
Under review as submission to TMLR

Solving Quadratic Programs via Deep Unrolled
Douglas-Rachford Splitting

Anonymous authors
Paper under double-blind review

Abstract

Convex quadratic programs (QPs) are fundamental to numerous applications, including
finance, engineering, and energy systems. Among the various methods for solving them,
the Douglas-Rachford (DR) splitting algorithm is notable for its robust convergence prop-
erties. Concurrently, the emerging field of Learning-to-Optimize offers promising avenues
for enhancing algorithmic performance, with algorithm unrolling receiving considerable at-
tention due to its computational efficiency and interpretability. In this work, we propose
an approach that unrolls a modified DR splitting algorithm to efficiently learn solutions
for convex QPs. Specifically, we introduce a tailored DR splitting algorithm that replaces
the computationally expensive linear system-solving step with a simplified gradient-based
update, while retaining convergence guarantees. Consequently, we unroll the resulting DR
splitting method and present a well-crafted neural network architecture to predict QP so-
lutions. Our method achieves up to 50% reductions in iteration counts and 40% in solve
time across benchmarks on both synthetic and real-world QP datasets, demonstrating its
scalability and superior performance in enhancing computational efficiency across varying
sizes.

1 Introduction

Convex Quadratic Programs (QPs) are optimization problems characterized by a convex quadratic objec-
tive function and linear constraints. These problems form a fundamental class of optimization tasks with
applications spanning finance (Markowitz, 1952; Boyd et al., 2017), engineering (Garcia et al., 1989), energy
systems (Frank & Rebennack, 2016), and machine learning (Cortes, 1995; Tibshirani, 1996). Additionally,
convex QPs serve as the basis for constructing sequential convex approximations or relaxations of nonconvex
problems, ensuring tractable subproblems while progressively approaching high-quality solutions (Boyd &
Vandenberghe, 2004).

In recent years, there has been increasing interest in the development of first-order methods for convex QPs,
with OSQP (Stellato et al., 2020) and Splitting Conic Solver (SCS) (O’Donoghue, 2021) standing out as
state-of-the-art solvers. These methods are closely related to the classical Douglas-Rachford (DR) splitting
algorithm (Douglas & Rachford, 1956). Notably, they require only a few matrix factorizations, which can
be reused across iterations. More recently, Lu & Yang (2023) extended the Primal-Dual Hybrid Gradient
(PDHG) algorithm to effectively solve convex QPs without requiring any matrix factorization. These first-
order methods have demonstrated superior efficiency compared to traditional approaches like Active-Set
methods (Wolfe, 1959) and Interior Point Methods (IPMs) (Nesterov & Nemirovskii, 1994), especially for
large-scale problems.

With the emergence of Learn-to-Optimize (L2O) methods, innovative strategies have been proposed to ac-
celerate the solving of optimization problems (Chen et al., 2022; Gasse et al., 2022). By training models on
diverse problem instances, L2O aims to learn problem-specific optimization strategies that surpass traditional
methods in terms of efficiency and performance. In particular, the recent work of Yang et al. (2024) proposed
to unroll the matrix-free PDHG algorithm in Lu & Yang (2023). This approach enables a relatively shallow
network to efficiently learn the optimal QP solutions that would otherwise require thousands of PDHG iter-

1

Under review as submission to TMLR

ations. However, directly unrolling DR splitting-based algorithms to efficiently learn QP solutions presents
challenges, primarily due to the need to solve a linear system at each iteration. This raises the following
question:

How to unroll DR splitting-based algorithms for solving convex QPs?

In this work, we propose unrolling a modified DR splitting algorithm in which the linear system-solving step
is replaced by an equivalent least-squares problem, eliminating the need for matrix factorization. Rather than
solving the least-squares problem exactly, we apply a single-step gradient descent update. Consequently, the
tailored DR splitting algorithm can be seamlessly unrolled into a learnable network, delivering high-quality
solutions for convex QPs. The distinct contributions of this work are as follows:

• Unrolled DR Splitting: We present a well-crafted neural network framework that leverages the
unrolling of a modified DR splitting algorithm to efficiently solve convex QPs.

• Convergence Guarantee: We present the convergence properties of the modified DR splitting
algorithm and demonstrate that the unrolled network can recover the optimal QP solutions.

• Empirical Evaluation: We validate the proposed framework through extensive experiments. The
resulting solutions are employed to warm-start the QP solver SCS. The results indicate that our
method significantly enhances the efficiency of solving convex QPs. In particular, our approach
reduces the number of iterations by up to 50% and the solve time by up to 40%, demonstrating its
effectiveness across diverse benchmarks.

2 Related Works

Learning-Accelerated QP Algorithms. Recently, machine learning techniques have been applied to
develop more effective policies within algorithms, surpassing the performance of traditional hand-crafted
heuristic methods. For example, Ichnowski et al. (2021); Jung et al. (2022) employed reinforcement learning
to choose hyperparameters in the OSQP solver, leading to faster convergence compared to the original update
rules. Venkataraman & Amos used neural networks to learn acceleration methods in fixed-point algorithms.
While both approaches demonstrated improved convergence rates empirically, the convergence can not be
theoretically ensured.

Algorithm Unrolling. Algorithm unrolling is a technique that bridges classical iterative optimization
methods and deep learning by transforming the iterative steps of an optimization algorithm into the layers
of a neural network. This approach enables end-to-end training, combining the strengths of both paradigms.
Unrolled networks are not only interpretable, but they also tend to require fewer parameters and less training
data compared to traditional deep learning models (Monga et al., 2021). By leveraging a few layers of unrolled
networks, these methods can often learn solutions that would otherwise require thousands of iterations in
classical algorithms. Significant success has been achieved in applications such as sparse coding (Gregor &
LeCun, 2010), compressive sensing (Sun et al., 2016), inverse problems in imaging (Aljadaany et al., 2019;
Liu et al., 2020; Su et al., 2024) and communication systems (Sun et al., 2023). However, these methods are
not applicable to general optimization algorithms. Recently, Li et al. (2024); Yang et al. (2024) proposed
unrolling the PDHG algorithm into neural networks to address general linear programs and QPs, establishing
theoretical results in this context. To the best of our knowledge, such theoretical advancements have not
been extended to other efficient first-order methods, such as DR splitting-based algorithms.

Learning Warm-Starts. An effective strategy to accelerate solution processes is to provide high-quality
initializations. For example, Baker (2019); Diehl (2019); Zhang & Zhang (2022) proposed predicting initial
points to warm-start the solution process for power system applications. However, these methods mainly
focus on solution mappings and do not address the specific needs of warm-starting nonlinear programming
algorithms. Highly related works of Sambharya et al. (2023; 2024) train fully-connected neural networks
by minimizing loss after taking several steps of the fixed-point algorithms. By incorporating additional
algorithmic steps following the warm-start, the predictions are refined for downstream processes. However,

2

Under review as submission to TMLR

due to the need for vectorizing problem parameters and solving linear systems during training, this method
would struggle when addressing large-scale problems. In contrast to fixed-point algorithms, Gao et al. (2024)
introduced IPM-LSTM, which replaces the time-consuming process of solving linear systems in IPMs with
Long Short-Term Memory (LSTM) neural networks. While this approach shows promise in providing well-
centered primal-dual solution pairs for warm-starting IPM solvers, the overhead of LSTM inference limits
its scalability to larger instances.

3 Preliminaries

3.1 Quadratic Programs

In this work, we consider convex QPs of the following form:

min
x∈Rn,s∈K

1
2 x⊤Px + c⊤x

s.t. Ax + s = b,
s ∈ K,

(1)

where P ∈ Rn×n, P = P ⊤ ⪰ 0, A ∈ Rm×n, c ∈ Rn, and b ∈ Rm are the problem parameters, with x ∈ Rn

and s ∈ K := Rm
+ denoting decision variables.

3.2 Douglas-Rachford Splitting

For convex QPs, the following Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient for opti-
mality:

Ax + s = b, Px + A⊤y + c = 0,

s ∈ K, y ∈ K∗, s ⊥ y,

where y is the dual variable and K∗ is the dual cone to K, defined as K∗ =
{

v|v⊤z ≥ 0,∀z ∈ K
}

. Let

u :=
[
x
y

]
, M :=

[
P A⊤

−A 0

]
,

q :=
[
c
b

]
, C := Rn ×K∗.

Since P ⪰ 0, M + M⊤ ⪰ 0, i.e., M is monotone. Consequently, the KKT conditions can be expressed as the
following monotone inclusion problem:

0 ∈Mu + q + NC(u), (2)

where NC(u) represents the normal cone of C, and is defined by

NC(u) :=

{{
v | (z − u)⊤v ≤ 0 , ∀z ∈ C}, u ∈ C,
∅, u /∈ C.

The optimal solutions for problem (1) can thus be obtained by solving the monotone inclusion problem (2).

