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Abstract

Post-hoc interpretability of neural network models, including Large Language
Models (LLMs), often aims for mechanistic interpretations — detailed, causal
descriptions of model behavior. However, human interpreters may lack the
capacity or willingness to formulate intricate mechanistic models, let alone
evaluate them. This paper addresses this challenge by introducing a taxon-
omy which dissects the overarching goal of mechanistic interpretability into
constituent claims, each requiring distinct evaluation methods. By doing so,
we transform these evaluation criteria into actionable learning objectives, pro-
viding a data-driven pathway to interpretability. This framework enables a
methodologically rigorous yet pragmatic approach to evaluating the strengths
and limitations of various interpretability tools.

1 Introduction

Despite the impressive performance of large language models (LLMs) in many complex tasks
and domains, interpreting the inner workings of these black-box models remains an open chal-
lenge. Ideally, we would like to identify high-level variables that encode relevant concepts, as
well as relationships between these concepts, with the goal of understanding internal model
representations, manipulating these in a disentangled manner, assessing model behaviour and
enhancing trust in these models. For example, consider a movie recommendation scenario: is
the algorithm suggesting specific movies based on user preferences or because it has an inherent
bias towards Tom Hanks movies? This example illustrates the need for a nuanced understanding
of the model’s internal variables and their causal relationships.

In order to make these neural models transparent and understand their inner workings, mecha-
nistic interpretability [Räu+23] proposes translating model computations into human-readable
code for gaining an algorithmic-level understanding of the neural network model’s computations,
such as for example a python program that captures the pseudocode of the LLM. While it is
debatable to what extent programming code is human-interpretable, assuming this condition is
met, it would offer us the possibility to understand and control model behavior. Nevertheless, this
goal may not be readily attainable in practice due to the inherent difficulty of the objective: there
is no guarantee that the surrogate python program is a reliable and consistent approximation of
the true LLM behaviour. This holds particularly true when the program has not been evaluated
on the entirety of the data the LLM has seen at training time. In addition, the principles of causal
hierarchy [Bar+22] demonstrate that while two python programs may present indistinguishable
behavior when evaluated on a given dataset, they may behave completely different from each
other on other datasets in the presence of distributional shift. Besides, if the python program is
billion lines of code in length, it is not going to satisfy the human-understandable criteria.

Given the above mentioned challenges, we follow the approach proposed in [GPI23] to narrow
down the search space of LLM-compatible surrogate programs to those that emulate the LLM
behavior on a particular task of interest only with a given data distribution. While this does not
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guarantee consistency between the surrogate program and LLM behaviour on a different task
other than the one of immediate interest, focusing the interpretability analysis on a narrow task
(as opposed to the entire LLM-compatible programs space) allows us to substantially reduce the
complexity of compatible programs for generating and validating hypotheses and the intricacy
of their internal computations. The main contribution of our work consists in proposing partial
evaluations of existing interpretability methods for the given task of interest.

Therefore, in this work we are interested in identifying a subset of high-level variables in the
LLM that encode relevant concepts, along with partially specified relationships between these
concepts. By leveraging techniques from mechanistic intepretability and program synthesis
literature, we aim to find valid human-understandable interpretations that are consistent with the
LLM behaviour. Unsurprisingly though, there are many ways in which any given interpretation
can be falsified, even in complex domains with limited human understanding To overcome these
challenges, we introduce a taxonomy rooted in the principles of causal hierarchy [Bar+22] which
helps with the selection of interpretability tools, evaluation methods and mechanistic uncertainty
given multiple compatible programs.

More specifically, our framework consists in identifying high-level variables, verifying constraints,
probing for intermediate concepts, and assessing the causal sufficiency and generalizability of
the proposed model interpretations. We consider the case where the high-level model is only
partially specified, i.e we only know the direction of causation between intermediate variables,
or even less, merely their joint distribution. We assume the high level model defines a set of
high-level concepts that are interpretable to humans; in case of a data-driven approach, the data
itself determines the high-level model. Our goal is to evaluate whether a given interpretation in
terms of this ontology is faithful to the LLM, that is whether the interpretation can be used as a
proxy for reasoning about the LLM. By focusing on these aspects, we aim to enhance the rigor of
post-hoc interpretability in LLMs.

Figure 1: An interpretation (H,τ) consists of a human-understandable model H of how the output
feature of interest, YH , is related to high-level concepts H1, H2 . . . , Hn, along with mappings τk relating
these high-level concepts to parts of the neural network. Here, we depict the case where H is a directed
acyclic causal graph. In general, H could be cyclic or involve non-causal relations, so long as it induces a
joint probability distribution over concepts.

