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ABSTRACT

With the edges associated with labels and directions, the so-called multi-relational
graph possesses powerful expressiveness, which is beneficial to many applica-
tions. However, as the heterogeneity brought by the higher cardinality of edges
and relations climbs up, more trivial relations are taken into account for the down-
stream task since they are often highly correlated to the target. As a result, with
being forced to fit the non-causal relational patterns on the training set, the down-
stream model, like graph neural network (GNN), may suffer from poor general-
izability on the testing set since the inference is mainly made according to mis-
leading clues. In this paper, under the paradigm of graph convolution, we probe
the multi-relational message passing process from the perspective of causality and
then propose a Message Intervention method for learning generalizable muLti-
rElational gRaph representations, coined MILER. In particular, MILER first en-
codes the vertices and relations into embeddings with relational and directional
awareness, then a message diverter is employed to split the original message flow
into two flows of interest, i.e., the causal and trivial message flows. Afterward, the
message intervention is carried out with the guidance of the backdoor adjustment
rule. Extensive experiments on several knowledge graph benchmarks validate the
effectiveness as well as the superior generalization ability of MILER.

1 INTRODUCTION

Multi-relational graphs (MRGs) are a family of graphs where the edges are associated with labels
and directions. MRGs differentiate themselves by the heterogeneity of edges. Numerous research
efforts (Schlichtkrull et al., 2018; Bordes et al., 2013; Vashishth et al., 2020; Dettmers et al., 2018)
have been made to efficiently integrate the ample heterogeneous knowledge and learn more expres-
sive representations of the graph components, such as vertices and edges. As a concrete type of
MRGs, Knowledge Graphs (KGs) have been applied to various downstream applications with the
help of multi-relational graph representation learning (MRGRL), such as information retrieval (Shen
et al., 2022), question answering (Qiu et al., 2020), and semantic matching (Wang et al., 2022).

In the literature, a majority of works focusing on MRGRL lies in two threads. The first line of
works (Bordes et al., 2013; Yang et al., 2015; Trouillon et al., 2016; Dettmers et al., 2018) has paid
attention to embedding knowledge graphs by vectorizing the entities and relations, and learning low-
dimensional representations under specific optimization criterion (e.g., translation). These methods
mostly ignore the structural information that could bring benefits to the representation learning. The
other line of works counts on the graph neural networks to capture the structural properties of the
multi-relational graph. The main idea of these works is to bring relation awareness into the graph
convolution process. For example, Schlichtkrull et al. (2018); Shang et al. (2019) utilized relation-
specific filters to distinguish different relation types during convolution. Vashishth et al. (2020); Ye
et al. (2019); Chen et al. (2022) attempted to encode vertices together with the relations to learn
more comprehensive representations and alleviate the over-parameterization problem.

Nevertheless, with the increase of heterogeneity in multi-relational graphs, the generalization issue
is worth pondering. Intuitively, the expressiveness of a multi-relational graph is expected to grow
with the diversity of relations because of the enriched knowledge. This is, however, not always
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tenable as not all the relations are truly useful for the final task. Parts of the relations could establish
a spurious correlation with the downstream task in the training phase, which probably leads to poor
generalizability in the inference phase. For example, consider a training query (Mission Impossible
II, language, ?) and a test query (Crouching Tiger, Hidden Dragon, language, ?), which are two
film-related queries based on the knowledge graph. In the training stage, several relational clues
can be involved to infer this query, such as genre, country, and release year, where the country is
supposed to be the rationale for answering this query. Unfortunately, if some trivial relation types,
say, release year, have a high correlation with the query in the training set, the model would tend
to make the prediction based on these relations instead of those that really matter to the answer.
Consequently, when it comes to the inference, the model could possibly follow the patterns in the
training set and mistakenly answer this query as: the language of Crouching Tiger, Hidden Dragon
is English, whereas the movie is a Chinese movie which happens to have the same release year as
Mission Impossible II.

How to overcome the generalization issue brought by the heterogeneity in MRGs is indeed chal-
lenging. Firstly, with the model naturally being forced to fit the training data (Chang et al., 2020),
it is non-trivial to explore which relations really account for the task, i.e., should generalize to the
test set. Besides, different vertices have different relational contexts, and the crucial relations cannot
be determined in a general way. Toward this end, we have investigated the causal story of multi-
relational message passing, where the trivial relational message acts as a confounder between the fi-
nal prediction and the causal relational message. In order to remedy the backdoor path opened by the
confounder, we propose a Message Intervention method for learning generalizable muLti-rElational
gRaph representations, named MILER. Specifically, we first hire a composition-based encoder to
encode the vertices and relations with directional and relational awareness. Then, for each relation,
we propose a message diverter to split the original message flow into two flows of interest, i.e., the
causal and trivial message flows, with a learnable causal gate. Moreover, instructed by the backdoor
adjustment rule, we formulate the optimization objective to estimate the interventional distribution,
and carry out the intervention with the trivial classifier (scorer) from a message tank acting on the
causal classifier (scorer). To sum up, the contributions of this work are as follows:

• To the best of our knowledge, we are among the first to study the generalization issue brought
by the heterogeneity on multi-relational graphs. We actually inspect the multi-relational message
passing process with the help of causal inference.