To address problem (2), the well-known DR splitting algorithm (Douglas & Rachford, 1956), as outlined in
Algorithm 1, can be applied. In each iteration, an intermediate point ũk+1 is computed by solving a linear
system, which is always solvable due to the full rank of I + M . The updated point uk+1 is then obtained
by reflecting ũk+1 around wk and projecting it onto the conic set C using ΠC . Finally, the iterate wk+1 is
updated by combining wk, uk+1, and ũk+1, balancing objective minimization with constraint satisfaction.
Let u∗ be the optimal solution to problem (2), if it exists. Then uk → u∗ as k → ∞. Additionally, the
residual ∥wk+1 − wk∥2 → 0 at a rate of O(1/k) (He & Yuan, 2015; Davis & Yin, 2016).

3

Under review as submission to TMLR

Algorithm 1 Douglas-Rachford Splitting
1: Input: M , q, C
2: Initialize: w0 ← 0
3: for k = 0, 1, · · · do
4: ũk+1 ← (I + M)−1(wk − q)
5: uk+1 ← ΠC

(
2ũk+1 − wk

)
6: wk+1 ← wk + (uk+1 − ũk+1)
7: end for
8: Return: uk := (xk, yk)

4 Deep Unrolled DR Splitting

In this work, we aim to design a neural network architecture that efficiently learns high-quality solutions
for convex QPs. However, directly unrolling Algorithm 1 presents challenges due to the need to solve linear
systems in Step 4. To address this, we first introduce the DR-GD algorithm. Building on this foundation,
we then present the unrolled neural network framework.

Figure 1: The figure shows one layer of proposed DR-GD Net, which maps inputs (ũℓ, wℓ) to outputs
(ũℓ+1, uℓ+1, wℓ+1). The update paths for ũ, u, and w are colored black, blue and red, respectively. Both ũℓ

and wℓ are used to compute the new state ũℓ+1 with parameters θℓ
ũ :=

(
U ℓ

ũ, U ℓ
w, U ℓ

η, bℓ
η

)
. Then ũℓ+1 and wℓ

are incorporated with ReLU activation function and parameters θℓ
u :=

(
V ℓ

ũ , V ℓ
w

)
to get the updated uℓ+1.

Finally, the updated ũℓ+1, uℓ+1 with the previous state wℓ are updated with parameters θw :=
(
W ℓ

w, W ℓ
u, W ℓ

ũ

)
to produce wℓ+1.

4.1 DR-GD Algorithm

Solving linear systems is often achieved via direct methods or indirect methods (Stellato et al., 2020;
O’Donoghue, 2021). However, significant challenges arises when unrolling Algorithm 1 with linear systems
being solved by either method.

• Direct method: The direct method involves matrix factorization, where dynamic pivoting is used,
making the sequence of operations data-dependent and, therefore, not known in advance. This
adaptive nature complicates the task of breaking the algorithm into a fixed, unrolled architecture.

• Indirect method: The indirect method, in contrast, employs iterative algorithms, such as the con-
jugate gradient descent method, to solve the linear systems. While this approach circumvents the
need for matrix factorization, it introduces the complexity of inner-outer iterations, complicating
the unrolling process.

4

Under review as submission to TMLR

Algorithm 2 DR-GD Algorithm
1: Input: M, q, C
2: Initialize: w0 ← 0, ũ0 ← 0
3: for k = 0, 1, · · · do
4: tk ← (I + M)⊤((I + M)ũk − (wk − q))
5: Compute ηk by line search
6: ũk+1 ← ũk − ηktk

7: uk+1 ← ΠC
(
2ũk+1 − wk

)
8: wk+1 ← wk +

(
uk+1 − ũk+1)

9: end for
10: Return uk := (xk, yk)

Since I + M is invertible, solving the linear system in Step 4 of Algorithm 1 is equivalent to addressing the
following unconstrained least-squares problem:

min
ũ

f(ũ) := 1
2

∥∥(I + M)ũ− (wk − q)
∥∥2

. (3)

Moreover, provided that the ℓ2-norm of the error in solving the linear systems in Step 4 is finitely summable,
Algorithm 1 guarantees convergence to optimal solutions (Eckstein & Bertsekas, 1992; Combettes, 2004). If
problem (3) is solved to a pre-specified accuracy using iterative methods, unrolling Algorithm 1 results in a
nested architecture due to the inner-outer iterations. The need to replicate the iterative process increases
complexity and reduces efficiency, making the unrolled network more difficult to scale. In this work, we
streamline the process by employing a single gradient step, ũk+1 ← ũk − ηk∇f(ũk), at each iteration, where
ũk denotes the previous iterate and ηk is the step size. This gradient-based update enhances both efficiency
and scalability when unrolled. The resulting algorithm is outlined in Algorithm 2.
Proposition 1. The sequence {uk} generated by Algorithm 2 converges to the solution of problem (2).
Furthermore, the sequences {xk} and {yk} also converge to the solution of problem (1).

In Proposition 1, we demonstrate that Algorithm 2 converges to the optimal solution of problem (1), with the
proof provided in Appendix A. While Algorithm 2 is expected to converge at a slower rate than Algorithm 1
due to the inexact evaluation involved in solving linear systems, it offers significant advantages in terms of
unrolling and parameterization by eliminating the need for matrix factorizations or innerouter iterations.

4.2 Algorithm Unrolling

Algorithm 3 DR-GD Net
1: Input: M, q, C, number of layers L and embedding size dℓ.
2: Initialize: ũ0 ← 0, u0 ← ΠC(−q), w0 ← q · 1d0 + u0;
3: for ℓ = 0, · · · , L− 1 do
4: Update ũ: ṽℓ ← ũℓU ℓ

ũ;
5: gℓ ← (I + M)⊤

(
(I + M)ṽℓ −

(
wℓU ℓ

w − q · 1dℓ
))

;

6: ũℓ+1 ← ṽℓ − ηℓσ
(
wℓU ℓ

η + bℓ
η

)
⊙ gℓ;

7: Update u: uℓ+1 ← ΠC
(
2ũℓ+1V ℓ

ũ −wℓV ℓ
w

)
;

8: Update w: wℓ+1 ← wℓW ℓ
w +

(
uℓ+1W ℓ

u − ũℓ+1W ℓ
ũ

)
9: end for

10: Return u := uLP L
u

In this section, we propose DR-GD Net which is designed by unrolling Algorithm 2. The structure of the
model is detailed in Algorithm 3, where parameters for channel expansion are introduced to enhance the
model’s flexibility and learning capacity. 1d is a row vector with all ones in dimension d, ũ0, u0 and w0 ∈

5

Under review as submission to TMLR

R(n+m)×d0 . Let Θ :=
{{

θℓ
ũ, θℓ

u, θℓ
w

}L−1
ℓ=0 , P L

u

}
be the parameters of the network, where θℓ

ũ :=
(
U ℓ

ũ, U ℓ
w, U ℓ

η, bℓ
η

)
,

θℓ
u :=

(
V ℓ

ũ , V ℓ
w

)
and θw :=

(
W ℓ

w, W ℓ
u, W ℓ

ũ

)
. ηℓ ∈ R is the prior knowledge about the step-size of the ℓ-th layer.

P L
u is the final linear mapping for the outputs. σ(·) is the sigmoid activation function. Projection onto a

product cone C, ΠC is performed component-wise. For dimensions corresponding to the full real space R,
the projection is an identity mapping, leaving the values unchanged. For dimensions corresponding to the
non-negative orthant R+, the projection is ΠR+(a) = max(0, a). This operation is precisely the definition
of the ReLU activation function, making it a standard and computationally efficient building block for
implementing this type of projection. The initialization can be seen as starting with ũ = 0, which is achieved
by considering a pre-iteration state ũ−1 = 0 and w−1 = q, and running the subsequent algorithm steps for
one iteration to generate the initial state. One layer of DR-GD Net is depicted in Figure 1. Specifically,
the unrolled DR-GD Net can emulate Algorithm 2 by applying specific instantiation of Θ. Consequently,
Algorithm 3 is capable of recovering the optimal solutions to problem (1) when an adequate number of layers
are employed. However, by introducing learnable parameters, our goal is to allow the network to adapt to
different problem instances, thereby enabling it to achieve approximate solutions with much fewer layers.

4.3 Training

In this work, the neural network is trained in a supervised manner, with the loss function defined as the ℓ2

distance between the predicted primal-dual solutions (x, y) and the optimal solutions (x∗, y∗), obtained by
solving QPs using the SCS solver.

For a dataset of QPs,M, we train the proposed network by finding the optimal Θ by minimizing the following
loss function:

min
Θ

1
2|M|

|M|∑
i=1

(
∥xi − x∗

i ∥2 + ∥yi − y∗
i ∥2)

,

where the subscript i indicates the ith sample in M.

