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ABSTRACT

Neuro-symbolic learning (NSL) aims to integrate neural networks with symbolic
reasoning approaches to enhance the interpretability of machine learning mod-
els. Existing methods mostly focus on the long dependency problem of sym-
bolic learning. The important challenge of complex categorization is largely over-
looked. To bridge this gap, we propose the Mixed Multinomial Distribution-based
NSL (MMD-NSL) framework. It seamlessly integrates the handling of long de-
pendency chains and complex semantic categorization within Knowledge Graphs
(KGs). By introducing a continuous Mixed Multinomial Logic Semantic Dis-
tribution, we extend traditional Markov Logic Networks (MLN) to incorporate
context-aware semantic embeddings. Our theoretical innovations, including a bi-
jective mapping between MLNs and continuous multinomial distributions, enable
the capture of intricate dependencies and varied contexts crucial for NSL tasks.
The framework leverages a bilevel optimization strategy, where a transformer-
based upper level dynamically learns mixing coefficients akin to attention mecha-
nisms, while the lower level optimizes rule weights for learning both context and
rule patterns. Extensive experiments on the DWIE benchmarking datasets demon-
strate significant advantages of MMD-NSL over four state-of-the-art approaches. It
achieves 10.47% higher F1-scores on average than the best-performing baseline
across 23 sub-datasets. It advances continuous probabilistic models for neuro-
symbolic reasoning and complex relational tasks.

1 INTRODUCTION

Neuro-symbolic learning (NSL) d’Avila Garcez et al. (2012); Lamb et al. (2020); Besold et al. (2021)
represents a promising frontier in artificial intelligence, aiming to integrate the robustness of neural
networks LeCun et al. (2015); Schmidhuber (2015) with the interpretability and formal reasoning
capabilities of symbolic approaches Newell & Simon (1956); McCarthy (1960). By combining the
two, NSL seeks to address the limitations of traditional neural models, which often struggle with
transparency and the ability to handle structured, rule-based reasoning tasks.

A key objective of NSL is to enhance question-answering (QA) systems by enabling logical reason-
ing over complex logic steps. These reasoning processes resemble the “chain of thought” prompt
approach Wei et al. (2022); Kojima et al. (2022) utilized by large language models (LLMs) Brown
et al. (2020); OpenAI (2023) to reason through problems step by step. As shown in Fig 1, NSL
leverages accumulated historical data to refine the reasoning process, moving beyond traditional
symbolic learning approaches that rely on directly learning hard rules. Instead, NSL emphasizes
the discovery of higher-level patterns in a differentiable framework, allowing for robust handling of
logically similar questions.

Consider, for example in Fig 1, two related QA tasks: Under what circumstances do many doctors
appear at the schoolyard? and Under what circumstances do police choose to patrol at intersec-
tions? Both questions require reasoning about specific categories of people appearing in particular
locations. For the second question, reasoning paths might involve long dependency chains such as
Car accidents → Traffic jams → Conflicts among people → Police presence or Important events →
Crime prevention → Police presence. These examples highlight the complexity of reasoning over
such logical chains, as well as the importance of uncovering high-level generalizable patterns that
can handle these dependencies.
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Figure 1: The figure illustrates an overview of the proposed framework. At the top, it depicts a
question-answering learning scenario that not only requires capturing long dependency chains but
also involves learning ”similar” context categorizations. These categorizations, marked by red and
yellow text highlights, emphasize examples of people-location relationships with similar contextual
patterns. The bottom section demonstrates how the above scenario can be seen as an equivalent path
search problem for a realtion query with its NER-pair context. The bottom-left portion represents the
KG structure, where nodes are color-coded to indicate different NER types, visualizing the node-
based semantic space. On the bottom-right, the diagram transitions to a categorized NER-based
space. In this space, the path search problem is conceptualized as drawing path samples from a
mixed multinomial logic distribution, integrating both logical and contextual semantics.

Two significant challenges arise in this context. First, the reasoning process involves navigating a
vast search space of possible logical paths, making it impractical to enumerate all potential scenarios.
Second, the system must operate in a continuous semantic space that can effectively model and
categorize diverse entity types, such as ”doctors” and ”police,” while capturing their contextual
relationships. Addressing these challenges requires an approach that combines symbolic reasoning
with probabilistic and neural techniques.

This reasoning task can be reframed as a Knowledge Graph (KG) problem as shown in Fig 1, where
answering a question corresponds to finding equivalent logical paths within the graph. To reduce
the complexity of the search space, nodes in the KG (e.g., ”doctors” or ”schoolyard”) are mapped
into a Named Entity Recognition (NER) embedding space. This transformation allows the model
to capture high-level semantic relationships, enabling reasoning over multi-entity combinations and
providing a structured representation for logical reasoning.

In summary, addressing the challenges in NSL requires two critical capabilities: (1) managing long
dependency chains and (2) handling complex semantic categorization across diverse question
types involving NER combinations. While significant advances have been made in addressing long
dependency chains, existing approaches often overlook the complexity of semantic categorization.
This limitation restricts the ability of current NSL models to tackle real-world scenarios, where
entities and relationships often demonstrate diverse and context-sensitive semantics.

