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Abstract

Proximal Policy Optimization (PPO) has been broadly applied to robotics learning, show-
casing stable training performance. However, the fixed clipping bound setting may limit
the performance of PPO. Specifically, there is no theoretical proof that the optimal clipping
bound remains consistent throughout the entire training process. Meanwhile, previous re-
searches suggest that a fixed clipping bound restricts the policy’s ability to explore. Therefore,
many past studies have aimed to dynamically adjust the PPO clipping bound to enhance
PPO’s performance. However, the objective of these approaches are not directly aligned
with the objective of reinforcement learning (RL) tasks, which is to maximize the cumu-
lative Return. Unlike previous clipping approaches, we propose a bi-level proximal policy
optimization objective that can dynamically adjust the clipping bound to better reflect the
preference (maximizing Return) of these RL tasks. Based on this bi-level proximal policy
optimization paradigm, we introduce a new algorithm named Preference based Proximal
Policy Optimization (Pb-PPO). Pb-PPO utilizes a multi-armed bandit approach to refelect
RL preference, recommending the clipping bound for PPO that can maximizes the current
Return. Therefore, Pb-PPO results in greater stability and improved performance compared
to PPO with a fixed clipping bound. We test Pb-PPO on locomotion benchmarks across
multiple environments, including Gym-Mujoco and legged-gym. Additionally, we validate
Pb-PPO on customized navigation tasks. Meanwhile, we conducted comparisons with PPO
using various fixed clipping bounds and various of clipping approaches. The experimental
results indicate that Pb-PPO demonstrates superior training performance compared to PPO
and its variants.

1 Introduction

Typically, there are primarily two common paradigms in reinforcement learning (RL). The first involves
alternating between learning Q-networks and using them to update the policy network (Mnih et al., 2013;
2015). The second paradigm, based on gradient methods (Lillicrap et al., 2019), directly updates the policy.
The second paradigm is applicable in environments with high-dimensional action space and exhibits high
converge speed. But, gradient-based paradigms are generally on-policy methods, meaning that the current
policy may not utilize the previously collected dataset.

To make full use of pre-collected dataset and improve algorithm’s sample efficiency, we can utilize importance
sampling to approximately transform on-policy algorithms into off-policy ones. However, during policy updates,
a crucial challenge arises in determining the updating step size, where the new policy update may deviate
too large from the old policy, compromising training stability. TRPO (Schulman et al., 2017a) addresses
this concern by incorporating importance sampling and utilizing the Kullback-Leibler (KL) divergence to
restrict the distance between the old policy and the new policy. This prevents excessive deviations caused by
overly large updating step sizes. Subsequently, PPO (Schulman et al., 2017b) introduces a clipped surrogate
objective, which is also a KL divergence term, but limits the policy update within a ϵ surrogate trust
region. With this surrogate KL term, PPO achieves higher training efficiency and stability, and increasing its
real-world applicability.
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Specifically, PPO Schulman et al. (2017b) has been widely used in the robotics learning domain due to
its stable training performance and theoretically monotonic improvement, which naturally align with the
requirements of robotics learning Brohan et al. (2023a;b); Bhargava et al. (2020). However, PPO’s performance
is limited by the fixed setting of clipping bound. Because, a fixed clipping approach may impact the policy’s
exploratory Xie et al. (2022a), training stability Chen et al. (2018), and further impact the training results.
Therefore, researching a better clipping approach to replace with the fixed clipping approach can be quite
beneficial for further improving PPO’s performance, and robotics learning.

Currently, PPO is improved from two major perspectives: 1) Modification of the advantage function (Schulman
et al., 2018) to facilitate stable gradient descent or agent’s exploration (Xie et al., 2022b). 2) Introducing
dynamic clipping approaches to enhance the policy’s exploratory capabilities (Wang et al., 2019) or ensure
optimization within the boundary of optimal value (Chen et al., 2018). Regarding approach 2, most methods
are replaced with dynamical clipping approach to enhance the policy’s exploratory capabilities (Wang et al.,
2019) or ensure the performance of optimized policy within the boundary of optimal performance (Chen
et al., 2018). Regarding the modification/improvement of PPO’s clipping approach, most of which are not
directly aligned with the goal of RL tasks, i.e. maximizing expected Return, therefore, these method may not
directly contribute to policy improvement.

In order to align the goal of sampling clipping bound with RL objective, we propose utilizing a multi-armed
bandits approach (an almost parameter-free algorithm) and regarding PPO’s evaluated Return as the RL
task’s feedback to dynamically recommend the clpping bound that can bring the highest return during the
training process of PPO. Meanwhile, in order to improve the exploitation of candidate clipping bounds, we
utilize the Upper Confidence Bound (UCB) value to guide PPO in exploring and exploiting the optimal
clipping bounds throughout the entire online training stages. Our approach have several advantages over
PPO and various PPO variants: 1) Compared to past clipping approaches, Pb-PPO’s method of adjusting the
clipping bound aligns directly with RL preference. Therefore, adjusting the clipping bound in Pb-PPO can
directly enhance PPO’s performance. 2) Through extensive robot experiments, we discovered that Pb-PPO’s
advantages over PPO extend not only to the training process but also to the model testing phase. Specifically,
policies trained with Pb-PPO exhibit a more stable response to given instructions in robot tasks, showcasing
the stability of Pb-PPO. To summerize, our contributions can be outlined as follows (We recognize that
while some modification of PPO have achieved competitive performance: Tao et al.; Xu et al.;
Song et al. etc., our modification differs from these methods in that we focus on the clipping
approach. Therefore, PPO could be further improved by combining these approaches with our
method, and our majority baselines are previous clipping approaches.):