In the recent works of Sambharya et al. (2023; 2024), an unsupervised loss function based on the fixed-point
residual was proposed, which eliminates the need for labeled data. However, as noted in Sambharya et al.
(2024), this approach tends to focus localized optimization metrics within the iterative process rather than
the overall objective, potentially limiting its effectiveness; that is, the loss values may appear sufficiently low
even when the solutions produced are far from optimal. By leveraging supervised learning with a regression
loss, the DR-GD Net can learn an effective warm-start point, enhancing the performance of downstream
DR splitting-based algorithms. This approach not only aligns the network architecture with the underlying
algorithm but also incorporates the global insights provided by the ground truth optimal solutions.

5 Computational Studies

To evaluate the proposed framework, we first analyze the convergence behavior of Algorithm 2 on synthetic
instances of varying sizes. Next, we compare its performance against state-of-the-art solvers and learning-
based baselines on both synthetic and real-world datasets. Finally, we provide a detailed discussion of the
results. The code is publicly available at https://anonymous.4open.science/r/DR-GD-722B/.

Baseline Algorithms. In our experiments, we denote our algorithm as DR-GD-NN and compare it against
state-of-the-art solvers and L2O algorithms.

The solvers considered are:

(i) SCS (O’Donoghue, 2021): A first-order solver for quadratic cone programming based on the DR
splitting algorithm with homogeneous self-dual embedding.

(ii) OSQP (Stellato et al., 2020): A first-order convex QP solver based on the ADMM, which is equivalent
to DR splitting under appropriate variable transformations.

6

https://anonymous.4open.science/r/DR-GD-722B/

Under review as submission to TMLR

(iii) raPDHG (Lu et al., 2024): A restarted average PDHG method Lu & Yang (2023) for solving convex
QPs.

For SCS, the default linear solver is used with an absolute feasibility tolerance of 10−4, relative feasibil-
ity tolerance of 10−4, and infeasibility tolerance of 10−7. SCS also employs techniques such as adaptive
step sizing, over-relaxation, and data normalization to enhance performance. Further details can be found
in O’Donoghue (2021). raPDHG is configured with absolute and relative tolerances of 10−4 and enabled ℓ2
norm rescaling, as it otherwise exhibited convergence difficulties.

Unlike SCS, OSQP enforces only primal and dual feasibility without explicitly verifying the termination criteria
based on the primal-dual gap. To ensure a fair comparison, we follow the approach in Lu & Yang (2023);
O’Donoghue (2021) to obtain OSQP solutions within the desired gap tolerance. Specifically, we initialize
absolute and relative feasibility tolerances at 10−4 (as in SCS) and iteratively halve them if the gap tolerance
is not met. Additionally, the convergence-checking interval is set to be 1 for both SCS and OSQP in all
experiments.

The learning-based baseline algorithms include:

(i) L2WS(Fp) (Sambharya et al., 2024): A feedforward neural network that takes vectorized instance
parameters as input to generate warm starts, followed by 60 fixed algorithmic iterations, as suggested
in Sambharya et al. (2024). The network is trained with the fixed-point residual as the unsupervised
loss function.

(ii) L2WS(Reg) (Sambharya et al., 2024): A method that shares the same architecture and number of
iterations as L2WS(Fp) but employs a regression loss function instead.

(iii) GNN (Chen et al., 2024): A graph neural network trained using a regression loss on graphs representing
the QP instances.

Datasets. The datasets used in this work include synthetic benchmarks and perturbed real-world instances.
Specifically, the datasets are:

(i) QP (RHS) (Donti et al., 2021): Convex QPs parameterized only by the right-hand side of equality
constraints, generated as in Donti et al. (2021), with n = 200, 500, 1000 in the experiments.

(ii) QP (Gao et al., 2024): The dataset generated as in Gao et al. (2024), where all the parameters are
perturbed by a random factor sampled from U [0.9, 1.1].

(iii) QPLIB (Furini et al., 2019): Selected instances from Furini et al. (2019) with all parameters
perturbed by a random factor sampled from U [0.9, 1.1].

(iv) Portfolio (Stellato et al., 2020): Consider the portfolio optimization problem, as introduced in Stel-
lato et al. (2020), which is formulated as follows:

min
x∈Rn,y∈Rk

x⊤Dx + y⊤y − 1
γ

µ⊤x

s.t. y = F ⊤x

1⊤x = 1
x ≥ 0

where the variable x ∈ Rn represents the portfolio, y ∈ Rk is the axillary variable. The problem
is parameterized by µ ∈ Rn the vector of expected returns, γ > 0 the risk aversion parameter,
F ∈ Rn×k the factor loading matrix and D ∈ Rn×n a diagonal matrix describing the asset-specific
risk. The problems with k = 100, 200, 300, 400 factors and n = 10k assets are considered in the
experiments. The instances are generated by sampling Fij ∼ N(0, 1) with 50% nonzero elements,
Dii ∼ U [0,

√
k], µi ∼ N(0, 1) and γ = 1.

7

Under review as submission to TMLR

All instances considered in this work are formulated as in (4).

min
x∈Rn

1
2

x⊤Px + c⊤x

s.t. Ax = b

Gx ≤ h

l ≤ x ≤ u

(4)

where P = P ⊤ ⪰ 0, c ∈ Rn, A ∈ Rm1×n, b ∈ Rm1 , G ∈ Rm′
2×n, h ∈ Rm′

2 are the model parameters. The
bounds on the variables are given by l, u ∈ Rn. The formulation in problem (4) can be transformed into
problem (1) by integrating the bound constraints into inequality constraints and merging the equality and
inequality constraints. The size of each dataset is listed in Table 1.

Table 1: Problem sizes

Instance n m1 m2

QP (RHS) N N N/2 N/2
QP N N N/2 N/2

QPLIB

3913 300 61 600
8845 1,546 490 1,848
4270 1,600 401 3,202
3547 1,998 89 2,959

Portfolio k 11k k + 1 20k

For each dataset, 400 samples are generated for training, 40 for validation, and 100 for testing. All reported
results are based on the test set.

Evaluation Configurations. All experiments were conducted on an NVIDIA GeForce RTX 3090
GPU and a 12th Gen Intel(R) Core(TM) i9-12900K CPU, using Python 3.9.17, PyTorch 2.0.1, SCS
3.2.6 (O’Donoghue, 2021) and OSQP 0.6.7 (Stellato et al., 2020). To demonstrate the warm-start effect
across various solver configurations and ensure experimental consistency with baseline methods, we explored
different parameter settings for SCS on each dataset, as detailed in Appendix B.

In all experiments, DR-GD Nets with 4 layers and embedding sizes of 128 are trained with a batch size
of 2, a learning rate of 10−5, and the Adam optimizer (Kingma, 2014). The parameters ηl are set to 0.05
for QPLIB datasets and 0.1 for the other datasets. Early stopping is employed to terminate training if the
validation loss shows no improvement for 10 consecutive epochs. The model achieving the best validation
performance is saved for testing.

5.1 Convergence of DR-GD

This section analyzes the convergence behavior of Algorithm 2, the foundation of our proposed DR-GD Net.
The convergence of Algorithm 2 is expected to be slower than Algorithm 1, due to the inexact evaluation
at each iteration. In Table 2, we compare the performance of Algorithm 1 and Algorithm 2 on the dataset
QP with different sizes, with a stopping criterion of 1 × 10−6 for the fixed-point error ∥wk+1 − wk∥2. The
columns “Obj.”, “Max Eq.”, “Max Ineq.”, and “Iter.” report the objective value, maximum equality constraint
violation, maximum inequality constraint violation, and number of iterations upon termination, respectively.
The “Ratio” column shows the ratio of the number of iterations required by Algorithm 2 to those required
by Algorithm 1.

The results indicate that, Algorithm 2 could produce solutions with the desired feasibility and optimality,
though it generally requires more iterations than the original DR splitting algorithm. The computational
overhead remains manageable with a maximum factor of 1.50 and decreases as the problem size increases.

8

Under review as submission to TMLR

Despite its slower convergence, Algorithm 2 avoids exact computation of linear systems, making it well-suited
for the development of an unrolled neural network based on this approach.

Table 2: Convergence comparison between Algorithm 1 and Algorithm 2

Instance Algorithm 1 Algorithm 2 Ratio
Obj. Max Eq. Max Ineq. Iter. Obj. Max Eq. Max Ineq. Iter.