To overcome this gap, we propose the Mixed Multinomial Distribution-based NSL (MMD-NSL)
framework. MMD-NSL generalizes the modeling of logical rules and NER-based contexts into a
unified probabilistic framework, leveraging mixed multinomial logic semantic distributions. By
incorporating context-aware probabilistic reasoning, this approach bridges the gap between rule-
based reasoning and context-dependent categorization, enhancing the scalability and interpretabil-
ity of NSL models. MMD-NSL accommodates both complex categorical contexts and long depen-
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dency chains, allowing it to address the limitations of prior methods by modeling structured relations
through context-specific paths.

The flexibility of MMD-NSL is further enhanced by its bilevel optimization strategy. At the upper
level, transformer-based architectures dynamically learn the continuous context logic semantic dis-
tribution as mixing coefficients, similar to attention mechanisms, to capture complex categorization.
At the lower level, rule weights are optimized to refine the modeling of long dependency chains and
symbolic patterns.

From a theoretical perspective, we demonstrate that MMD-NSL establishes a bijective mapping be-
tween Markov Logic Networks (MLN) and continuous multinomial distributions. This mapping
extends the capabilities of MLNs to incorporate categorical contexts through continuous variables,
unifying rule-based reasoning and semantic categorization within a probabilistic framework. By
treating logical rules and NER combinations as latent variables, MMD-NSL relaxes discrete contexts
into continuous semantic spaces, enabling flexible modeling and efficient optimization.

To validate MMD-NSL, we conducted extensive experiments on the DWIE benchmark, which eval-
uates the ability to reason over complex semantic relationships across 23 diverse sub-datasets. Our
results show that MMD-NSL achieves a substantial 10.47% improvement in F1-score over four state-
of-the-art NSL models, demonstrating its superiority in handling both long dependency chains and
semantic categorization.

2 RELATED WORKS

To model logic rules as latent variables in a softened form is a standard approach in many proba-
bilistic NSL frameworks Bach et al. (2017); Dong et al. (2019); Manhaeve et al. (2018); Trouillon
et al. (2016) including softened logic operator Maene & De Raedt (2024) or softened reasoning ar-
chitecture Marra et al. (2021). It introduces flexibility by relaxing strict logical constraints, allowing
the model to handle uncertainties and partial truths.

A significant line of research focuses on Markov Logic Network (MLN)-based NSL, which are a
type of graphical probabilistic model. Although symbolic logic learning effectively captures com-
plex long dependencies, its deterministic nature makes it less suited for uncertain scenarios. To ad-
dress this, MLNs Richardson & Domingos (2006) integrate logic with probabilistic graphical mod-
els by assigning weights to logical formulas, allowing for softened rule structures. Enhancements in
MLN-based models include Lifted Inference Braz et al. (2005); Singla & Domingos (2008); Sourek
et al. (2018); Wu et al. (2020), Lazy Inference Singla & Domingos (2006); Poon et al. (2008),
and Coarse-to-Fine Inference Kiddon & Domingos (2011), all aimed at improving efficiency and
scalability. Notable developments in this domain include Logic Tensor Networks (LTN) Donadello
et al. (2017), which relax logical operators into fuzzy logic using t-norm theory, and Neural Markov
Logic Networks (NMLN) Marra et al. (2019) and Relational Neural Machines Marra et al. (2020),
which employ neural networks to model real-valued differentiable functions in probabilistic logic.
In KG context, semantic logic learning focus on logic chain structure decomposition Cheng et al.
(2022) and composition Cheng et al. (2023). All the above works can be classified under the chain
structure-based NSL direction.

On the other hand, treating logic chains as samples drawn from a rule distribution represents a
distinct generative direction, often based on Multinomial Distributions (MD). This NSL direction
leverages multinomial distributions to effectively model rules within neuro-symbolic frameworks.
For example, Qu et al. (2020) proposed modeling the rule body in the NSL task as a sample drawn
from a multinomial distribution, which can be parameterized by sequence models like Transformers.
Consequently, many Transformer-based NSL models have gained significant attention in the litera-
ture Ru et al. (2021); Xing et al. (2023), where logic rules are learned as latent variables within a
multinomial distribution framework. Even though chain structure-based NSL direction have started
to concern context information of neighbors in subgraphs Han et al. (2023), distribution-based gen-
erative NSL approaches do not incorporate mixtures of distributions to account for category con-
texts. This gap highlights the need to extend these frameworks by integrating category contexts to
enhance the semantic richness and interpretability of NSL models. The proposed MMD-NSL frame-
work bridges this gap.
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3 METHODOLOGY

3.1 OVERVIEW

Our approach extends traditional NSL tasks by incorporating complex category contexts into the
probabilistic framework. In the context of a KG, NSL tasks typically consider long dependencies
expressed in the form rhead ← rj1 ∧ . . . ∧ rjL, where j represents the j-th unique rule body for the
current rhead, and L is the length of the relation along a rule body path. We generalize this to tasks
formulated as ⟨Ck(h), rhead, Ck(t)⟩ ← rj1 ∧ . . . ∧ rjL, where Ck(·) denotes the k-th NER-pair type
of the head-tail nodes, and h and t are the head and tail nodes of the relation rhead . The rule bodies
rj1 ∧ . . .∧ r

j
L correspond to equivalent paths under the same NER type combination as the rule head

rhead within the graph G.