• We propose an algorithm called Pb-PPO, which dynamically adjusts the PPO clipping bound to
align with RL preference. Compared to PPO and PPO variants, Pb-PPO demonstrates more stable
training performance and achieves better training results.

• We test Pb-PPO in quadruped simulation environments designed for robot deployment and find that
policies trained with Pb-PPO exhibit a more stable response to given instructions. This indicates
that the improvements brought by Pb-PPO also include increased stability in policies.

2 Related Work

Proximal Policy Optimization (PPO). Originally designed as an online algorithm, Proximal Policy
Optimization (PPO) (Schulman et al., 2017b) aimed to enhance the applicability of Trust Region Policy
Optimization (TRPO) (Schulman et al., 2017a). PPO introduced a clipping approach for efficient training,
making it widely applicable across various domains, especially in robotics learning (Hoeller et al., 2023;
Jenelten et al., 2024). Notably, PPO has recently been extended to the offline Reinforcement Learning (RL)
setting (Zhuang et al., 2023) and multi-agent systems (Yu et al., 2022). Our study focuses on augmenting
PPO, emphasizing improvements in training stability and performance within online RL settings. Recent
improvements related to PPO modifications include 1) enhancing the estimation of the advantage function
to ensure stable gradient descent (Schulman et al., 2018) or agent’s exploration (Xie et al., 2022a), and 2)
introducing adaptive clipping approaches (Chen et al., 2018) to optimize policy within the boundary of its
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optimal performance and introducing dynamical clipping approaches (Wang et al., 2019) to address the
limitation of fixed clipping bound that suffer from limit exploration. AAdditionally, PPO has been improved
from other perspectives such as gradient updating, divergence, and exploration Tao et al. (2024); Xu et al.
(2023); Song et al. (2020).

Preference Based RL (PbRL). Preference-based Reinforcement Learning (PbRL) is an approach used
for learning from preference or feedback, extensively employed to capture and reflect human preference across
diverse domains (Arumugam et al., 2019; Christiano et al., 2023; Ibarz et al., 2018; Warnell et al., 2018;
Lee et al., 2021; Ouyang et al., 2022). Typically, the majority of approaches involve pre-training a reward
model to reflect human preference, followed by optimization based on this pre-trained reward model, yielding
notable improvements, such as enhancing Large Language Models (LLM) (Ouyang et al., 2022). Apart from
learning from human feedback, PbRL also encompasses learning from task feedback in domains like Natural
Language Processing (NLP) or Computer Vision (CV) (Pinto et al., 2023; Liu et al., 2022). Recently, Rafailov
et al. proposed direct optimization from preference showcasing strong performance in LLM optimization. On
the other hand, the primary distinction between the aforementioned approaches and Pb-PPO lies in Pb-PPO
utilizing RL tasks’ feedback to tune RL policy hyper-parameters rather than directly adjusting the network’s
parameters. Therefore, our approach is closely related to Automatic Machine Learning (AutoML) (Hutter
et al., 2014; Fawcett and Hoos, 2015; van Rijn and Hutter, 2018).

3 Preliminary

Reinforcement Learning. We formulate RL as a Markov Decision Process (MDP) tuple i.e. M :=
(A,S, r, γ, dM, p0, s0). Specifically, A denotes action space, S denotes state space, a ∈ A denotes action,
s ∈ S denotes observation (state), r(s, a) : A × S → R denotes the reward function, γ ∈ [0, 1] denotes
the discount factor, dM(st+1|st, at) : S × A → S denotes the transition function (dynamics), p0 denotes
the distribution of initial state, and s0 ∼ p0 denotes the initial state. The goal of RL is to find the
optimal policy π∗ that can maximize the accumulated Return i.e. π∗ := arg maxπ Eτ∼π(τ)[R(τ)], where
τ :=

{
s0, a0, · · · , st, at, · · · sT , aT |st+1 ∼ dM(·|st, at), at = π(·|st), s0 ∼ p0

}
is the roll-out trajectory, T denotes

the time horizon, and R(τ) =
∑t=T

t=0 γtr(st, at) denotes the accumulated Return. In order to optimize policy
to attain the maximum Return, off-policy algorithms iteratively estimate the expected Return of given state-
action pairs (st, at) by training a Q network i.e. Q(st, at) = E(st,at)∼π(τ)[

∑t′=t
t′=0 γt′

r(st′ , at′)|s0 = st, a0 = at],
and optimize the policy by maximizing Q i.e. maxπ J (π) = maxπ Est∼π(τ)[Q(st, π(·|st))]. In particular,
(st, at) can be sampled from the dataset collected across entire online training process.