QP
200 −37.126 4.0× 10−10 4.6× 10−10 5, 049 −37.126 2.4× 10−6 1.4× 10−6 7, 555 1.50
500 −90.878 1.2× 10−10 8.7× 10−11 13, 653 −90.878 2.0× 10−6 1.6× 10−6 16, 523 1.21
1000 −160.185 3.8× 10−11 3.2× 10−11 30, 844 −160.185 2.6× 10−7 2.0× 10−6 36, 280 1.18

5.2 Computational Results on DR-GD Net

QP (RHS). We compare the warm-start performance of L2WS(FP), L2WS(Reg), GNN, and DR-GD-NN on the
QP (RHS) test set across various problem sizes. The instances are parameterized by the right-hand sides of
the equality constraints, encapsulated in a single vector that serves as the input to the neural network in the
L2WS models. The results are summarized in Table 3. The column labeled “Cold Start” shows the number
of iterations and the solve time required by the SCS solver without warm starts. The “Iters.”/ “Time (s)”
and “Ratio” columns present the iterations/total time (including model inference and solve time in seconds)
and the average reduction ratio achieved by each method across all test problems. To align the experiment
settings of baseline methods, solver settings were configured with advanced techniques disabled, as shown in
Table 6. The best results in each category are highlighted in bold.

Overall, L2WS(Reg) and DR-GD-NN demonstrate comparable performance. Specifically, L2WS(Reg) achieves
the best results on instances with 200 variables, where the simple right-hand-side perturbation facilitates
learning the mapping from parameters to warm-start points. However, as the problem scale increases,
DR-GD-NN surpasses L2WS(Reg), achieving a 45.4% and 53.6% reduction in iterations for datasets with 500
and 1000 variables, respectively. This highlights the efficiency of DR-GD-NN in handling larger instances, where
the increased input size adds complexity to the solution mapping for L2WS. The L2WS(FP) variant is generally
outperformed by L2WS(Reg), except in the smallest case with 100 variables. This result demonstrates the
superiority of using a regression loss over the unsupervised fixed-point residual loss, which primarily focuses
on intermediate metrics within the iterative process. This could potentially lead L2WS(FP) to converge
to suboptimal regions, particularly in larger and more complex problems. In contrast, the regression loss
leverages global information from ground-truth solutions, enabling better performance across a broader
range of problem sizes and complexities. Additionally, while GNN performs competitively on instances with
200 variables, it falls short on larger datasets compared to DR-GD-NN.

In terms of solution time, the proposed method consistently outperforms the baseline approaches, achieving
reductions of up to 53.5%. Notably, even under some rare cases where the reduction in iterations is not the
largest, DR-GD-NN still demonstrates superior efficiency. This advantage is attributed to the fast inference
time of the proposed framework, which eliminates the need for the additional iterative steps required by the
L2WS methods. For smaller instances, the reduction in the solving time is less pronounced compared to larger
problems, probably because the shorter solving time for small instances leaves less room for improvement.

QP. In this section, we compare the performance of GNN and DR-GD-NN, both of which are trained in a
supervised manner, using the loss function defined in Section 4.3. Since both methods are agnostic to the
parameterization of the problems, we evaluate their performance on the dataset QP across different problem
sizes. The columns labeled “Cold Start Iters.”/ “Cold Start Time (s)” and “Iters.”/ “Time (s)” denote the
average number of iterations taken by the SCS solver with cold start and warm start points provided by
the two methods, respectively, using the same configuration as in the previous section. The “Ratio” column
represents the average ratio of reduction in the number of iterations and total time respectively. GNN and
DR-GD-NN achieve similar performance on smaller datasets with 200 variables. However, DR-GD-NN performs
significantly better than GNN on larger datasets with 500 and 1000 variables. This trend is consistent with
the results in Table 3, where both methods show comparable performance on smaller problems but DR-GD-NN

9

Under review as submission to TMLR

Table 3: Comparison of results on QP (RHS) dataset between L2WS(Fp), L2WS(Reg), GNN and DR-GD-NN.

Instance Cold Start L2WS(Fp) L2WS(Reg) GNN DR-GD-NN

Iters. Iters. ↓ Ratio ↑ Iters. ↓ Ratio ↑ Iters. ↓ Ratio ↑ Iters. ↓ Ratio ↑

QP (RHS)
200 3,855 3,616 6.2% 2,018 47.6% 2,203 42.8% 2,208 42.6%
500 10,827 10,820 0.1% 6,117 43.5% 6,350 41.3% 5,907 45.4%
1000 24,268 24,254 0.1% 21,566 11.1% 22,416 7.6% 11,266 53.6%

Instance Cold Start L2WS(Fp) L2WS(Reg) GNN DR-GD-NN

Time (s) Time (s) ↓ Ratio ↑ Time (s) ↓ Ratio ↑ Time (s) ↓ Ratio ↑ Time (s) ↓ Ratio ↑

QP (RHS)
200 0.470 0.490 -4.5% 0.293 37.7% 0.311 34.6% 0.289 38.1%
500 6.800 7.348 -8.2% 4.436 34.8% 4.019 40.0% 3.735 44.8%
1000 85.894 88.332 -2.9% 78.684 8.1% 79.900 7.3% 40.160 53.5%

demonstrates greater scalability and efficiency in learning effective warm-start points for the SCS solver on
larger-scale problems.

Table 4: Comparison of results on QP dataset between GNN and DR-GD-NN.

Instance Cold Start GNN DR-GD-NN

Iters. Iters. ↓ Ratio ↑ Iters. ↓ Ratio ↑

QP
200 4,568 3,200 29.9% 3,168 30.6%
500 10,507 10,432 0.5% 8,768 16.4%
1000 12,660 12,672 0.3% 10,862 14.1%

Instance Cold Start GNN DR-GD-NN

Time (s) Time (s) ↓ Ratio ↑ Time (s) ↓ Ratio ↑

QP
200 0.554 0.427 23.4% 0.406 26.7%
500 6.591 6.701 -0.19% 5.517 16.1%
1000 21.543 21.889 -1.1% 18.639 13.0%

QPLIB and Portfolio. In this section, we evaluate the performance of DR-GD-NN on larger datasets,
including instances from QPLIB and synthetic portfolio optimization problems. For these experiments, we
use the default settings of SCS, as outlined in Table 6, to highlight the practical warm-start effect of our
approach.

To evaluate performance, we analyze the warm-start effect in terms of both solving time and the number of
iterations. The columns labeled “OSQP”, “raPDHG” and “SCS” present the solve time and iteration count
for the two solvers under cold-start conditions. The column “SCS (Warm Start)” includes the number of
iterations required by SCS after utilizing the warm-start points, the inference time of DR-GD-NN, and the
solve time , along with the total time, labeled as “Iters.”, “Inf. Time (s)”, “Solve Time (s)”, and “Time
(s)” respectively. The ratio of improvement on the total time and number of iterations are included in the
column “Ratio”. The observed reduction in iterations ranges from 33.7% to 57.8%, demonstrating that the
warm-start points generated by DR-GD-NN enable robust performance, even on more challenging instances.

While the model inference time increases with problem size, it remains negligible compared to the solve
time, especially for larger-scale problems. The reduction in solve time ranges from 8.5% to 55.7%. For the
Portfolio dataset with 100 factors and the QPLIB instance 3913, the improvement in solve time is minimal
compared to other cases. This is attributed to the relatively small size of these problems and their inherently
short solve times. Consequently, even with a significant reduction in the number of iterations, the overall
improvement in solve time is limited.

10

Under review as submission to TMLR

Table 5: Performance of DR-GD Net on QPLIB and Portfolio datsets.

Instance OSQP raPDHG SCS SCS (Warm Start) Ratio
Time (s) Time (s) Iters. Time (s) Iters. Inf. Time (s) Solve Time (s) Time (s) Iters. Time

QPLIB

3913 0.043 1.988 262 0.037 98 0.003 0.031 0.034 62.5% 8.9%
4270 0.744 7.779 5,677 1.693 2,705 0.007 0.816 0.823 57.8% 55.7%
8845 2.328 21.976 10,519 2.771 5,393 0.004 1.445 1.449 40.3% 39.0%
3547 5.886 5.579 29,690 6.283 17,286 0.011 3.655 3.666 37.5% 37.3%

Portfolio

100 0.155 2.165 654 0.150 428 0.004 0.132 0.136 33.7% 8.5%
200 0.411 2.372 997 0.626 545 0.005 0.363 0.368 45.0% 40.8%
300 1.056 2.763 1,272 1.656 734 0.007 1.007 1.014 42.2% 38.6%
400 2.183 3.481 1,533 4.280 712 0.010 2.140 2.150 53.4% 49.6%

5.3 Analysis of Loss and Iteration Improvement

Figure (2a) provides a detailed analysis of the relationship between validation loss and iteration improve-
ment ratio over training epochs for the dataset Portfolio with 100 factors. The figure demonstrates that
the validation loss steadily decreases as training progresses, indicating that the DR-GD-NN model is effec-
tively learning to generate high-quality warm-start points. Simultaneously, the iteration improvement ratio
increases as the loss decreases, suggesting a strong correlation between the proximity of the predicted solu-
tions to the ground-truth solutions and the models warm-starting efficiency. This trend highlights how the
predicted warm-start points, as they approach the optimal solutions, lead to a decrease in the number of
SCS solver iterations required, thereby enhancing the solvers overall efficiency.

