeling-induced shifts in effective priors and the model’s in-
trinsic evolving bias. To address this limitation, we propose Bias-Aware Loss
(BiAL), a unified objective that replaces static distribution priors with the model’s
current bias. This straightforward substitution enables BiAL to generate plug-and-
play bias-aware variants of cross-entropy/logit adjustment and contrastive heads,
thereby unifying prior correction across diverse network architectures and training
paradigms. Through theoretical analysis and empirical validation, we prove that
our BiAL provides a singular, unified mechanism to align training with model’s
evolving state and achieves state-of-the-art performance on multiple datasets.

1 INTRODUCTION

Long-tailed datasets are ubiquitous in real-world recognition(Wei et al., 2024; Shi et al., 2023; Liu
et al., 2019), a challenge further exacerbated in semi-supervised learning (SSL)(Zhang et al., 2021;
Chen et al., 2023), where pseudo-labels amplify distributional imbalance(Wei et al., 2021b; Gan
et al., 2024; Hong et al., 2021). Many existing researches, like logit adjustment (LA)(Menon et al.,
2020), addresses such imbalance by incorporating distribution priors into training or inference.

However, these priors are static: they presuppose a fixed label distribution, which rarely holds in
SSL(Rizve et al., 2021). This is because pseudo-labeling continuously shifts the effective class
prior, and the model itself develops an evolving bias(Chen et al., 2022; Wang et al., 2019) that
integrates signals from both labeled and unlabeled data. Consequently, correcting against a static
prior may result in either under-correction or over-correction, as shown in Fig 2, thereby raising a
critical question aligned with our core inquiry: How much correction is adequate?

We contend that the “optimal” correction should precisely align with the bias inherently exhibited by
the model’s current training stage. Our key observation is that the model’s class bias is measurable
from no-information input: the resulting class probabilities form a stable estimate of its inductive
bias, conditioned on the current training state, as shown in Fig 1. Based on this insight, we propose
Bias-Aware Loss (BiAL), a unified objective that replaces static distribution priors with model’s
current bias and uses the debiased energy in place of raw logits throughout training and inference.

We substantiate BiAL through novel theoretical insights and comprehensive empirical evaluations.
Theoretically, our analysis reframes theoretical motivation by showing why fixed-prior corrections
become misspecified and how replacing them with the model’s current bias yields a Bayes-aligned
decision rule under balanced error with reduced stage-wise/cumulative regret. Empirically, across
extensive experiments on diverse datasets, BiAL concurrently improves pseudo-label quality and
test accuracy, consistently outperforming baseline methods.

In summary, our contributions are as follows:

1. A unified bias-aware objective: We introduce BiAL, which replaces static distribution pri-
ors with the model’s current bias and uses the debiased energy across SSL losses, unifying
correction via a single principle. BiAL also extends to supervised learning.
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Figure 1: Class probabilities on an image without
any patterns.
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Figure 2: εfixed
t 3.5 over epochs: worst-class mul-

tiplicative mismatch in log space; lower is better.

2. Theory for correctness and adaptivity: We establish Fisher consistency for balanced error
with debiased energy, derive dynamic-regret advantages under prior drift, and provide a
gradient-level rationale for reduced spurious correlations.

3. Simple, plug-and-play implementation with comprehensive validation: BiAL adds negli-
gible overhead and no extra components, and achieves competitive results on long-tailed
tasks across multiple datasets and distribution regimes.

2 RELATED WORK & PROBLEM SETUP

2.1 RELATED WORK

Modern SSL relies on high-confidence pseudo-labels with strong/weak consistency(Sohn et al.,
2020; Berthelot et al., 2019; Fan et al., 2022), while under long-tailed distributions, pseudo-labels
tend toward head classes and degrade tail recall. Some technologies mitigate bias by resampling
or rebalancing(Cui et al., 2019; Lin et al., 2017) with an estimated unlabeled prior that is up-
dated progressively; representative techniques include DARP(Kim et al., 2020; Kang et al., 2019),
CReST+(Wei et al., 2021a), DASO(Oh et al., 2022), and ABC(Lee et al., 2021), which improve his-
togram balance yet still depend on an external or lagged proxy of true prior. Some other technolo-
gies apply bias-aware corrections at logit or energy level(Huang et al., 2016; 2019) and introduce
expert heads; examples include LA-style compensation(Ren et al., 2020), ACR(Wei & Gan, 2023),
CPE(Ma et al., 2024), and Meta-Experts(Hou & Jia, 2025), while post-hoc bias approaches such as
LCGC(Xing et al., 2025) and CDMAD(Lee & Kim, 2024) estimate a classifier’s bias(Wang et al.,
2022a) from no-information inputs and use it for prediction correction or pseudo-label screening,
typically without modifying the training loss. CCL(Zhou et al., 2024) offers a probabilistic view that
unifies LA with class-balanced contrastive learning(Zhu et al., 2022; Cui et al., 2021) using reliable
and smoothed pseudo-labels together with progressive estimation and alignment of the unlabeled
label distribution. However, many LTSSL methods still rely on fixed or externally estimated priors,
which can be brittle when the effective prior shifts over training as pseudo-labels are accepted.

2.2 PROBLEM SETUP

We consider K-way classification with a labeled set Dl = {(xi, yi)}nl
i=1 and an unlabeled set Du =

{uj}nu
j=1, where yi ∈ [K]. Let fθ be the backbone and z(x) ∈ RK the logits; posteriors are pθ(y |

x) = softmax(z(x)). Denote the class priors of labeled and unlabeled data by πL, πU ∈ ∆K−1; the
labeled per-class counts {Nc}Kc=1 are sorted N1 ≥ · · · ≥ NK with imbalance ratio γl = N1/NK .
Similarly, {Mc}Kc=1 denote the (generally unknown) unlabeled per-class counts with imbalance ratio
γu = M1/MK . Training minimizes a supervised loss on Dl and an SSL loss on Du:

L = E(x,y)∼Dl

[
ℓsup(z(x), y)

]
+ λEu∼Du

[
ℓssl(z(u); q̂(u))

]
, (1)

where q̂(u) is a (hard/soft) pseudo-label distribution produced by the current model. Since decisions
are invariant to adding a constant to all logits (z←z+ c1), any logit-based bias estimate is centered
(mean-subtracted across classes) before use.
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Figure 3: Training process of FixMatch using BiAL. We first use A lightweight bias-probing module
to estimate the classifier’s class-wise model-state bias bθ from no-information images. Supervised
and semi-supervised branches operate on a unified debiased energy E = z − β bθ. Furthermore,
pseudo-labels are generated and filtered in this same debiased space to align with the evolving unla-
beled prior; and the identical debiasing is applied at inference for train/test consistency.

3 BIAS-AWARE LOSS: A UNIFIED LOSS FOR LTSSL

3.1 MODEL-INDUCED BIAS: DEFINITION AND ESTIMATION

The core of BiAL lies in tracking the model’s current class bias bθ ∈ RK , which reflects the model’s
intrinsic inclination toward certain classes at the current training state. This bias is estimated exclu-
sively from no-information inputs devoid of class-specific features to avoid conflating task-relevant
signals with inductive bias.

Definition of Bias. Let I denote a distribution of no-information inputs. Consistent with empirical
evidence that solid-color inputs yield optimal bias estimation(Xing et al., 2025), we use all-black
images as I. The bias bθ is defined as:

b̃θ,c = log
(
EI∼I pθ(y=c | I)

)
, b̄θ =

1

K

K∑
c=1

b̃θ,c, bθ = b̃θ − b̄θ1. (2)

Centering operation: Subtracting b̄θ·1 eliminates arbitrary global shifts in logits. It is critical because
softmax outputs are invariant to uniform logit shifts, ensuring bθ only captures class-specific bias.

3.2 DEBIASED ENERGY

To integrate the estimated bias into training, we define the debiased energy E(x), a substitute for
raw logits z(x) that explicitly cancels the model’s current class bias, which can be formulated as:

E(x) = z(x) − β bθ, β ≥ 0. (3)

where β controls the strength of bias correction: a larger β amplifies debiasing, while a smaller β
mitigates overcorrection. The detailed value analysis of β can be found in the appendix.
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Since bθ captures the model’s current class bias, subtracting βbθ from raw logits z(x) explicitly
cancels this bias, ensuring the debiased energy E(x) reflects task-relevant signals rather than the
model’s intrinsic inclination. This debiased energy is the “unifying bridge” of BiAL: it replaces
raw logits in standard losses across SSL paradigms, ensuring consistent bias correction throughout
training and inference.

3.3 PSEUDO-LABEL GENERATION

For SSL scenarios, pseudo-labels are generated using debiased energy instead of raw logits to align
label proposal with BiAL’s correction logic. The pseudo-labeling rule follows standard practice but
operates on E(x):

q̂(u) =

{
one-hot

(
argmaxc sc(u)

)
, maxc sc(u) ≥ τpl,

ignore, otherwise,
(4)

where sc(u) denotes the score vector used to propose labels (in baseline methods s = z; in our
method s = E). τpl ∈ [0, 1] is the confidence threshold(Wang et al., 2022b; Arazo et al., 2020).