Unlike off-policy algorithms, on-policy algorithms typically optimize π using policy gradient approaches,
i.e. maxπ J (π) = maxπ E(st,at)∼π(τ)(·) log π(st, at), on the dataset collected by the current policy. Here, (·)
encompasses various alternatives, such as Q value Q(st, at), advantage value A(st, at) = Q(st, at)− V (st),
where V (st) is a value network used to estimate the expectation of Q(st, at), i.e. V (st) = Ea∼A[Q(st, a)].
However, on-policy algorithms cannot utilize datasets collected from another policy i.e. π′ ∈ Π, π! = π
to update the target policy π, which limits their sample efficiency. To enhance the on policy algorithms’
efficiency of data utilization, we can introduce importance sampling i.e. Equation 1, approximating on-policy
algorithms as off-policy algorithms. This allows us to leverage datasets collected by other policies to train the
current policy.

Jπold(πnew) = Eτ∼πold(τ)

[
πnew(τ)
πold(τ) Aπold(st, at)

]
, (1)

however, directly optimize Equation 1 may lead to the new policy diverging from the old policy, making it
challenging to reach the optimal solution. Therefore, it’s necessary to further minimize the KL divergence
between the new and old policies, thus Schulman et al. propose Trust Region Optimization (TRPO) i.e.
Equation 2.

Jπold = Eτ∼πold(τ)

[
πnew(τ)
πold(τ) Aπold(st, at)

]
+DKL[πnew(·|st)||πold(·|st)].

(2)
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Proximal Policy Optimization (PPO). Directly computing KL divergence is computationally inefficient.
Therefore, Schulman et al. proposes the surrogate trust region optimization objective called PPO, as seen in
Equation 3, which enhances the computational efficiency of PPO by truncating the KL divergence within a
fixed region.

Jπold(πnew) = Eτ∼πold(τ)

[
min(πnew(τ)

πold(τ) Aπold(st, at),

clip(πnew(τ)
πold(τ) , 1− ϵ, 1 + ϵ)Aπold(st, at))

]
,

(3)

where ϵ ∈ (0, 1) is the clipping threshold. In the section Introduction, we have initially mentioned the
limitations of using fixed surrogate trust region to constrain policy updating. Therefore, we introduce
Preference based PPO (Pb-PPO), which dynamically samples the clipping bound to truncate the KL
divergence, and such clipping approach is aligned with the maximization of RL return. To begin with
introducing Pb-PPO we first introduce multi-armed bandit and Upper Confidence Bound.

Multi-armed bandit and Upper Confidence Bound (UCB). Given n independent variables ζ =
{ϵ0, ϵ1, · · · , ϵi, · · · , ϵn} with equal distribution, we treat the process of sampling these variables according to
the expectation as a multi-armed bandit game. Specifically, when sample the i-th arm ϵi, we can obtain
a immediate reward rt=Nϵi

, where Nϵi
denotes the total times access to ϵi, and we estimate the expected

Return brought by sampling ϵi as E[Rϵi
|ϵi] i.e. Equation 4.

U(ϵi) = E[Rϵi
|ϵi] =

t=Nϵi∑
t=0

γtrt(ϵi). (4)

The objective of this game is to sample the variable to achieve the highest Return. Additionally, during
process of sampling from ζ and updating E[Rϵi |ϵi], if we greedily sample variables (sampling with the max
expected Return), this kind of sampling is termed exploitation, otherwise, it is referred to as exploration.
However, if we update the estimation of expected Return without exploration (only using greedy strategy),
we may fail to identify the optimal clipping bound, leading to overestimating the confidence of sub-optimal
clipping bounds. To address this overestimation issue, it is crucial to strike a balance between exploitation
and exploration, necessitating the introduction of uncertainty.

UCB is a strategy function defined as UUCB(ϵi) = U(ϵi) + Û(ϵi) utilized to balance the exploration and
exploitation of bandit arms by introducing uncertainty Û(ϵi), where the uncertainty value of i-th variable ϵi

can be formulated as Equation 5. Therefore, we can sample the variable with the highest UCB value i.e.
ϵ∗ := arg maxϵi{UUCB(ϵi)|ϵi ∈ ζ} to efficiently balance exploration with exploitation of candidate variables.

Û(ϵi) = (Rmax
ϵi
−Rmin

ϵi
)
√

1
2 ln 2

σ
. (5)

Proof of Equation 5 see Appendix, where σ denotes uncertainty factor.

4 Preference based Proximal Policy Optimization (Pb-PPO)

Bi-level Proximal Policy Optimization. We cast proximal policy optimization as a bi-level optimization
problem with two primary objectives: Objective 1): Proximal Policy Optimization Schulman et al. (2017b),
which aims to maximize the expected Return, i.e. maxEτ∼πnew(τ)[γt · r(st, at)], and Objective 2): Updating
the UCB values

{
E[R0|ϵ0] + Û(ϵ0), · · · ,E[Rn|ϵn] + Û(ϵn)

}
of candidate clipping bounds ζ = {ϵ0, ϵ1, · · · , ϵn}

during the updating phases. This ensures the sampling of the optimal clipping bound, thereby optimizing
PPO to reach maximum RL tasks’ preference.