2 Related Work

Our approach builds upon the framework of causal abstractions [GPI23; Gei+23; Wu+23] which
evaluates the faithfulness of an interpretation by comparing model behavior to a given high-level
algorithm. This algorithm is mechanistically specified and encapsulates human knowledge about
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a domain at multiple levels, be it in the choice of variables, the choice of abstraction, the direction
of causal influence, or the structural causal equations themselves.

Related to our work, [MPT23] presents a causal framework for evaluating interpretations focusing
on the question of alignment, i.e. the extent to which an interpretation preserves human-semantics,
rather than faithfulness as we do in our work. Since interpretations need to be both faithful and
human-interpretable, these are complementary investigations. [Rä+23] offers a taxonomy of
interpretability methods which is broader than ours, covering intrinsic interpretability (enforcing
interpretability during training) in addition to the post-hoc interpretability methods we cover,
and does not employ the same causal taxonomy for post-hoc interpretability methods.

We formulate the prompt/inputs to be exogenous variables outside the scope of intervention,
and then consider how causal evaluations of the internals of the neural network can provide
guarantees against distributional shift on the inputs. Alternative, one can directly model this
distributional shift by intervening directly on the inputs as in [HL22].

3 Notation

Consider L, a feed-forward neural network, generating output OL(x) for a prompt x ∼ X , where
X represents the prompt distribution. The pair (X , L) forms a large structural causal model whose
neurons deterministically map inputs x to activations l at each layer. The use-case and evaluation
distributions of prompts are denoted as X U and X E , respectively.

For interpretations focused on a single task, we analyze YL , a summary statistic of OL . Examples
of YL include the sum of numbers mentioned in the prompt, and evaluations of whether OL is
harmful, biased, factual. Distributions induced by model L with X U and X E are Y U

L and Y E
L .

To relate the low-level computations of L to a high-level model, we introduce a structural causal
model H = (H1, H2, . . . , Hn). Hk is thus a measurable function over the inputs x , representing a
high-level concept. As with the neural network L, each Hk deterministically maps from a subset of
{x , H1, ..., Hk−1} to values hk. Even if Hk does not depend on x directly, we use Hk(x , h1, ..., hk−1)
to refer to the value Hk takes on when H1 = h1, ..., Hk−1 = hk−1 and input x . Domain(H)is the
set of x where H is well-defined: we assume it is supported by X U and X E .

The mapping τ : L→ H translates activations in L to high-level concepts in H. This is achieved
through functions τk : domain(Lk)→ domain(Hk), linking pairwise disjoint sets of activation
vectors Lk to their corresponding Hk; collective Lk may not encompass the entire activation space
of L, allowing for parts of L that do not map to any high-level concept for this task.

The interpretation (H,τ) enables both passive monitoring and active control of L’s behavior.
Mechanistic faithfulness involves ensuring that the causal relations between the Hk are a perfect
match for the causal relations between the Lk, so that H can serve as a proxy for reasoning about
L even under distributional shift. As we will show, partial evaluations of mechanistic faithfulness
are possible, allowing analysis even without a fully-structural specification of H.

4 Mechanistic Faithfulness as an Ideal

In order to reason about the behaviour of black-box model L , one would ideally specify a proxy
model H that is entirely expressed in human-understandable language. Ideally, H would be
mechanistically faithful to L, in the sense that all correlations between inputs, outputs, and
intermediate concepts are preserved even when intermediate concepts are intervened on.

Definition 1 (Mechanistic Faithfulness). Suppose we are given low-level model L, an
interpretation (H,τ), a use case consisting of prompt distribution X U and target concepts
Y . We say the high-level model H is mechanistically faithful to the low-level model L if,
∀x ∈ domain(H), ∀li ∈ domain(τi),

τk(Lk(x , l1, ..., lk−1)) = Hk(x ,τ1(li), ...,τk−1(lk−1)) (4.1)

YL(x , l1, ..., ln) = YH(x ,τ1(l1), ...,τn(ln)) (4.2)

where Lk(x , l1, ..., lk−1) is the value Lk would take on if X = x , L1 = l1, ..., Lk = lk, and
Hk(x ,τ1(li), ...,τk−1(lk−1)) is defined similarly.
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Intuitively, the definition of mechanistic faithfulness states that at least for inputs x ∈ domain(H),
each τ(Lk) and Hk have the exact same functional relationship to preceding concepts L<k and
H<k and the input x .