3.4 UNIFIED LOSS FORMULATION

To unify the loss, we train by plugging E(x) in equation 3 wherever a baseline would use raw logits
z(x):

LBiAL(θ) = E(x,y)∼Dl
ℓsup

(
E(x), y

)︸ ︷︷ ︸
supervised

+ λ Eu∼Du ℓssl
(
E(u), q̂(u;E)

)︸ ︷︷ ︸
semi-supervised

(5)

where ℓsup and ℓssl are unchanged losses (CE/LDAM(Cao et al., 2019), FixMatch-style) but now
consume E instead of z. Pseudo-labels are generated from debiased energy: q̂(u;E) (top-1 or soft),
not from z. Prior interpolation is optional, like EMA smoothness or to bridge static priors and model
bias:

b̃θ = λB bθ + (1− λB) log π. (6)

Property 1 (reductions).

(i) If bθ = log π + c1 and β = τ , then E(x) = z(x)− τ log π (logit adjustment).

(ii) If β = 0, BiAL recovers the baseline.

(iii) With λB in equation 6, BiAL continuously interpolates between LA (λB = 0) and full bias-
aware training (λB = 1).

Property 2 (shift invariance).

Since bθ is centered and softmax is shift-invariant, adding any constant c1 to z(x) or bθ leaves
decisions and gradients unchanged. Therefore, BiAL does not introduce degenerate global shifts.

3.5 THEORETICAL MOTIVATIONS

Pseudo-labels induce an evolving effective prior.

In LTSSL, pseudo-labeling is the primary driver of dynamic shifts in the effective training prior,
even if the latent distribution of unlabeled data remains fixed. To formalize this, we define two key
components:

Acceptance-confusion matrix: Let ŷt(u) denote the pseudo-label assigned to an unlabeled sample u
(weak augmentation) at training stage t, and At(u) ∈ {0, 1} be an indicator for whether ŷt(u) meets
the confidence threshold (confidence ≥ τpl). The acceptance-confusion matrix M t

y→c quantifies the
probability that a sample with true class y is assigned pseudo-label c and accepted:

M t
y→c = Pr

(
ŷt = c, At = 1

∣∣ Y = y
)

(7)

4
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Effective training prior: Let πU
t denote the latent (and typically unknown) class prior of unlabeled

data at stage t. The effective prior π̃PL
t that the SSL loss actually “sees” is the distribution of

accepted pseudo-labels, computed as:

π̃PL
t (c) =

∑
y π

U
t (y)M

t
y→c∑

y,c′ π
U
t (y)M

t
y→c′

. (8)

Critical to LTSSL, π̃PL
t drifts with training: M t

y→c depends on the model’s current prediction scores
which evolve as training proceeds, so even if πU

t is fixed, π̃PL
t changes across stages. This dynamic

shift breaks the core assumption of fixed-prior methods, rendering them ill-suited for LTSSL.

Fixed-prior corrections are misspecified under drift.

To quantify the excess error incurred by fixed-prior methods, we use the balanced error rate (BER),
a critical metric for long-tailed tasks that balances error across classes. For stage t, the BER of a
classifier f is defined as:

BERt(f) =
1
K

∑
c

Pr
(
f(x) ̸= c

∣∣ Y = c
)

(9)

Using Bayes theorem, the BER-optimal decision rule at stage t is:

f⋆
t (x) = argmax

c

ηtc(x)

π̃PL
t (c)

= argmax
c

(
log ηtc(x)− log π̃PL

t (c)
)
. (10)

where ηtc(x) = Pr
(
Y = c

∣∣ X = x
)

is the posterior probability of class c given input x.

Fixed-prior methods (LA) replace log π̃PL
t with a static vector g = τ log πfixed (e.g., πfixed = πL,

the labeled data prior). Their decision rule becomes:

ffixed
t (x) = argmax

c

(
log ηtc(x)− log πfixed

c

)
, (11)

whose error depends on the log–prior mismatch εfixed
t := ∥ log π̃PL

t − log πfixed∥∞. A short distortion
argument yields the bound: let sc(x) = ηtc(x)/π̃

PL
t (c) and ŝc(x) = ηtc(x)/π

fixed
c . Then ŝc =

rc sc with rc ∈ [e−εfixed
t , eε

fixed
t ]. After normalizing s̄c := sc/

∑
j sj and ¯̂sc := ŝc/

∑
j ŝj , we have

e−2εfixed
t s̄c ≤ ¯̂sc ≤ e2ε

fixed
t s̄c, hence maxc ¯̂sc ≥ e−2εfixed

t maxc s̄c. Under the balanced–error criterion,
BERt(f) = EX [1−maxc s̄c(X)] for the argmax rule, therefore:

BERt

(
ffixed
t

)
− BERt

(
f⋆
t

)
≤ e

K πmin
εfixed
t . (12)

Thus, any static prior incurs a stage-wise misspecification cost linear in its mismatch to the current
effective prior; cumulating over stages yields excess error proportional to

∑
t ε

fixed
t .

Bias-aware correction tracks drift and reduces excess BER.

BiAL replaces log πfixed by the model’s current bias bt, estimated from no-information inputs,
centered, and EMA-smoothed, and uses debiased energies Et = zt − βbt. Define εBiAL

t :=
∥bt − log π̃PL

t ∥∞. Repeating the same argument for g = bt yields the analogue of equation 3:

BERt

(
fBiAL
t

)
−BERt

(
f⋆
t

)
≤ e

K πmin
εBiAL
t , fBiAL

t (x) = argmax
c

(
log ηtc(x)− bt,c

)
. (13)

Because the same biases that skew acceptance (and hence M t) also appear when probing the model
on no-information inputs, bt monotonically reflects log π̃PL

t up to a class-independent shift (removed
by centering); EMA further dampens estimation noise. Consequently εBiAL

t is typically smaller
than εfixed

t , giving lower per-stage and thus lower cumulative balanced error. The scalar β simply
reweights classes as π̃PL −β ; setting β ≈ 1 aligns with BER, while a gentle ramp avoids early over-
correction when bt is still noisy.

5
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Conclusion.

In LTSSL, pseudo-labeling creates a drifting effective prior π̃PL
t . Any fixed-prior correction is there-

fore inherently misspecified and provably incurs excess BER proportional to its log-prior mismatch.
By substituting the model-induced bias bt for the prior at every stage, BiAL aligns the correction
with the present state of the learner and reduces this mismatch term, providing a compact theoretical
justification for the empirical gains we observe across consistent and inconsistent unlabeled regimes.

4 METHODOLOGY

This section details how we implement BiAL in practice. We first describe bias estimation and
stabilization and then give drop-in recipes for semi-supervised (FixMatch/CCL) training.

4.1 ESTIMATING AND STABILIZING THE MODEL BIAS

No-information baselines. We probe the classifier on no-information inputs in normalized pixel
space, for example, constant black images. Let the model output logits z(I) ∈ RK , we aggregate
them with a numerically stable log-mean-exp and center the result to remove the softmax shift:

b̃θ = log
( 1

|I|
∑
I∈I

softmax
(
z(I)

))
= logsumexp

(
log softmax(z(I)) ; I

)
− log |I|,

bθ = b̃θ −
1

K

(
1⊤b̃θ

)
1.

(14)

Practical Estimation of bθ. In practice, we estimate b̃θ from a mini-batch of |BI | no-information
inputs per update and apply EMA smoothing:

b
(t)
θ ← (1− α) b

(t−1)
theta + α b̂

(t)
θ , (15)

where b̂
(t)
θ is the current batch estimate and α ∈ (0, 1]. We estimate the batch-level bias b̂(t)θ from

|BI | at each update step, then update the global bias via EMA to suppress noise. We refresh bθ
every Eest iterations or once per epoch instead of every step. This keeps computational overhead
negligible.

Warm-up and ramps. Using a strong correction too early can cause oscillations. We therefore
apply a ramp after a warm-up: βt for logit debiasing z ← z − βt bθ. It follows a piecewise-linear
schedule: zero during the first Ewarm epochs, then linearly ramp to target value over Eramp epochs:

rt = ramp(t;Ewarm, Eramp) ∈ [0, 1], βt = β rt. (16)

This keeps early training close to the baseline and gradually introduces BiAL.

4.2 SSL FRAMEWORK ADAPTATION: FIXMATCH AND CCL

As shown in Fig 3, we implement BiAL by replacing the scores consumed by standard losses with
debiased energies E(x) = z(x) − β bθ, where bθ is the model’s current class bias estimated from
no-information inputs. The bias is refreshed every few iterations and gradually introduced by a
warm-up followed by a linear ramp for the strengths βt. This probe adds negligible overhead and
leaves the architecture and optimizers unchanged.