The motivation behind our approach is to treat logical rules and NER combinations as latent vari-
ables and to map them into continuous spaces. Initially, we relax the discrete rule and context
variables using semantic mappings. These relaxed, continuous variables are then paired with rule
weights and context weights to form two distributions: a continuous rule distribution to capture long
dependencies, and a continuous context distribution to account for complex categorical contexts.
This unified framework enables simultaneous modeling of both rule-based logical structures and the
category-specific contexts present in KGs. Under this structure, fuzzy logic can be seen as a specific
instance of continuous logic variables, and MLN as a form of continuous logic distribution. Existing
approaches based on multinomial distributions are also naturally subsumed as a special case where
context complexity is a single context scenario. This unified variable and distribution framework al-
lows for a comprehensive treatment of logical rules and contexts in NSL, bridging the gap between
rule-based reasoning and categorical context modeling within probabilistic structures.

3.2 MIXED MULTINOMIAL LOGIC SEMANTIC DISTRIBUTION

Let z = {zj}Jj=1 be a set of latent variables corresponding to J unique rules for a rhead defined over
a KG G. Similarly, let C = {Ck}Kk=1 represent a set of latent context variables, each correspond-
ing to distinct category combinations (e.g., K different combinations of Named Entity Recognition
(NER) types). We denote zj | Ck as the j-th rule variable conditioned on the k-th context variable,
which specifically corresponds to the structured relation ⟨Ck(h), rhead, Ck(t)⟩ ← rj1∧ . . .∧r

j
L. Both

zj and Ck are discrete variables, where zj = 1 if the rule zj holds true in G and−1 otherwise, corre-
sponding to the relation label y in the KG. The context variable Ck represents a discrete combination
of all possible NER types.

3.2.1 BACKGROUND

In traditional NSL, various methods such as the pioneering MLN based on probabilistic graphical
models, as well as their extensions through fuzzy logic and neural networks, are commonly utilized
to model long dependency relationships. These approaches achieve this by introducing softened
weights and feature functions, which depend on the underlying mechanism—whether fuzzy opera-
tors or neural network-based transformations.

These methods follow a unified foundational formulation, expressed as:

PMLN(z) =
1

Z
exp

 J∑
j=1

wjfj(zj)

 , (1)

where Z is a normalization constant known as the partition function, wj are the weights assigned
to each logical formula (feature), and fj(zj) are the feature functions, determined by either fuzzy
operators or neural network mechanisms, which count the true groundings of the formulas. The
summation is over all unique formulas, indexed by j from 1 to J .
Definition 1. Logic Semantic Variable

The Logic Semantic Variable are the continuous variable in R, derived by relaxing the discrete
logical variables zj and contextual variables Ck through the functions Fcontext(·) or Frule(·).

Following Definition 1, there are two types of Logic Semantic Variable:
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Context Logic Semantic Variable

Fcontext(Ck) = e⊤Ck
(eNERhead ⊙ eNERtail) , (2)

where eCk
is a embedding vector specific to the k-th context combination, capturing the interaction

dynamics between the head and tail NER types. eNERhead and eNERtail are embedding vectors for the
head and tail entities’ NER types, respectively. ⊙ denotes element-wise multiplication.

Fuzzy Logic Semantic Variable When K = 1 (i.e., a single context):

Frule(zj) =
1

2
y(rhead) ·max

G

L∏
l=1

epath(rl), (3)

When K > 1 (i.e., multiple contexts):

Frule(zj | Ck) =
1

2
y(rhead | e⊤Ck

(eNERhead ⊙ eNERtail)) ·max
G

L∏
l=1

epath(rl), (4)

where y(rhead | Ck) ∈ {1,−1} indicates the ground truth label for the relation rhead under context
Ck, representing whether the relation is true (positive) or false (negative). The terms e(rl) ∈ [0, 1]
denote the fuzzy truth values of the relations rl in the rule body, obtained from the KG embeddings.
The product

∏L
l=1 epath(rl) represents the fuzzy conjunction (t-norm) of the relations along a specific

path zj , combining the fuzzy truth values (embedding mapping) of the relations r1, . . . , rL. The
max operator maxG represents a fuzzy disjunction (t-conorm) over multiple paths in the graph G,
selecting the highest-scoring path to focus on the strongest evidence.
Definition 2. Logic Semantic Distribution

The Logic Semantic Distribution is the probability distribution P over the continuous variables
obtained after applying the Logic Semantic functions Frule(·) and Fcontext(·), combined with the
distribution decision weights θ and ϕ (representing learnable context embeddings for eNERhead ⊙
eNERtail ).

Following Definition 2, there are three Logic Semantic Distributions:

Multinomial Logic Semantic Distribution (for K = 1)
PMD = P (θ, Frule(z)), (5)

where θ = {θj}Jj=1 is the set of weights associated with each rule zj , determining how the feature
functions Frule(z) are weighted in the overall Semantic distribution. Since K = 1, the contex-
tual variables Ck are not needed, simplifying the structure to focus on the rule-based logic without
considering multiple semantic contexts.

Context Logic Semantic Distribution In this work, we soften the mixing coefficients into a dis-
tribution π = {πk}Kk=1, which is defined as:

π = P (ϕ, Fcontext(C)), (6)

where ϕ = {ϕk}Kk=1 is the set of context decision weights, with each ϕk determining the influence
of context Ck within the distribution.