0 10 20 30 40 50
Epoch

0.01

0.02

0.03

0.04

Va
lid

 L
os

s

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ite
r.

Im
pr

ov
. R

at
io

(a)

Cold Start Warm Start
300

400

500

600

700

800

900

Nu
m

be
r o

f I
te

ra
tio

ns

(b)

Figure 2: (a) Validation loss and iteration improvement ratio on the dataset Portfolio with 100 factors
during training. (b) Box plot of the number of iterations required for cold starts and warm starts on the
testing samples of the dataset Portfolio with 100 factors.

Additionally, Figure (2b) presents a box plot comparing the distribution of solver iterations required for cold
starts and warm starts across all test samples. The clear separation between the distributions highlights the
consistent and significant warm-start effect throughout the testing dataset. Specifically, the median number
of iterations required after warm-starting is significantly lower than that for cold-starting, with a noticeably
narrower interquartile range. This reduced variability suggests that DR-GD-NN not only enhances average
solver performance but also contributes to more stable and predictable solver behavior.

6 Conclusions

In this work, we introduce the DR-GD Net, an unrolled neural network model based on a modified DR
splitting algorithm, which eliminated the need for exact linear system solving at each iteration. The proposed

11

Under review as submission to TMLR

architecture can effectively learn QP solutions and serves as a high-quality warm-start mechanism for SCS, a
state-of-the-art first-order solver for convex QPs. Empirical results demonstrate that the proposed framework
consistently reduces both the number of iterations and solve times across a range of problem instances.
Future work will proceed in two main directions. First, we will focus on integrating acceleration techniques,
such as the classical Anderson acceleration method, into the unrolled network to enhance its efficiency and
robustness. Second, we aim to develop a more scalable training framework, potentially using unsupervised
or semi-supervised learning, to handle problems with varying sizes, structures, and numerical conditions.

References
Raied Aljadaany, Dipan K Pal, and Marios Savvides. Douglas-rachford networks: Learning both the image

prior and data fidelity terms for blind image deconvolution. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 10235–10244, 2019.

Kyri Baker. Learning warm-start points for ac optimal power flow. In 2019 IEEE 29th International
Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE, 2019.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Stephen Boyd, Enzo Busseti, Steve Diamond, Ronald N Kahn, Kwangmoo Koh, Peter Nystrup, Jan Speth,
et al. Multi-period trading via convex optimization. Foundations and Trends® in Optimization, 3(1):1–76,
2017.

Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Zhangyang Wang, and Wotao
Yin. Learning to optimize: A primer and a benchmark. Journal of Machine Learning Research, 23(189):
1–59, 2022.

Ziang Chen, Xiaohan Chen, Jialin Liu, Xinshang Wang, and Wotao Yin. Expressive power of graph neural
networks for (mixed-integer) quadratic programs. arXiv preprint arXiv:2406.05938, 2024.

Patrick L Combettes. Solving monotone inclusions via compositions of nonexpansive averaged operators.
Optimization, 53(5-6):475–504, 2004.

Corinna Cortes. Support-vector networks. Machine Learning, 1995.

Damek Davis and Wotao Yin. Convergence rate analysis of several splitting schemes. Splitting methods in
communication, imaging, science, and engineering, pp. 115–163, 2016.

Frederik Diehl. Warm-starting ac optimal power flow with graph neural networks. In 33rd Conference on
Neural Information Processing Systems (NeurIPS 2019), pp. 1–6, 2019.

Priya L Donti, David Rolnick, and J Zico Kolter. Dc3: A learning method for optimization with hard
constraints. In International Conference on Learning Representations, 2021.

Jim Douglas and Henry H Rachford. On the numerical solution of heat conduction problems in two and
three space variables. Transactions of the American mathematical Society, 82(2):421–439, 1956.

Jonathan Eckstein and Dimitri P Bertsekas. On the douglasrachford splitting method and the proximal
point algorithm for maximal monotone operators. Mathematical Programming, 55:293–318, 1992.

Stephen Frank and Steffen Rebennack. An introduction to optimal power flow: Theory, formulation, and
examples. IIE transactions, 48(12):1172–1197, 2016.

Fabio Furini, Emiliano Traversi, Pietro Belotti, Antonio Frangioni, Ambros Gleixner, Nick Gould, Leo
Liberti, Andrea Lodi, Ruth Misener, Hans Mittelmann, et al. Qplib: a library of quadratic programming
instances. Mathematical Programming Computation, 11:237–265, 2019.

Xi Gao, Jinxin Xiong, Akang Wang, Qihong Duan, Jiang Xue, and Qingjiang Shi. Ipm-lstm: A learning-
based interior point method for solving nonlinear programs. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024.

12

Under review as submission to TMLR

Carlos E Garcia, David M Prett, and Manfred Morari. Model predictive control: Theory and practicea
survey. Automatica, 25(3):335–348, 1989.

Maxime Gasse, Simon Bowly, Quentin Cappart, Jonas Charfreitag, Laurent Charlin, Didier Chételat, Anto-
nia Chmiela, Justin Dumouchelle, Ambros Gleixner, Aleksandr M Kazachkov, et al. The machine learning
for combinatorial optimization competition (ml4co): Results and insights. In NeurIPS 2021 competitions
and demonstrations track, pp. 220–231. PMLR, 2022.

Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In Proceedings of the 27th
international conference on international conference on machine learning, pp. 399–406, 2010.

Bingsheng He and Xiaoming Yuan. On the convergence rate of douglas–rachford operator splitting method.
Mathematical Programming, 153(2):715–722, 2015.

Jeffrey Ichnowski, Paras Jain, Bartolomeo Stellato, Goran Banjac, Michael Luo, Francesco Borrelli, Joseph E
Gonzalez, Ion Stoica, and Ken Goldberg. Accelerating quadratic optimization with reinforcement learning.
Advances in Neural Information Processing Systems, 34:21043–21055, 2021.

Haewon Jung, Junyoung Park, and Jinkyoo Park. Learning context-aware adaptive solvers to accelerate
quadratic programming. arXiv preprint arXiv:2211.12443, 2022.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

Bingheng Li, Linxin Yang, Yupeng Chen, Senmiao Wang, Qian Chen, Haitao Mao, Yao Ma, Akang Wang,
Tian Ding, Jiliang Tang, et al. Pdhg-unrolled learning-to-optimize method for large-scale linear program-
ming. In Forty-first International Conference on Machine Learning, 2024.

Jiulong Liu, Nanguang Chen, and Hui Ji. Learnable douglas-rachford iteration and its applications in dot
imaging. Inverse Problems & Imaging, 14(4), 2020.

Haihao Lu and Jinwen Yang. A practical and optimal first-order method for large-scale convex quadratic
programming. arXiv preprint arXiv:2311.07710, 2023.

Haihao Lu, Zedong Peng, and Jinwen Yang. Mpax: Mathematical programming in jax. arXiv preprint
arXiv:2412.09734, 2024.

Harry Markowitz. Portfolio selection, 1952.

Vishal Monga, Yuelong Li, and Yonina C Eldar. Algorithm unrolling: Interpretable, efficient deep learning
for signal and image processing. IEEE Signal Processing Magazine, 38(2):18–44, 2021.

Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in convex programming. SIAM,
1994.

Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

Brendan O’Donoghue. Operator splitting for a homogeneous embedding of the linear complementarity
problem. SIAM Journal on Optimization, 31(3):1999–2023, 2021.

Rajiv Sambharya, Georgina Hall, Brandon Amos, and Bartolomeo Stellato. End-to-end learning to warm-
start for real-time quadratic optimization. In Learning for Dynamics and Control Conference, pp. 220–234.
PMLR, 2023.

Rajiv Sambharya, Georgina Hall, Brandon Amos, and Bartolomeo Stellato. Learning to warm-start fixed-
point optimization algorithms. Journal of Machine Learning Research, 25(166):1–46, 2024.

Bartolomeo Stellato, Goran Banjac, Paul Goulart, Alberto Bemporad, and Stephen Boyd. Osqp: An operator
splitting solver for quadratic programs. Mathematical Programming Computation, 12(4):637–672, 2020.

Yueming Su, Qiusheng Lian, Dan Zhang, and Baoshun Shi. Transformer based douglas-rachford unrolling
network for compressed sensing. Signal Processing: Image Communication, 127:117153, 2024.

13

Under review as submission to TMLR

Jian Sun, Huibin Li, Zongben Xu, et al. Deep admm-net for compressive sensing mri. Advances in neural
information processing systems, 29, 2016.