Semi-supervised implementations keep the FixMatch or other model pipelines intact and substi-
tute E wherever scores are used. Pseudo-labels are proposed from the weak view using pE =
softmax(E) and the same confidence threshold, and the strong view is trained against these labels
with CE on E. For CCL prototype heads, we use bias-conditioned classwise temperatures, applied
to both supervised and SSL branches. If a refinement module is present, it operates on pE to keep
label generation aligned with the debiased energy used for learning.

6
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Algorithm 1 Semi-supervised BiAL (FixMatch/CCL)
Inputs: labeled set Dl, unlabeled set Du; model fθ; epochs T ; debias schedule {βt}; SSL weight
λ; confidence threshold τpl; (optional) contrastive/prototype head.
Output: trained parameters θ

1: Initialize bias buffer b← 0
2: for t = 1 to T do
3: Estimate bias bt from no-information inputs; center and EMA to update b
4: Supervised branch: for (x, y)∼Dl, compute E(x) = z(x)− βtb; apply CE/LA or LDAM-

on-E to obtain Lsup

5: SSL proposal (weak view): for u∼Du, form E(a(u)) and pE(a(u)) = softmax(E(a(u)));
if maxc p

E
c ≥τpl, set ŷ = argmax pE

6: SSL training (strong view): compute E(A(u)); minimize Lssl = 1[ŷ exists] ·
CE(softmax(E(A(u))), ŷ)

7: Contrastive/Prototype: if a contrastive-learning-style module is used, replace scores sc by
sc−βtbc (or use bias-conditioned temperatures) and apply InfoNCE(Oord et al., 2018)/Proto-
CE on (x,A(u)) to get Lccl

8: Refinement: if a Distribution-Alignment-style module is used, apply it on pE(a(u)) to obtain
refined targets

9: Joint update: minimize L = Lsup + λLssl + λcclLccl (drop absent terms)
10: end for
11: Return θ (test-time prediction can use E = z − βb)

BiAL is engineered to be plug-and-play: a tiny probe to estimate bθ, two gentle ramps to avoid early
instability, and a uniform z 7→ E = z−βbθ substitution across supervised and SSL heads, plus bias-
aware margins/temperatures where applicable. These choices preserve the theoretical guarantees
while making the method stable and easy to reproduce in modern pipelines.

5 EXPERIMENTS

We conducted comprehensive experiments to verify the effectiveness of BiAL on CIFAR10-
LT(Krizhevsky et al., 2009), CIFAR100-LT(Krizhevsky et al., 2009), STL-10(Coates et al., 2011)
and ImageNet-127 datasets(Fan et al., 2022). To simulate real-world unlabeled data, we tested our
method on diverse distributions of unlabeled data.

5.1 SETUP

Datasets. We evaluate on CIFAR-10-LT, CIFAR-100-LT, STL10-LT and ImageNet-127. Following
standard practice, let γ be the imbalance ratio, and the labeled set Dl is made long-tailed with
classes ordered by frequency. We conduct experiments under three regimes: Consistent, Uniform,
Reverse. Due to limited space, the detailed experimental settings are deferred to the appendix.

5.2 RESULTS ON CIFAR10/100-LT

Consistent distribution (γl = γu).

In CIFAR-10/100-LT, replacing fixed-prior training with BiAL yields uniform gains for SSL. BiAL-
FixMatch improves over the baseline, while BiAL-CCL achieves the strongest overall results and
the clearest debiasing effect. This proves that BiAL makes models surpass strong LA-style baselines
(CPE, Meta-Experts) under consistent settings.

Inconsistent distributrion (uniform / reverse).

When the unlabeled data depart from the labeled distribution, BiAL explicitly tracks model bias
rather than assuming a static prior, making it robust to prior mismatch. BiAL-FixMatch consistently
improves over the baseline under both uniform and reverse regimes; while BiAL-CCL achieves the
highest performance, outperforming LA-based methods such as CPE that rely on prior anchoring.

7
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Table 1: Test accuracy in consistent setting on CIFAR10-LT and CIFAR100-LT datasets. The
underline is the best result for a single branch, and the best results are in bold.

CIFAR10-LT CIFAR100-LT

γl = γu = 100 γl = γu = 150 γl = γu = 10 γl = γu = 20

Algorithm N1 = 500 N1 = 1500 N1 = 500 N1 = 1500 N1 = 50 N1 = 150 N1 = 50 N1 = 150
M1 = 4000 M1 = 3000 M1 = 4000 M1 = 3000 M1 = 400 M1 = 300 M1 = 400 M1 = 300

Supervised 47.3±0.95 61.9±0.41 44.2±0.33 58.2±0.29 29.6±0.57 46.9±0.22 25.1±1.14 41.2±0.15
w/ LA(Menon et al., 2020) 53.3±0.44 70.6±0.21 49.5±0.40 67.1±0.78 30.2±0.44 48.7±0.89 26.5±1.31 44.1±0.42

FixMatch(Sohn et al., 2020) 67.8±1.13 77.5±1.32 62.9±0.36 72.4±1.03 45.2±0.55 56.5±0.06 40.0±0.96 50.7±0.25
w/ DARP(Kim et al., 2020) 74.5±0.78 77.8±0.63 67.2±0.32 73.6±0.73 49.4±0.20 58.1±0.44 43.4±0.87 52.2±0.66
w/ CReST+(Wei et al., 2021a) 76.3±0.86 78.1±0.42 67.5±0.45 73.7±0.34 44.5±0.94 57.4±0.18 40.1±1.28 52.1±0.21
w/ DASOOh et al. (2022) 76.0±0.37 79.1±0.75 70.1±1.81 75.1±0.77 49.8±0.24 59.2±0.35 43.6±0.09 52.9±0.42

FixMatch + LA(Menon et al., 2020) 75.3±2.45 82.0±0.36 67.0±2.49 78.0±0.91 47.3±0.42 58.6±0.36 41.4±0.93 53.4±0.32
w/ DARPKim et al. (2020) 76.6±0.92 80.8±0.62 68.2±0.94 76.7±1.13 50.5±0.78 59.9±0.32 44.4±0.65 53.8±0.43
w/ CReST+(Wei et al., 2021a) 76.7±1.13 81.1±0.57 70.9±1.18 77.9±0.71 44.0±0.21 57.1±0.55 40.6±0.55 52.3±0.20
w/ DASO(Oh et al., 2022) 77.9±0.88 82.5±0.08 70.1±1.68 79.0±2.23 50.7±0.51 60.6±0.71 44.1±0.61 55.1±0.72

FixMatch + ABC(Lee et al., 2021) 78.9±0.82 83.8±0.36 66.5±0.78 80.1±0.45 47.5±0.18 59.1±0.21 41.6±0.83 53.7±0.55
w/ DASO(Oh et al., 2022) 80.1±1.16 83.4±0.31 70.6±0.80 80.4±0.56 50.2±0.62 60.0±0.32 44.5±0.25 55.3±0.53

FixMatch + CDMAD(Lee & Kim, 2024) 80.3±0.21 83.6±0.46 73.3±0.63 80.5±0.76 50.6±0.44 60.3±0.32 44.7±0.14 54.3±0.44
FixMatch + LCGC(Xing et al., 2025) 81.2±0.73 83.9±0.36 74.3±1.92 80.8±0.32 50.9±0.45 60.2±0.57 44.6±0.81 55.3±0.48
FixMatch + BiAL 81.3±0.61 83.9±0.73 75.5±0.95 81.0±0.54 51.0±0.32 60.9±0.69 44.8±0.92 55.2±0.11

FixMatch + ACR(Wei & Gan, 2023) 81.6±0.19 84.1±0.39 77.0±1.19 80.9±0.22 51.1±0.32 61.0±0.41 44.3±0.21 55.2±0.28
FixMatch + CPE(Ma et al., 2024) 80.7±0.96 84.4±0.29 76.8±0.53 82.3±0.34 50.3±0.34 59.8±0.16 43.8±0.28 55.6±0.15
FixMatch + Meta-Experts(Hou & Jia, 2025) 81.7±0.39 84.6±0.19 77.2±0.58 82.5±0.40 50.9±0.41 60.3±0.29 44.2±0.29 55.9±0.83
FixMatch + CCL(Zhou et al., 2024) 84.5±0.38 85.5±0.35 81.5±0.99 84.0±0.21 53.5±0.49 63.5±0.39 46.8±0.45 57.5±0.16
w/ BiAL-CCL 85.0±0.39 86.5±0.98 81.9±0.65 84.5±0.20 53.8±0.57 63.9±0.43 47.1±0.22 57.9±0.21

Table 2: Test accuracy under inconsistent setting (γl ̸= γu) on CIFAR10-LT and CIFAR100-LT
datasets. γl = 100 for CIFAR10-LT, and γl = 10 for CIFAR100-LT dataset.