Specifically, In the problem setting of bi-level proximal policy optimization, E[Rϵi |ϵi] represents the expected
Return obtained by rolling out a policy trained with clipping bound ϵi i.e. Equation 4. Specifically, we
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Algorithm 1 Pb-PPO
Require: PPO modules (πnew, Vϕ, Donline); candidate clipping bounds: ζ={ϵ0, ϵ1, · · · , ϵn}. The counter Nbandit of
total visitations, the counter Nbandit

ϵ0 of each bandit arm.
Initialize parameters of multi-armed bandits: tabular Return {E[R0|ϵ0] = 0, · · · ,E[Rn|ϵn] = 0}, total visita-
tions Nbandit = 0 for all arms, and the visitation counter of each arm Narm = {Narm

ϵ0 = 0, Narm
ϵ1 = 0, · · · , Narm

ϵn
= 0},

discount factor γbandit ∈ [0, 1] for bandit arms, global step counter Nstep
Initialize PPO parameters: πnew and Vϕ

Initialize RL hype-parameter: Global online step as Nstep, online replay buffer as Donline.
while Nstep < 106 do

Interacting πnew with environment to collect new trajectory τ = {s0, a0, r0, · · · , sT , aT , rT }, then appending τ to
Donline
Update online steps Nstep ← Nstep + len(τ)
Alternate the new policy to old policy: πold ← πnew
Computing UCB values {UUCB(ϵi)} = {E[R0|ϵ0] + λÛ(ϵ0), · · · ,E[Rn|ϵn] + λÛ(ϵn)}.
Sampling a clipping bound ϵi according to the maximum of UCB values as the optimal clipping bound ϵ∗ i.e.
ϵ∗ = arg maxϵi{UUCB(ϵi)}, then utilize ϵ∗ to train PPO.
for j∈ range(updating steps) do

Rewrite Equation 3 as: Jπold (πnew, ϵ∗) = Eτ∼πold [min( πnew(τ)
πold(τ) Aπold (st, at), clip( πnew(τ)

πold(τ) , 1 − ϵ∗, 1 +
ϵ∗)Aπold (st, at))]
Updating πnew with Jπold (πnew, ϵ∗).

end for
Evaluating πnew k episodes and compute un-normalized expectation Rbandit

ϵ∗ for sampled clipping bound via
Equation 4.
Updating the total Return, i.e. Rbandit ← Rbandit + γbandit ∗ Rbandit

ϵ∗ , update the expectation E[Rbandit
ϵi |ϵi] by

E[Rbandit
ϵi |ϵi] = γbanditE[Rbandit

ϵi |ϵi] + Rbandit
ϵi .

Updating the total Visitation counter by Nbandit ← Nbandt + 1, and bandit visitation counter by Nbandit
ϵi

←
Nbandit

ϵi
+ 1;

Updating the normalized expectation for each bandits via Equation 8.
end while

consider the Return of the nπ-th updated policy πnπ
new when utilizing ϵn as reward, denoted as rt = rNϵi

.
We then update the expected Return of ϵn using Equation 4. Consequently, we further define the bi-level
objective of nπ policy iteration of PPO as J (πnπ , ζ),

max
U(ϵ∗),J (πnπ ,ϵ∗)

J (πnπ , ϵ∗)

s.t. ϵ∗ ← arg max
ϵi

{UUCB(ϵi)|ϵi ∈ ζ}.
(6)

Equation 6 implies that the objective of bi-level proximal optimization is the upper bound of J (πnπ ),
and we can obtain the best training performance by jointly sampling the optimal clipping bound i.e.
ϵ∗ := arg maxϵi

{
J (πnπ , ϵi)|ϵi ∈ ζ}, and optimizing PPO with ϵ∗. Subsequently, we propose Pb-PPO.

Preference based Proximal Policy Optimization (Pb-PPO). Pb-PPO is based on the bi-level
proximal policy optimization. In addition to updating the policy through proximal policy optimization, it
is also necessary, in each training epoch, to select the optimal clipping bound based on RL tasks’ feedback.
This ensures that the current update step length is optimized to algin with maximizing accumulated Return.
In the following sections, we first introduce the implementation of Objective 2). Subsequently, in section 4.2,
we will provide a comprehensive overview of the implementation process of Pb-PPO.

4.1 Implementation of Objective 2)

Notations. We first define crucial symbols. Specifically, we define Nstep as the number of policy updating
iterations, Nϵi

as the visitation counter for the bandit clipping bound (bandit arm) ϵi, Rbandit as the total
accumulated Return, which is the discounted sum of all evaluated Returns after updating the old policy across
all training iterations (illustrated in line 24 of Algorithm 1, labeled by blue), and Rbandit

ϵi
as the discounted

sum of all evaluated Returns after updating the old policy when choosing ϵi.
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Sampling clipping bound with alternate uncertainty term. We sample the clipping bound with
the highest UCB value, i.e., ϵi = arg maxϵ{UUCB(ϵi) = U(ϵi) + λÛ(ϵi)|ϵi ∈ ζ}. Despite Equation 5 strictly
adhering to UCB theory, a concern we may encounter is the inherent fluctuation in RL training curves. If
Equation 5 is directly employed, several issues may arise, including encountering local minima, especially
when initially rolling out a trajectory with poor performance leading to a sustained large value for Û .

