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Abstract

Pairwise dot product-based self-attention is key to the success of transformers which achieve
state-of-the-art performance across a variety of applications in language and vision, but
are costly to compute. However, it has been shown that most attention scores and keys in
transformers are redundant and can be removed without loss of accuracy. In this paper, we
develop a novel probabilistic framework for pruning attention scores and keys in transformers.
We first formulate an admixture model of attention keys whose input data to be clustered
are attention queries. We show that attention scores in self-attention correspond to the
posterior distribution of this model when attention keys admit a uniform prior distribution.
We then relax this uniform prior constraint and let the model learn these priors from data,
resulting in a new Finite Admixture of Keys (FiAK). The learned priors in FiAK are used for
pruning away redundant attention scores and keys in the baseline transformers, improving
the diversity of attention patterns that the models capture. We corroborate the efficiency of
transformers pruned with FiAK on practical tasks including ImageNet object classification,
COCO object detection, and WikiText-103 language modeling. Our experiments demonstrate
that transformers pruned with FiAK yield similar or better accuracy than the baseline dense
transformers while being much more efficient in terms of memory and computational cost.

1 Introduction
Transformers Vaswani et al. (2017) have been becoming the method of choice in computer vision and machine
learning Al-Rfou et al. (2019); Dai et al. (2019); Williams et al. (2018); Devlin et al. (2018); Brown &
et al. (2020); Howard & Ruder (2018); Rajpurkar et al. (2016); Dehghani et al. (2018); So et al. (2019);
Dosovitskiy et al. (2020); Touvron et al. (2020b). Thanks to their ability to learn from unlabeled data and
from different data modalities, transformers have achieved state-of-the-art performance on a wide range of
tasks and applications, including image recognition, object detection, and language modeling Radford et al.
(2018; 2019); Devlin et al. (2018); Yang et al. (2019); Liu et al. (2019). Lying at the heart of transformers is
the self-attention mechanism, which captures the contextual representation of the input sequence by allowing
each token in the input sequence to pay attention to other tokens Cho et al. (2014); Parikh et al. (2016); Lin
et al. (2017); Bahdanau et al. (2014); Vaswani et al. (2017); Kim et al. (2017). In particular, self-attention
represents each token as the weighted average of the other tokens’ feature representation using the similarity
scores between the tokens as weight coefficients. The capability of self-attention to attain diverse syntactic
and semantic representations accounts for the success of transformers in practice Tenney et al. (2019); Vig &
Belinkov (2019); Clark et al. (2019); Voita et al. (2019a); Hewitt & Liang (2019).

1.1 Self-Attention

Given an input sequence X = [x1, . . . , xN ]⊤ ∈ RN×Dx of N feature vectors, the self-attention transforms it
into another sequence V̂ = [v̂1, . . . , v̂N ]⊤ ∈ RN×Dv as follows

v̂i =
N∑

j=1
softmax

(q⊤
i kj√

D

)
vj , for i = 1, . . . , N, (1)

where the scalar softmax((q⊤
i kj)/

√
D) can be understood as the attention v̂i pays to the input feature xj .

The vectors qi, kj , and vj are called the query, key, and value vectors, respectively; these vectors are computed
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Figure 1: Our Finite Admixture of Keys (FiAK) models the distribution of the queries qi in self-attention by an
admixture model whose cluster components center around the attention keys kj , i.e. p(qi) =

∑N

j=1 πijN (qi | kj , σ2
j I),

i, j = 1, . . . , N . The prior distributions πij in the admixture are used to prune redundant attention scores aij =
softmax

(
q⊤

i kj√
D

)
. The scores S(j) =

∑
i
|πij | are used to prune redundant keys kj . A fraction of attention scores aij

and keys kj with the smallest |πij | and S(j), respectively, will be pruned away to save memory and computation.

as follows
[q1, q2, . . . , qN ]⊤ := Q = XW ⊤

Q ∈ RN×D,

[k1, k2, . . . , kN ]⊤ := K = XW ⊤
K ∈ RN×D,

[v1, v2, . . . , vN ]⊤ := V = XW ⊤
V ∈ RN×Dv ,

(2)

where WQ, WK ∈ RD×Dx , and WV ∈ RDv×Dx are the weight matrices. We can further write Eqn. 1 into
the following compact form

V̂ = softmax
(QK⊤

√
D

)
V = AV, (3)

where the softmax function is applied to each row of the matrix (QK⊤)/
√

D.

For each query vector qi for i = 1, · · · , N , an equivalent form of Eqn. 3 to compute the output vector v̂i is
given by

v̂i =
N∑

j=1
softmax

(q⊤
i kj√

D

)
vj :=

N∑
j=1

aijvj . (4)

The matrix A ∈ RN×N and its component aij for i, j = 1, · · · , N are the attention matrix and attention
scores, respectively. Eqn. 3 is also called the “scaled dot-product attention” or “softmax attention”. The
attention matrix A after training captures contextual representation for each token.

1.1.1 Multi-head Attention

Eqn. 3 corresponds to an attention head. In multi-head attention, output sequences V̂h, h = 1, . . . , H are
computed from H attention heads and then concatenated. Let W O ∈ RHD×HD be the projection matrix for
the output. The multi-head attention is defined as

Ẑ = MultiHead({V̂ }H
h=1) = Concatenate(V̂1, . . . , V̂H)WO. (5)

The final output of the self-attention layer Tℓ(·) is computed via the following residual connection.

Tℓ(X) = fℓ(Ẑ + X), (6)
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where fℓ(·) is a function that transforms each feature vector independently and usually chosen to be a
feedforward network. In this paper, we call a transformer built with softmax attention softmax transformer
or transformer. It is easy to see that both memory and computational complexity of Eqn. 3 are O(N2)
with N being the length of the input sequence. We can further introduce causal masking into Eqn. 3 for
autoregressive applications Vaswani et al. (2017).