• We propose a generalizable multi-relational graph representation learning approach via message
intervention, called MILER.

• Extensive experiments on multiple knowledge graph benchmark tasks validate the effectiveness
of MILER. In addition, we demonstrate that MILER can effectively alleviate the generalization
issue and deliver human understandable interpretability.

2 NOTATIONS AND TASK FORMULATION

Notations. We denote a multi-relational graph as G = {V, E ,R,X ,Z}, where V and R are the
set of vertices and relations, respectively, E = {(u, r, v)|u, v ∈ V, r ∈ R} is the set of edges in
which each edge (u, r, v) indicates that there is a relation r from vertex u to v, andX andZ denote
the initial representations of vertices and relations, which can either be randomly initialized or filled
with semantic features. Similar to (Marcheggiani & Titov, 2017; Vashishth et al., 2020), we extend
E and R with corresponding inverse edges and relations to enable the bidirectional flow of messages
as follows:

Ẽ = E ∪ {(v, r−1, u)|(u, r, v) ∈ E} ∪ {(u, ρ, u)|u ∈ V}, R̃ = R∪Rinv ∪ ρ,

where R̃ denotes the extended relation set of G, Rinv = {r−1|r ∈ R} and ρ is the self-loop relation.

Task Formulation. Given a multi-relational graph G, the goal is to learn the representations of
both vertices and relations toward different downstream tasks (e.g., link prediction and node clas-
sification). As the heterogeneity could make the model excessively concentrate on some specific
relations due to the high but spurious correlation to the target and thus lead to poor generalizability,
the learned representations are also expected to reveal the decisive relational messages to the final
prediction, and generalize well to the test set.
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3 A CAUSAL GLIMPSE OF MULTI-RELATIONAL MESSAGE PASSING

3.1 STRUCTURAL CAUSAL MODEL
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Figure 1: The Structural Causal Model of multi-
relational message passing process.

Generally, from the perspective of spatial-based
convolution (Bruna et al., 2014; Hamilton et al.,
2017; Gilmer et al., 2017), when performing the
message passing on the multi-relational graph,
the target vertex will accept messages from
neighbor vertices through different relations.
However, not all the relational messages con-
tribute to the final prediction. Some relations
may be mistakenly involved in the prediction
only because they have a high correlation but not
actual causation. Incorporating such misleading
messages could result in poor generalizability
as spurious correlations could be established be-
tween the objective and these trivial relational
messages. To further probe the lying causality,
as shown in Figure 1, we formulate the multi-
relational message passing process with the Structural Causal Model (SCM) (Pearl et al., 2016).

M → Ci and M → Ti. We denote variable M as the messages to be accepted by the target
vertex, and Ci and Ti (i = 1, . . . , N,N = |R̃|) as the causal message and trivial message w.r.t. the
i-th relation ri. These two types of causal paths severally indicate that the messages can be divided
by the relation.

Ti ← M → Ci. This link represents that within a specific relation, the message consists of the
causal and trivial parts. The causal part is the message that plays a decisive role in the prediction,
while the trivial part is the redundant message that could impair the generalizability of the model.

Ci→ C → R← T ← Ti. We denote R as the representation of the target vertex after aggregat-
ing the message, C as the causal component, and T as the trivial component. This link shows that
the aggregated representation is made of causal and trivial components, which mix messages from
different relations, respectively.

R→ Y . With variable Y denoting the final prediction, this link tells an acknowledged fact that the
model will make the prediction based on the learned representations.

When we look at the outcome of the model, we actually expect the prediction is directly inferred
from the causal component (i.e., C → R→ Y ). Unfortunately, the trivial messages (Ti and T ) open
an undesired backdoor path between C and Y . If we want to estimate the causal effect of C on Y ,
we need to find a feasible way to eliminate the causal effect through the backdoor path.