To address this concern, we utilize Equation 7 instead to compute the uncertainty factor. Specifically, given
the sampling times Nbandit

ϵi
of ϵi and total sampling times Nbandit =

∑
ϵi∈ζ Nbandit

ϵi
. If a certain clipping

bound is sampled infrequently, resulting in a lower Nbandit
ϵi

, it will correspondingly yield a higher Nbandit

Nbandit
ϵi

,
leading to a larger UUCB. This encourages the exploitation of such clipping bounds. Additionally, eps is a
very small float number set to prevent value overflow.

Û(ϵi) =

√
Nbandit

Nbandit
ϵi

+ eps . (7)

Connection between Equation 7 and Equation 5. Equation 7 represents an modification or real
implementation over Equation 5 based on some empirical analysis. From Equation 7, we can observe that for
πϵ with relatively fewer samples, it will obtain a larger value of Nbandit

Nbandit
ϵi

+eps , which further leads to a larger

Û(ϵi). This encourages more exploration of such ϵ. Meanwhile, the less explored ϵ is used less frequently,
which may result in a larger variance in performance, corresponding to a larger Rmax

ϵi
− Rmin

ϵi
, further we

will have a larger Û(ϵi). Therefore, it implies that ϵ that is fewer exploited will receive a larger Û(ϵi), which
aligns with the pattern observed in Equation 7. As mentioned earlier, Equation 7 can mitigate the impact
of excessive fluctuations in the RL evaluation scores from Equation 5. Therefore, we choose Equation 7 to
implement Pb-PPO.

Estimation of candidate clipping bounds’ expected Return. In this section, we discuss updating
the expectation of arm ϵi, i.e., updating E[Rϵi |ϵi]. Specifically, for each sampled arm ϵi, we first update the
policy πold with the clipping bound ϵi. We then evaluate this updated policy πnew k times, and calculate the
average evaluated return Rbandit

ϵi
, which serves as the reward rNϵi

for arm ϵi. Subsequently, we update the
expected return of sampling ϵi, i.e., E[Rϵi

|ϵi], using Equation 4. Meanwhile, we can normalize the expected
return of arm ϵi by calculating the advantage, as shown in Equation 8.

norm(E[Rϵi
|ϵi]) = E[Rϵi

|ϵi]− R̄bandit. (8)

4.2 Practical Implementation of Pb-PPO

Our codebase is constructed based on stable_baselines3 1, and the implementation has been detailed in
Algorithm 1. In our practical implementation for Gym-Mujoco domain, we compute Rbandit

ϵi
by averaging

the rollout performance over k=2 or 10 iterations, achieving stable performance with the weight of the
random item λ set to 5. Additionally, we generate candidate clipping bounds by uniformly sampling from a
specified range. For example, when setting up 10 bounds with the minimum clipping bound as 0 and the
maximum clipping bound as 1, we obtain the following 10 candidate clipping bounds: {0, 0.1, 0.2, 0.4, · · · , 1}.
Furthermore, we propose using Equation 8 to normalize the expected Return of the sampled bound ϵi. This
equation reflects the advantage of the current sampled clipping bound compared to the average expected
Return across all candidate clipping bounds. We denote this setting as Pb-PPO (wi-ad). Additionally, we
validate Pb-PPO without normalization, denoted as Pb-PPO (wo-ad). For the settings of tasks sourced from
legged-gym and AUV navigation domains, please refer to Appendix.

5 Evaluation

Our benchmarks. To compare the performance of Pb-PPO with various PPO variants, we conducted
evaluations on locomotion tasks in the Gym-Mujoco domain Brockman et al. (2016). Additionally, to validate

1https://github.com/DLR-RM/stable-baselines3
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Figure 1: Pb-PPO (task feedback) on locomotion tasks. Each solid curve in these figures represent the
average experimental results across multiple seeds, and the shadowed area corresponds to the fluctuation of
Return curves.

Table 1: Performance comparision of the last training outcomes. We average the last training results of PPO
with diverse clipping bounds and Pb-PPO across multiple seeds, we also compare with the experimental
results of TRPO, DDPG, official PPO, TRGPPO, etc. are directly quoted from (Fujimoto et al., 2018), and
PPO-λ is quoted from (Chen et al., 2018).