Despite the success of transformers in capturing the contextual representation of tokens in the input sequence,
it has been shown that the contextual representation learned by the self-attention are redundant. Particularly,
attention heads in transformers tend to learn similar attention patterns. Also, many attention scores and
keys within each head explain the same patterns and are not needed Michel et al. (2019); Voita et al. (2019b);
Bhojanapalli et al. (2021). Such redundancy wastes memory and computation during both training and
inference while limiting the model’s capacity, posing a challenge to scale up transformers to large-scale tasks.

1.2 Contribution

We propose a novel probabilistic model for self-attention, namely the Finite Admixture of Keys (FiAK),
that allows pruning attention scores and keys using the prior distributions of attention keys. FiAK models
the query distribution p(qi) as an admixture of Gaussian distributions N (qi | kj , σ2

j I) centering around the
attention keys kj , i, j = 1, . . . , N . Our admixture approach uses different mixture models to represent the
queries qi and thus helps increase the diversity of attention patterns. Also, since these mixture models
share the same set of component distributions N (qi | kj , σ2

j I), FiAK is efficient. The prior distributions of
attention keys in FiAK are then used to prune redundant attention scores and keys to improve the memory
and computational cost of the model. An illustration of FiAK and our pruning scheme is given in Fig. 1.
Our contribution is three-fold:

1. We develop FiAK, a new finite admixture of keys for self-attention that allows key sharing to diversify
attention patterns while guaranteeing the efficiency of the model.

2. We design a probabilistic framework for pruning transformers that employs the prior distributions of
keys in FiAK to remove redundant attention scores and keys.

3. We demonstrate the advantages of our FiAK-based pruning protocols on Imagenet object classification,
COCO object detection, and WikiText-103 language modeling tasks.

1.3 Organization

We structure this paper as follows: In Section 2, we review the connection between attention scores and
posterior distributions from a Gaussian mixture model and then present our new finite admixture of keys
(FiAK). We formulate our probabilistic pruning framework for transformers via FiAK in Section 3. In
Section 4, we validate the advantages of our FiAK-based pruning methods on different benchmarks. In
Section 5, we perform empirical analysis of our pruning methods. We discuss related works in Section 6. The
paper ends up with concluding remarks. More results and details are provided in the Appendix.

2 A Finite Admixture of Keys
In this section, we first review the connection between attention scores in self-attention with the posterior
distributions from a Gaussian mixture model (GMM) in Nguyen et al. (2022). We then extend this GMM
into a finite admixture of keys (FiAK) to capture more diverse patterns of attention and for pruning attention
scores and keys later.

2.1 Background: Attention Scores are Posterior Distributions from a Gaussian Mixture Model

Given a query qi ∈ Q and a key kj ∈ K, let t be a K-dimensional binary random variable having a 1-of-K
representation in which a particular element tj is equal to 1 and all other elements are equal to 0. The
distribution p(qi|tj = 1) is the likelihood of the query qi belongs to the j-th cluster centering around the key
kj . In particular, let 1 be an identity matrix and πj be the prior distribution p(tj = 1), the distribution p(qi)
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is given by the following GMM:

p(qi) =
N∑

j=1
πjp(qi|tj = 1) =

N∑
j=1

πjN (qi | kj , σ2
j 1), (7)

Following Eqn. 7, the posterior p(tj = 1|qi) captures how much the query qi matches the key kj and is
computed by

p(tj = 1|qi) =
πjN (qi | kj , σ2

j )∑
j′ πj′N (qi | kj′ , σ2

j′)
=

πj exp
(
−∥qi − kj∥2/2σ2

j

)
∑

j′ πj′ exp
(

−∥qi − kj′∥2/2σ2
j′

)
=

πj exp
[
−

(
∥qi∥2 + ∥kj∥2)

/2σ2
j

]
exp

(
q⊤

i kj/σ2
j

)
∑

j′ πj′ exp
[
− (∥qi∥2 + ∥kj′∥2) /2σ2

j′

]
exp

(
q⊤

i kj′/σ2
j′

) . (8)

Assuming that the query qi and the key kj are normalized, the prior πj is uniform, and let σ2
j = σ2,

j = 1, 2, . . . , K, the posterior p(tj = 1|qi) can then be written in the following form

p(tj = 1|qi) =
exp

(
q⊤

i kj/σ2)∑
j′ exp

(
q⊤

i kj′/σ2
) = softmax

(
q⊤

i kj/σ2
)

. (9)

Eqn. (9) becomes Eqn. (4) of the attention score aij when σ2 =
√

D. Thus, under right assumptions, the
attention score aij between the query qi and the key kj in a self-attention layer of a transformer plays the
role of the posterior distribution p(tj = 1|qi).

2.2 FiAK: A Finite Admixture of Keys

The GMM in Eqn. 7 does not take into account the temporal order of the queries qi, i.e. all queries qi

are from the same mixture distribution. In many practical settings such as in the autoregressive tasks, the
temporal order of the queries qi plays an important role. We extend the GMM of keys for self-attention in
Eqn. 7 into a finite admixture of keys so that the attention score aij can capture more diverse attention
patterns and provide a probabilistic framework for pruning transformers.

2.2.1 Finite Admixture Models

We first review the finite mixture models (FMMs), such as the GMM in Eqn. 7 above, which served as a
workhorse in stochastic modeling, and then discuss the finite admixture models (FAM). A finite mixture
distribution of N components for a random array X ∈ RM×D is given by

xi ∼
N∑

j=1
pjf(x; θj),

N∑
j=1

pj = 1, pj ≥ 0, (10)

where xi ∈ RD is the i-th row of X randomly sampled from the mixture distribution. f is a chosen probability
measure, such as a Gaussian distribution as in Eqn. 7, p = {p1, . . . , pN } are mixture weights that correspond
to the prior πj , and θj denotes the parameter values for the k-th component.