3.2 BACKDOOR ADJUSTMENT

In Section 3.1, we noticed that the conditional probability P (Y |{Ci}) that we naturally estimate
is confounded by the confounder T . According to the do-calculus (Pearl et al., 2016), what we re-
ally desire to estimate is the interventional probability P (Y |do({Ci})). Apparently, P (Y |{Ci}) ̸=
P (Y |do({Ci})). Intuitively, if we condition on variable T , all the backdoor paths between C and R
are blocked. In other words, C and R are d-separated by T . Formally, as derived in Appendix A.1,
the backdoor adjustment is given by:

P (Y |do({Ci})) =
∑
t

P (Y |{Ci}, T = t)P (T = t), i = 1, 2, . . . , |R̃|. (1)

In Section 4.1, we will introduce how we implement such adjustment to get rid of the negative
impact of the trivial component on the prediction.
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Figure 2: (a) An illustration of the multi-relational graph. (b) The overview of our proposed MILER.
The nodes with tilted solid lines denote the trivial component representation, while those with dashed
lines denote the causal component representation.

4 METHODOLOGY

The overview of the architecture is illustrated in Figure 2. In Section 4.1, we will introduce MILER
following single-layer message passing formulation for clarity, and the generalized MILER toward
multi-layer convolution will be introduced in Section 4.2.

4.1 MILER

Encoder. To leverage the heterogeneity in multi-relational graphs, several works have explored
the representation of both vertices and relations (Vashishth et al., 2020; Schlichtkrull et al., 2018;
Shang et al., 2019). Without loss of generality, we take the composition-based operator as the en-
coder, which has been proved able to generalize to several representative multi-relational GNN
methods (Vashishth et al., 2020).

Specifically, given a vertex u ∈ V , based on the multi-relational graph G, u can be encoded as:

eu = Wdir(r)ϕ (xu, zr) , (2)

where xu is the initial representation of vertex u, zr is the initial representation of relation r, ϕ is
the composition operator which can be instantiated as, say, subtraction, multiplication and circular-
correlation, and Wdir(r) is a direction-aware learnable weight which corresponds to independent
weights w.r.t. different relational directions, i.e.,

Wdir(r) =


WO, r ∈ R
WI , r ∈ Rinv

WL r = ρ.

Message Diverter. To enable us to study the causal effect of the causal and trivial messages, we
propose a message diverter to split the message flow into causal message flow and trivial message
flow under a specific relation.

Specifically, given a target vertex v and its r-neighbors Nr(v) = {u|(u, r, v) ∈ Ẽ}, we first aggre-
gate the messages from the neighbors within relation r as:

gr
v =

∑
u∈Nr(v)

1

µr
u,v

eu, (3)

where µr
u,v is a normalization constant and we choose µr

u,v =
√

|N (u)||N (v)| following (Vashishth
et al., 2020). Then, we employ a causal gate to determine how much message of relation r (denoted
as r-message) should be spared for the causal flow:

αr
v = σ

(
aT [WCzr ∥ WCxv]

)
, (4)
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where WC and a are two trainable parameters, [· ∥ ·] is the concatenation operation, σ is the sigmoid
function, and αr

v is the derived causal coefficient that controls the ratio of message flowing into the
causal flow. With the help of the causal gate, we can further obtain the causal and trivial r-messages,
respectively, as follows:

mr
v = αr

vg
r
v, m̃r

v = (1− αr
v)g

r
v, (5)

where mr
v is vertex v’s causal r-message and m̃r

v is its trivial r-message.

Message Receiving and Utilizing. After respectively acquiring the causal and trivial r-message,
we let the target vertex receive messages from all relations in two flows as below:

hv = g

(∑
r

mr
v

)
, h̃v = g

(∑
r

m̃r
v

)
, (6)

where g is the activation function, and hv and h̃v are the causal component and trivial component
of vertex v’s representation, respectively. Besides, we reserve the trivial component into a message
tank T for future use.

To utilize the representations for final prediction, we first use two separate scorers (or classifiers) fC
and fT to take the causal/trivial component representations as input to make respective predictions.
Note that, fC and fT vary according to the downstream task. For instance, in the link prediction
task, the scorer can be but is not limited to ConvE (Dettmers et al., 2018), DistMult (Yang et al.,
2015) or TransE (Bordes et al., 2013), while in the node classification task, the classifier can be an
MLP. For brevity, we will take node classification as the example below.

Optimization. From Section 3.2, we have realized that the distribution we need to estimate is the
interventional distribution P (Y |do({Ci})). Guided by the backdoor adjustment rule in Equation (1),
we define our optimization objective as:

max
Θ

E(m,y),t

[
logPΘ(Y |{Ci}, T = t)

]
, i = 1, 2, . . . , |R̃|

where (m, y) denotes the tuple of the message to be received of a given vertex and its corresponding
label, and Θ denotes the parameters in MILER. Relevant proofs can be found in Appendix A.2.