Task PPO (ϵ=0.02) PPO (ϵ=0.15) PPO (ϵ=0.23) PPO (official) TRPO DDPG PPO-λ TRGPPO Pb-PPO
Ant-v3 1686±276 2458±476 2457.9±506.6 1083.2 -75.85 1005.3 - - 3151.8±545.9

Halfcheetah-v3 1284±81 1608±68 1568±65 1795.4 -15.6 3305.6 - 4986.1 2781.4±1188.0
Hopper-v3 2858±275 2274±591 2327±523 2164.7 2471.3 1843.9 1762.3 3200.5 3414.9±216.9

Walker2d-v3 1887±229 2542±304 2340±304 3317.7 2321.5 1843.9 2312.1 3886.8 3913.1±699.4
Avg. 1623.8 1869.6 1836.4 2090.3 1175.3 1999.7 - - 3315.3

Pb-PPO’s performance on robotic tasks, we test it in legged-gym and navigation tasks. Specifically, our Gym-
Mujoco benchmarks include various of locomotion tasks such as Walker2d-V3, Hopper-V3, HalfCheetah-V3,
and Ant-V3. For the legged-gym tasks Rudin et al. (2022), we evaluated a quadruped ( The robot tag is
anymal-c) robot’s performance on both flat and complex terrains (In the legged gym environment, the training
objective is a goal-conditioned policy, meaning that a policy is given a goal and makes decisions based on this
goal.). The navigation tasks are designed based on the ROS-Gazebo 2 environment for autonomous vehicles.
In this environment, the vehicle needs to navigate around various obstacles and reach three predefined

2https://gazebosim.org/docs/garden/ros_installation
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Figure 2: Pb-PPO on AUV navigation tasks across different difficulty levels. (a) Average Return
curve in the hard navigation task. (b) From left to right are trajectories of the AUV in the easy, medium,
hard environment in turn, we introduce the environment setting in Appendix.

targets sequentially. Based on the arrangement of obstacles and targets, the navigation environment can be
divided into three levels: easy, medium, and hard, meanwhile, detailed environment settings can be found in
Appendix.

Baselines. Our baseline models primarily consist of PPO variants with different clipping bounds. Addition-
ally, we compare the final training results of Pb-PPO with Trust Region Policy Optimization (TRPO) (Schul-
man et al., 2017a), and various on-policy algorithms including Deep Deterministic Policy Gradient (DDPG) (Lil-
licrap et al., 2019), Trust Region-Guided PPO (TRGPPO) (Wang et al., 2019), and PPO-λ (Chen et al.,
2018).

5.1 Experimental Results on Gym-Mujoco domain.

Our main experimental results are illustrated in Figure 1 and table 1. Overall, both settings of Pb-PPO
demonstrate favorable performance in the selected locomotion tasks. Specifically, in our chosen locomotion
tasks, Pb-PPO exhibits a advantage in the Walker2d, HalfCheetah, and Ant tasks, and it also demonstrates
faster convergence in the Hopper tasks. Meanwhile, we summarize the final training results of PPO baseline
and various on-policy algorithms in Table 1, where Pb-PPO outperforms the most of selected on-policy
algorithms. Apart from its advantages in algorithm performance and convergence speed, Pb-PPO also shows
consistently stable training curves across various locomotion tasks (without significant gaps). Our main
experimental results are illustrated in Figure 1 and table 1. Overall, both settings of Pb-PPO demonstrate
favorable performance in the selected locomotion tasks. Specifically, in our chosen locomotion tasks, Pb-
PPO exhibits a advantage in the Walker2d, HalfCheetah, and Ant tasks, and it also demonstrates faster
convergence in the Hopper tasks. Meanwhile, we summarize the final training results of PPO baseline and
various on-policy algorithms in Table 1, where Pb-PPO outperforms the most of selected on-policy algorithms.
Apart from its advantages in algorithm performance and convergence speed, Pb-PPO also shows consistently
stable training curves across various locomotion tasks (without significant gaps).

5.2 Pb-PPO on robotic tasks

We further test Pb-PPO’s performance in multiple simulation environments designed for real-world deployment,
including autonomous vehicle and legged gym tasks.

Pb-PPO can complete navigation tasks of varying difficulty levels. We tested Pb-PPO in a
simulated environment for obstacle avoidance and navigation tasks with an autonomous vehicle. As shown in
Figure 2 (a), Pb-PPO has better Return curve that surpass the majority online algorithms including PPO
and Soft Actor Critic (SAC) Haarnoja et al. (2018) on the hard navigation task. Furthermore, as shown
in Figure 2 (b), the policies trained with Pb-PPO can consistently navigate around all obstacles and reach
the preset targets in nearly the shortest path, demonstrating Pb-PPO’s stable evaluation performance in
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Figure 3: (a) Pb-PPO on flat terrain: The first plot shows training curves (average returns in multi-robot
parallel training). Subsequent plots display x/y linear velocities and angular velocity during evaluation
with 50 robots initialized using the trained policy. (b) Pb-PPO on complex terrain: We evaluated the
complex-terrain-trained policy in flat-discrete terrain, with remaining plots following the same format as (a).

multi-target obstacle avoidance tasks. (Additionally, we supplement Pb-PPO in underwater obstacle avoidance
tasks in the Appendix, where Pb-PPO still exhibits stable performance.)
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Figure 4: The walking states of quadruped robots (anymal-c) on complex terrains. The upper figure shows
the quadruped robot trained by Pb-PPO, and the lower figure shows the quadruped robot trained by PPO.
In general, Pb-PPO exhibits a more stable gait when climbing stairs.
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Figure 5: (a) Return of Pb-PPO across different num(ζ). (b) The success rate of policy improvement.