If we pass in the same distribution of inputs X to L and a mechanistically faithful H, all their
counterfactual, interventional, and observational distributions will agree. Hence, this is an
extremely strong faithfulness criteria. Therefore, an important question to ask is what evaluations
can we perform using L, H, τ, and X E to falsify Equation 4.1?

This is challenging, as we may have limited understanding of:

• how the use-case prompt distribution X U differs from the evaluation distribution X E;

• the joint distribution P(X , H1, ..., Hn, YH) of high-level intermediate concepts (for eg.,
we may only have estimates of some conditional distributions with sampling bias);

• which H is consistent with the data-generating process of L’s training data.

Given these uncertainties, we can at least check whether certain weaker claims hold. In what
follows we present implications of Equation 4.1 in increasing order of their difficulty; these
implications are the cornerstone for the hierarchy of evaluations we propose in Section 5. Note
that if the platonic objective 1 holds true, then each of the following statements is also true
(although the converse is not always true) 1.

Implication 1 (Input/Output Observational Equivalence). H should preserve the correlations
between the input prompts and the target concepts:

PX (YL) = PX (YH) (4.3)

Implication 2 (Input/Intermediate Observational Equivalence). τ should preserve the
correlations which an input induces on intermediate concepts of H:

PX (τ1(L1), . . . ,τk(Lk)) = PX (H1, . . . , Hk) (4.4)

Probing is a common approach to search for a model’s representation of a concept [Bel21],
especially when a concept is believed to be represented by a single neuron [Gur+23]. Note that if
one trains probes for high-level concepts independently, one may fail to capture the information
about how the concepts relate to each other: this would correspond to just enforcing the marginal
equivalence P(τ(Lk)|X ) = P(Hk|X ) for each k individually. It is more informative to leverage
how the high-level concepts relate to each other as in 4.4, as in [Bur+22; PH22].

However, just as one would not assume that just because two Python programs are perfectly
identical simply because they pass the same unit tests on a limited dataset, we would like to
evaluate how 1. H might fail to predict L’s behavior out of distribution, or 2. whether H responds
the same to model steering as L in-distribution.

Implication 3 (Input/Output Interventional Equivalence). L and H should produce the
same target concepts when intermediate concepts are intervened on.

PX (YL; do(Li = l)) = PX (YH ; do(Hi = τi(l))) (4.5)

There are many recent examples of evaluating the faithfulness of a concept by its effect on
the output, although the nature of the interventions vary widely, from synthetic interventions
optimized a probe value [Li+23], ablations [Bel+23], interchange interventions [Wu+23] (setting
activations to values they would take on other inputs), concept algebra [Wan+23] (interventions
based on linear projections in a score-based representation).

Equation 4.5 is only a statement about the relation between intermediate concepts and the output,
not about the relationships between intermediate concepts themselves. Of course, if we truly

1Since these ought to hold for both X E and X U , we just write X for simplicity. We will add the superscripts
back in when discussing the implications of evaluations.
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have recovered the true Python program, then the high-level model should predict the effect of
an intervention of one intermediate variable on other intermediate variables as well.

Implication 4 (Input/Intermediate Interventional Equivalence). Post-interventional probing
correlations match real data:

PX (τ(Li+1), . . . ,τ(Ln); do(Li = l)) = PX (Hi+1, ...Hn; do(Hi = τi(l))) (4.6)

Here, we seek to ensure that probes and the high-level model react similarly to interventions.
In the literature, causal scrubbing [Cha+22] uses ablations to enforce the invariance of non-
descendant concepts to interventions. Another approach involves activation patching [Con+23],
which is commonly used in mechanistic interpretability to test specific network functions. Lastly,
we seek to evaluate counterfactuals 2, which provide even stronger guarantees that H will
continue to serve as a proxy for L under distributional shift.

Implication 5 (Input/Output Counterfactual Equivalence). L and H should produce the
same target concepts when intermediate concepts are intervened on.

PX (YL |Li = l; do(Li = l ′)) = PX (YH |Hi = τi(l); do(Hi = τi(l
′))) (4.7)

Furthermore, ensuring that intermediate concepts Hk are counterfactually equivalent is important
if we want to ensure that model steering will continue to behave as expected out of distribution.
Intermediate counterfactual equivalence may also prove necessary for 1) concepts involving a
degree of adaptiveness, such as agency, situational awareness, cooperativeness, and consciousness,
and 2) notions of blame and attribution, such as counterfactual fairness with regard to an
intermediate sensitive concept.