Besides, as the trivial messages are not supposed to make a difference to the prediction, we further
add a constraint to the above objective to better shield the prediction from the trivial messages, and
rewrite it as follows:

max
Θ

E(m,y),t

[
logPΘ(Y |{Ci}, T = t)

]
,

s.t. E(m,y)

[
Dt [PΘ(Y |{Ci}, T = t)]

]
≤ ϵ, i = 1, 2, . . . , |R̃|,

(7)

where D is the variance of a probability distribution, and ϵ is a small positive constant.

Intervention and Its Implementation. Inspired by (Wu et al., 2022; Cadène et al., 2019), to achieve
the intervention, we instantiate the distribution PΘ(Y |{Ci}, T = t) as:

PΘ(Y |{Ci}, T = t) = fC ⊙ σ(fT (h̃t)), h̃t ∈ T , i = 1, 2, . . . , |R̃|, (8)

where ⊙ is the Hadamard production. Besides, given a vertex with its label y, we here employ a sole
optimizer to train the parameters of fT below:

min
ΘT

L (fT , y) , (9)

where ΘT denotes the parameters of scorer/classifier fT , and L is the loss function. Note that, we
let ΘT be optimized by and only by Equation (9). The rationale behind the implementation is that
once we punish the causal classifier with the trivial classifier that is forced to learn the ground truth,
the training procedure would pay more attention to the causal flow instead of the trivial flow, which
is beneficial for estimating the interventional probability.

Practically, we can jointly optimize the objectives in Equations (7) and (9). After the optimization,
the message diverter is endowed with the ability to distinguish the causal and trivial parts of each
r-message. Hence, we use the causal message split by the message diverter and its classifier fC to
make the inference.
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4.2 GENERALIZATION TO MULTI-LAYER CONVOLUTION

In this subsection, we introduce how to further generalize MILER to multi-layer convolution. When
we try to capture the messages from higher-order neighbors, the roles that the causal and trivial
messages play need to be reassessed. For example, consider the vertex chain u4 → u3 → v in
Figure 2(a) and a two-layer convolution operation. When u3 is trying to send the causal and trivial
messages accepted from u4 to v in the second layer, both the causal and trivial properties may not
hold anymore. This is mainly because of the context change in different layers, i.e., the context has
changed from relation r3 to r2-r3. Therefore, assuming a K-layer convolution, we generalize the
intervention-based multi-relational message passing process as follows:

h(k+1)
v = g

∑
r

αr,k
v

∑
u∈Nr(v)

1

µr
u,v

W k
dir(r)ϕ

(
pk
u,h

k
r

) ,

h̃(k+1)
v = g

∑
r

(
1− αr,k

v

) ∑
u∈Nr(v)

1

µr
u,v

W k
dir(r)ϕ

(
pk
u,h

k
r

) ,

(10)

αr,k
v = σ

(
akT

[
W k

Ch
k
r ∥ W k

Cp
k
v

])
, (11)

h(k+1)
r = W k

relh
k
r , (12)

pk
u =

{
ψk
([

hk
u ∥ h̃k

u

])
, if k > 0

h0
u, if k = 0.

(13)

where h0
u = xu, h0

r = zr, Wrel is a learnable parameter, and ψ is an MLP to model the non-linear
interactions between causal and trivial messages towards higher-order context. After we obtain the
causal and trivial component representation hK

v and h̃K
v from the last layer, we can perform the

same optimization and intervention strategy as stated in Section 4.1.

5 EXPERIMENTS

5.1 SETUPS

Downstream Tasks for Evaluation. We evaluate MILER with two representative downstream tasks
including link prediction and node classification:

• Link Prediction. This task aims to infer missing edges in a multi-relational graph, which corre-
spond to the missing facts in a knowledge graph. We use two widely-adopted knowledge graph
benchmarks in our experiments: FB15k-237 (Toutanova & Chen, 2015) and WN18RR (Dettmers
et al., 2018). Besides, the metrics adopted for evaluation are Mean Reciprocal Rank (MRR),
Mean Rank (MR) and Hits@N. Following (Bordes et al., 2013), the results are reported under
the filtered setting.

• Node Classification. This task is to predict the labels of nodes within a multi-relational graph
based on the graph structure and the node features (or relations). We evaluate the performance on
three RDF-format datasets (Ristoski et al., 2016) including AIFB, MUTAG, and BGS, in terms
of Accuracy metric.

Baselines. For link prediction, we compare MILER against five non-GNN methods (i.e.,
TransE (Bordes et al., 2013), DistMult(Yang et al., 2015), ComplEx (Trouillon et al., 2016),
ConvE (Dettmers et al., 2018) and RotatE (Sun et al., 2019)), as well as four GNN-based meth-
ods (i.e., RGCN (Schlichtkrull et al., 2018), SACN (Shang et al., 2019), VR-GCN (Ye et al., 2019)
and CompGCN (Vashishth et al., 2020)). For the node classification task, we take four algorithms as
competitors including Feat (Paulheim & Fümkranz, 2012), RDF2Vec (Ristoski & Paulheim, 2016),
RGCN (Schlichtkrull et al., 2018), and CompGCN (Vashishth et al., 2020).

