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Abstract

The deep connections between Partial Differential Equations (PDEs) and Graph Neural
Networks (GNNs) have recently generated a lot of interest in PDE-inspired architectures
for learning on graphs. However, despite being more interpretable and better understood
via well-established tools from PDE analysis, the dynamics these models use are often
too simple for complicated node classification tasks. The recently proposed Neural Sheaf
Diffusion (NSD) models address this by making use of an additional geometric structure
over the graph, called a sheaf, that can support a provably powerful class of diffusion
equations. In this work, we propose Neural Sheaf Propagation (NSP), a new PDE-based
Sheaf Neural Network induced by the wave equation on sheaves. Unlike diffusion models
that are characterised by a dissipation of energy, wave models conserve a certain energy,
which can be beneficial for node classification tasks on heterophilic graphs. In practice, we
show that NSP obtains competitive results with NSD and outperforms many other existent
models on several datasets.
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1. Introduction

Since their introduction (Scarselli et al., 2008), Graph Neural Networks (GNNs) have shown
outstanding results in a broad range of applications, from physics simulations (Shlomi et al.,
2020) to protein folding (Jumper et al., 2021). The key idea is to leverage the inductive
bias induced by the topology of graph-structured data, represented by the connectivity
structure, to perform graph representation learning tasks. However, it has been shown
that pioneering works on GNNs, like the Graph Convolutional Networks (GCNs) (Kipf and
Welling, 2016) tend to suffer from oversmoothing Oono and Suzuki (2019) and perform
poorly on heterophilic datasets Zhu et al. (2020a). In the former case, GCNs with many
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Figure 1: Neural sheaf propagation (NSP) induced by the wave equation on sheaves. Within
the sheaf framework, we can use the (normalised) sheaf Laplacian△F to discretise
the solution to the wave equation over nodes of the graph which forms our network
layers.

layers tend to have nodes that aggregate features from remote parts of the underlying graph,
leading to the inability to exhibit local patterns over the underlying graph domain, which
jeopardises the overall performance. In the latter case, GCNs assume that nodes, that are
connected, will share the same label, which is an inhibitive inductive bias in most of the
real-world scenarios.

To overcome these limitations, Hansen and Gebhart (2020), Bodnar et al. (2022) intro-
duced generalisations of graph convolutional networks by equipping the underlying graph
with the structure of a cellular sheaf Curry (2014) (see section 2 for a review). Sheaves are
used to construct convolution via the sheaf laplacian. The richer harmonic space of such
sheaf laplacians give better node separation powers. Hansen and Gebhart (2020) introduced
sheaf convolutional networks with a one dimensional sheaf, while Bodnar et al. (2022) in-
troduced Neural Sheaf Diffusion which allows higher dimensional sheaves in combination
with learning the sheaf itself from the data Barbero et al. (2022); Bodnar et al. (2022).

In this work, we aim to exploit recent works on PDE-based GNNs Eliasof et al. (2021);
Chamberlain et al. (2021) to introduce Neural Sheaf Propagation (NSP), a procedure used
to induce the wave equation on sheaves. Unlike sheaf diffusion models Bodnar et al. (2022);
Barbero et al. (2022) or other ODE- or PDE-based GNNs Di Giovanni et al. (2022); Cham-
berlain et al. (2021), characterised by a dissipation of energy, wave models conserve energy.
This can be beneficial for node classification tasks on heterophilic graphs since the features
will generally tend to be less smooth. In related work, GNNs that are discretisations of
second-order ODEs have been shown to avoid oversmoothing Rusch et al. (2022).

In Section 2, we review the required background on graph neural networks, cellular sheaf
theory and neural sheaf diffusion. Section 3 defines the Neural Sheaf Propagation (NSP), a
procedure used to induce the wave equation on sheaves. Finally, in Section 4, evaluate this
technique on several datasets with varying homophily levels for the node classification task.