A FAM is a generalization of a FMM, in which rows xi, i = 1, . . . , M , are drawn from different mixture
distributions that share N components f(x; θj), j = 1, . . . , N with different mixture weights

xi ∼
N∑

j=1
pijf(x; θj),

N∑
j=1

pij = 1, pij ≥ 0. (11)

Comparing to FMM, FAM has better representation capacity thanks to its flexibility in choosing the mixture
components. Since all components are shared between mixtures in FAM, FAM is efficient in term of the
model size and computational cost for sampling samples from the model.
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2.2.2 Finite Admixture of Keys

We propose the finite admixture of keys (FiAK) for the queries in self-attention. In Eqn. 11, let the function
f(x; θj) = p(qi|tj = 1) = N (qi | kj , σ2

j I) and pij = πij = pi(tj = 1) where πij = pi(tj = 1) is the prior
distribution p(tj = 1) of the mixture corresponding to the query qi. FiAK is defined as follows:

Definition 1 (Finite Admixture of Keys). Given a set of queries qi and keys kj in self-attention, i, j =
1, . . . , N , the queries qi admit a finite admixture of keys if qi are sampled from the following finite admixture
model:

qi ∼
N∑

j=1
πijp(qi|tj = 1) =

N∑
j=1

πijN (qi | kj , σ2
j I),

N∑
j=1

πij = 1, πij ≥ 0. (12)

Note that the difference between FiAK and the Gaussian mixture of keys in Eqn. 7 is that the prior
distribution πij are different for each query qi, i.e. qi are sampled from different mixtures that share the
same N components N (qi | kj , σ2

j I), i, j = 1, . . . , N .

Remark 1 (FiAK as a Topic Model). FiAK can be connected to the Probabilistic Latent Semantic Analysis
(pLSA) model for topic modeling Hofmann (1999). Given the document d that contains the word w sampled
from the topic c, pLSA models the occurrence of the word w in the document d as a mixture of conditionally
independent Multinomial distributions p(w|d) =

∑
c p(c|d)p(w|c). Comparing this equation of pLSA and

Eqn. 12 of FiAK, we can interpret the mixture weights πij and the distribution N (qi | kj , σ2
j I) in FiAK as

the distributions p(c|d) and p(w|c) in pLSA, respectively. As a result, the attention keys in FiAK correspond
to the topics, and the queries are words sampled from those topics. pLSA and thus FiAK are also equivalent
to the well-known Latent Dirichlet Allocation model under a uniform Dirichlet prior on the per-document
topic distribution p(c|d) Blei et al. (2003).

3 Prior-based Pruning via FiAK

Using the prior πij in FiAK, we propose two novel pruning methods: 1) attention score pruning via FiAK
and 2) mixed pruning via FiAK. For comparison with the GMM of keys in Section 2.1, we also derive 3) key
pruning via GMM. Here, attention score pruning removes the redundant attention scores aij , key pruning
removes the redundant attention keys kj together with its corresponding value vectors vj , and mixed pruning
removes both attention scores and keys, as well the corresponding value vectors vj as in key pruning. In all
of our proposed methods, attention scores and keys with the smallest importance weights, i.e. |π̂ij |, Ŝ(j),
and |π̂j | in Algorithm 1, 2, and 3 are pruned away.

Attention Score Pruning via FiAK. The magnitude of the prior, |πij |, in FiAK implies how much the
key kj is needed to explain the query qi. These priors act as importance weights of the keys kj given the
query qi and can be used to prune away the attention score aij = softmax

(
q⊤

i kj√
D

)
, thus saving memory and

computation when computing the self-attention (see Algorithm 1).

Mixed Pruning via FiAK. To further reduce the computation complexity of the model, we introduce
mixed pruning via FiAK in Algorithm 2. In addition to pruning the attention score aij , we derive the
importance weights of the keys kj and remove the pairs (kj , vj) whose importance weights are the smallest.
This strategy enables the pruned model to save computation not only at the attention calculation step, but
also complete removes the key vector kj and the value vector vj , as well as other computations related to
these vectors in Eqn. 4.

For autoregressive tasks like language modeling, the attention matrices are lower triangular which makes the
importance scores Ŝ(j) =

∑
i |π̂ij | in Algorithm 2 become biased for different time steps j of the keys. In

particular, the smaller j, the more |π̂ij | are added into the sum since |π̂ij | = 0 for i < j, i, j = 1, . . . , N , i.e. a
query can only attend to the current and previous keys, but not the future keys. To address this problem, we
normalize the sum by the number of the entries below the diagonal for each column when computing the
importance score as in Step 3 of Algorithm 2.
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Algorithm 1 Attention Score Pruning via FiAK
Hyperparameter 0 < k < 1: k fraction of the attention scores aij to be pruned.
Step 1 Incorporate parameters πij into the self-attentions.
Step 2 Train the transformer with the additional parameters πij until convergence.
Step 3 Prune k fraction of the attention scores aij whose learned coefficients |π̂ij | are the smallest.
Step 4 Set the remaining π̂ij = 1, which corresponds to uniform prior, and finetune the pruned network.

Algorithm 2 Mixed Pruning via FiAK
Hyperparameters 0 < k1, k2 < 1: k1 fraction of the total attention scores aij to be pruned; k2 fraction of pairs
(key, value) to be pruned.
Step 1 and Step 2 Same as Step 1 and Step 2 of Algorithm 1.
Step 3 Calculate the importance score Ŝ(j) of each pair (kj , vj):

Ŝ(j) =
∑

i

|π̂ij |, or Ŝ(j) = 1
N − j + 1

∑
i

|π̂ij | if the task is autoregressive.

Then prune k2 fraction of the pairs (kj , vj) with the smallest scores Ŝ(j).
Step 4 Prune k̂1 fraction of the remain unpruned aij whose corresponding |π̂ij | are the smallest k̂1 = 1 − 1−k1

1−k2
.

Step 5 Follow Step 4 of Algorithm 1.

Algorithm 3 Key Pruning via GMM
Hyperparameter 0 < k < 1: k fraction of the keys to be pruned.
Step 1 Incorporate parameters πj into the self-attentions.
Step 2 Train the transformer with the additional parameters πj until convergence.
Step 3 Prune k fraction of the key-value pairs (kj, vj), whose corresponding learned mixing-coefficients |π̂j | are the
smallest.
Step 4 Set the remaining π̂j = 1, i.e. uniform prior, and finetune the pruned network.