The dataset description and implementation details can be found in Appendix B.1 and Appendix B.2,
respectively.
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FB15k-237 WN18RR
MRR MR Hits@1 Hit@3 Hits@10 MRR MR Hits@1 Hit@3 Hits@10

TransE 0.294 357 - - 0.465 0.226 3384 - - 0.501
DistMult 0.241 254 0.155 0.263 0.419 0.43 5110 0.39 0.44 0.49
ComplEx 0.247 339 0.158 0.275 0.428 0.44 5261 0.41 0.45 0.51

ConvE 0.325 244 0.237 0.356 0.501 0.43 4187 0.40 0.44 0.52
RotatE 0.336 177 0.239 0.373 0.531 0.474 3340 0.426 0.491 0.571

RGCN 0.248 - 0.153 0.258 0.414 - - - - -
VR-GCN 0.248 - 0.159 0.272 0.432 - - - - -

SACN 0.339 203 0.249 0.373 0.521 0.429 3510 0.382 0.453 0.514
CompGCN 0.351 205 0.261 0.385 0.529 0.469 3273 0.436 0.482 0.534

MILER 0.353† 217 0.263† 0.387† 0.531† 0.471 3175 0.437 0.481 0.538

Table 1: Performance comparisons of link prediction on FB15k-237 and WN18RR datasets. The
best scores are in boldface and the second best underlined. (†significantly outperform at 0.01 level)

AIFB MUTAG BGS

Feat 55.55 77.94 72.41
RDF2Vec 88.88 67.20 87.24

RGCN 83.33 67.65 79.31
CompGCN 88.89 83.82 79.31

MILER 88.89 85.29 89.66

Table 2: Performance comparisons of node clas-
sification on datasets AIFB, MUTAG and BGS.
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Figure 3: The variation of neighbor hetero-
geneity against the size of training set.

5.2 MAIN OBSERVATIONS

Overall Performance. For link prediction, the scores of the baselines (except RotatE, SACN, and
CompGCN) are taken from previous papers directly. From Table 1, we can observe that MILER
performs the best w.r.t. 4 out of 5 metrics on FB15k-237, and the best and 2nd-best w.r.t. 2 out of
5 metrics on WN18RR, respectively. Besides, MILER outperforms CompGCN (i.e., the base model
of MILER), which demonstrates that intervening in the message passing and picking those crucial
relations indeed improves the generalizability of the predictive GNN method. Note that, compared
to RotatE, the lower performance of MILER on WN18RR w.r.t. a few metrics are probably because
of the different compositional operators. That is, MILER uses circular correlation as the operator,
while RotatE employs rotation operation. Since the choice of the operators is not the key point for
discussion in this work, we will leave this in our future work.

For the node classification task, CompGCN and RGCN are reimplemented, while the results of
others are from previous works. As shown in Table 2, MILER achieves the best results on MUTAG
and BGS datasets while tying with CompGCN on AIFB dataset.

Generalizability. We evaluate the link prediction performance of MILER and CompGCN on
FB15k-237 and WN18RR datasets by varying the available training set, such that the generaliz-
ability improvement of MILER can be verified accordingly. The detailed training set construction
can be seen in Appendix B.3. The performance of MILER and CompGCN, as well as the improve-
ment of MILER over CompGCN, are plotted in Figure 4. We can see that, the generalizability of both
models is weakened when the training data is limited, while MILER firmly outperforms CompGCN
under different settings, which verifies the superiority of MILER in mitigating the overfitting defect.

In addition, we have also noticed two totally different trends that the improvement of MILER over
CompGCN increases as the volume of training edges on FB15k-237 dataset climbs up, while the
opposite is observed on WN18RR dataset. To explain this difference, in Figure 3, we examine the
heterogeneity variations of these two datasets by counting how many neighbor relation types exist
for each node on average. As can be seen, for FB15k-237 dataset, when more training data is avail-
able, the node’s neighborhood becomes more heterogeneous, which may lower the generalization
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Figure 4: The performance variation of MILER and CompGCN under different proportions of
training edges on two datasets. The improvement percentage is shown by the broken line.
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Figure 5: Parameter sensitivity analysis of MILER.

capability of the downstream model and even counteract the overfitting alleviation that has bene-
fited from the increase of training set. Subsequently, the effectiveness of MILER alleviating trivial
relations in attacking the generalization issue would be paid more attention to. On the contrary, with
the heterogeneous level keeping stable on WN18RR dataset, simply enlarging the training set can
probably ease the overfitting issue without too much help from the message passing intervention.