Pb-PPO demonstrates more stable performance on quadruped robots compared to PPO. We
also evaluate Pb-PPO on quadruped robots in the legged-gym environment. As shown in Figure 3(a), we
train and test Pb-PPO on flat terrain in parallel. Compared to PPO, Pb-PPO demonstrate consistently
better training curves. Meanwhile, we conducted parallel tests with 50 quadruped robots on flat terrain and
found that Pb-PPO’s policy more closely adhered to the given commands, thereby validating its superior
stability. Furthermore, as illustrated in Figure 3(b), we used pre-trained policies on discrete, flat 1:1 terrain
and initialized 50 robots to test on flat-discrete mixed terrain. Pb-PPO exhibits a better Return curve, and
stronger response to commands than PPO. We believe the advantage of Pb-PPO is due to its ability to
dynamically adjust the clipping bound based on task feedback, achieving a stable balance between model
updates and exploration. This advantage is reflected not only in the Return curves but also in the stability
of the test tasks. However, in these quadruped robot tasks, the superiority of Pb-PPO over PPO in terms
of Return curves was less pronounced compared to single-environment tests (Gym locomotion, navigation).
We attribute this to the reward in parallel environments reflecting the overall task performance rather than
setting the most appropriate bound for each policy with fine granularity. Therefore, Pb-PPO’s performance
in parallel environments should have to be further improved.

Actual motion states of policies trained by Pb-PPO. Currently, in Figure 3, we have not shown the
motion states of more agents. Therefore, we further supplement more motion states in Figure 4. As shown in
Figure 4, the policy trained by Pb-PPO exhibits higher stability when climbing stairs compared to PPO.
Additionally, we have provided videos in the supplementary materials for reviewers to conduct systematic
evaluations.
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6 Ablation

Variations in the performance of Pb-PPO as influenced by different numbers of bandit arms
num(ζ). In this section, we further validate the effectiveness of our approach by changing the number of
bandit arms. Illustrated in Figure 5, the training performance, averaged across Walker2d, Hopper, and
Humanoid for Pb-PPO (wi-ad), exhibits sensitivity to the number of bandits. Notably, the performance of
Pb-PPO demonstrates improvement with an increasing num(ζ) (across 3, 6, 12).

Rendering the success rate of Pb-PPO’s policy improvement. We count the times that new policy
is better than old policy as Nsuccess, and compute the success ratio by dividing the whole iterations N , i.e.
Nsuccess

N . If Nsuccess(Pb-PPO)
N(Pb-PPO) is higher than Nsuccess(PPO)

N(PPO) , the feasibility of Pb-PPO can be further validated. As
shown in Figure 5, we average the training results across Hopper, Walker2d, Ant, HalfCheetah, our Pb-PPO
achives 5.0% success rate which is the best across all selected baselines.

7 Conclusion and Limitation

In this study, we propose Pb-PPO which utilizing bandit algorithm to dynamically adjust the clipping bound
during the process of proximal policy optimization. Pb-PPO showcase better performance than PPO and
PPO’s variants, even can solve all tasks with single set of hyper-parameters. However, Pb-PPO’s performance
in parallel environments should have to be further improved. In the future, we will scale our approach to the
setting reflecting human preference.
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A Mathematic Proof of Equation 5

According to Hoeffding’s inequality, we know that:

|Rϵi − E[R|ϵi]
n

| ≤
Rmax

ϵi
−Rmin

ϵi

n

√
1
2 ln 2

σ

→ Rϵi − E[R|ϵi] ≤ (Rmax
ϵi
−Rmin

ϵi
)
√

1
2 ln 2

σ

→ Rϵi ≤ E[R|ϵi] + (Rmax
ϵi
−Rmin

ϵi
)
√

1
2 ln 2

σ
,

(9)

B Social Impact

In this research, we propose Pb-PPO, an enhanced version of PPO that achieves superior performance on robotic
tasks. Additionally, Pb-PPO demonstrates stable evaluation results, making it promising for fields requiring consistent
training. In the future, we plan to explore how to scale Pb-PPO to domains that reflect human preferences.

C Computing Resources

We run each task multiple times. Our experiment are running on computing clusters with 16×4 core cpu (Intel(R)
Xeon(R) CPU E5-2637 v4 @ 3.50GHz), and 16×RTX2080 Ti GPUs

D Scaled Experiments

y

xO

Study plane

Target points Obstacle

Final point

vx(t)

θ(t)

vy(t)ω(t)

Figure 6: Policy trajectory in AUV navigation system.

Underwater AUV simulation setting. As shwon in Figure 6, the simulation is carried out on a 40m×40m
area with a water depth of -200m, on which the obstacles are randomly distributed. At the beginning, the position of
the AUV is randomly distributed, and the AUV knows its own position. The area boundaries act as obstacles to
restrict the AUVs in the specified area.