Mixed Multinomial Logic Semantic Distribution (for K > 1)
PMMD = P (ϕ, Fcontext(C),θ, Frule(z | C)). (7)

Theorem 1. In the case of K = 1, assume that there exist J unique rules derived from N samples,
and approximate log σ(z) as 1

2z via a second-order Taylor expansion, omitting the constant term
− log(2). There exists a fuzzy logic semantic function Frule(zj), which has the form as in Eq. 3,
that establishes a bijective mapping from the MLN-based logic semantic distribution in Eq. 1 to a
multinomial distribution-based logic semantic distribution:

PMD(z) = P (θ, Frule(z)) =
1

Z(θ)

N !∏J
j=1 nj !

exp

 J∑
j=1

θj · nj · Frule(zj)

 , (8)
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where nj is the count of rule zj , 1
Z(θ)

N !∏J
j=1 nj !

corresponds to the normalization factor 1
Z in MLN,

and the mapping aligns wj with θj , and fj(zj) with nj · Frule(zj). The Z(θ) is:

Z(θ) =

 J∑
j=1

eθj ·Frule(zj)

N

. (9)

Theorem 2. Given that the attention weights αk are computed using the scaled dot-product mech-
anism:

αk =
exp

(
Q⊤Kk√

d

)
∑K

k′=1 exp
(

Q⊤Kk′√
d

) , (10)

where Q = eNERhead ⊙ eNERtail is the element-wise product of the head and tail NER embeddings
as defined in Eq. 2, and Kk = eCk

is the context-specific embedding vector for the k-th context
combination, then under the proper scaling factor

√
d, the attention weights approximate the Context

Logic Semantic Distribution πk:

πk =
exp (Fcontext(Ck))∑K

k′=1 exp (Fcontext(Ck′))
≈ αk, (11)

where Fcontext(Ck) is defined in Eq. 2. Therefore, the attention mechanism in Transformers forms a
distribution that approximates π = P (ϕ, Fcontext(C)) = {πk}Kk=1.
Theorem 3. In the case of K > 1, a mixed multinomial-based logic semantic distribution PMMD
can be established by combining P (ϕ, Fcontext(C)) and P (θ, Frule(z | C)) as:

PMMD = P (ϕ, Fcontext(C),θ, Frule(z | C))

= P (ϕ, Fcontext(C)) · P (θ,ϕ, Frule(z | C))

=

K∑
k=1

πk · PMD =

K∑
k=1

1

Z(θ)

N !∏J
j=1 nj !

exp

log πk +

J∑
j=1

θj · nj · Frule(zj | Ck)

 , (12)

where P (θ,ϕ, Frule(z | C)) follows the form provided in Eq. 8 in Theorem 1. The term Frule(zj |
Ck) is defined as in Eq. 4.

Due to the page limit, the detailed proofs of all the theorems in the main text are delegated in the
appendix.
Remark 1. Traditional MLN and MD-based NSL as Special Cases of MMD-NSL: Traditional
MLN (PMLN) are encompassed within our framework as a Logic Semantic Distribution characterized
by weighted logical relationships. The MD-based NSL, a special case of PMLN, occurs when K =
1. In both cases, the bias term log(πk) does not affect the distribution, as there is no additional
categorization of subpopulations, thus focusing solely on the logical structure without contextual
differentiation.
Remark 2. Mixed Multinomial Logic Semantic Distribution Weight Structure Analogous to Neu-
ral Networks: The structure of the weights θj and the bias terms log πk in the Mixed Multinomial
Logic Semantic Distribution closely resembles the weights and biases found in neural networks. This
analogy highlights how the mixing coefficient and rule-specific weights can be viewed as learning
parameters that influence the continuous relaxation of logical and contextual variables, similar to
neural network layers.
Remark 3. Unified Semantic through KG Embeddings: Both the fuzzy logic semantic and context
logic semantic, as defined in Theorem 1, can be unified within the semantic embeddings mapping
by {eNERhead , eNERtail , epath} of G. This unification is achieved by leveraging embeddings to represent
both rule-based logic and semantic context in a continuous space, enabling joint reasoning over
logical structures and categorical contexts.

3.3 OPTIMIZATION

The overall optimization objective is to maximize the log-likelihood of the Mixed Multinomial Logic
Semantic Distribution PMMD. This distribution combines both the context-dependent logic semantic
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and the rule-based logic semantic into a unified probabilistic framework:

logPMMD = logP (ϕ, Fcontext(C),θ, Frule(z | C)). (13)

In this work, we utilize a bilevel optimization framework due to the nested dependencies between
the mixing coefficient π(ϕ) and the logical rule weights θ. The bilevel structure allows us to jointly
model both the context categories (which depend on ϕ) and the rule dependencies (captured by θ).
These two aspects are interdependent, as the optimal rule weights depend on the contextual semantic
and vice versa. This joint optimization is necessary to learn complex semantic categories from NER-
type combinations and to weight logical rules effectively for capturing long-range dependencies
within KG.

The bilevel optimization is expressed in Eq. 14:

min
ϕ

ℓ(ϕ,θ⋆(ϕ); z | C) (14a)

subject to θ⋆k(ϕ) ∈ argmax
θk

 1

Z(θ)

J∑
j=1

θjk · nj · Frule(zj | Ck)

 , ∀k ∈ {1, . . . ,K}.