CIFAR10-LT (γl ̸= γu) CIFAR100-LT (γu = N/A)

γu = 1 (uniform) γu = 1/100 (reversed) γu = 1 (uniform) γu = 1/10 (reversed)

Algorithm N1 = 500 N1 = 1500 N1 = 500 N1 = 1500 N1 = 50 N1 = 400 N1 = 50 N1 = 400
M1 = 4000 M1 = 3000 M1 = 4000 M1 = 3000 M = 400 M = 300 M = 400 M = 300

FixMatch 73.0±3.81 81.5±1.15 62.5±0.94 71.8±1.70 45.5±0.71 58.1±0.72 44.2±0.43 57.3±0.19
w/ DARP 82.5±0.75 84.6±0.34 70.1±0.22 80.0±0.93 43.5±0.95 55.9±0.32 36.9±0.48 51.8±0.92
w/ CReST 83.2±1.67 87.1±0.28 70.7±2.02 80.8±0.39 43.5±0.30 59.2±0.25 39.0±1.11 56.4±0.62
w/ CReST+ 82.2±1.53 86.4±0.42 62.9±1.39 72.9±2.00 43.6±1.60 58.7±0.16 39.1±0.77 56.4±0.78
w/ DASO 86.6±0.84 88.8±0.59 71.0±0.95 80.3±0.65 53.9±0.66 61.8±0.98 51.0±0.19 60.0±0.31
w/ CDMAD 87.5±0.46 90.3±0.27 79.3±0.78 84.2±0.31 54.8±0.19 63.3±0.24 51.2±0.30 61.7±0.54
w/ LCGC 88.1±0.72 91.0±0.37 80.1±0.60 85.1±0.66 55.7±0.93 64.1±0.44 51.5±0.62 62.5±0.85

BiAL-FixMatch 88.3±0.25 91.3±0.49 80.7±0.38 85.9±0.51 56.1±0.81 64.5±0.93 51.5±0.94 62.7±0.32

FixMatch + ACR 92.1±0.18 93.5±0.11 85.0±0.99 89.5±0.17 57.9±0.56 65.8±0.91 51.7±0.22 63.3±0.17
FixMatch + CPE 92.3±0.17 93.3±0.21 84.8±0.88 89.3±0.11 58.1±0.47 66.3±0.13 52.4±0.20 63.5±0.34
FixMatch + CCL 93.1±0.21 93.9±0.12 85.0±0.70 89.8±0.31 59.8±0.28 67.9±0.70 54.4±0.14 64.7±0.22
BiAL-CCL 93.4±0.25 94.1±0.34 86.0±0.67 90.2±0.24 60.5±0.58 68.2±0.99 55.0±0.41 65.2±0.28

5.3 RESULTS ON STL10-LT AND IMAGENET-127

We evaluate BiAL on STL10-LT where the label distribution of the unlabeled data is inherently
inaccessible. As summarized in Table3, BiAL consistently improves its base learners under both γl
settings, yielding higher test accuracy; the CCL branch benefits further from training on debiased
energies. Overall, the qualitative trend on STL10-LT indicates that our method improves pseudo-
label quality and downstream generalization through debiasing at the score level.

We follow standard practice for ImageNet-127(Fan et al., 2022) and evaluate in the consistent setting
used by prior work (γl = γu ≈ 286). In this regime, representation quality and a balanced classifier
are both critical. Integrating BiAL into the CCL branch preserves the original architecture and
losses while aligning training and inference through debiased energies. As shown in Table 4, the
BiAL-CCL is competitive on both resolutions.

5.4 ABLATION STUDY

We ablate where BiAL is applied in semi-supervised training for both backbones by toggling it
on the labeled branch, the unlabeled branch and test inference, which yields five concise regimes.
All comparisons keep settings identical to the corresponding baselines, so improvements isolate the
placement of BiAL rather than tuning.
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Figure 4: The per-class accuracy of pseudo-labels and test results for FixMatch, BiAL-FixMatch,
CCL and BiAL-CCL on CIFAR10-LT dataset in consistent settings (γl = γu = 100).

Table 3: Test accuracy on STL10-LT datasets.
STL10-LT (γu = N/A)

γl = 10 γl = 20

Algorithm N1 = 150 N1 = 450 N1 = 150 N1 = 450
M = 100k M = 100k M = 100k M = 100k

FixMatch 56.1±2.32 72.4±0.71 47.6±4.87 64.0±2.27
w/ DARP 66.9±1.66 75.6±0.45 59.9±2.17 72.3±0.60
w/ CReST 61.7±2.51 71.6±1.17 57.1±3.67 68.6±0.88
w/ CReST+ 61.2±1.27 71.5±0.96 56.0±3.19 68.5±1.88
w/ DASO 70.0±1.19 78.4±0.80 65.7±1.78 75.3±0.44
w/ CDMAD 72.5±0.39 79.9±0.23 66.3±0.57 75.2±0.40
w/ LCGC 72.8±0.61 80.1±0.42 66.5±0.83 76.6±0.34

BiAL-FixMatch 73.1±0.59 80.4±0.53 66.8±0.36 77.0±0.79

FixMatch + ACR 77.1±0.24 83.0±0.32 75.1±0.70 81.5±0.25
FixMatch + CPE 73.1±0.47 83.3±0.14 69.6±0.20 81.7±0.34
FixMatch + CCL 79.1±0.43 84.8±0.15 77.1±0.33 83.1±0.18
BiAL-CCL 79.8±0.51 85.2±0.21 77.6±0.45 83.7±0.28

Table 4: Test accuracy on ImageNet-
127. The best results are in bold.

ImageNet-127 (γl = γu)
Algorithm 32×32 64×64

FixMatch 29.7 42.3
w/ DARP 30.5 42.5
w/ DARP+cRT 39.7 51.0
w/ CReST+ 32.5 44.7
w/ CReST++LA 40.9 55.9
w/ CoSSL 43.7 53.9
w/ TRAS 46.2 54.1
w/ LCGC 49.0 60.1
w/ ACR 57.2 63.6
w/ CCL 61.5 67.8
BiAL-CCL 62.0 68.2

Table 5: Ablation of BiAL placement on CIFAR-10-LT (γℓ=γu=100) and CIFAR-100-LT
(γℓ=γu=10). Whenever the labeled or unlabeled branch uses BiAL during training, test-time debi-
asing is also enabled to align decision rules.

BiAL-FixMatch BiAL-CCL

Condition CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

Baseline (no BiAL at train nor test) 61.9 41.2 85.5 57.3
Labeled-only + Test 76.8 49.1 86.2 57.5
Unlabeled-only + Test 83.7 49.4 85.8 57.7
Test-only (post-hoc on baseline model) 81.7 52.3 85.7 57.5
Full BiAL (Labeled + Unlabeled + Test) 83.9 55.2 86.5 57.9

6 CONCLUSION

We present BiAL, a unified bias-aware objective that replaces static distribution priors with the cur-
rent bias of the model and applies the resulting debiased energy consistently across semi-supervised
learning. By aligning correction with the learner’s state, BiAL provides theoretical guarantees: it
achieves Fisher consistency with respect to balanced error and reduces dynamic regret under prior
drift. Experiments on different datasets demonstrate that BiAL improves pseudo-label quality and
test accuracy, and it integrates as a plug-and-play component without additional model complexity.
These findings offer a simple and general recipe for robust long-tailed semi-supervised learning and
motivate future work on stronger bias estimation and deeper integration with representation learning.
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APPENDIX

A UNIFIED LOSS INSTANTIATIONS

Below we instantiate equation 5 for common families. The recipe is always: replace z by E, and,
where applicable, derive class-wise hyperparameters from bθ to obtain a bias-aware version.

A.1 BIAS-AWARE CROSS-ENTROPY / LOGIT ADJUSTMENT (BIAL-CE/LA)

Supervised.

ℓBiAL-CE
sup (E, y) = − log

exp (Ey)∑
c exp (Ec)

= − log
exp (zy − βbθ,y)∑
c exp (zc − βbθ,c)

. (17)

This is exactly CE on debiased logits. Standard LA corresponds to choosing bθ = log π and β = τ .

Semi-supervised (FixMatch-style).

Let a(u), A(u) be weak/strong augmentations and pE = softmax(E). With confidence τpl:

ŷ = argmax
c

pEc (a(u)), 1u = 1

[
max

c
pEc (a(u)) ≥ τpl

]
, (18)

ℓBiAL-CE
ssl = 1u CE

(
pE(A(u)), one− hot(ŷ)

)
. (19)

Using E for both proposal and training aligns pseudo-labeling with the debiasing principle.

A.2 BIAS-AWARE LDAM (BIAL-LDAM)

LDAM applies a class-dependent margin my to the target logit. Classic LDAM uses static counts
ny via my ∝ n

−1/4
y . We define a soft, bias-induced effective count ñc ∝ exp(bθ,c) , renormalized

so
∑

c ñc =
∑

c nc, or simply absorb the scale into m0, and set

mc(bθ) = m0 ñ
−1/4
c = m0 exp

(
− 1

4 bθ,c

)
(with clamping mmin ≤ mc ≤ mmax). (20)

Then the BiAL-LDAM supervised loss is

ℓBiAL-LDAM
sup (E, y) = − log

exp(Ey −my(bθ))

exp(Ey −my(bθ)) +
∑

c̸=y exp(Ec)
. (21)

• If bθ tracks majority inclination (larger bθ,c,c for majority), equation 20 reduces their mar-
gin and increases tail margins.