Rongchao Sun, Yiqing Zhang, Hanying Zheng, Jianhua Guo, Jianyong Sun, and Jiang Xue. A douglas-
rachford splitting approach based deep network for mimo signal detection. In 2023 IEEE Wireless Com-
munications and Networking Conference (WCNC), pp. 1–6. IEEE, 2023.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society
Series B: Statistical Methodology, 58(1):267–288, 1996.

Shobha Venkataraman and Brandon Amos. Neural fixed-point acceleration for convex optimization. In 8th
ICML Workshop on Automated Machine Learning (AutoML).

Philip Wolfe. The simplex method for quadratic programming. Econometrica: Journal of the Econometric
Society, pp. 382–398, 1959.

Linxin Yang, Bingheng Li, Tian Ding, Jianghua Wu, Akang Wang, Yuyi Wang, Jiliang Tang, Ruoyu Sun,
and Xiaodong Luo. An efficient unsupervised framework for convex quadratic programs via deep unrolling.
arXiv preprint arXiv:2412.01051, 2024.

Ling Zhang and Baosen Zhang. Learning to solve the ac optimal power flow via a lagrangian approach. In
2022 North American Power Symposium (NAPS), pp. 1–6, 2022. doi: 10.1109/NAPS56150.2022.10012237.

14

Under review as submission to TMLR

A Proof of Proposition 1

Our goal is to prove that the sequence generated by Algorithm 2 converges to the solution of problem (2).
The proof will contain two parts:

• First, we will prove that Algorithm 2 is convergent.

• Second, we will prove that Algorithm 2 converges to the solution of problem (2).

Lemma 2. Let C be a convex subset of a Hilbert space H. For any x ∈ H, a point p ∈ C is the projection
of x onto C (i.e., p = ΠC(x)) if and only if p = (Id + NC)−1(x), where Id is the identity operator on H and
NC is the normal cone to C.

Proof. By definition of projection onto convex set C, p = ΠC(x) if and only if ⟨x − p, y − p⟩ ≤ 0,∀y ∈ C.
Recall the definition of normal cone: ∀p ∈ C, NC(p) = {z|(y − p)⊤z ≤ 0,∀y ∈ C}. Therefore,

⟨x− p, y − p⟩ ≤ 0,∀y ∈ C ⇔ (x− p) ∈ NC(p).

Since C is a convex set, the normal cone NC is a maximal monotone operator, which ensures that its resolvent
(Id + NC)−1 is a well-defined, single-valued function.

We can now construct the chain of equivalences:

p = ΠC(x)⇔ ⟨x− p, y − p⟩ ≤ 0,∀y ∈ C

⇔ (x− p) ∈ NC(p)
⇔ p ∈ (Id + NC)−1(x)
⇔ p = (Id + NC)−1(x)

Lemma 3. A single iteration in Algorithm 2, which maps wk to wk+1, can be expressed by the operator Tk

as follows:

wk+1 = Tk(wk) = wk +
[

1
2

(Id + CNC (2Φk − Id))wk − wk

]
,

where
Φk(w) =

(
I − ηk(I + M)⊤(I + M)

)
ũk + ηk(I + M)⊤(w − q)

and CNC is the Cayley operator associated with the normal cone NC.

Proof. The proof proceeds by direct substitution. The Cayley operator CNC is defined as CNC = 2(Id +
NC)−1 − Id. Therefore, from Lemma 1, we get ΠC = 1

2 (CNC + Id).

Using it we can reformulate the three key steps in Algorithm 2:

Step 6: ũk+1 ← ũk − ηk(I + M)⊤((I + M)ũk − (wk − q))
Step 7: uk+1 ← ΠC

(
2ũk+1 − wk

)
Step 8: wk+1 ← wk +

(
uk+1 − ũk+1)

By using the definition of Φk(w), the step 6 can be rewrite as ũk+1 = Φk(wk).

By rewriting the projection operator using the Cayley operator, the step 7 can be reformulated as

uk+1 = 1
2

(CNC + Id)(2ũk+1 − wk) = 1
2

[(CNC + Id)(2Φk − Id)] wk.

15

Under review as submission to TMLR

Then, finally, step 8 can be reformulated as

wk+1 = wk + uk+1 − ũk+1

= wk + 1
2

[(CNC + Id)(2Φk − Id)] wk − Φk(wk)

= wk +
[

1
2

CNC (2Φk − Id)wk + Φk(wk)− 1
2

wk

]
− Φk(wk)

= wk +
[

1
2

CNC (2Φk − Id)wk − 1
2

wk

]
= wk +

[
1
2

(Id + CNC (2Φk − Id))wk − wk

]
:= Tk(wk)

Lemma 4. Rewrite Algorithm 2 as wk+1 = Tk(wk), where Tk = 1
2 (Id + CNC (2Φk − Id)) . Assume

∩k∈N Fix Tk ̸= ϕ, then
∑

k∈N ∥Tk(wk)− wk∥2 < +∞ , which implies that ∥wk+1 − wk∥ → 0

Proof. According to Lemma 3, the Algorithm 2 can be rewritten as

wk+1 = Tk(wk) =wk +
[

1
2

(Id + CNC (2Φk − Id))wk − wk

]
, (5)

where
Φk(w) =

(
I − ηk(I + M)⊤(I + M)

)
ũk + ηk(I + M)⊤(w − q)

and CNC is the Cayley operator.

Since ∥Φk(w1)−Φk(w2)∥ ≤ ηk∥I + M∥∥w1−w2∥, Φk is lipschitz continuous with constant Lk = ηkλmax(I +
M). Also, as

⟨Φk(w1)− Φk(w2), w1 − w2⟩ =
〈
ηk(I + M)⊤(w1 − w2), w1 − w2

〉
≥ ηkλmin(I + M)∥w1 − w2∥2,

Φk is strongly monotone with constant mk = ηkλmin(I + M).

∥2Φk(w1)− w1 − (2Φk(w2)− w2)∥2

= ∥2(Φk(w1)− Φk(w2))− (w1 − w2)∥2

= 4∥Φk(w1)− Φk(w2)∥2 − 4 ⟨Φk(w1)− Φk(w2), w1 − w2⟩+ ∥w1 − w2∥2

≤ (4(Lk)2 − 4mk + 1)∥w1 − w2∥2

If 4(Lk)2 − 4mk + 1 < 1, that is mk > (Lk)2, then 2Φk − Id is nonexpansive and contractive.

Assume that by using line-search such that ηk < λmin(I+M)
λ2

max(I+M) , then 2Φk − Id is nonexpansive and thus

Tk = 1
2

(Id + CA(2Φk − Id)) ∈ A(1
2

)

is an averaged operator. As (5) taking the form of Algorithm 1.2 in Combettes (2004) with λk = 1, ek =
0 and αk = 1

2 , according to Theorem 3.1 and Remark 3.4 in Combettes (2004) we can conclude that∑
k∈N ∥Tk(wk)− wk∥2 < +∞, and thus ∥wk+1 − wk∥ → 0

Corollary 5 (Corollary 5.2 Combettes (2004)). Let γ ∈ (0,∞), let {νk} be a sequence in (0, 2), and let
{ak} and {bk} be a squence in H. Suppose that 0 ∈ A + B is feasible,

∑
k∈N νk(2 − νk) = +∞, and∑

k∈N νk (∥ak∥+ ∥bk∥) < +∞. Take x0 ∈ H and set ∀k ∈ N

xk+1 = xk + νkRγA (2 (RγBxk + bk)− xk) + ak − (RγBxk + bk)),

where RγA = (Id + γA)−1
, RγB = (Id + γB)−1 are the resolvants for A and B. Then {xk} converges

weakly to some point x ∈ H and RγBx ∈ (A + B)−1 (0).

16

Under review as submission to TMLR

Proposition 1 The sequence {uk} generated by Algorithm 2 converges to the solution of problem (2).
Furthermore, the sequences {xk} and {yk} also converge to the solution of problem (1).

Proof. From (5), let Φk = RF + ϵk, where ϵk represents the error induced by the inexact evaluation of the
resolvant of F . Therefore, the Algorithm 2 can be rewritten as

wk+1 = Tk(wk) = 1
2

(Id + CNC (2Φk − Id))wk

= 1
2

wk + RNC (2Φk − Id)wk − 1
2

(2Φk − Id))wk

= wk + RNC

(
2RF (wk)− wk

)
−

(
RF (wk) + ϵk

)
By taking xk = wk, ak = 0, bk = ϵk, γ = 1, νk = 1 and let A = RNC and B = F , Algorithm 2 is taking the
form of (5). To prove the Proposition 1, we are left to show that

∑
k∈N ∥ϵk∥ < +∞.