(14b)

In Eq. 14a, we maximize the overall objective ℓ(ϕ,θ⋆(ϕ); z | C) by optimizing ϕ, which represents
the parameters of the transformer model Tϕ(z | C). The use of a transformer is appropriate here
because the attention mechanism within the transformer naturally aligns with the computation of
the mixing coefficient π(ϕ), effectively determining the importance of different semantic contexts.
The inputs to the transformer include the logical rule bodies rj1 ∧ . . . ∧ rjL and the context triplet
⟨Ck(h), rhead, Ck(t)⟩, and the loss function, ℓ, is designed to measure how well these rules are
satisfied in the graph G. This upper-level optimization updates ϕ, allowing the model to learn
context representations via attention.

Simultaneously, the lower-level problem (Eq. 14b) focuses on maximizing the context-specific log-
likelihood of the Multinomial Logic Semantic Distribution PMD with respect to θk. The constant
term N !∏J

j=1 nj !
is excluded from the optimization process, as it does not affect the gradients or the

optimization of θk, which are the weights assigned to the rules within each context Ck. By maxi-
mizing the summation of the weighted rule scores, the model learns optimal weights θ⋆k(ϕ) for each
context k, effectively capturing the logical dependencies in the KG that are influenced by the context
semantic learned at the upper level.

3.4 ALGORITHM

The algorithm 1 adopts a bilevel optimization framework, where the lower and upper levels are
optimized iteratively to capture both semantic categories and logical dependencies within KG.

At the lower level, for each context Ck, the current transformer parameters ϕ (obtained from the
upper level) are used to generate candidate rule bodies. Specifically, the transformer encodes the
triplet ⟨Ck(h), rhead, Ck(t)⟩ into the embedding layer using unique indices. It then iteratively gen-
erates r1 to rL, step by step, to form a rule body r1 ∧ . . . ∧ rL. This transformer inference process
is performed multiple times to generate multiple candidate rule bodies. These candidate rule bodies
may include duplicates, which are filtered using a simple uniqueness function. The function ex-
tracts J unique rule bodies rj1 ∧ · · · ∧ rjL corresponding to the query rhead, while also returning the
count nj for each j-th unique rule body. The lower-level optimization focuses on maximizing the
log-likelihood of the Multinomial Logic Semantic Distribution PMD, as outlined in Eq. 14b. Specif-
ically, the context-specific weights θk are optimized by maximizing the summation of the weighted
rule scores. This optimization step allows the model to learn the optimal weights θ⋆k(ϕ) for each
rule, effectively capturing the logical dependencies within each context k in the KG G.

In the upper-level optimization, after updating the rule weights θ⋆k(ϕ) in the lower level, the goal is
to maximize the objective ℓ(ϕ,θ⋆(ϕ)), as given in Eq. 14a. This objective is designed to update the
transformer parameters ϕ, which encode the semantic embeddings and contextual representations.
The transformer model Tϕ embeds the input rule bodies rj1 ∧ . . . ∧ rjL along with their associated
context triplet ⟨Ck(h), rhead, Ck(t)⟩. The attention mechanism within the transformer aligns with

7
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the mixing coefficient πk(ϕ), thereby determining the relative importance of different contexts. The
loss function ℓ measures how well the generated rule bodies align with the constraints in G, refining
both the context embeddings and attention weights throughout the optimization process.

Algorithm 1 Bilevel Optimization for MMD-NSL
1: Initialize parameters: transformer weights ϕ, rule weights θ
2: for each iteration do
3: // Lower-level optimization
4: for each context Ck do
5: Generate rule bodies rj1 ∧ · · · ∧ rjL using current ϕ.
6: Solve Eq. 14b: maximize 1

Z(θ)

∑J
j=1 θjk · nj · Frule(zj | Ck).

7: Update θ⋆k(ϕ) for context Ck.
8: end for
9: // Upper-level optimization

10: Solve Eq. 14a: maximize ℓ(ϕ,θ⋆(ϕ)) using transformer Tϕ.
11: Update ϕ with the generated rule samples and their associated probabilities.
12: end for
13: Return: Optimized parameters ϕ and θ.

4 EXPERIMENT

For evaluating our MMD-NSL, we use a KG relationship predictor as downstream task to assess
algorithm 1. Each relation query to be predicted is treated as a rule query (rule head). Our NSL
rule learner generates relevant rule bodies by sampling from the multiple NER-pair context within
the NSL model, instead of relying on exhaustive path searches through a large KG. These newly
discovered rule bodies provide a more accurate representation of the rule head (i.e., the relation
query), leading to more precise label predictions for the relation query.

4.1 DATA PROBABILISTIC RECOMPILATION

Our objective is to evaluate the diversity of rules across different contexts. The dataset used is from
DWIE (Document-Level Web Information Extraction) Zaporojets et al. (2021), comprising 799 doc-
uments categorized into 10 NER types and 65 relationship categories. For consistency checks, we
utilized 39 golden first-order logic predicates from the DWIE dataset, including atomic formulas
such as player of(X,Y )← member of(X,Y )∧ sport player(X). The dataset was restructured
into a dictionary format, where each key is a triplet 〈NER(head), rule head, NER(tail)〉, and the
corresponding value is a set of rule bodies paired with their frequencies, represented as rule prob-
abilities. This compilation resulted in 23 sub-datasets identified by different rule heads, with each
sub-dataset containing multiple NER combinations that share the same rule head.