• When bθ = logn+ c1, equation 21 reduces to classic LDAM (up to scale m0).

A.3 BIAS-AWARE CONTRASTIVE/CCL HEADS (BIAL-CCL)

Two plug-in variants are common; both debias either the logits or the temperature using bθ.

(A) Debiased logits for class-prototype heads.

Let similarity logits be sc(x) = γ cos(h(x), µc) (projection h, prototypes µc, scale γ). Replace

sBiAL
c (x) = sc(x) − β bθ,c, ℓBiAL-Proto

sup = − log
exp(sBiAL

y (x))∑
c exp(s

BiAL
c (x))

. (22)

This is the prototype analogue of equation 17.

(B) Class-wise temperatures.

13
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Keep logits sc(x) but use τc as a monotone function of bias, e.g.

τc = τ0 exp(−κ bθ,c), κ ≥ 0, (23)

so majority (larger bθ,c) have lower temperature, sharpening their competition and mitigating domi-
nance. The loss becomes

ℓBiAL-Temp
sup = − log

exp(sy(x)/τy)∑
c exp(sc(x)/τc)

. (24)

For instance discrimination (InfoNCE) you can analogously scale the positive/negative terms by τ
chosen from the class of the anchor or by a mixture over candidate classes.

The SSL head (consistency/pseudo-labels) follows the same substitution: compute scores with sBiAL

or (s, τc) and apply equation 19.

A.4 BIAS-AWARE FIXMATCH

Any pipeline that refines pseudo-labels (distribution alignment, confidence relabeling, FixMatch-
style bias filtering) can be made bias-aware by using E through the training process:

1. Propose labels from pE(a(u));
2. Apply your refinement rule (histogram alignment, confidence reweighting) on pE ;
3. Train the strong view on the refined label via ℓssl(E(A(u)), q̂).

This uniformly reduces majority-preference in proposals and improves minority precision without
adding extra heads.

B DETAILED EXPOSITION OF THEORETICAL MOTIVATIONS

We formalize three guarantees for BiAL: (i) Fisher consistency for balanced error (BER) when
decisions are made with debiased energy E; (ii) dynamic regret advantages under prior drift when
the bias estimate tracks the current prior; and (iii) a gradient analysis showing how subtracting bθ
systematically suppresses majority bias and enlarges minority margins.

Throughout, let K be the number of classes, ηc(x) = Pr(Y = c | X = x), and πc = Pr(Y = c).
For logits z(x), we have defined the debiased energy in equation 3. With a centered bias vector
bθ ∈ RK (subtracting its mean to remove global shifts). Unless stated otherwise, we take β = 1 for
decision rules; larger/smaller β corresponds to cost re-scaling.

B.1 FISHER CONSISTENCY FOR BER

The equivalent of BER(equation 9) is:

BER(f) =
1

K

K∑
c=1

∫
1 (f(x) ̸= c) p(x | Y = c) dx. (25)

Bayes rule for BER. Using Bayes formula p(x | Y = c) = ηc(x) p(x)/πc

BER(f) =
1

K

∫ (∑
c

ηc(x)
πc
−max

c

ηc(x)
πc

)
p(x) dx. (26)

Thus the pointwise minimizer is equation 11, which we now connect to BiAL decisions.

Assumption A (calibration). The model is well-calibrated in the large-sample/realizable limit:
softmax(z(x))→ η(x).

14
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Assumption B (bias consistency). The bias estimate satisfies bθ → log π+ c1 (in probability), i.e.,
it recovers the log-prior up to a constant shift (irrelevant under softmax/argmax).

This holds, for example, if bθ = logEI∼I pθ(· | I) with no-information inputs I that do not carry
class cues and the learned classifier is calibrated on Dl ∪Du; then pθ(· | I) converges to the model-
induced prior which coincides with π in the realizable limit.

Decision rule of BiAL. With β = 1,

fBiAL(x) = argmax
c

Ec(x) = argmax
c

(
zc(x)− bθ,c

)
. (27)

Theorem 1 (Fisher consistency for BER).

Under Assumptions AB.1 and BB.1, the BiAL decision rule fBiAL is Fisher-consistent(Tasche,
2017) for BER, that is, fBiAL → f⋆

BER.

Proof. By Assumption A, zc(x) = log ηc(x)+k(x) for some k(x) independent of c. By Assumption
B, bθ,c = log πc + k′ with k′ independent of c. Hence:

argmax
c

(
zc(x)− bθ,c

)
= argmax

c

(
log ηc(x)− log πc + k(x)− k′

)
= argmax

c

ηc(x)

πc
, (28)

which coincides with equation 11.

Remark 1 (role of β). If β ̸= 1, the rule is Bayes-optimal for a cost-rescaled BER where the
contribution of each class is weighted by π−β

c . Thus, β slightly (±) perturbs the effective operating
point but keeps Fisher consistency w.r.t. the corresponding reweighted BER.

Corollary 1 (approximate consistency).

If bθ = log π + δ with ∥δ∥∞ ≤ ε and z is calibrated, then the excess BER of fBiAL over f⋆
BER is

O(ε) (proof via the dynamic regret bound below with T = 1).

B.2 DYNAMIC REGRET UNDER PRIOR DRIFT

We consider training as a sequence of stages t = 1, . . . , T At stage t the data-generating distribution
has prior π⋆

t and posterior ηt(·). Let ft be the classifier induced by BiAL using bt (the current bias
estimate), and f⋆

t be the stage-optimal BER Bayes rule that knows π⋆
t .

Define dynamic regret in BER:

RT =

T∑
t=1

(
BERt(ft)− BERt(f

⋆
t )
)
. (29)

Assumption C (bias tracking). There exists εt ≥ 0 such that

∥ bt − log π⋆
t ∥∞ ≤ εt. (30)

Lemma 1 (pointwise BER excess under prior error).

Fix t and x. Let sc(x) = ηtc(x)/π
⋆
t,c, ŝc(x) = ηtc(x)/ exp{bt,c}.

Then

0 ≤ max
c

sc(x)−max
c

ŝc(x) ≤
(
eεt − 1

)
max

c
sc(x). (31)

Proof. Since | log π⋆
t,c − bt,c| ≤ εt, we have e−εt ≤ π⋆

t,c/e
bt,c ≤ eεt . Thus for each c, e−εtsc(x) ≤

ŝc(x) ≤ eεtsc(x).

Taking maxima gives maxc ŝc(x) ≥ e−εt maxc sc(x) and hence equation 31.
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Theorem 2 (dynamic regret bound).

Under Assumptions AB.1 and CB.2,

RT ≤
1

K

T∑
t=1

(
eεt − 1

)
EX

[
max

c

ηtc(X)

π⋆
t,c

]
≤ C

K

T∑
t=1

εt, (32)

for a constant C depending on πmin = mint,c π
⋆
t,c (e.g., C ≤ e π−1

min).

Proof. Using the BER decomposition and Lemma 1B.2,

BERt(ft)− BERt(f
⋆
t ) =

1

K
EX

[
max

c
sc(X)−max

c
ŝc(X)

]
≤ 1

K
(eεt − 1)EX

[
max

c
sc(X)

]
.

(33)

Since maxc sc(X) ≤
∑

c sc(X) =
∑

c η
t
c(X)/π⋆

t,c ≤ π−1
min , we obtain the second inequality and∑

t(e
εt − 1) ≤ e

∑
t εt for εt ∈ [0, 1].

Consequences.

• If bt is an EMA/batch estimate whose error satisfies E εt = O(σt+∆t) with sampling noise
σt and drift increment ∆t = ∥ log π⋆

t − log π⋆
t−1∥∞, then ERT = O(

∑
t(σt +∆t)).

• Any fixed prior π̄ has εt = ∥ log π⋆
t − log π̄∥∞, so

∑
t εt scales at least linearly with total

drift
∑

t ∆t (triangle inequality). Hence tracking bt yields strictly smaller regret when drift
is nontrivial.

Corollary 2 (one-shot excess BER).

In a single stage (T = 1), if ∥b− log π⋆∥∞ ≤ ε, then

BER(fBiAL)− BER(f⋆
BER) ≤

e

K πmin
ε. (34)

B.3 GRADIENT AND MARGIN EFFECTS OF SUBTRACTING bθ

We analyze how E = z − βbθ redistributes probability mass and margins.

Softmax sensitivity to β.

Let pE = softmax(E). Since E = z − βb (we omit θ for brevity),

∂pEi
∂β

=
∑
j

∂pEi
∂Ej

∂Ej

∂β
= −

∑
j

pEi (δij − pEj ) bj = pEi
(∑

j p
E
j bj︸ ︷︷ ︸

EpE [b]

−bi
)
. (35)

Thus, increasing β decreases pEi whenever bi > EpE [b] (majority-biased classes) and increases pEi
when bi < EpE [b] (minority-biased classes). This formally captures the “mass flows from high-bias
to low-bias classes” effect.