Table 1: Computational saving achieved by using our proposed pruning methods to prun a dense H-head softmax
attention. H, N , D, Dx denote the number of attention heads, sequence length, head dimension, and model/input
dimension, respectively. Parameters k and (k1, k2) are the fraction to be pruned as explained in Algorithm 1, 2 and 3.
Advantages of our pruned models increase for larger models and longer sequences.

Method Hyper-parameters Computational Saving for H-head Attention
Attention Score Pruning via FiAK k kHN2(2D − 1)
Mixed-Pruning via FiAK k1, k2 2[(k1 + k2)D − k1]HN2 + (2Dx − 3)k2HDN
Key Pruning via GMM k kHN2(4D − 1) + (2Dx − 3)kHDN

Key Pruning via Gaussian Mixture Model. For a comparison between admixture-based pruning and
mixture-based pruning, we introduce key pruning via GMM (Algorithm 3), which uses the learned prior |πj |
in the GMM defined by Eqn. 7 as importance weights to prune the pairs (kj , vj).

Finetuning the Pruned Network. FiAK (Eqn.12) introduces additional priors πij to capture the
importance of the attention score aij . After the attention scores are pruned, those extra parameters can be
removed by setting them to 1, which corresponds to using uniform priors. The network is then finetuned for
more epochs to obtain competitive accuracy compared to the dense baseline network. The same finetuning
strategy is used for key pruning via GMM.

Computational Complexity Reduction from Pruning. Table 1 shows the computational saving from
the multi-head attention pruned by our methods compared to the dense baseline softmax attention. Here, H
is the number of attention heads, and the computational cost is computed as the total number of additions
and multiplications needed. Our analysis results in Table 1 indicate that our pruning methods save more
computations as we scale up the model for longer sequences, i.e. the sequence length N is large. Note that
the saving in computational cost is quadratic in terms of N . Our derivation are given in Appendix D.
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Table 2: Top-1 and top-5 accuracy (%) of the pruned models from the attention score and mixed pruning via FiAK
on the Imagenet dataset compared to the dense baseline DeiT-tiny Touvron et al. (2020a). We also show the top-1
and top-5 accuracy (%) of the pruned model from the key pruning via GMM on the same task for comparison. Here,
pruning fractions of attention scores via FiAK and keys via GMM are k. For mixed pruning via FiAK, pruning
fractions for attention scores and keys are k1 and k2, respectively. FiAK-based pruning schemes result in pruned
models with much better accuracies than the dense baseline and those from the GMM-based pruning scheme.

Method Top-1 Acc Top-5 Acc

Baseline DeiT-tiny 72.23 91.13

GMMformer 72.96 91.64
Key pruned GMMformer k = 30% 71.57 90.80

FiAKformer 73.50 91.90
Attention-score pruned FiAKformer k = 50% 73.56 91.95
Attention-score pruned FiAKformer k = 60% 73.67 91.91
Attention-score pruned FiAKformer k = 70% 73.09 91.57
Mixed pruning FiAKformer k1 = 70%, k2 = 15% 72.78 91.38
Mixed pruning FiAKformer k1 = 70%, k2 = 20% 72.25 91.14

4 Experimental Results
We empirically corroborate the advantages of the models pruned via our proposed FiAK-based pruning
methods over the dense baseline model on various benchmarks, including ImageNet object classification,
COCO object detection, and WikiText-103 language modeling. We aim to show that: (i) the FiAK-based
pruned models are more efficient than the dense baseline in term of memory and computation cost while
achieving comparable/better accuracy; (ii) the FiAK-based pruning methods, i.e. attention score pruning
and mixed pruning via FiAK, are more effective than the GMM-based pruning method, i.e. key pruning via
GMM, resulting in more efficient and accurate pruned models.

Throughout this section, we refer to tranformers that use FiAK-based attention defined by Eqn. 12 as
FiAKformer and transformers that use GMM-based attention defined by Eqn. 7 as GMMformer. Except
for the ImageNet object classification task, in other experiments in this section, we use the attention score
pruning via FiAK to study the FiAK-based pruning. The details on datasets, models, and training are
provided in Appendix A.

4.1 Image classification on Imagenet

Model and setting. We use the DeiT-tiny model Touvron et al. (2020a) with 12 transformer layers and 4
attention heads per layer. The model dimension is 192. To train the models, we follow the same setting and
configuration as for the baseline Touvron et al. (2020a), with the initialization of the learnable priors πij and
πj set to be 1√

N
and 1

N , respectively, where N is the length of the input sequence.

Results. Pruned models from attention score and mixed pruning via FiAK attain much better accuracy than
the DeiT-tiny baseline while being significantly more efficient (See Table 2). Attention score pruning via FiAK
at different pruning fractions k = 50%, 60% and 70% result in the highest accuracies. In particular, at the
pruning fractions k = 50% and 60%, we observe substantial accuracy improvement over the dense baseline
(1.33% and 1.44% in top-1 accuracy, respectively). These two pruned models also outperform the dense
FiAKformer. On the other hand, mixed pruning with the same attention score pruning fraction, k1 = 70%
and different key pruning fractions, k2 = 15% and 20%, gain better accuracy compared to the baseline while
obtaining the most computation and memory reduction (See Fig. 2). These results show the effectiveness of
our pruning schemes for the image classification task. The efficiency of our pruned models on this task is
discussed in Section 5.1.

Comparison with GMM-based pruning. Table 2 shows that while the GMMformer yields better accuracy
than the baseline, by pruning 30% of attention keys (or equivalently key-value pairs), the pruned model
performs worse than the baseline. This results justify the advantage of the FiAK-based pruning over the
GMM-based pruning and validate the need of using admixture, such as FiAK, to model the self-attention and
design its effective pruning schemes.
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Table 3: Comparison to other pruning methods on Imagenet task.