4.2 MODEL OPTIMIZATION SETUP

At the upper level, the model employs a transformer-based architecture to learn a Context Logic
Semantic Distribution. The input to the transformer includes the NER combination and the rule
head, with the self-attention mechanism used to compute a continuous mixed coefficient represen-
tation while encoding the rule query (rule head). This allows the model to represent categories and
relations using unique numerical identifiers. The embedding layer for relations has dimensions of
(256, 2R + 1), where R represents the total number of relations (65 in this case). Similarly, the
NER category embedding layer has dimensions of (256, 10), corresponding to 10 distinct NER cat-
egories. The model architecture includes two encoding and decoding layers, with an output layer of
size (256, 2R + 1). The input to the transformer is constructed by concatenating the rule head and
rule body, each of size 4. If the input length is insufficient, padding symbols are added and masked
using a 4×4 positional mask. On average, each rule head generates 50 candidate rule bodies. These
candidates are filtered to remove duplicates and then passed to the lower-level model for further pro-
cessing. At the lower level, the model dynamically initializes weights for each training round. These
weights are specifically tailored to the candidate rule bodies generated by the upper level, capturing
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Figure 2: A probabilistic heatmap illustrating a mixed multinomial logic semantic distribution for
one sub-dataset out of 23. The heatmap represents the top 3 highest probabilities of different rule
bodies for the rule query (rule head: member of ) evaluated across six distinct NER combination
contexts.

their variability, which arises from the stochastic optimization process and the probabilistic nature
of the generated rules. The size of each weight group is represented as (23, J×1), where 23 denotes
the number of rule head categories. Each member of the weight group corresponds to a candidate
rule body and has dimensions of (J×1). This hierarchical structure enables the model to effectively
handle both rule-specific and contextual variations within the optimization process.

4.3 DOWNSTREAM TASK EVALUATION

We selected four closely related and representative works that play a significant role in the theoretical
foundation of our MMD-NSL. These works serve as baselines: LTN represents a fuzzy logic-based
extension of MLNs, corresponding to Eq. 3. NMLN, a neural network-based MLN extension, shares
a similar structure with Eq. 12 as noted in Remark 2. RNNLogic and LogiRE are special cases with
multinomial distribution models as described by Eq. 8.

Our evaluation aims to determine whether MMD-NSL provides a more generalized framework by in-
tegrating the traditional MLN capability for handling long dependency chains with context modeling
from the context semantic distribution to manage complex categorization effectively. This integra-
tion results in a more robust and adaptable paradigm. Therefore, we conducted a fine-grained perfor-
mance analysis at the level of individual rule queries across different NER pair contexts. We com-
pared MMD-NSL against these four baseline models, evaluating performance over 23 sub-datasets,
each grouped by distinct rule heads. Each sub-dataset contains a unique rule head with multiple
NER pair combinations, enabling an assessment of model performance across various relational
contexts using the F1 score as the primary metric. As shown in Table 1, while certain MLN-based
and multinomial-based methods marginally outperformed MMD-NSL on a few specific rule head
sub-datasets, MMD-NSL consistently demonstrated superior performance across the majority of sub-
datasets. This highlights its strength as a more comprehensive and adaptable approach, effectively
managing both long dependency chains and complex categorization.

4.4 RULE PROBABILISTIC VISUALIZATION

To provide a clear understanding of mixed multinomial logic semantic distributions, we present
visualizations illustrating how the same rule head query can result in distinct rule body outcomes
depending on different NER pair combination contexts. The self-recursive rule, such as member of
← member of, exhibits the highest probability in most contexts, aligning with the characteristics
of probability distributions. However, an exception occurs in the organization-organization NER
context, where the rule head (member of ) reflects a relational pattern that represents membership
facilitated through intermediary entities. This indicates that the member of rule body reasoning is
influenced by contextual semantics.

Beyond self-recursive rules, a comparison between the person-person and person-organization NER
contexts highlights significant variations in rule bodies depending on the context. For instance, rules
such as head of and citizen of ∧ based in are meaningful for linking a person to an organization,
whereas rules like spokesperson of and citizen of ∧ ∼citizen of are relevant for linking a person
to another person. These differences underline the importance of learning mixed multinomial logic
semantic distributions that account for contextual variations, enabling more nuanced and accurate
reasoning across diverse contexts.

9
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Table 1: Downstream Task Performance Comparison