Gradients. For supervised CE in a labeled pair (x, y),

∇z ℓ
BiAL
sup (E, y) = pE − ey. (36)

Compared to the baseline gradient p − ey (with p = softmax(z)), equation 35 implies that as β
increases, the negative-class components pEi for high-bias classes shrink, dampening their gradients;
for the true class y, if by is below the current average, pEy increases, strengthening the positive
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Algorithm 2 Supervised BiAL (CE/LA/LDAM-compatible)
Inputs: labeled setDl; model fθ; epochs T ; debias schedule {βt}Tt=1; (optional) margin mix weight
{λt}Tt=1.
Output: trained parameters θ

1: Initialize bias buffer b← 0
2: for t = 1 to T do
3: Estimate bias bt from a tiny set of no-information inputs; apply centering and EMA to update

b
4: Form debiased energies E(x)← z(x)− βt b with z(x) = fθ(x)
5: Compute supervised loss on E(x):
6: CE/LA: use standard cross-entropy on softmax(E) (LA is a special case with fixed prior)
7: LDAM: build bias-aware margins from π(b) = softmax(b) and mix with count-based mar-

gins via λt; subtract on the true class
8: Update θ by minimizing the chosen loss on batches from Dl

9: end for
10: Return θ (test-time decision can use E for BER-aligned prediction)

gradient. The same form holds for the SSL cross-entropy on pseudo-labels (with y = ŷ) and for
prototype/contrastive heads after replacing z by the corresponding scores.

Pairwise margins. For any classes a ̸= c,

Ea(x)− Ec(x)︸ ︷︷ ︸
BiAL margin

= za(x)− zc(x)︸ ︷︷ ︸
raw margin

−β (ba − bc). (37)

If bc > ba (class c more biased than a), then increasing β enlarges the a–vs–c margin by β(bc− ba).
In particular, for a minority class a against a majority class c, equation 37 increases the minority’s
effective margins uniformly over inputs x.

Theorem 3 (expected margin improvement for minorities).

Let y denote the ground-truth class and suppose E[by] ≤ E[bc] − ∆ for all c ̸= y (minority gap
∆ > 0). Then for any β > 0,

E
[
Ey(X)−max

c̸=y
Ec(X)

]
≥ E

[
zy(X)−max

c̸=y
zc(X)

]
+ β∆. (38)

Proof. For each x, Ey(x)−Ec(x) = zy(x)− zc(x)−β(by − bc). Taking maximum over c ̸= y and
expectations, and using maxc(uc + vc) ≤ maxc uc +maxc vc,

E
[
max
c̸=y

Ec

]
≤ E

[
max
c̸=y

zc
]
− β E

[
min
c̸=y

(by − bc)
]
. (39)

By the gap assumption, minc̸=y(by − bc) ≤ −∆ almost surely (or in expectation). Rearranging
yields equation 38.

C METHODOLOGY IMPLEMENTATION DETAILS

C.1 SUPERVISED IMPLEMENTATIONS

Supervised implementations follow the pseudocode by feeding E into otherwise standard objectives.
For CE/LA, this is simply CE on E (equivalently, replacing the fixed τ log π in LA with βtbθ), with
an optional logit debias z← z − βtbθ during the ramp. For LDAM, we derive bias-aware, class-
dependent margins from π(b) = softmax(bθ) and mix them with the classic count-based margins
using λt, then apply the usual true-class subtraction and scaling. Evaluation can be reported with
the raw head or with the BiAL decision E, as noted in the main text.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C.1.1 BIAL–LA (BIAS-AWARE LOGIT ADJUSTMENT)

To “bias-aware” the classic LA, simply replace τ log π by βbθ and (optionally) ramp β:

E(x) = z(x)− βt bθ, ℓCE(softmax(E), y). (40)

This drop-in change can be used in place of CE anywhere CE/LA appears.

C.1.2 BIAL–LDAM (BIAS-AWARE LDAM)

We combine optional logit debiasing with strength βt, and bias-aware dynamic margins mixed with
the standard LDAM margins via λt.

(a) Logit debiasing.

Before margin subtraction, replace logits by

z′(x) = z(x)− βt bθ (stop-grad on bθ). (41)

This is the supervised analogue of using E(x) mentioned earlier, with a ramped strength.

(b) Bias-aware margins.

Let mstd,c ∝ n
−1/4
c be standard LDAM margins from class counts. Define an effective prior πeff =

softmax(bθ) and build bias-aware margins

mbias,c = mmax ·
(
maxj π

eff
j

)βBA

(πeff
c )β BA ∝ (πeff

c )−βBA (clamped to [mmin,mmax]). (42)

We mix them as

mc(t) = (1− λt)mstd,c + λt mbias,c, (43)

and subtract mc(t) from the true-class logit only, then apply the usual LDAM scaling s. This realizes
equation 20 and equation 21 with a smooth transition from the vanilla LDAM to its bias-aware form.

C.2 SEMI-SUPERVISED IMPLEMENTATIONS

We adopt a FixMatch-style structure (weak/strong views, confidence threshold), but generate and
train on pseudo-labels from debiased energy E, not raw logits z. The same principle applies to CCL
heads and other pipelines.

C.2.1 BIAL–FIXMATCH (CE BRANCH)

For each unlabeled u, compute

E(a(u)) = z(a(u))− βtbθ, pE(a(u)) = softmax(E(a(u))). (44)

If maxc p
E
c (a(u)) ≥ τpl, set ŷ = argmaxc p

E
c (a(u)) and train the strong view with

ℓssl = CE
(
softmax(E(A(u))), one−hot(ŷ)

)
. (45)

This aligns both proposal and learning with the BiAL correction. Confidence thresholding becomes
substantially more robust for tail classes once majorities are down-weighted by bθ.
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C.2.2 BIAL–CCL (CONTRASTIVE HEAD)

Two equivalent plug-ins:

• Debiased class scores. For prototype-based logits sc(x), use csBiAL
c (x) = sc(x) − βtbθ,c

in both supervised and SSL heads (InfoNCE softmax is unchanged).
• Class-wise temperatures. Use τc = τ0 exp(−κbθ,c) and feed sc(x)/τc to the softmax.

Majority classes (large bθ,c) get smaller temperatures, effectively sharpening competition
and mitigating over-dominance; minorities get larger temperatures, easing positive align-
ment.

C.3 OPTIONAL REGULARIZERS AND SCHEDULES

• Bias smoothing/variance control: Ω(bθ) = ∥bθ∥22 or Var(bθ) to avoid extreme corrections
early; EMA already serves as implicit regularization.

• Strength scheduling: βt ↑ from small to moderate (warm-up), or adapt βt to the en-
tropy/variance of bθ.

D EXPERIMENTAL SETUP

D.1 TRAINING DATASETS

We use a variety of commonly adopted SSL datasets to conduct our experimental analysis, includ-
ing CIFAR-10-LT, CIFAR-100-LT, STL10-LT and ImageNet-127 in different ratios γ . To create
imbalanced versions of the datasets, the labeled set Dl is made long-tailed by class-wise exponen-
tial decay nL

c = nmax · γ− c−1
K−1 ,with classes ordered by frequency. For CIFAR10/100-LT, We

carry out experiments under three regimes like recent LTSSL works: Consistent, Uniform, Reverse.
Experiments are conduted with all comparison methods in settings where N1 = 500,M1 = 4000,
and N1 = 1500,M1 = 3000. We adopt imbalance ratios of γl = γu = 100 and γl = γu = 150
for consistent settings, while for uniform and reversed settings, we adopt γl = 100, γu = 1 and
γl = 100, γu = 1/100, respectively. Given the absence of ground-truth labels for the unlabeled data
of the STL10-LT dataset, we manage the experiments by adjusting the imbalance ratio of the la-
beled data, where we set the labeled imbalance ratio of γl = 10 or γl = 20. And for ImageNet-127,
created by ImageNet(Russakovsky et al., 2015), we experiment under consistent settings on images
down-sampled to 32× 32 and 64× 64.

D.2 IMPLEMENTATION DETAILS

Our experimental configuration largely aligns with Fixmatch and CCL. Specifically, we apply the
WideResNet-28-2(Zagoruyko & Komodakis, 2016) architecture to implement our method on the
CIFAR10-LT, CIFAR100-LT and STL10-LT datasets; and ResNet-50(He et al., 2016) on ImageNet-
127. The performance evaluation of these methods is based on the top-1 accuracy metric on the test
set. We present the mean and standard deviation of the results from three independent runs for each
method.