Parameter Sensitivity. We first examine how the number of intervention samples from the message
tank affects the link prediction performance on two datasets. In Figure 5(a), the performance peaks
when the number of intervention samples is around 40, and in Figure 5(b), the peak occurs around
10. Either too small or too large a sample size could result in performance decline. The possible rea-
son is that too small a sample size cannot fully unleash the power of discovering the crucial relations
for better generalization, while too large a sample size can impair the model’s fitting ability. Be-
sides, too many intervention samples may also pose time and space efficiency issues. Therefore, it
is important to find a satisfactory trade-off.

We also investigate the impact of the constraint in Equation (7), where we utilize the method of La-
grange multipliers to leverage such constraint into the optimization. We use a regularization hyper-
parameter to imply the constraint strength. As shown in Figure 5(c) and Figure 5(d), with the absence
of the constraint (the regularization coefficient is tuned to be small), the performance is faced with a
huge fall, which validates the effectiveness of the constraint learning. Also, the strength should not
be set too large so as to avoid domination over the main optimization objective.

5.3 CASE STUDY

In Figure 6, we showcase the prediction of MILER on the FB15k-237 dataset. In particular, MILER
scores Britney being a female 0.9937, while CompGCN scores 0.9368. In Figure 6(a), we illustrate
several relations that might be helpful for inference. We also highlight those relations that MILER
considers as causal relations by the causal gate in the message diverter. Specifically, in this study,
if the causal score is greater than 0.5, we see it as a causal relation. As can be seen, MILER has
selected the evidence that is intuitively useful for the inference, such as people she has broken up
with or had a romantic relationship with, since we can infer Britney’s gender through these people’s
gender. In the meantime, MILER has shielded the inference from the relations such as friendship
and living location, which have nothing to do with gender. Moreover, we track the co-occurrence
of the gender relation and these evidential relations on the training set in Figure 6(b), which further
proves that MILER made the prediction via causation instead of correlation.
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(a) Inferring the gender of Britney Spears, an Ameri-
can singer.
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Figure 6: An illustration of the case study on FB15k-237 dataset.

6 RELATED WORK

Representation Learning for Multi-Relational Graph. The multi-relation graph distinguishes
itself from universal graphs by its heterogeneity of edges. A group of studies has worked on em-
bedding the components in multi-relational graphs under the paradigm of Graph Convolutional Net-
works (GCN) (Kipf & Welling, 2017). Marcheggiani & Titov (2017) first proposed a directed GCN
to model the syntactic dependency graphs by introducing direction-specific filters. Schlichtkrull et al.
(2018) assigned a relation-specific weight to each relation and designed basis and block-diagonal de-
compositions to address the efficiency issue. Some latest works (Ye et al., 2019; Vashishth et al.,
2020; Chen et al., 2022) also involved the relations into representation learning and achieved
satisfying performance toward different tasks. In the meantime, the representation learning for
multi-relational graph also emerges from another line of works known as knowledge graph em-
bedding (KGE) by respectively regarding the vertices and relations as entities and facts in KG.
Recent works on KGE can be categorized into three genres including: translation-based (Bordes
et al., 2013), factorization-based (Yang et al., 2015; Trouillon et al., 2016) and neural network-
based (Dettmers et al., 2018; Socher et al., 2013) methods. These methods for KGE mostly vector-
ized the entities and facts, and optimized the representations under a specific criterion. However, the
above methods could suffer from the generalization issue with the increase of heterogeneity.

Causal Inference. Causal inference (Pearl et al., 2016) is a powerful tool that aims to analyze
the causality behind the data. Investigating pure causality can help to better understand both data
generation and model inference. Causal inference has proved promising in various communities
such as computer vision (Zhang et al., 2020; Yue et al., 2020), natural language processing (Feder
et al., 2021), and recommender system (Yang et al., 2021; Zhang et al., 2021). Particularly, a body
of research has paid attention to graphs through the lens of causality. Feng et al. (2021) considered
the discrepancy of local structure in GNN and estimated the causal effect of a node’s local structure
for the prediction. Sui et al. (2022) leveraged backdoor adjustment to discover the causal graph
structure for graph classification. Lin et al. (2022) proposed a framework to generate post-hoc causal
explanations for GNN based on latent causal factors by finding which part of the whole graph causes
the final prediction. In this work, we have studied the multi-relational graph neural networks from
the perspective of causality toward generalizable representation learning.

7 CONCLUSION

In this paper, under the paradigm of graph convolution, we investigate the multi-relational message
passing process from the perspective of causality. Then, we propose a message intervention method
for generalizable multi-relational graph representation learning, named MILER, to remedy the gener-
alization issue that exists in multi-relational graphs due to heterogeneity. We first use a composition-
based encoder to embed the vertices and relations with relational and directional awareness, and
then hire a message diverter to split the relational message into the causal and trivial message flows.
Afterward, we achieve the message intervention guided by the backdoor adjustment rule. Through
extensive experiments on several knowledge graph benchmarks toward different tasks, we validate
both the effectiveness and the generalization ability of our proposed method.