Implication 6 (Input/Intermediate Counterfactual Equivalence). For any given prompt
x ∈ X , L and H should produce the same target concepts when intermediate concepts are
intervened on (i.e. intermediate concepts Hk are counterfactually equivalent).

PX (τ(Li+1), . . . ,τ(Ln)|Li = l; do(Li = l ′)) = PX (Hi+1, ...Hn|Hi = τi(l); do(Hi = τi(l
′)))
(4.8)

No current interpretability methods directly test for counterfactual equivalence of L and H.

5 Partial Evaluations of Interpretability

We propose algorithmic evaluations for each causal hierarchy level (associational, interventional,
counterfactual) based on Section 4’s implications. Ideally, L and H should behave identically
within the use case domain. If X E and X U are very similar, weak evaluations are sufficient, but
stronger faithfulness evaluations are required when X E and X U differ substantially.

5.1 Associational/Observational Evaluation

If X U and X E are identically distributed, then it’s enough to show that L and H are observationally
equivalent over the evaluation distribution, ∀k:

Evaluation 1 (Associational). Assume X U and X E are identically distributed.

Evaluating Implication 1: Accuracy[YL(X
E), YH(X

E)] (5.1)

Evaluating Implication 2: Accuracy[τk(Lk(X
E)), Hk(X

E)] (5.2)

Relevant interpretability methods: Equation 5.2 is probing [AB16] - τk is the probe trained to
predict concept Hk from the activations Lk. Algorithm discovery in neural networks is complex:
a wide diversity of solutions are plausible even for a simple learning problem [Zho+23].

2We only describe simple counterfactuals, but our evaluations hold for any counterfactual.
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5.2 Interventional Evaluation

In the section 5.1 we assume that X U and X E are identically distributed, now we break this
assumption, i.e. prompt distribution of the use case X U differs from that of the evaluation
distribution X E . If we have enough high-level concepts Hk that YL can be fully derived from the
values of L1, ..., Ln alone (without even needing the prompt), then this implies our high-level
concepts Hk include all possible confounders.

Definition 2 (Causal Sufficiency). We say that L1, ...Ln are causal sufficient for the target
concept YL if there exists some f : domain(X )→ domain(YL) such that ∀x ∈ domain(H),
∀li ∈ domain(τi),

YL(x , l1, ..., ln) = f (l1, ..., ln) (5.3)

Causal sufficiency states H, τ account for all the variability of the target concept YL in L. Causal
sufficiency fails, for instance, when there are computation paths from X to YL which bypass
the L1, ..., Ln, as in Figure 1. Therefore, known intermediates Lk may not capture all relevant
computation in L. This will occur if H is causally insufficient for YH , i.e. there are unobserved
confounders affecting both the input and target concepts. A possible example of this is [McG+23],
demonstrates the existence of adaptive computation through ablations and causal analysis. Even
if a computation is ablated, later redundancy ensures the computation is still completed. As long
as we have causal sufficiency (Definition 5.3), then we can evaluate Implication 3 and Implication
4 by intervening on the low and high level model.

Evaluation 2 (Interventional). Assume causal sufficiency holds.

Evaluating Implication 3:

Accuracy[YL(X
E; edit(Lk = l)), YH(X

E; edit(Hk = τk(l)))] ∀k (5.4)

Evaluating Implication 4:

Accuracy[τk(Lk(X
E; edit(L j = l))), Hk(X

E; edit(H j = τ j(l)))] ∀k,∀ j < k (5.5)

where Lk(x; edit(L j = l)) is the value Lk takes on input x when L j is intervened to value l.

Relevant interpretability methods: Causal abstractions [GPI23] and Othello-GPT [NLW23]
employ a version of Equation 5.4, but differ in the choice of interventions l: causal abstractions
selects values which occur naturally on the data manifold (via Equation 5.6), while causal
scrubbing [Men+22] samples random interventions.