Method FLOPS reduction (%) Acc-1 (%)
DeiT-tiny 0.00 72.23
Head pruning Michel et al. (2019) 23.69 68.59
S2V iTE Chen & et al. (2021) 23.69 70.12
Attention-score pruned FiAKformer k = 70% 8.50 73.09
Mixed pruned FiAKformer k1 = 70%, k2 = 20% 13.00 72.25
Mixed pruned FiAKformer k1 = 70%, k2 = 20% + S2V iTE Chen & et al. (2021) 22.76 72.24

Table 4: Box mean average precision (box mAP) on the COCO validation set of the Swin Tranformer Liu et al.
(2021) pruned with mixed pruning via FiAK in Algorithm 2 compared to the baseline dense Swin transformer. The
mixed pruned model with the pruning fraction k1 = 70% and k2 = 15% achieves a comparable result with the dense
baseline while outperforming the attention-score pruned model that prunes the model less with a smaller pruning
fraction k = 60%. The box mAP of the pretrained baseline is reported at https://github.com/SwinTransformer/Swin-
Transformer-Object-Detection.

Method Box mAP

Baseline Swin transformer 43.7

FiAKformer 44.7
Attention-score pruned FiAKformer 60% 43.3
Mixed pruned FiAKformer k1 = 70%, k2 = 15% 43.6

Comparison to Other Pruning Methods. We compare our FiAK-based pruning schemes with other
pruning methods for transformers on ImageNet task (see Table 3 below). Compared to the head pruning Michel
et al. (2019) and S2V iTE Chen & et al. (2021), our schemes prune the model less but increase its accuracy.
Combining with the S2V iTE Chen & et al. (2021), mixed FiAK pruning can increase the FLOPs reduction
up to 22.76% while maintaining similar advantage in accuracy on the ImageNet task.

4.2 Object Detection on COCO with a Pre-trained Model.

Pruning methods via FiAK are universal and can also be applied on pre-trained transformers finetuned for
downstream tasks. Here, we demonstrate the effectiveness our FiAK-based pruning schemes for a pre-trained
Swin transformer finetuned for the object detection task on the COCO dataset Lin et al. (2014).

Model and baselines Pruning via FiAK methods are easy to apply on the pre-trained models. Following
Algorithm 1, we apply the attention score pruning via FiAK on the pre-trained tiny Swin Transformer Liu
et al. (2021) for the object detection task on the COCO dataset. We first introduce additional parameters
for the priors πij into self-attentions of the pre-trained model and then learn these priors by finetuning the
model for 12 epochs. After pruning the attention scores aij , we do another finetuning round with uniform
priors as in Algorithm 1. The entire process takes less than one-tenth of the time used for training a Swin
transformer from scratch, indicating the efficiency of applying our method. We follow the same configuration
and setting for the baseline as provided in Liu et al. (2021).

Results At pruning fraction k = 60%, the Swin transformer pruned with attention score pruning via FiAK
obtains the Box mean average precision (box mAP) of 43.3, which is comparable with the box mAP 43.7 of
the dense baseline. Note that the dense Swin-FiAKformer attains the box mAP = 44.7, which significantly
better than the box mAP of the dense basline. The mixed pruned model via FiAK with pruning fractions
k1 = 70% and k2 = 15% has comparable performance with the baseline dense softmax model ( mAP = 43.6
vs. mAP = 43.7). It is interesting to notice that the mixed pruned model also outperforms the attention-score
pruned model while allowing larger pruning fraction, 70% vs. 60%. Also, mixed pruned models have smaller
computational complexity than attention-score pruned models as explained in Section 3 and Table 1. The
simple usage and competitive performance of pruning via FiAK on this task demonstrate the universal
applicability of our methods.
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Table 5: Test perplexity of pruned FiAKformer for the language modeling task on Wikitext-103 dataset. We apply
attention score pruning via FiAK and prune 40% and 50% of the attention scores. We also apply mixed pruning via
FiAK with k1 = 40% and k2 = 10%. The results show that the pruned models after finetuning can reach comparable
or better accuracy than the dense baseline.

Method Perplexity (PPL)

Baseline softmax transformer 34.29

FiAKformer 33.69
Attention score pruned FiAKformer 40% 33.88
Attention score pruned FiAKformer 50% 34.28
Mixed pruning FiAKformer k1 = 40%, k2 = 10% 34.21

4.3 Language Modeling on WikiText-103

To examine the effectiveness of our pruning methods across different data modalities, we experiment with the
word-level language modeling task on WikiText-103 Merity et al. (2017). For this autoregressive task, we use
the normalization procedure for mixed pruning via FiAK described in Algorithm 2.

Models and baselines The baseline model we use in our experiments is the 8-head softmax baseline
transformer with 16 layers. We follow the experiment settings from Schlag et al. (2021).

Results We summarize our results in Table 5. Same as the vision tasks above, attention score pruning via
FiAK and mixed pruning via FiAK yield more efficient language models with competitive or even better
performance than the dense baseline.

5 Empirical Analysis

5.1 Efficiency Analysis

We investigate the improvement in efficiency of transformers pruned via FiAK-based and GMM-based
approach over the baseline. In particular, we analyze the computation and memory complexity of the pruned
models trained for the ImageNet object classification task in Section 4.1. For attention score pruning via
FiAK (Algorithm 1), we study the pruned model with pruning fraction k = 70%. For mixed pruning via FiAK
(Algorithm 2), we study the pruned model with pruning fractions k1 = 70% and k2 = 20%. For comparison,
we also analyze key pruning via GMM (Algorithm 3) using a pruned model with pruning fraction k = 30%.
As shown in Table 2, model pruned by key pruning via GMM with pruning fraction k = 30% already yields
worse accuracy than models pruned via FiAK. Additional efficiency analysis for our FiAK-based pruning
methods on the WikiText-103 language modeling task is provided in Appendix C.

Efficiency Advantage of Models Pruned via FiAK over the Baseline Model Grows with the Sequence Length.
In Fig. 2, we compare the floating point operations per second (FLOPS) ratios and the memory ratios at
inference time between the models pruned via FiAK and the dense baseline for multiple sequence lengths
{197, 785, 3137}. In Fig. 2, (A) and (C) shows the FLOPS and memory ratios for the attention blocks,
respectively, while (B) and (D) shows these ratios for the whole model, respectively. In (C) and (D), the
memory ratios for attention score and mixed pruning via FiAK are the same. Overall, we observe that our
pruning schemes result in much more efficient models for long sequences in terms of computation and memory
compared to the dense baseline, and this advantage becomes more significant for longer sequences.