2. Background

We encourage the reader to consult Curry (2014); Hansen and Ghrist (2019); Hansen (2020)
for an in-depth overview of cellular sheaf theory and Bodnar et al. (2022) for a theoretical
analysis regarding neural sheaf diffusion.
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Cellular Sheaves Given an undirected graph G = (V,E), a cellular sheaf F over G
consists of: (1) an assignment of a real vector space F(v) for each v ∈ V , (2) an assignment
of a real vector space F(e) for each e ∈ E, and (3) a linear map Fv⊴e : F(v) → F(e)
whenever e is an edge containing v.

We refer to the vector spaces F(v) and F(e) as stalks and the linear maps between them
as restriction maps. For our purposes, elements of a vertex stalk F(v) correspond to feature
vectors xv, while the edge stalks F(e) serve as ancillary spaces in which vertex features can
mix. The space C0(G;F) of 0-cochains consists of collections of feature vectors x = (xv)v∈V .
The sheaf Laplacian LF : C0(G,F) → C0(G,F) is a linear operator defined on each stalk
as LF (x)v =

∑
u,v⊴eFT

v⊴e(Fv⊴exv − Fu⊴exu) The sheaf Laplacian is a symmetric positive

semi-definite block matrix. The diagonal blocks are LFv,v =
∑

v⊴eF⊤
v⊴eFv⊴e, while the off-

diagonal blocks are LFv,u = −F⊤
v⊴eFu ⊴ e. The normalised sheaf Laplacian ∆F is defined

as ∆F = D− 1
2LFD

− 1
2 where D is the block-diagonal of LF .

Neural Sheaf Diffusion Let us consider a graphG = (V,E). Consider also x ∈ C0(G,F)
to be an nd-dimensional vector obtained by stacking vertically n individual d-dimensional
feature vectors xv ∈ F(v) equipped to each node v ∈ V . If each feature vector allows a
number of channels equal to f , the result is a feature matrix X ∈ R(nd)×f such that each
column of X is a vector that belongs in C0(G,F). Sheaf diffusion is a process defined by
the following differential equation:

Ẋ(t) = −∆F(t)X(t), (1)

evolving on (G,F). In Bodnar et al. (2022), the authors generated a neural network with
layers based on (1). More precisely, the model has layers of the form:

Xt+1 = Xt − σ(∆F(t)(I⊗W t
1)XtW

t
2) (2)

where σ is an activation function. It is worth to remark that both the sheaf F(t) and the
weights Wt

1,W
t
2 in equation (2) vary in time, implying that the underlying ”geometry” is

dynamic as well. The sheaf F(t) is learned as a function of the data X(t).

3. Neural Sheaf Propagation

The interpretation of message passing convolution networks as diffusion processes opens
the question of building models corresponding to other dynamical systems. In this work
we focus on the dynamics induced by a hyperbolic PDE, the wave equation. We consider a
time-dependent process X(t) ∈ C0(G;F). The wave equation is given by:

Ẍ(t) = −∆F(t)X(t). (3)

Unlike the diffusive dynamics of the heat equation, the wave equation conserves a certain to-

tal energy of the signal. Namely, with the energy defined by EF (X) = 1
2

(
||Ẋ||2 +XT∆F(t)X

)
,

we have the following result:

Proposition 1 The propagation through the PDE in (3) preserves the energy EF .
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Proof The proof is standard. Taking the derivative of the energy, we get:

ĖF (X) = ẊT Ẍ+ ẊT∆F(t)X = ẊT (Ẍ+∆F(t)X) = 0

with the last equality coming from (3).

Motivated by this, we introduce a model we call Neural Sheaf Propagation. It is a
discretisation of a general hyperbolic version of (3), followed by a non-linearity. Namely,
we replace the Laplacian term by ∆F(t)(I⊗W t

1)XtW
t
2), and add an activation term.