5.3 Counterfactual Evaluation

Now, assume that X E and X U are not identically distributed, and that the Lk ’s are not causally
sufficient for the target concepts YL (i.e., they do not fully screen off the effect of the prompt). In
this case, we can still monitor and control concepts if we can ‘recreate’ the values Hk takes over
X U , by stitching together the values each Hk takes on from X E individually:

∀u∼ X U , ∀Hk ∼ H, ∃e ∼ X E such that Hk(u) = Hk(e) (5.6)

Evaluation 3 (Counterfactual). Given Equation 5.6, evaluate for each k, j, and j < k:
Evaluating Implication 5:

Accuracy(YL(X
E |L j = l; edit(L j = l ′)), YH(X

E |H j = τ(l); edit(H j = τ(l
′)))) (5.7)

Evaluating Implication 6:

Accuracy(τk(Lk(X
E |L j = l; edit(L j = l ′))), Hk(X

E |H j = τ(l); edit(H j = τ(l
′))))) (5.8)

X |L j = l indicates that we only pass in the prompts which induce L j = l; we then pass these
filtered prompts through the intervened model Lk(X |L j = l; edit(L j = l ′)).
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6 Towards Data-Driven Interpretability

Our approach to data-driven interpretability begins by fragmenting mechanistic faithfulness into
partial evaluations. We aim to use the findings from ‘weaker’ evaluations as a stepping stone
towards passing ‘stronger’ evaluations iteratively. In cases where a complete counterfactual speci-
fication of H is unattainable, possibly due to constraints in human understanding of intermediate
concepts, we limit our evaluation to the strictest level feasible. Building on this framework, we
adopt three key strategies: focusing on partial evaluations, prioritizing simpler ones to narrow
the search space, and combining these results for a more in-depth interpretation.

Algorithm 1 Data-Driven Interpretability Algorithm

1: Ensure H is well-defined: P(YL | x) = P(YH | x)
2: Probe Intermediate Concepts: Verify P(τ(Li) | x) = P(Hi | x)
3: Intervene on Probe: Confirm P(YL | x; do(Li = l)) = P(YH | x; do(Hi = τ(l)))
4: Refine using Intermediate Concepts:

Confirm P(τ(Li+1), . . . ,τ(Ln)|x; do(Li = l)) = P(Hi+1, ...Hn|x; do(Hi = τi(l)))
5: Check for Causal Sufficiency: Validate YL(x; do(Li = l)) = YL(x ′; do(Li = l))
6: Check for Input/Output Counterfactual Equivalence:

PX (YL |Li = l; do(Li = l ′)) = PX (YH |Hi = τi(l); do(Hi = τi(l ′)))
7: Check for Input/Intermediate Counterfactual Equivalence:

PX (τ(Li+1), . . . ,τ(Ln)|Li = l; do(Li = l ′)) = PX (Hi+1, ...Hn|Hi = τi(l); do(Hi = τi(l ′)))

The algorithm proceeds as follows: Step 1 - Confirms H has the same input-output behavior as L
for a sanity check; Step 2 - Identifies relevant Li subspaces by probing intermediate concepts; Step
3 - Refines Li , conditioning on specific inputs x for probe validity; Step 4: Further refines Li for
matching interventional and predicted distributions; Step 5 - Validates causal sufficiency of probes,
impacting final evaluation sufficiency; Step 6 - Confirms input-output counterfactual equivalence
between L and H; Step 7 - Checks counterfactual equivalence of intermediate concepts.

Collectively, these steps provide a structured approach to approximating mechanistic faithfulness.
Steps 2 and 3 guide the interpretation from inputs to intermediate variables and from intermediate
variables to the target concept, respectively. The validity of combining these steps hinges on the
causal sufficiency verified in Step 4. Importantly, if the high-level model lacks full mechanstic
precision, the algorithm will make the most of easier early steps, and terminate once we reach a
condition we cannot validate (e.g. if we don’t know what the causal effect of a certain high-level
variable is). Of particular note, the check for causal sufficiency fails only if there are unobserbed
confounders of high-level intermediate concepts.

7 Conclusion

Achieving a mechanistic, human-understandable interpretation of a neural network/LLM is
challenging, especially when the relationships among relevant high-level variables are not fully
understood — either in the real world or within the model’s internal representation.

In this work, we present a methodologically rigorous and pragmatic approach grounded in the
causal hierarchy to navigate the complexities inherent in neural networks/LLMs interpretability.
We dissect mechanistic faithfulness into constituent claims, revealing that existing interpretability
methods are, in essence, tackling different facets of the same complex problem. Each facet
warrants a distinct evaluation method and offers varying degrees of certification. In this way,
we provide a data-driven pathway to post-hoc interpretability evaluations, and leverage any
(limited) existing understanding of a low-level model L via the lens of a mechanistically faithful
high-level model H.
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