For FixMatch based methods, our BiAL-FixMatch uses the Adam optimizer(Kingma, 2014). We
used the EMA of the network parameters for each iteration to evaluate the classification per-
formance. We used random cropping and horizontal flipping for weak data augmentation and
Cutout(DeVries & Taylor, 2017) and RandomAugment(Cubuk et al., 2020) for strong data aug-
mentation. We set the mini batch size to 32, relative size of the unlabeled to labeled mini-batches µ
to 2, and learning rate of the optimizer to 1.5 × 10−3. We trained BiAL-FixMatch for 500 epochs,
where 1 epoch = 500 iterations. For the experiments on CIFAR 100, we set the weight decay param-
eter of L2 regularization (for EMA parameters) to 0.08. For the experiments on CIFAR-10, STL-10,
and ImageNet-127, we set the weight decay parameter of L2 regularization to 0.04.

For CCL based methods, our BiAL-CCL keep the settings same as original model. We adopt the
common training paradigm that the network is trained with standard SGD(momentum 0.9, weight
decay 5×10−4)(Polyak, 1964; Sutskever et al., 2013) for 500 epochs, where each epoch consists
of 500 mini-batches, and a batch size of 64 for both labeled and unlabeled data. We use a cosine
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learning rate decay(Loshchilov & Hutter, 2016) where the initial rate is 0.03, we set τ = 2.0 for
logit adjustment on all datasets, except for ImageNet-127, where τ = 0.1. We set the temperature
T = 1 and the threshold ζ = −8.75 for the energy score following(Yu et al., 2023), and we set
λ1 = 0.7, λ2 = 1.0 on CIFAR10/100-LT and λ1 = 0.7, λ2 = 1.5 on STL10-LT and ImageNet-127
datasets for the final loss.

For the parameters in our method, we mainly make the following settings: For BiAL-FixMatch,
we set default Ewarm = 50 epochs and Eramp = 20, with β = 1.0 on CIFAR10/100-LT and STL-
10, while β = 0.1 on ImageNet-127. For BiAL-CCL, we set default Ewarm = 50 epochs and
Eramp = 20, with β = 0.5 on CIFAR10/100-LT and STL-10, while β = 0.03 on ImageNet-127.

In addition, our method is implemented using the PyTorch library and experimented on NVIDIA
RTX 3090s.

E FURTHER ANALYSIS

E.1 SEMI-SUPERVISED LEARNING

Figure 5 presents the confusion matrix comparing CCL and BiAL-CCL in three different experi-
mental settings. We test both models on CIFAR10-LT dataset under consistent(γl = γu = 150),
uniform(γl = 100, γu = 1) and reverse(γl = 100, γu = 1/100) settings. As we can see in the
figure, BiAL can help CCL care more about tail classes without sacrificing the performance of head
classes. Especially for tail categories, such as category 9, BiAL-CCL shows a significant improve-
ment compared to CCL and also achieves higher overall accuracy.

Furthermore, we employ the t-distributed stochastic neighbor embedding (t-SNE)(Maaten & Hinton,
2008) to visualize the representations learned by both methods. As mentioned above, the compar-
ative results on are depicted in Figure 6 under consistent, uniform, and reverse settings. The figure
demonstrates that BiAL enables CCL provide more distinct classification boundaries. Especially
for the setting of uniform and reverse, when the distribution of unlabeled data is inconsistent with
that of labeled data, BiAL can more accurately grasp the deviation of the model and achieve better
performance.

To further examine whether BiAL is compatible with other dual branch methods, we also integrate
it into ACR and report the results in Table6. In this experiment, we simply replace the logits used
in ACR correction with our debiased energies E(x) = z(x)− βtbθ, while keeping all other training
details and hyperparameters unchanged. We evaluate under the consistent setting on CIFAR10-LT
and CIFAR100-LT , following the same protocols as in the main experiments. Across all configu-
rations, BiAL-ACR consistently improves over FixMatch+ACR, and it also outperforms FixMatch
combined with CDMAD, LCGC, or CPE. The improvements are still clear in the more challenging
CIFAR100-LT scenarios, where the pseudo-labeling induces strong drift over training. These re-
sults indicate that BiAL provides a complementary, rather than redundant, bias correction to ACR:
while ACR leverages fixed priors within an energy-based framework, replacing these priors with the
model-induced bias allows the correction to better track the evolving effective prior, yielding more
robust performance under long-tailed semi-supervised learning.

Table 6: Test accuracy in consistent setting on CIFAR10-LT and CIFAR100-LT datasets for BiAL-
ACR. The best results are in bold.

CIFAR10-LT CIFAR100-LT

γl = γu = 100 γl = γu = 150 γl = γu = 10 γl = γu = 20

Algorithm N1 = 500 N1 = 1500 N1 = 500 N1 = 1500 N1 = 50 N1 = 150 N1 = 50 N1 = 150
M1 = 4000 M1 = 3000 M1 = 4000 M1 = 3000 M1 = 400 M1 = 300 M1 = 400 M1 = 300

FixMatch + CDMAD(Lee & Kim, 2024) 80.3±0.21 83.6±0.46 73.3±0.63 80.5±0.76 50.6±0.44 60.3±0.32 44.7±0.14 54.3±0.44
FixMatch + LCGC(Xing et al., 2025) 81.2±0.73 83.9±0.36 74.3±1.92 80.8±0.32 50.9±0.45 60.2±0.57 44.6±0.81 55.3±0.48

FixMatch + ACR(Wei & Gan, 2023) 81.6±0.19 84.1±0.39 77.0±1.19 80.9±0.22 51.1±0.32 61.0±0.41 44.3±0.21 55.2±0.28
FixMatch + CPE(Ma et al., 2024) 80.7±0.96 84.4±0.29 76.8±0.53 82.3±0.34 50.3±0.34 59.8±0.16 43.8±0.28 55.6±0.15
w/ BiAL-ACR 82.1±0.54 85.6±0.48 78.4±0.44 82.3±0.31 52.1±0.67 62.4±0.53 45.1±0.42 56.5±0.31
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(a) CCL on consistent settings with γl = γu = 150
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(b) Ours on consistent settings with γl = γu = 150
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(c) CCL on uniform settings with γl = 100
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(d) Ours on uniform settings with γl = 100
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(e) CCL on reverse settings with γl = 100
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(f) Ours on reverse settings with γl = 100

Figure 5: The confusion matrices of the predictions on the test set of CIFAR-10-LT dataset in three
different settings for CCL and BiAL-CCL.
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(a) CCL on consistent settings with γl = 150 (b) Ours on consistent settings with γl = 150

(c) CCL on uniform settings with γl = 100 (d) Ours on uniform settings with γl = 100

(e) CCL on reverse settings with γl = 100 (f) Ours on reverse settings with γl = 100

Figure 6: The t-SNE visualization of the test set for CCL and BiAL-CCL on CIFAR-10-LT dataset
in three different settings.
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E.2 SUPERVISED LEARNING

After introducing our method into supervised learning, we compared it with the baseline through
experiments and verified the effectiveness of the method.

For supervised learning, we instantiate BiAL by replacing logits z with debiased energies E(x) =
z(x) − βt bθ inside otherwise standard objectives. For CE/LA, the fixed prior term τ log π is
substituted by βtbθ. For LDAM, we derive bias-aware class margins from the effective prior
πeff = softmax(bθ) and mix them with standard count-based margins via a weight λt; the mixed
margin is subtracted on the true class followed by the usual LDAM scaling, yielding a smooth tran-
sition from vanilla to bias-aware LDAM.

We evaluate BiAL in the fully supervised regime on CIFAR10-LT and CIFAR100-LT under the
consistent long-tailed setting and report results in Table7. All methods use the same backbone and
ResNet50 on CIFAR datasets.

Table 7: Test accuracy in consistent setting on CIFAR10-LT and CIFAR100-LT datasets. The best
results are in bold.

CIFAR10-LT CIFAR100-LT

Algorithm γl = γu = 100 γl = γu = 150 γl = γu = 10 γl = γu = 20

Supervised 47.3±0.95 44.2±0.33 29.6±0.57 25.1±1.14
w/ LA 53.3±0.44 49.5±0.40 30.2±0.44 26.5±1.31
w/ BiAL-LA 55.6±0.71 52.1±0.62 31.7±0.83 28.2±0.98

w/ LDAM 74.4±0.78 70.7±0.63 55.7±0.20 51.4±0.44
w/ LDAM-DRW 77.5±0.60 73.9±0.50 57.3±0.53 53.6±0.34
w/ BiAL-LDAM 76.0±0.73 72.3±0.43 56.8±1.14 52.7±0.83
w/ BiAL-LDAM-DRW 79.2±0.81 76.0±0.64 59.1±0.42 54.3±0.91

E.3 SENSITIVE ANALYSIS OF HYPERPARAMETERS

As described in Table 8, BiAL is relatively robust to the fluctuation of β from 0.5 to 1.0 for FixMatch
and from 0.1 to 0.5 for CCL. However, when β is set to 1.5 or even larger, it amplifies debiasing,
resulting in a performance decrease. When β is set to be smaller than 0.1, it mitigates overcorrection.