The discretisation is done using the leapfrog method. Put together, the layers of the
network have the structure:

Xt+1 = 2Xt −Xt−1 − σ(∆F(t)(I⊗W t
1XtW

t
2))

4. Experiments

We evaluate the model proposed in this work on several different datasets, comparing its
performance against several models present in the graph representation learning literature.
Similar to NSD, our model comes with a few variations depending on the type of restriction
maps that it learns: diagonal, orthogonal and general matrices. The results are shown in
Table 1.

The datasets are sorted based on their homophily coefficient, the fraction of edges which
connect nodes of the same class label which ranges from 0.11 to 0.81. The higher the
homophily coefficient, the more homophilic is the datasets. The results are collected over 10
fixed splits, where 48%, 32%, and 20% of nodes per class are used for training, validation,
and testing, respectively. The results shown in Table 1 are selected by taking the test
accuracy corresponding to the highest validation accuracy.

5. Conclusion

In this work we proposed Neural Sheaf Propagation (NSP), a novel PDE-based architecture
induced by the wave equation on (cellular) sheaves. The purpose of this work was to leverage
the recent development on Neural Sheaf Diffusion (NSD) from Bodnar et al. (2022) to build
a model to perform convolution operations that preserve the overall energy of the system
rather than dispel it through the diffusion process. Evaluation of the proposed method
shows that this technique achieves competitive results in several node classification tasks
and outperforms the other models in the most heterophilic setting. However, the presented
results are preliminary. We plan to investigate the interplay between energy conservation
and classification accuracy on heterophilic graphs more systematically in the future.
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Table 1: Results on node classification datasets sorted by their homophily level. Top three
models are coloured by First, Second, Third. Our models are marked with NSP
for Neural Sheaf Propagation. NSD represents Neural Sheaf Diffusion

Texas Wisconsin Film Squirrel Chameleon Cornell Citeseer Pubmed Cora
Hom level 0.11 0.21 0.22 0.22 0.23 0.30 0.74 0.80 0.81
#Nodes 183 251 7,600 5,201 2,277 183 3,327 18,717 2,708
#Edges 295 466 26,752 198,493 31,421 280 4,676 44,327 5,278
#Classes 5 5 5 5 5 5 7 3 6

Diag-NSP 85.68±5.93 89.02±3.84 37.12±1.31 48.78±2.45 61.80±2.31 76.22±4.49 76.82±1.78 89.38±0.56 87.02±1.91

O(d)-NSP 87.03±5.51 87.06±4.13 36.56±1.15 49.54±1.87 61.01±4.14 76.22±4.95 76.77±1.61 89.23±0.51 86.22±1.55

Gen-NSP 84.60±3.43 87.45±4.40 37.07±1.20 50.11±2.03 62.85±1.98 76.49±5.28 76.85±1.48 89.42±0.33 87.38±1.14

NSD (max) 85.95±5.51 89.41±4.74 37.81±1.15 56.34±1.32 68.68±1.73 86.49±7.35 77.14±1.85 89.49±0.40 87.30±1.15

GGCN 84.86±4.55 86.86±3.29 37.54±1.56 55.17±1.58 71.14±1.84 85.68±6.63 77.14±1.45 89.15±0.37 87.95±1.05

H2GCN 84.86±7.23 87.65±4.98 35.70±1.00 36.48±1.86 60.11±2.15 82.70±5.28 77.11±1.57 89.49±0.38 87.87±1.20

GPRGNN 78.38±4.36 82.94±4.21 34.63±1.22 31.61±1.24 46.58±1.71 80.27±8.11 77.13±1.67 87.54±0.38 87.95±1.18

FAGCN 82.43±6.89 82.94±7.95 34.87±1.25 42.59±0.79 55.22±3.19 79.19±9.79 N/A N/A N/A
MixHop 77.84±7.73 75.88±4.90 32.22±2.34 43.80±1.48 60.50±2.53 73.51±6.34 76.26±1.33 85.31±0.61 87.61±0.85

GCNII 77.57±3.83 80.39±3.40 37.44±1.30 38.47±1.58 63.86±3.04 77.86±3.79 77.33±1.48 90.15±0.43 88.37±1.25

Geom-GCN 66.76±2.72 64.51±3.66 31.59±1.15 38.15±0.92 60.00±2.81 60.54±3.67 78.02±1.15 89.95±0.47 85.35±1.57