E Environments and hyper-parameters

In the main context, we test Pb-PPO on costumed AUV navigation environment and legged-gym these two environments.
Since AUV navigation environment is designed by our-self, we carefully detailed the modeling of this environment.
In terms of legged-gym our training configuration is the same as the original set up of legged-gym, we additionally
provide the command during the evaluation process. Our environment codebase is implemented based on this project
(related to ROS-Gazebo): https://gitee.com/fangxiaosheng666/PPO-SAC-DQN-DDPG

AUV Navigation. We describe the AUV navigation problem as a Markov decision process (MDP), which can be
defined by a quintuple, i.e.

M = (S,A, dM(· | st, at),R, γ), (10)
where S and A denotes the state and action space of the AUV, respectively. Moreover, γ is the discount factor,
while dM(· | st, at) represents the state transition probability function. To be intuitive, at time t, AUV selects the
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action at ∈ A according to its policy πθ by observing the current state st ∈ S, and transitions to the next state
st+1 ∼ dM(· | st, at) and gets the reward r(t) ∈ R. The details are as follows:

State space: In the navigation task, the observation space of AUV at time t is st, which can be defined as

st = [l(t), lA↔T (t), θ(t), ϕA↔T (t), χ(t)], (11)

where l(t) contains the distances detected by sonar between the AUV and various obstacles, while lA↔T (t) represents
the distance between the AUV and the target point. θ(t) and ϕA↔T (t) respectively indicate the orientation angle (yaw
angle) of the AUV and the angle between the AUV and the target point. Furthermore, χ(t) ∈ {0, 1}, and χ(t) = 1
indicates the current training episode has concluded, while vice versa.

Action space: In the process of navigation task, the AUV makes action at at time t by observing the state st and
action at, which can be given by

at = [v(t), ωat] , (12)

where ∥v(t)∥ =
√

vx(t)2 + vy(t)2 and ∥ωat∥ indicate the linear and angular velocity of the AUV, respectively. And
the AUV can adjust its own motion state by changing its linear and angular velocity.

Reward function: We need to design the corresponding reward function to guide the AUV to make reasonable
decisions in the complex environment to optimize the navigation trajectory to safely complete the navigation task.
The rewards received by the AUV at time t consist of the following parts

rc(t) = −500 ceil (lsafe/ min (l(t))) , (13)

rg(t) = 1000 ceil (lmax
A↔T /lA↔T (t)) , (14)

re(t) = −0.2 + 5(lA↔T (t− 1)− lA↔T (t)) + 2(ϕA↔T (t− 1)− ϕA↔T (t)), (15)
where rc(t) is a penalty term used to prevent the AUV from colliding with the obstacles, while lsafe is the safe distance
between the AUV and the obstacles, and ceil(x) is the binary function, which means that ceil(x) equals to 1 when
x ≥ 1, and equals to 0 when x ≤ 1. Additionally, when the AUV detects the target point for the first time, it receives
a reward rg(t). In addition, we use the reward item re(t) to encourage the AUV to get closer to the target point.
Therefore, the total reward available for AUV at time t can be weighted by

r(t) = δcrc(t) + δgrg(t) + δere(t), (16)

where δc, δg and δe are the weights of each reward or penalty item, respectively, which can be adjusted according to
the application needs.

Based on the above analysis, we summarize several engineering constraints that need to be considered during the
actual navigation process, and formulate a constraint optimization problem whose goal is to optimize the policy of the
AUV to maximize the total expected return. The constrained optimization problem can be expressed as

max
πθ

J (θ) = max
πθ

E

[
T =∞∑
t′=t

γt′−trt′ (s(t), πθ (a(t) | s(t)))

]
, (17a)

s.t. min (l(t)) ≥ lsafe, (17b)
s.t. lA↔T (t) ≤ lmax

A↔T , (17c)
vmin ≤ ∥v(t)∥ ≤ vmax, ωmin ≤ ∥ωat∥ ≤ ωmax, (17d)

where Equation 17a denotes the optimization objective, and Inequality 17b represents the constraint that prevents the
AUV from colliding with obstacles. Moreover, Inequality 17c stands for the constraint that ensures the AUV to get to
the target point, while Inequality 17d restricts the velocity and angular velocity range of the AUV.

Table 2: Command setup when conducting evaluation.
Physical standard range

x-axis v [-1.0 m/s, 1.0 m/s]
y-axis v [-1.0 m/s, 1.0 m/s]

angular v [-0.01 rad/s, 0.01 rad/s]
heading [-3.14, 3.14]
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Legged Gym. We utilize the default configuration of "anymal-c" in legged-gym for policy training and evaluation.
In particular, the default configuration of "anymal-c" can be referred to https://github.com/leggedrobotics/
legged_gym/tree/master/legged_gym/envs/anymal_c, which includes plat and complex terrain these two different
kinds of settings. Additionally, our complex terrain are composed of 1:1 flat and discrete sub-terrains. During
the evaluation stage, we set up the command as shown in table 2, while maintaining the original parameters as:
https://github.com/leggedrobotics/legged_gym/blob/master/legged_gym/scripts/play.py
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