9
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8 REPRODUCIBILITY STATEMENT

In this work, we adopted five public datasets, where the description can be found in Appendix B.1.
Particularly, in the generalizability experiments, we used several variants of FB15k-237 and
WN18RR datasets by adjusting the proportion of training edges. The modification details can be
found in Appendix B.3. Besides, we implemented MILER by Deep Graph Libary (DGL). The im-
plementation details are listed in Appendix B.2. Following ICLR policies, we will anonymously re-
lease the code to the reviewers and ACs during the discussion stage. For the baselines, the code that
we use to reproduce and the corresponding hyperparameters are also introduced in Appendix B.2.
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A PROOFS

A.1 DERIVATION OF BACKDOOR ADJUSTMENT FOR MULTI-RELATION MESSAGE PASSING

According to the do-calculus (Pearl et al., 2016), when we try to intervene on a variable in a causal
graph, we remove all the edges that point to the variable and obtain the modified causal graph.
Similarly, when we are conducting the operation do({Ci}) in Figure 1, the original SCM can be
modified to Figure 7, where all edges point to Ci are cut off.
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Figure 7: The modified version of the SCM in Figure 1 (in the main text).

Considering the two versions of SCM, the interventional distribution P (Y |do({Ci})) in Equa-
tion (1) can be derived by:

P (Y |do({Ci})) =
∑
t

P (Y |do({Ci}), T = t)P (T = t|do({Ci})) (A.1)

=
∑
t

P (Y |do({Ci}), T = t)P (T = t) (A.2)

=
∑
t

P (Y |{Ci}, T = t)P (T = t), (i = 1, 2, . . . , |R̃|), (A.3)

where Equation (A.1) is derived by Bayesian Rule, Equation (A.2) is because T is independent with
{Ci} after the removal of the edges and the removal will not affect the prior of T , and Equation (A.3)
is because causal effect from Ci and T to Y will not change no matter the existence of the removed
edges.

Moreover, we also noticed that given the conditional distribution P (Y |{Ci}):

P (Y |{Ci}) =
∑
t

P (Y, T = t|{Ci})

=
∑
t

P (Y |{Ci}, T = t)P (T = t|{Ci})

=
∑
t

P (Y |{Ci}, T = t)P (T = t) · P ({Ci}|T = t)

P ({Ci})
,

(A.4)

the interventional distribution P (Y |do({Ci})) is not theoretically equal to P (Y |{Ci}) because of
the extra term.

A.2 DERIVATION OF THE OPTIMIZATION OBJECTIVE

As shown in Section 3.2, we intend to estimate the interventional distribution P (Y |do({Ci})). Ac-
cording to Maximum Likelihood Estimation (MLE), the optimization objective can be formulated
as follows:

max
Θ

E(m,y)

[
logPΘ (Y |do ({Ci}))

]
, i = 1, 2, . . . , |R̃|, (A.5)

where m denotes the relational message that the node is about to receive from neighbors and y is its
corresponding label. In MILER,m can be divided into the causal message and trivial message by the
proposed message diverter, and thus can be sampled for estimating the interventional distribution.
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Link Prediction Node Classification
FB15k-237 WN18RR AIFB MUTAG BGS

Vertices 14,541 40,943 8,285 23,644 333,845
Edges 310,116 93,003 29,043 74,227 916,199

Relations 237 11 45 23 103
Labeled - - 176 340 146
Classes - - 4 2 2

Table 3: Statistics of the datasets used in our work.

Please refer to Section 4.1 for more details. Then we let O = E(m,y)

[
logPΘ (Y |do ({Ci}))

]
, and

we have:
O = E(m,y)

[
logPΘ (Y |do ({Ci}))

]
= E(m,y)

[
log
∑
t

(PΘ(Y |{Ci}, T = t)P (T = t))
]

= E(m,y)

[
logEt [PΘ(Y |{Ci}, T = t)]

]
≥ E(m,y),t

[
logPΘ(Y |{Ci}, T = t)

]
.

(A.6)

Thus:
max
Θ

O ⇐⇒ max
Θ

E(m,y),t

[
logPΘ(Y |{Ci}, T = t)

]
, i = 1, 2, . . . , |R̃|. (A.7)

B MORE EXPERIMENTAL DETAILS

B.1 DATA DESCRIPTION

In this work, we use the following two datasets for link prediction:

• FB15k-237 (Toutanova & Chen, 2015) is the subset of the knowledge graph dataset FB15k (Bor-
des et al., 2013). FB15k-237 removes the reverse triples from FB15k to avoid unreasonable
inference on these triples.