PairNorm 60.27±4.34 48.43±6.14 27.40±1.24 50.44±2.04 62.74±2.82 58.92±3.15 73.59±1.47 87.53±0.44 85.79±1.01

GraphSAGE 82.43±6.14 81.18±5.56 34.23±0.99 41.61±0.74 58.73±1.68 75.95±5.01 76.04±1.30 88.45±0.50 86.90±1.04

GCN 55.14±5.16 51.76±3.06 27.32±1.10 53.43±2.01 64.82±2.24 60.54±5.30 76.50±1.36 88.42±0.50 86.98±1.27

GAT 52.16±6.63 49.41±4.09 27.44±0.89 40.72±1.55 60.26±2.50 61.89±5.05 76.55±1.23 87.30±1.10 86.33±0.48

MLP 80.81±4.75 85.29±3.31 36.53±0.70 28.77±1.56 46.21±2.99 81.89±6.40 74.02±1.90 87.16±0.37 75.69±2.00
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Appendix A. Details on experiments

Table 1 contains accuracy results for a wide range of models, along with ours, Conn-NSD,
for node classification tasks. The GNN models in Table 1 can be clustered in three main
categories: (1) Classical: GCN Kipf and Welling (2016), GAT Velickovic et al. (2017),
GraphSAGE Hamilton et al. (2017); (2) Models for heterophilic settings: GGCN Yan et al.
(2021), Geom-GCN Pei et al. (2020), H2GCN Zhu et al. (2020b), GPRGNN Chien et al.
(2020), FAGCN Bo et al. (2021), MixHop Abu-El-Haija et al. (2019); (3) Models which
address over-smoothing: GCNII Chen et al. (2020), PairNorm Zhao and Akoglu (2019). To
have a baseline for this learning task a Multi-Layer Perceptron (MLP) is also taken into
account, whose result reported in the last row of Table 1. The MLP is trained using only
the node features and it used to quantify the relevance of the inductive bias provided by
graph structure in performing the learning task.

Table 2 contains the ranges of hyperparameters used in the experiments.

Table 2: Hyper-parameter ranges for the experiments.
WebKB Wikipedia Planetoid Film

Hidden channels {8, 16, 32} {8, 16, 32, 64} {8, 16, 32, 64} {8, 16, 32}
Stalk dim d [2, 5] [2, 5] [2, 5] [2, 5]
Layers {2, 3, 4, 5, 6} {2, 4, 6, 8} {2, 4, 6, 8} {1, 2, 3}
Learning rate [1× 10−3, 1× 10−1] [1× 10−3, 1× 10−1] [1× 10−3, 1× 10−1] [1× 10−3, 1× 10−1]
Weight decay (regular parameters) Log-U(−9.2,−4.5) Log-U(−10.0,−4.5) Log-U(−9.2,−4.5) Log-U(−9.2,−4.5)
Weight decay (sheaf parameters) Log-U(−11.0,−4.5) Log-U(−11.0,−4.5) Log-U(−11.0,−4.5) Log-U(−11.0,−4.5)
Input dropout range(0.1, 0.9, 0.1) range(0.1, 0.9, 0.1) range(0.1, 0.9, 0.1) -
Layer dropout range(0.1, 0.9, 0.1) range(0.1, 0.9, 0.1) range(0.1, 0.9, 0.1) -
Step Size [0.1, 1.0] [0.1, 1.0] [0.1, 1.0] [0.1, 1.0]
Use Second Linear Transform - {0, 1} {0, 1} {0, 1}
Use Higher P {0, 1} {0, 1} {0, 1} {0, 1}
Use Lower P {0, 1} {0, 1} {0, 1} {0, 1}
# △ eigenvectors {2, 8, 16} - -
New △ each step {0, 1} - -
Optimiser Adam Adam Adam Adam
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