Let fk(ũ) = 1
2∥(I + M)ũ− (wk − q)∥2, line 4− 5 in Algorithm 2 can be written as

ũk+1 = ũk − ηk∇fk(ũk)

where the step size ηk is chosen to satisfy the Wolfe conditions (Nocedal & Wright, 1999), that is

fk(ũk)− fk(ũk+1) ≥ c1ηk∥∇fk(ũk)∥2 (6)

∇fk(ũk+1)⊤∇fk(ũk) ≤ c2
∥∥∇fk(ũk)

∥∥2
, (7)

where c1 and c2 are the parameters for the line search and 0 < c1 < c2 < 1.

From (7), we have (
∇fk(ũk+1)−∇fk(ũk)

)⊤∇fk(ũk) ≤ (c2 − 1)
∥∥∇fk(ũk)

∥∥2
.

fk is Lipschitz continuous with constant L = σmax(I + M), as ∥∇fk(x)−∇fk(y)∥ ≤ L∥x− y∥. Therefore

− (∇fk(ũk+1)−∇fk(ũk))⊤∇fk(ũk)
≤ |(∇fk(ũk+1)−∇fk(ũk))⊤∇fk(ũk)|
≤ ∥(∇fk(ũk+1)−∇fk(ũk))∥∥∇fk(ũk)∥
≤ ηkL∥∇fk(ũk)∥2,

which implies that

ηk ≥ − (∇fk(ũk+1)−∇fk(ũk))⊤∇fk(ũk)
L∥∇fk(ũk)∥2

≥
(1− c2)

∥∥∇fk(ũk)
∥∥2

L∥∇fk(ũk)∥2 = 1− c2

L
.

Therefore
fk(ũk)− fk(ũk+1) ≥ c1ηk∥∇fk(ũk)∥2 ≥ c1

1− c2

L
∥∇fk(ũk)∥2.

Since fk(ũ) ≥ 0

1− fk(ũk+1)
fk(ũk)

≥ c1
1− c2

L

∥∇fk(ũk)∥2

fk(ũk)
≥ 2c1

1− c2

L
σmin(I + M),

where σmin(I + M) ≥ 1 is the minimum singular value of (I + M). (As M + M ′ ⪰ 0, the real parts of the
eigenvalues of M are nonnegative.)

The last inequality is from:

∇fk(ũk) = (I + M)⊤ (
(I + M)ũk − (wk − q)

)
17

Under review as submission to TMLR

∥∇fk(ũk)∥2

fk(ũk)

= 2
(
(I + M)ũk − (wk − q)

)⊤ (I + M)(I + M)⊤ (
(I + M)ũk − (wk − q)

)
∥(I + M)ũk − (wk − q)∥2

≥ 2λmin
(
(I + M)(I + M)⊤)

, (rayleigh quotient)
= 2σmin(I + M).

From Lemma 4,
∑

k∈N ∥wk+1−wk∥2 < +∞ and ∥wk+1−wk∥ → 0. Let us further assume that ηk also satisfies
the assumption in Lemma 4, then ∃K, such that ∀k > K Φk+1 ≈ Φk and 2Φk− Id is contractive. Therefore,
∀k > K, ∃0 < c < 1, such that ∥wk+1 − wk∥ ≤ c∥wk − wk−1∥ and thus

∑
k=K ∥wk+1 − wk∥ < +∞. As∑

k∈N ∥wk+1−wk∥2 < +∞,
∑K−1

k=0 ∥wk+1−wk∥ is bounded. We can conclude that
∑

k∈N ∥wk+1−wk∥ < +∞.

Defining τk = fk(ũk+1)
fk(ũk) and taking 0 < c1 < 1

2 < c2 < 1, then

τk = fk(ũk+1)
fk(ũk)

≤ 1− 2c1
1− c2

L
σmin(I + M) = 1− 2c1(1− c2) σmin(I + M)

σmax(I + M)
:= τ < 1.

Therefore

∥(I + M)ũk+1 − (wk − q)∥ ≤ τ∥(I + M)ũk − (wk − q)∥.

∥ϵk∥ = ∥ũk+1 − (I + M)−1(wk − q)∥
≤ ∥(I + M)−1∥∥(I + M)ũk+1 − (wk − q)∥
≤ ∥(I + M)−1∥τ∥(I + M)ũk − (wk − q)∥
≤ ∥(I + M)−1∥τ∥(I + M)ũk − (wk−1 − q) + (wk−1 − q)− (wk − q)∥
≤ ∥(I + M)−1∥(τ2∥(I + M)ũk−1 − (wk−1 − q)∥+ τ∥wk − wk−1∥)
≤ · · ·

≤ ∥(I + M)−1∥(τk+1∥(I + M)ũ0 − (w0 − q)∥+
k∑

j=1
τk−j+1∥wj − wj−1∥)

:= ∥(I + M)−1∥

 k∑
j=0

τk−j+1∥wj − wj−1∥

 ,
(

denote w(−1) = (I + M)ũ0
)

:= ∥(I + M)−1∥ak.

Next, we prove the convergence of
∑

k∈N ∥ϵk∥ by showing the convergence of
∑

k∈N ak.

∑
k∈N

ak =
∞∑

k=0

ak =
∞∑

k=0

k∑
j=0

τk−j+1∥wj − wj−1∥

=
∞∑

j=0
∥wj − wj−1∥

∞∑
k=j

τk+1−j

=
∞∑

j=0
∥wj − wj−1∥τ

∞∑
k=0

τk

=
∞∑

j=0
∥wj − wj−1∥ τ

1− τ
< +∞,

Therefore,
∑

k∈N ∥ϵk∥ ≤
∑∞

k=0 ak < +∞. Then according to Corollary 5, we can conclude that ∃w∗, such
that wk ⇀ w∗. As in a finite-dimensional space strong convergence and weak convergence are equivalent,
we can conclude that wk → w∗. In addition, u∗ = ũ∗ = RF (w∗) ∈ (F + NC)−1(0).

18

Under review as submission to TMLR

B SCS Settings

The parameter settings for SCS in the experiments are listed in Table 6:

Table 6: Solver configurations.

Instance data scaling dual scale factor adapt dual scale primal scale factor alpha acceleration lookback acceleration interval
QP (RHS)/QP False 1 False 1 1 0 0
QPLIB/Portfolio True 0.1 True 10−6 1.5 10 10

C Offline Time

Table 7: Time for collecting training and validation instances and training model (measured in seconds).

Instance Data Collection Training

QP(RHS)
200 6 215
500 42 481
1000 296 1007

QP
200 5 108
500 39 286
1000 145 1422

QPLIB

3913 19 505
4270 785 3598
8845 1355 5992
3547 2885 8388

Portfolio

100 85 2875
200 370 5221
300 948 8372
400 2579 10214

D Analysis of Number of Gradient Steps

In Table 8, we compare the number of iterations required for convergence using the same experimental
settings as in Section 5.1, but on newly generated instances. The solution quality follows a similar trend to
the results presented in Table 2 and is therefore omitted here for brevity. We unrolled the DR-GD algorithm
(Algorithm 2) with 1, 2, 3, 4, 5, and 10 gradient steps and compared the number of iterations against the
original DR splitting algorithm (Algorithm 1).

Despite the notable reduction in iterations with additional GD steps, we chose to unroll the algorithm with
only a single step in the manuscript. This design was made to avoid a complicated inner-outer architecture,
as mentioned in Section 4.1, and to maintain a simpler and more straightforward structure for the unrolled
network.

We investigated whether unrolling more gradient descent (GD) steps per layer improves DR-GD Net per-
formance, with results shown in Table 9. We tested versions with 1, 2, 5, and 10 inner GD steps (see
Algorithm 4) on validation set of QP(RHS) and observed a clear trade-off. From the table, we observe that
the most significant solution time reductions are achieved with 1 to 2 GD steps per layer and solution qual-
ity deteriorates as step count increases, evidenced by rising maximum violation values and growing ℓ2-error
norms. These results demonstrate that our current single-step approximation yields approximate solutions
of higher quality as well as better performance boost.

19

Under review as submission to TMLR

Table 8: Convergence comparison between Algorithm 1 and Algorithm 2 with different number of gradient
steps per-iteration.

Instance Algorithm 2 Algorithm 1
step=1 step=2 step=3 step=4 step=5 step=10

QP
200 7447 6093 5943 5907 5876 5840 5815
500 18427 14723 14171 14025 13918 13780 13646
1000 22539 17788 17015 16817 16671 16502 16358

Algorithm 4 DR-GD Net with multi-gradient steps
1: Input: M, q, C, number of layers L and embedding size dℓ.
2: Initialize: ũ0 ← 0, u0 ← ΠC(−q), w0 ← q · 1d0 + u0, unroll_steps;
3: for ℓ = 0, · · · , L− 1 do
4: Update ũ: w′ = wℓU ℓ

w − q · 1dℓ

5: for i = 1, · · · , unroll_steps do
6: ṽℓ ← ũℓU ℓ

ũ;
7: gℓ ← (I + M)⊤ (

(I + M)ṽℓ − w′);
8: ũℓ ← ṽℓ − ηℓσ

(
wℓU ℓ

η + bℓ
η

)
⊙ gℓ;

9: end for
10: ũℓ+1 ← ũl

11: Update u: uℓ+1 ← ΠC
(
2ũℓ+1V ℓ

ũ −wℓV ℓ
w

)
;

12: Update w: wℓ+1 ← wℓW ℓ
w +

(
uℓ+1W ℓ

u − ũℓ+1W ℓ
ũ

)
13: end for
14: Return u := uLP L

u

Table 9: DR-GD Net with different unrolling of gradient steps per-iteration.