FiAK-based pruning also wins in real time. On ImageNet task, the latency for the dense baseline and our
attention-score pruned FiAKformer, k = 70%, are 508 and 649 images/second (on GPU) and 76 and 95
images/second (on CPU), respectively.

Mixed-pruning via FiAK gains the most advantage in FLOPS among different pruning methods while still
achieving competitive performance to the dense baseline. This trend continues as the sequence length increases.
Attention score and mixed pruning via FiAK share the same benefits of substantial memory reduction. As
shown in Fig. 2(C) and (D), at sequence length N = 785 and 3137, the pruned models via FiAK save more
than 60% of the baseline memory, both for each multi-head attention block and the whole model.
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Figure 2: FLOPS and memory ratios at inference between the models pruned with FiAK-based/GMM-based pruning
schemes and the dense Deit-tiny baseline. For a thourough analysis, we show a comparison at attention block only
((A) and (C)) and for the entire model ((B) and (D)). Note that in (C) and (D), the memory ratios for attention
score and mixed pruning via FiAK are the same. The advantage of the FiAK-based pruning grows with the sequence
length. Compared to the GMM-based pruning, FiAK-based pruning schemes are more effective.

FIAK-based pruning methods result in more efficient models with better accuracy than the GMM-based pruning
(See Table 2). This again proves the advantage of modeling self-attention as an admixture model rather than
a mixture model.

5.2 Visualizing the pruning masks

Figure 3 shows the pruning masks for the model trained on the ImageNet object classification task in
Section 4.1. In particular, we visualize the magnitude of the priors πij at each of the 4 heads in layers {1,
3, 5, 7, 9, 11} (Left), as well as the binary pruning masks when we prune 70% of the attention scores with
attention score pruning via FiAK (Right). We observe that the matrices of the priors πij (Left) are sparse
with large values of πij are near the diagonal. This suggests that the queries qi pay attention to the keys kj

in its local neighborhood. Therefore, when pruning is applied, we can remove redundant attention scores aij

where |i − j| is large. Also, Figure 4 visualizes the pruning masks obtained with attention score pruning via
FiAK for the WikiText-103 language modeling task. Additional results on visualizing the pruning masks
obtained with mixed pruning is provided in Appendix B.

We observe the differences between the masks for different attention heads. We hypothesize that the FiAK-
based pruning schemes learn different pruning masks between heads (see Figures 2, 4, and 5) in order
to diversify the attention patterns and reduce the well-known head redundancy. We have confirmed this
hypothesis by computing the average L2 distance between attention heads in each layer of the models pruned
with the attention score pruning via FiAK and of the baseline dense model for the WikiText-103 language
modeling task. We observe that the layer-average mean of these distances in the attention-score pruned
FiAKformer with k = 40% (7.22 ± 2.11) is greater than in the baseline dense model (6.20 ± 2.30), suggesting
that the FiAK-based pruned model learns more diverse attention patterns.

In addition, our FiAK-based pruning learns different masks at different layers as shown in Figures 2, 4, and
5. For the ImageNet task (see Figures 2 and 5), early layers have small receptive fields that capture local
and low-level features. Thus, the masks learned by the FiAK-based pruning at these early layers have local
patterns centered around the main diagonals. Later layers have large receptive fields that capture global and
high-level features. Therefore, the FiAK-based pruning tends to learn non-local masks at these later layers.
The difference between pruning masks learned at different layers for the WikiText-103 language modeling
task does not have an interpretable pattern.

5.3 Pruning Masks Obtained via FiAK are Training-Agnostic

In this section, we show that the pruning masks learned via FiAK can still capture positions of important
attention scores in the baseline model trained without additional prior parameters πij in Eqn. 12. In our
experiments on the ImageNet object classification task, we mask the attention matrices in the pretrained
DeiT-tiny provided in Touvron et al. (2020a) by the binary pruning masks obtained from the attention score
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Figure 3: (Left) The magnitude of the priors, |πij |, learned from the ImageNet object classification task, and (Right)
the binary pruning masks of the attention scores for attention score pruning via FiAK with the pruning fraction
k = 70%. We plot these prior matrices and pruning masks for all 4 heads in layer {1, 3, 5, 7, 9, 11}. The visualization
of |πij | shows that the prior matrices are sparse, allowing most attention scores to be pruned.

Figure 4: (Left) Magnitude of the priors |πij | learned from the language modeling task. (Right) The binary pruning
masks from attention score pruning via FiAK with the pruning fraction k = 50%. We plot the prior matrices and
pruning masks for the first 4 heads in layers {1, 4, 7, 10, 13, 16}.

pruning via FiAK with the pruning fraction k = 60%. The masked model is then fine-tuned till convergence.
Table 6 shows that the masked DeiT-tiny transformer achieves better performance than the dense baseline,
demonstrating that the pruning masks learned by FiAK capture relevant attention scores and meaningful
connections between tokens at each heads in the baseline DeiT-tiny trained with the setting in Touvron et al.
(2020a). This result suggests that the pruning masks learned via FiAK are training-agnostic. After learned,
these masks can be applied on the baseline models trained with different training schemes.

6 Related Work
Pruning and Reducing Redundancy in Transformers It has been shown that most of the neurons
and heads in the pre-trained transformer are redundant and can be pruned when applied on a downstream
task Dalvi et al. (2020); Michel et al. (2019); Durrani et al. (2020). Works in pruning transformers can be
categorized into two groups: 1) head pruning and 2) token pruning. An early work in head pruning calculates
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Table 6: Top-1 and top-5 accuracy (%) of the masked vs dense DeiT-tiny Touvron et al. (2020a). We mask the
attention matrices of the trained baseline with the binary pruning masks learned from attention score pruning via
FiAK with the pruning fraction k = 60% and then fine-tune the masked model. The masked DeiT-tiny achieves better
performance than the dense baseline, indicating that the pruning masks can capture important attention scores.