• WN18RR (Dettmers et al., 2018) is the subset of WN18 (Bordes et al., 2013). A similar modifi-
cation is conducted to cure the flaws of the complete set.

As for the node classification task, we use three RDF-format datasets (Ristoski et al., 2016) as
follows:

• AIFB describes the AIFB research institute about the staff, research groups and publications.
The goal is to predict the affiliation of people in the dataset.

• MUTAG is a dataset that was originally published for the DL-Learner toolkit1. It gives informa-
tion on hundreds of complex molecules that are potentially carcinogenic. The goal is to classify
whether the molecule is mutagenic or not.

• BGS describes the geological measurements in Great Britain. The goal is to predict the lithogen-
esis property of named rock units.

The statistics of the above datasets are given in Table 3.

B.2 IMPLEMENTATION DETAILS

We implemented MILER for both link prediction and node classification tasks using Deep Graph
Library2 (DGL) 0.8.1 (Wang et al., 2019). We trained the model on Ubuntu 16.04.7 LTS Linux

1http://www.dl-learner.org
2https://www.dgl.ai
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Hyperparameter Link Prediction Node Classification

# layers {1, 2} {1, 2, 3}
learning rate {0.01, 0.005, 0.001} {0.01, 0.005, 0.001}

batch size {256, 512, 1024} -
dropout {0, 0.1, 0.3} {0, 0.1, 0.3, 0.5, 0.7}

intervention sample size {10, 20, 40, 50} {20, 50, 100, 200}
L2 regularization 0 {0, 0.01, 0.0001}

layer size 200 {32, 64}
regularization for optimizing
Eq.(9) & constraint in Eq.(7)

{0.001, 0.01, 0.1, 1} {0.01, 0.1, 1}

Table 4: Hyperparameter candidates on two tasks.

Machine with 160 cores, 1510G of RAM, and NVIDIA A100 GPU with 40GB of GPU memory.
For both tasks, we took circular correlation as the composition operator. We used randomly ini-
tialized embeddings as the input features of both vertices and relations. We split all the standard
datasets into train, validation, and test sets following (Schlichtkrull et al., 2018). We utilized Adam
optimizer (Kingma & Ba, 2015) for optimization, and reported the average results over 5 runs using
different initial parameters. Specifically, in the link prediction, we set the input size as 100, and
used ConvE (Dettmers et al., 2018) as the scorer. Then, we performed a hyperparameter search
on the validation set following Table 4. In the node classification, we set the input size as 32, and
used a single-layer MLP as the classifier. A similar hyperparameter search was conducted based on
Table 4.

Regarding the baselines, we reproduced RotatE3, SACN4, and CompGCN5 in the link prediction,
and RGCN6 and CompGCN in the node classification by ourselves, while using the results origi-
nally reported for the remainder. For RotatE and SACN, we followed the officially recommended
hyperparameters, while for RGCN and CompGCN, we tuned the shared hyperparameters according
to Table 4.

B.3 DATASET MODIFICATION FOR GENERALIZABILITY EXPERIMENTS

In the experiments, we used the variants of the standard FB15k-237 and WN18RR datasets with
different proportions of training edges to validate the generalization ability. Here we introduce how
we construct these variant datasets. Specifically, given a training proportion, we first calculate how
many edges need to be removed from the training set compared with the standard split. Then we take
out these edges from the rear of the standard training set, orderly divide them in half, and dispatch
the two counterparts into the validation and test set, respectively. Therefore, the modification is
completely deterministic and reproducible.

3https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding
4https://github.com/JD-AI-Research-Silicon-Valley/SACN
5https://github.com/dmlc/dgl/tree/master/examples/pytorch/compGCN
6https://github.com/dmlc/dgl/tree/master/examples/pytorch/rgcn-hetero

15

https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding
https://github.com/JD-AI-Research-Silicon-Valley/SACN
https://github.com/dmlc/dgl/tree/master/examples/pytorch/compGCN
https://github.com/dmlc/dgl/tree/master/examples/pytorch/rgcn-hetero

	Introduction
	Notations and Task Formulation
	A Causal Glimpse of Multi-Relational Message Passing
	Structural Causal Model
	Backdoor Adjustment

	Methodology
	MIler
	Generalization to Multi-Layer Convolution

	Experiments
	Setups
	Main Observations
	Case Study

	Related Work
	Conclusion
	Reproducibility Statement
	Proofs
	Derivation of Backdoor Adjustment for Multi-Relation Message Passing
	Derivation of the Optimization Objective

	More Experimental Details
	Data Description
	Implementation Details
	Dataset Modification for Generalizability Experiments