Instance Unroll Steps Iter. Ratio Time Ratio Obj. Max Viol. ℓ2 Norm

QP(RHS) 200

1 40.4% 36.0% -36.730 1.264 0.002
2 40.7% 34.6% -36.807 1.929 0.004
5 39.7% 29.7& -37.120 1.977 0.004
10 37.0% 22.7% -36.426 2.048 0.005

QP(RHS) 500

1 39.2% 37.1% -91.272 1.366 0.001
2 39.2% 38.2% -91.721 3.477 0.003
5 36.4% 34.5% -90.479 3.539 0.004
10 -0.8% -4.1% -85.441 29.962 0.479

20

Under review as submission to TMLR

E Testing on larger perturbations

To assess the model’s robustness to larger perturbations, we evaluated a model trained with a perturbation
factor of 0.1 on a test set with a 50% larger perturbation factor (0.15). As shown in Table 10, performance is
maintained despite this distribution shift, providing initial evidence of the model’s robustness. QPLIB 3913
was omitted from this analysis due to its limited acceleration on the original dataset.

Table 10: Testing on larger perturbations.

Instance OSQP SCS SCS (Warm Start) Ratio
Time (s)↓ Iters.↓ Time (s)↓ Iters.↓ Time (s)↓ Iters. ↑ Time ↑

QPLIB
4270 0.780 4,577 1.275 2,270 0.651 44.8% 42.5%
8845 2.391 10,489 2.292 6,189 1.767 32.1% 30.9%
3547 4.220 24,201 5.134 17,073 3.642 28.9% 28.5%

F Solution Quality

The following Table 11 compares the solution quality and the inference time in seconds (“Inf. Time(s)”) of
baseline methods on the QP(RHS) datasets. The results demonstrate that DR-GD-NN generally achieves
better objective values and smaller distances to the optimal solutions, especially for larger-sized problems.
While L2WS variants do exhibit marginally better feasibility (“Max Viol.”), this advantage comes at consid-
erable computational expense (“Inf. Time”) due to their mandatory feasibility restoration step.

Table 11: Solution quality of different methods on QP(RHS) datasets.

Instance Method Obj. Max Viol. ℓ2 Norm Inf. Time (s)

QP(RHS) 200

SCS -36.688 - - -
L2WS(Reg) -36.611 0.002 0.001 0.011
L2WS(Fp) -36.437 0.001 0.007 0.011
GNN -38.192 6.447 0.035 0.002
DR-GD-NN -36.730 1.264 0.002 0.002

QP(RHS) 500

SCS -91.176 - - -
L2WS(Reg) -90.850 0.001 0.002 0.072
L2WS(Fp) -0.397 0.987 0.839 0.072
GNN -66.463 17.903 0.110 0.005
DR-GD-NN -91.272 1.366 0.001 0.004

QP(RHS) 1000

SCS -160.245 - - -
L2WS(Reg) -84.326 0.008 0.330 0.303
L2WS(Fp) -0.382 0.995 0.681 0.310
GNN -70.927 18.181 0.530 0.018
DR-GD-NN -160.545 1.750 0.001 0.012

21

Under review as submission to TMLR

G Supplementary Experiments on Larger Instance

In this section, we conduct experiments on QPLIB 8785, featuring problem sizes approximately 10 times
larger than those in our main experiments. The specific sizes are detailed in Table 12.

The results are reported in Table 13. On average, the SCS solver required 1,559 iterations and 14.474 seconds
to solve this instance. However, by using the solution from our DR-GD Net as a warm start, the iteration
count and solve time for SCS were reduced to 711 and 7.025 seconds, respectively. This corresponds to an
improvement of 50.7% in iterations and 49.7% in solve time. These results demonstrate that the proposed
method performs effectively and maintains its benefits on significantly larger instances.

Table 12: Problem size of instance QPLIB 8785

Instance n m1 m2

QPLIB 8785 10,399 11,362 20,798

Table 13: Performance of DR-GD Net on QPLIB datsets.

Instance OSQP raPDHG SCS SCS (Warm Start) Ratio
Time (s) Iters. Time (s) Iters. Time (s) Iters. Inf. Time (s) Solve Time (s) Time (s) Iters. Time

QPLIB 8785 4.255 15,113 254.6 1,559 14.474 711 0.146 7.025 7.171 50.7% 49.7%

22

Under review as submission to TMLR

H Comparison with DR-GD

The following table compares the solutions’ objective values (“Obj.”), feasibility satisfication (“Max Viol.”)
and distances to optimal solutions (“ℓ2 Norm”) on the QP(RHS) datasets. DR-GD(n) represents the case
where DR-GD stops after n iterations, while DR-GD-NN denotes our DR-GD neural network. The results
demonstrate that DR-GD-NN produces solutions with objective values (“Obj.”) and proximity to optimal
solutions (“ℓ2 Norm”) quite close to those obtained from DR-GD(5000), while maintaining acceptably low
constraint violations. Most notably, our DR-GD Net achieves this comparable solution quality using only 4
layers, representing a substantial improvement in computational efficiency over the conventional approach
requiring 5000 iterations. These findings validate that our network architecture can effectively match the
performance of standard DR-GD while requiring significantly fewer computational resources.

Table 14: Comparison of solution quality between DR-GD and DR-GD Net

Instance Method Obj. Max Viol. ℓ2 Norm

QP(RHS) 200

DR-GD(4) 6.526 5.101 0.913
DR-GD(10) 9.615 3.774 0.995
DR-GD(100) -18.586 2.178 0.453
DR-GD(500) -33.726 0.271 0.052
DR-GD(1000) -35.248 0.048 0.009
DR-GD(5000) -35.525 0.000 0.000
DR-GD-NN -36.730 1.264 0.002

QP(RHS) 500

DR-GD(4) 19.718 11.194 1.062
DR-GD(10) 30.545 8.917 1.167
DR-GD(100) 1.556 3.449 0.977
DR-GD(500) -68.233 1.358 0.287
DR-GD(1000) -83.588 0.378 0.118
DR-GD(5000) -92.731 0.009 0.001
DR-GD-NN -91.272 1.366 0.001

QP(RHS) 1000

DR-GD(4) 43.140 17.593 1.019
DR-GD(10) 69.374 13.780 1.140
DR-GD(100) 23.985 5.808 0.980
DR-GD(500) -116.195 2.022 0.314
DR-GD(1000) -147.401 0.563 0.143
DR-GD(5000) -167.809 0.014 0.002
DR-GD-NN -160.545 1.750 0.001

23

Under review as submission to TMLR

I Ablation on Number of Layers

To systematically evaluate the impact of number of layers, we trained DR-GD Net with 1 to 6 layers on
the QP(RHS) datasets and measured the resulting reduction ratios in both iteration count and solve time.
Figure 3 shows the resulting reduction ratios in iteration count and solve time on the validation set. The
computational performance generally improves as the number of layers increases. However, the improvements
become marginal beyond 4 layers. Therefore, to balance performance and model complexity, we chose to use
a 4-layer architecture for our experiments.

1 2 3 4 5 6
Number of layers

0

10

20

30

40

50

Ite
r.

Im
pr

ov
. R

at
io

 (%
)

QP(RHS) 200
QP(RHS) 500
QP(RHS) 1000

(a)

1 2 3 4 5 6
Number of layers

0

10

20

30

40

Ti
m

e.
 Im

pr
ov

. R
at

io
 (%

)

QP(RHS) 200
QP(RHS) 500
QP(RHS) 1000

(b)

Figure 3: Improvement ratios for iteration count (3a) and solve time (3b) on the QP(RHS) validation sets,
evaluated for models with different numbers of layers.

24

	Introduction
	Related Works
	Preliminaries
	Quadratic Programs
	Douglas-Rachford Splitting

	Deep Unrolled DR Splitting
	DR-GD Algorithm
	Algorithm Unrolling
	Training

	Computational Studies
	Convergence of DR-GD
	Computational Results on DR-GD Net
	Analysis of Loss and Iteration Improvement

	Conclusions
	Proof of Proposition 1
	SCS Settings
	Offline Time
	Analysis of Number of Gradient Steps
	Testing on larger perturbations
	Solution Quality
	blueSupplementary Experiments on Larger Instance
	Comparison with DR-GD
	Ablation on Number of Layers