Method Acc Top-1 Acc Top-5

Baseline softmax transformer 72.23 91.13

Masked softmax transformer k = 60% 72.41 91.30

the head sensitivity to decide to prun a head or not Michel et al. (2019). Voita et al. (2019a) employs
layerwise relevance propagation to decide the head importance. The head importance can also be learned
in a data-driven manner as in Li et al. (2021). For token pruning, Goyal et al. (2020) computes a token’s
importance score as average attention score of other tokens to that token. A dropout-based approach that
stochastically determines a sequence length at each layer has also been used to prune redundant tokens Kim &
Cho (2021). Kim et al. (2021) proposes an adaptive approach that learns an attention mask for token pruning.
The contextualized embeddings in pre-trained networks under this redundancy due to overparameterization
have also been studied to demonstrate that the representations learned within these models are highly
anisotropic Mu & Viswanath (2018); Ethayarajh (2019). Knowledge distillation and sparse approximation
have also been used to enhance the efficiency of transformers, including Sanh et al. (2019); Sun et al. (2019);
Voita et al. (2019b); Sajjad et al. (2020). Our FiAK-based approach is complementary to these methods.

Efficient Transformers To lower the quadratic computational and memory cost of transformers, efficient
transformers have been studied Roy et al. (2021). Among them are sparse transformers which incorporate
sparse structures into the attention matrix Parmar et al. (2018); Liu et al. (2018); Qiu et al. (2019); Child
et al. (2019); Beltagy et al. (2020). Another class of efficient transformers are models that aim to have
better coverage by integrating different access patterns Child et al. (2019); Ho et al. (2019), which can also
be learned from the data Kitaev et al. (2020); Roy et al. (2021); Tay et al. (2020). In other works, a side
memory module is utilized in order to access multiple tokens simultaneously Lee et al. (2019); Sukhbaatar
et al. (2019); Asai & Choi (2020); Beltagy et al. (2020). In another line of work, low-rank and kernelization
methods have recently been proposed to improve the computational and memory efficiency of self-attention
calculation Tsai et al. (2019); Wang et al. (2020); Katharopoulos et al. (2020); Choromanski et al. (2021);
Shen et al. (2021); Nguyen et al. (2021); Peng et al. (2021). Our FiAK is orthogonal to these methods.

Mixture Models for Transformers Recently, mixture models have been employed to study and improve
transformers. Among these works is the transformer with a mixture of Gaussian keys in Nguyen et al. (2022).
This work develops a probabilistic framework underlying attention mechanism in transformers, which we
review in Section 2.1, and propose a new transformer with a mixture of Gaussian keys, that replaces redundant
heads in transformers with a mixture of keys at each head. (Zhang & Feng, 2021) develops a Gaussian mixture
attention that models each attention score as a GMM. Another work is the switch transformers Fedus et al.
(2021) that make use of the routing algorithm in Mixture of Experts (MoE) to reduce the communication
and computational costs in transformers. Other works that combine mixture models with transformers
include Cho et al. (2020); Guo et al. (2019); Jiang et al. (2020).

7 Concluding Remarks
In this paper, we propose FiAK, a novel finite admixture of keys for self-attention, that model the distribution
of queries qi in self-attention as an admixture of Gaussian distributions N (qi | kj , σ2

j I) whose centers are the
attention keys kj , i, j = 1, . . . , N . Using the prior distributions of the attention keys in FiAK, we propose a
probabilistic pruning framework to remove redundant attention scores and keys in transformers. We verify
that models pruned by our FiAK-based pruning methods improve the memory and computational cost over
the baseline dense transformers while achieving comparable or better accuracy. As mentioned in Remark 1,
admixture models are equivalent to Latent Dirichlet Allocation (LDA) models under a uniform Dirichlet
prior. Extending FiAK into an LDA-based framework for pruning transformers is an interesting research
direction for future work.
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Appendix for “Pruning Transformers with a Finite Admixture of Keys”

In this appendix, we include experimental details, additional experiments/visualization of pruning via FiAK,
and the detailed derivation of the computational saving in Table 1. We also provide code to reproduce our
results in a separate folder in the supplementary material.

A Experiment details

In this section, we provide model and training details of our experiments in Section 4.

A.1 Object classification on Imagenet

Our baseline for the object classification task is the DeiT-tiny, a 4-head dense softmax transformer with 12
layers. In this baseline, the model dimension is of size 192, the feed-forward layer is of size 768, and the patch
size is 16, which is equivalent to the sequence length of 197. Our FiAKformers and GMMformers have the
same architecture configuration as the baseline with additional parameters πij and πj as in Eqn.12 and 7,
respectively.

All models are trained for 300 epochs, and the pruned models are fine-tuned on the Imagenet dataset for
additional 100 epochs, using 4 A100 GPUs, 40 GB each, with batch size of 256. The initial learning rates for
training and fine-tuning are 5 × 10−4 and 5 × 10−5, respectively.

A.2 Object Detection on COCO

The pretrained baseline for the object detection task is the Swin-Transformer-tiny provided at
https://github.com/SwinTransformer/Swin-Transformer-Object-Detection. All models have 12 attention
layers with windows of size 7, which is equivalent to the sequence length of 49 patches per window.

The pruned models are fine-tuned for 12 epochs, using 8 A100 GPUs, 40GB each, with the initial learning
rate is 10−4. The weights are updated by an AdamW optimizer with the weight decay coefficient of 0.05.

A.3 Language Modeling on WikiText-103

For the language modeling task, we use the dense softmax transformer as our baseline. For all experiments,
we use a transformer model that has 16 layers, 8 heads, feed-forward layer dimension of size 2048, embedding
dimension of size 128, and hidden dimension of size 128. The context length for training and evaluation is set
to 256.

We train our models using 2 A100 GPUs, 40GB each. We set the batch size to 96 and train our models for
120 epochs. We also apply dropout with dropout rate 10%. To optimize our models, we use Adam optimizer
and Cosine annealing scheduler with initial learning rate 0.00025.

After the training phase, we prune the resulting models using one of our pruning schemes. Then, we finetune
the pruned models for 30% time of the training phase, or equivalently 36 epochs.

B Additional Results on Visualizing the Pruning Masks

In this section, we provide additional results on visualizing the pruning masks learned from pruning via
FiAK. Figure 5 depicts the pruning mask obtained with mixed pruning via FiAK for the ImageNet object
classification task.