Table 8: Sensitive analysis of β under consistent setting of CIFAR10/100-LT
BiAL-FixMatch BiAL-CCL

β CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

0.1 83.1 54.6 86.0 57.7
0.5 83.2 55.0 86.1 57.8
1.0 83.9 55.2 85.9 57.8
1.5 81.7 54.1 84.8 55.7
2.0 80.3 53.5 85.1 55.6

Table 9 investigates the effect of the warm-up length Ewarm and ramp length Eramp in BiAL. Overall,
the results show that BiAL is fairly insensitive to these hyperparameters: changing Ewarm and Eramp
within a reasonable range only leads to minor fluctuations, and all configurations still outperform
the corresponding base SSL framework. For warm-up stage Ewarm, we follow a standard design
principle which aims to avoid introducing debiasing too early, when the backbone has not yet learned
basic discriminative structure and the estimated bias is dominated by noise. In practice, Ewarm does
not need to be carefully tuned: as long as debiasing is activated after the model has acquired a
reasonable classification ability and there is sufficient time before the end of training, the exact value
has little impact. The ramp stage Eramp mainly serves as a smooth transition from no debiasing to
the full bias-aware regime, preventing sudden shifts in the effective decision boundary that could
cause optimization oscillations. These observations justify our simple piecewise-linear schedule
and indicate that BiAL does not rely on delicate tuning of Ewarm and Eramp.
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Table 9: Sensitive analysis of Ewarm and Eramp under consistent setting of CIFAR10/100-LT

Ewarm CIFAR-10 CIFAR-100 Eramp CIFAR-10 CIFAR-100

30 85.9 63.5 10 86.0 63.7
50 86.4 63.9 20 86.4 63.9
80 86.3 64.9 30 86.3 63.8
100 86.4 63.7 40 86.3 63.7
150 86.2 63.7 50 86.2 63.8

E.4 TIME COMPLEXITY ANALYSIS

We measure complexity relative to the forward/backward passes of the backbone, which are the
dominant cost. Let B be the batch size, K the number of classes, D the feature dimension, |BI | the
mini-batch size of no-information inputs used to probe model bias, and Eest the refresh cadence.

BiAL adds only two lightweight operations on top of any baseline: (i) a class-length subtraction
per sample to form debiased energies E = z − βbθ, which costs O(BK) per step, and (ii) a low-
frequency, amortized bias refresh that forwards |BI | no-information inputs every Eest steps and
aggregates them, contributing |BI |/Eest single-sample forwards plusO

(
|BI |/Eest ·K

)
bookkeeping

per step. Both do not strictly alter the asymptotic order of the baseline.

Concretely, BiAL-FixMatch preserves the baseline loss-side complexityO(BD+BK) (orO(BK)
when no projector is used); the addedO(BK) and the tiny amortized refresh do not change the order.
For BiAL-CCL, the dominant terms remain those of CCL, which yieldsO(B2D+B2K+B3. Thus,
BiAL is plug-and-play and does not change the asymptotic training complexity of FixMatch or CCL;
it only adds a negligible linear-time adjustment and a low-frequency amortized probe.

Table 10: Average batch time of each algorithm.
Algorithm CIFAR-10 CIFAR-100 STL-10

CCL 0.173 sec/iter 0.175 sec/iter 0.231 sec/iter
BiAL-CCL 0.175 sec/iter 0.176 sec/iter 0.243 sec/iter

E.5 EFFECT OF DIFFERENT NO-INFORMATION BASELINES

In our main experiments, the bias vector bt in BiAL is estimated using a batch of “no-information”
inputs instantiated as all-black images. To assess the robustness of the proposed bias estimation
scheme and test whether the performance of BiAL is sensitive to this particular choice of baseline
input, we conduct an ablation study on CIFAR10-LT with BiAL-FixMatch and BiAL-CCL under
the same configuration as in Tab. 1, varying only the input of the baseline image used to compute bt.

Specifically, we consider nine types of no-information inputs, as shown in Tab. 11. For each baseline
type, all other training hyperparameters and random seeds are kept fixed. Across all nine probe
types, the test performance of BiAL-FixMatch on CIFAR10-LT remains very similar, with only
minor fluctuations in accuracy. This observation indicates that BiAL does not rely on a specific color
or pattern for the no-information inputs; instead, it is robust to the exact instantiation of different
baselines used for bias estimation.

Overall, the ablation in Tab. 11 shows that BiAL is largely insensitive to the exact choice of no-
information baseline, as long as the probe does not introduce strong high-frequency noise. For all
constant-color images (black, gray, red, green, blue, white), the test accuracy of BiAL-FixMatch and
BiAL-CCL stays within a narrow band, and the black baseline is only marginally better than other
solid colors. This is consistent with our bias-estimation design: when the input is spatially con-
stant, early convolution and normalization layers remove most absolute-intensity differences and
the classifier is effectively probed by a “featureless” input, so the estimated bias bt mainly reflects
the model’s intrinsic class preference rather than the specific RGB value. In contrast, high-variance
Gaussian noise yields a clearly inferior probe, as the random high-frequency patterns excite filters
in an unstable and input-dependent way, increasing the variance of the bias estimate and thus the
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Table 11: Effect of different no-information baseline images on CIFAR10-LT with BiAL-FixMatch
and BiAL-CCL.

Probe type RGB value / description BiAL-FixMatch BiAL-CCL

Black (0, 0, 0) 83.9 86.5
Gray (128, 128, 128) 83.5 86.3
Red (255, 0, 0) 82.9 86.1
Green (0, 255, 0) 83.7 86.2
Blue (0, 0, 255) 83.9 86.4
White (255, 255, 255) 83.2 86.3
Gaussian noise low-variance noise, clipped to valid range 74.5 82.1
Gaussian-filtered Gaussian-blurred random patterns 80.1 84.7
Non-image (511, 511, 511) (out-of-range constant) 83.0 86.2

mismatch between bt and the effective pseudo-label prior π̃PL
t , which our theory links to higher

balanced error and regret. Gaussian-filtered noise, which suppresses these high-frequency fluctua-
tions, sits between the two extremes, while the out-of-range “non-image” constant behaves similarly
to other constant baselines, further indicating that BiAL only requires structurally uninformative
probes rather than a particular color. Taken together, these results empirically confirm that BiAL
does not rely on a specific baseline color and that potential correlations between certain colors and
object classes (such as “blue = sky”) do not materially affect its debiasing behavior.

F COMPARISON WITH OTHER METHODS

F.1 COMPARISON WITH CDMAD

CDMAD, a post-hoc score correction that leaves baseline losses optimizing raw logits, subtracts a
bias vector estimated from non-informative inputs mainly for pseudo-labeling and test inference.
And BiAL internalizes debiasing as a unified training objective: it systematically replaces logits
z with bias-aware energies Et = z − βtbt in all modules, including supervised CE/LDAM, unla-
beled consistency and pseudo-labels, contrastive/prototype heads, and test-time prediction, thereby
enforcing a single, consistent decision rule throughout training and inference. Methodologically,
BiAL tracks the epoch-varying effective prior induced by SSL via a centered log-mean-exp bias
estimator updated with EMA and governed by a warm-up/ramp on βt, providing stability and con-
trollability absent in CDMAD’s one-shot subtraction. This objective-level integration also makes
BiAL loss-family compatible and theoretically cleaner by reducing prior-mismatch regret as the la-
bel distribution drifts, while retaining strict generality. With appropriate choices of the bias estimate
bt, strength βt, and where the correction is applied, BiAL can reproduce the decision behavior of
CDMAD and LA, while extending beyond them when the same bias-aware energy is used uniformly
across training and inference. In practice, BiAL achieves these gains with negligible overhead, de-
livering stronger end-to-end consistency, better stability under drift, and broader extensibility than
CDMAD.

F.2 COMPARISON WITH DEBIASPL

Both methods correct class-prior deflection via a class-wise additive term before softmax, but they
differ in what is estimated, where it is applied, and how broadly it shapes training. DebiasPL builds
a data-driven dynamic prior from unlabeled predictions, using EMA of the model’s marginal over
unlabeled data log p̂ , and subtracts it mainly for pseudo-labeling, often paired with a p̂-aware mar-
gin; supervised CE typically remains on raw logits. BiAL instead measures a model-intrinsic bias
via non-informative probes bt and internalizes debiasing at the objective level, replacing logits by
bias-aware energy Et = z − βtbt everywhere, yielding a single, train–test-consistent decision rule.
Practically, BiAL offers finer stability controls and broader compatibility/extensibility, and it sepa-
rates inherent model bias from data-distribution effects, which helps reduce prior-mismatch regret
under drifting effective priors in SSL. Notably, BiAL can reproduce DebiasPL-style behavior by
setting bt ← log p̂ and applying Et only to pseudo-labels/test, but it extends beyond DebiasPL by

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

turning debiasing from a localized correction into a unified, stable, and end-to-end training objective
with negligible extra compute.

G THE USE OF LARGE LANGUAGE MODELS

In this paper, the use of LLM mainly exists in the polishing of the article and the adjustment of some
table formats.
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