rule head
F1-score

MLN-based
representative

Multinomial-based
representative

Mixed
Multinomial

LTN NMLN RNNLogic LogiRE MMD-NSL
citizen of 0.6614 0.7277 0.6751 0.6736 0.7470
in0 0.7467 0.7645 0.7466 0.7569 0.7819
in0-x 0.6667 0.6783 0.6979 0.7090 0.6886
gpe0 0.7742 0.8108 0.7586 0.7806 0.8268
member of 0.1754 0.5759 0.5964 0.6226 0.6165
agent of 0.5240 0.7090 0.6186 0.6257 0.7160
citizen of-x 0.6448 0.6998 0.6667 0.6641 0.7034
based in0 0.6162 0.7281 0.6667 0.6711 0.7399
based in0-x 0.6195 0.7458 0.6456 0.6441 0.7495
head of 0.1340 0.3886 0.5422 0.6029 0.5672
minister of 0.2314 0.6071 0.6250 0.6720 0.6769
minister of-x 0.2311 0.5070 0.7907 0.8889 0.8818
based in2 0.0544 0.2432 0.2373 0.2222 0.3429
head of state 0.3423 0.5500 0.5789 0.5753 0.5789
head of state-x 0.2250 0.6098 0.5859 0.5979 0.6494
agency of 0.2827 0.4793 0.5051 0.5679 0.6207
agency of-x 0.2129 0.5487 0.6087 0.6067 0.6667
in2 0.0717 0.4286 0.5556 0.5625 0.5200
event in0 0.3429 0.4138 0.3636 0.3636 0.3571
award received 0.5533 0.5154 0.5263 0.4706 0.5455
appears in 0.4242 0.4819 0.5181 0.5000 0.4872
vs 0.2524 0.2927 0.1523 0.1659 0.3057
won vs 0.0436 0.0902 0.0456 0.0535 0.0976
spokesperson of 0.0016 0.0392 0.0000 0.0000 0.0909
created by 0.0061 0.2222 0.3000 0.3167 0.2222
event in2 0.0000 0.0000 0.1250 0.1857 0.1500

5 CONCLUSIONS

In this paper, we introduced MMD-NSL, a novel framework for NSL that unifies the handling of
long dependency chains and complex semantic categorization within KG. By leveraging a continu-
ous Mixed Multinomial Logic Semantic Distribution, we extended traditional MLN to incorporate
context-dependent semantic embeddings. Our theoretical contributions, including the bijective map-
ping between MLNs and continuous multinomial distributions, establish a foundation for capturing
intricate dependencies and diverse contexts in NSL tasks. The framework employs a bilevel op-
timization process, where the transformer-based upper level efficiently learns mixing coefficient
analogous to attention mechanisms, and the lower level optimizes rule weights, allowing for effec-
tive learning of both context and rule patterns. Experimental results show that MMD-NSL provides
a more general and adaptable paradigm for NSL, outperforming traditional baselines in managing
complex relationships and multiple semantic contexts, thereby advancing continuous probabilistic
models for neuro-symbolic reasoning and complex relational tasks.
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plex embeddings for simple link prediction. In International Conference on Machine Learning
(ICML), pp. 2071–2080, 2016.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language models.
arXiv preprint arXiv:2201.11903, 2022.

Meixi Wu, Wenya Wang, and Sinno Jialin Pan. Deep weighted maxsat for aspect-based opinion
extraction. In Proceedings of the 2020 conference on empirical methods in natural language
processing (EMNLP), pp. 5618–5628, 2020.

Pengwei Xing, Songtao Lu, and Han Yu. Federated neuro-symbolic learning. arXiv preprint
arXiv:2308.15324, 2023.

Klim Zaporojets, Johannes Deleu, Chris Develder, and Thomas Demeester. Dwie: An entity-centric
dataset for multi-task document-level information extraction. Information Processing & Manage-
ment, 58(4):102563, 2021.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

In this material, we provide more detailed discussions on the theory and realization of our MMD-NSL.

A.1 PROOF OF THEOREM 1

Proof. In the case of K = 1, we aim to establish a bijective mapping from the MLN-based logic
semantic distribution in Eq. 1 to the multinomial distribution-based logic semantic distribution in
Eq. 8. We begin by recalling the MLN-based logic semantic distribution:

PMLN(z) =
1

Z
exp

 J∑
j=1

wjfj(zj)

 (Eq. 1), (15)

where Z is the partition function, wj are weights, and fj(zj) are feature functions.

Step 1: Define the fuzzy logic semantic function Frule(zj) as per Eq. 3:

Frule(zj) =
1

2
y(rhead) ·max

G

L∏
l=1

epath(rl) (Eq. 3). (16)

This function maps the discrete logical variable zj into a continuous value in R.

Step 2: Relate the counts nj to the variables zj . Since zj = 1 if the rule zj holds true in G and −1
otherwise, nj represents the count of true groundings of rule zj in N samples.

Step 3: Define the multinomial logic semantic distribution PMD(z) as:

PMD(z) =
1

Z(θ)

N !∏J
j=1 nj !

exp

 J∑
j=1

θj · nj · Frule(zj)

 (Eq. 8), (17)

where θ = {θj}Jj=1 are the weights associated with each rule zj , and the partition function Z(θ) is
given by:

Z(θ) =

 J∑
j=1

eθj ·Frule(zj)

N

. (18)

Step 4: Establish the mapping between the MLN and multinomial distributions by aligning the
parameters and functions:

wj = θj , fj(zj) = nj · Frule(zj), Z = Z(θ)

∏J
j=1 nj !

N !
. (19)

Step 5: Consider the multinomial distribution over J categories with counts {nj} and probabilities
{pj}:

P ({nj}; {pj}) =
N !∏J

j=1 nj !

J∏
j=1

p
nj

j . (20)

Step 6: Parameterize the probabilities pj using θj and Frule(zj):

pj =
eθj ·Frule(zj)∑J

k=1 e
θk·Frule(zk)

. (21)

Step 7: Substitute pj back into the multinomial distribution:

P ({nj};θ) =
N !∏J

j=1 nj !