In Figure 6, we provide a detailed visual analysis of the parameters πij learned from the ImageNet object
classification task. We obtained the query-centered mean values (Left) for each attention head by taking the
mean of all πij values corresponding to the relative difference in position between the key and query. This
results in the aggregation of the pattern learned by πij . We also show detailed patterns for the first 5 queries
and keys (Right). Each cell in the 5 × 5 grid corresponds to the pruning mask applied to each query qi. From
Figure 6, we observe that the pruning masks in early layers capture local/short-range attentions while the
pruning masks in later layers capture non-local/long-range attentions.
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Figure 5: (Left) The magnitude of the priors |πij | learned from the ImageNet object classification task. (Right) The
binary attention score masks from mixed pruning via FiAK with the pruning fraction k1 = 70% and k2 = 15%. We
plot these prior matrices and pruning masks for all 4 heads in layers {1, 3, 5, 7, 9, 11}.

.

C Additional Efficiency Analysis
In this section, we provide additional efficiency analysis for our pruning methods on the WikiText-103
language modeling task. In particular, we study the pruned models using attention score pruning via FiAK
with the pruning fraction k = 50%. We compare the FLOPS and memory ratios between the pruned model
and the dense softmax transformer baseline at various sequence lengths {128, 256, 512, 1024, 2048, 4096}. As
shown in Fig. 7, as the sequence length grows, our pruned model becomes significantly more efficient in both
memory and computations than the baseline.
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Figure 6: (Left) Query-centered mean of the magnitude of the priors |πij | for each head in layers {1, 3, 5, 7, 9,
11}, learned from the ImageNet task. (Right) The binary pruning masks of the attention scores for attention score
pruning via FiAK with pruning fraction 70%, showing the differences of the pruning masks between layer 1 and
layer 11. Pruning masks in early layers capture local/short-range attentions while those in later layers capture
non-local/long-range attentions.
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Figure 7: FLOPS and memory ratios at inference time on the WikiText-103 language modeling task for model pruned
using attention score pruning via FiAK with the pruning fraction k = 50%, compared to the baseline dense softmax
transformer model. For a thorough analysis, we show a comparison at attention block only ((A) and (C)) and for the
entire model ((B) and (D)). The advantage of the FiAK-based pruning grows with the sequence length.

D An Analysis on Computational Complexity of the Pruned Models vs. the Dense
Model

In this section, we compare the computational complexity of models pruned by our pruning methods with
the dense softmax baseline. Following the same notation in Section 3 in the main text, we denote H, Dx,
N , and D as the number of attention heads at each layer, the input dimension, the input length, and the
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model/feature dimension, respectively. To simplify the notation and computation, without loss of generality,
we assume that Dv = D, i.e., the values have the same feature dimension as the queries and the keys. We
also do not take the softmax operator into account. Since the linear projection of the H-head concatenated
outputs is the same for the baseline and our pruned models, its computation is discarded for simplification.

(i) Dense softmax attention: The computational complexity for an H-head attention matrix is
N2H(4D − 1) + NHD(6Dx − 4).

Explanation: The output of a self-attention block at each head is computed via the following three
steps (See Sec. 1.1).

• Step 1 Compute the matrices Q, K and V via the linear transformations WQ, WK , and WV .
Since this step needs 3NDDx multiplications and 3ND(Dx − 1) additions, the total computation is
3ND(2Dx − 1).

• Step 2 Calculate QK⊤. This needs N2D multiplications and N2(D − 1) additions, thus N2(2D − 1)
in total.

• Step 3 Compute the product AV. This requires N2D multiplications and N(N − 1)D additions.

Hence the total amount of computation for an H-head attention is N2H(4D − 1) + NHD(6Dx − 4).

(ii) Computation reduction of attention score pruning via FiAK: Attention score pruned
model via FiAK with the pruning fraction k (See Algo. 1) has kHN2(2D − 1) less computations than the
dense softmax attention.

Explanation: Attention score pruning via FiAK reduces the number of computation at step 2, i.e.
calculating QK⊤. Computations in other steps remain unchanged. Attention score pruned model with
fraction of k does not calculate the dot product of k fraction of (qi, kj) pairs, consequently saving
kHN2(2D − 1) computations.

(iii) Computation reduction of mixed pruning via FiAK: Mixed pruned model via FiAK
with the pruning fraction k1, k2 (See Algo. 2) saves
2[(k1 + k2)D − k1]HN2 + (2Dx − 3)k2HDN computations.

Explanation: Similar to attention score pruned model via FiAK, at each attention head, mixed
pruned model via FiAK with total pruning fraction k1 saves k1N2(2D − 1) computation at step 2 above, i.e.
calculating QK⊤. Additionally, pruning k2 fraction of (kj , vj) pairs reduces computation at both step 1
and 3. At step 1, since matrix K and V accounts for ND(Dx − 1) computations per head each, pruning k2
fraction of the pairs saves a total of 2k2ND(Dx − 1) computations. Meanwhile cutting off k2 fraction of vj

leads to k2[N2D + N(N − 1)D] computations for each head. As a result, mixed pruned model via FiAK
saves a total of 2[(k1 + k2)D − k1]HN2 + (2Dx − 3)k2HDN computations for an H-head attention.

(iv) Computation reduction of key pruning via GMM: Key pruned model via GMM with
the key pruning fraction k (see Algo. 3) saves a total of kHN2(4D − 1) + (2Dx − 3)kHDN computations.

Explanation: As in mixed pruned model via FiAK, pruning k fraction of (kj , vj) via GMM saves
kND(Dx − 1) and k[N2D + N(N − 1)D] computations at step 1 and 3, respectively. Moreover, for each head,
pruning k fraction of keys also saves kHN2(2D − 1) computations at step 2. In total, key pruned model via
GMM needs kHN2(4D − 1) + (2Dx − 3)kHDN computations less than the dense softmax baseline.

Notice that the computation reduction is quadratic in the sequence length N . Therefore, when N
is large, i.e. long input sequences, the computational reduction achieved from using our FiAK-based pruning
methods significantly increases.
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