 1

Z(θ)

J∏
j=1

eθj ·nj ·Frule(zj)

 , (22)
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where the partition function Z(θ) is:

Z(θ) =

(
J∑

k=1

eθk·Frule(zk)

)N

. (23)

Step 8: Simplify the expression to match the form of PMD(z):

P ({nj};θ) =
1

Z(θ)

N !∏J
j=1 nj !

exp

 J∑
j=1

θj · nj · Frule(zj)

 . (24)

Step 9: Compare with the MLN-based distribution and confirm the bijective mapping by recogniz-
ing that the exponents and normalization factors align when parameters are identified as per Step
4.

Conclusion: We have established that the multinomial logic semantic distribution PMD(z) in Eq. 8
can be mapped bijectively to the MLN-based logic semantic distribution PMLN(z) in Eq. 1 by ap-
propriately defining the weights wj = θj , feature functions fj(zj) = nj ·Frule(zj), and the partition
function Z. This completes the proof of Theorem 1.

A.2 PROOF OF THEOREM 2

Proof. Step 1: Define the Attention Mechanism

The attention weights αk in a Transformer are given by the scaled dot-product attention:

αk =
exp

(
Q⊤Kk√

d

)
∑K

k′=1 exp
(

Q⊤Kk′√
d

) , (25)

where: - Q ∈ Rd is the query vector. - Kk ∈ Rd is the key vector associated with the k-th context.
- d is the dimensionality of the vectors.

Step 2: Define Query and Key Vectors in Terms of NER and Context Embeddings

Let:

Q = eNERhead ⊙ eNERtail , (26)
Kk = eCk

, (27)

where eNERhead ⊙ eNERtail denotes the element-wise product of the head and tail NER embeddings,
and eCk

is the context-specific embedding vector.

Step 3: Recall the Context Logic Semantic Function

The context logic semantic function Fcontext(Ck) is defined as:

Fcontext(Ck) = e⊤Ck
(eNERhead ⊙ eNERtail) . (28)

Step 4: Compute the Attention Scores

The unnormalized attention scores uk between the query vector Q and the key vector Kk are:

uk =
Q⊤Kk√

d
=

(eNERhead ⊙ eNERtail)
⊤
eCk√

d
. (29)

By the definition of Fcontext(Ck), we have:

uk =
Fcontext(Ck)√

d
. (30)

Step 5: Compute the Attention Weights

14
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The attention weights αk are computed as:

αk =
exp

(
Fcontext(Ck)√

d

)
∑K

k′=1 exp
(

Fcontext(Ck′ )√
d

) . (31)

Step 6: Relate Attention Weights to Context Logic Semantic Distribution

The context logic semantic distribution π is defined as:

πk =
exp (Fcontext(Ck))∑K

k′=1 exp (Fcontext(Ck′))
. (32)

Step 7: Align the Scaling Factor

To align αk with πk, we adjust for the scaling factor
√
d in the attention mechanism. Define a scaled

context function:

F̃context(Ck) =
Fcontext(Ck)√

d
. (33)

Then the attention weights become:

αk =
exp

(
F̃context(Ck)

)
∑K

k′=1 exp
(
F̃context(Ck′)

) , (34)

which approximates πk up to the scaling factor.

Step 8: Conclusion

By redefining the query and key vectors using NER embeddings and context-specific embeddings,
and by appropriately scaling the context function, the attention weights computed by the Trans-
former are equivalent to the Context Logic Semantic Distribution π. Therefore, the attention mech-
anism forms a Context Logic Semantic Distribution as defined in Eq. 32.

A.3 PROOF OF THEOREM 3

Proof. Step 1: Consider the Mixed Multinomial Logic Semantic Distribution

From Eq. 12, the mixed multinomial logic semantic distribution is defined as:

PMMD =

K∑
k=1

1

Z(θ)

N !∏J
j=1 nj !

exp

log πk +

J∑
j=1

θj · nj · Frule(zj | Ck)

 . (35)

Here, πk represents the softened mixing coefficients defined in Eq. 11, and Frule(zj | Ck) is given
by Eq. 4.

Step 2: Combine Context and Rule Contributions

The term log πk incorporates the context information via Fcontext(Ck), as per Eq. 11:

πk =
exp (Fcontext(Ck))∑K

k′=1 exp (Fcontext(Ck′))
. (36)

This reflects the influence of different contexts Ck on the overall distribution.

Step 3: Align Feature Functions and Weights

As in the proof of Theorem 1, we set:

fj(zj | Ck) = nj · Frule(zj | Ck), wj = θj . (37)

15
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This aligns the rule-specific contributions in both the MLN and mixed multinomial distributions.

Step 4: Express the MLN Distribution with Contexts

The MLN-based logic semantic distribution incorporating contexts becomes:

PMLN(z) =
1

Z
exp

 K∑
k=1

J∑
j=1

wjfj(zj | Ck) +

K∑
k=1

ϕkFcontext(Ck)

 , (38)

where ϕk are weights associated with each context Ck.

Step 5: Recognize the Mixture Structure

The mixed multinomial distribution PMMD effectively represents a mixture model over contexts:

PMMD =

K∑
k=1

πkPk(z), (39)

where each Pk(z) is a multinomial distribution conditioned on context Ck.

Step 6: Conclude the Establishment of PMMD

By combining the context contributions P (ϕ, Fcontext(C)) with the rule contributions P (θ, Frule(z |
C)), and aligning the feature functions and weights, we confirm that PMMD can be expressed as in
Eq. 12. This demonstrates that a mixed multinomial-based logic semantic distribution is established
by combining the context and rule-based distributions, as stated in the theorem.
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