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Abstract
Simulating the conditioned dynamics of diffusion processes, given their initial
and terminal states, is an important but challenging problem in the sciences. The
difficulty is particularly pronounced for rare events, for which the unconditioned dy-
namics rarely reach the terminal state. In this work, we leverage a self-consistency
property of the conditioned dynamics to learn the diffusion bridge in an iterative
online manner, and demonstrate promising empirical results in a range of settings.

1 Introduction
Diffusion bridges Diffusion processes are ubiquitous throughout mathematics, science, and, more
recently, machine learning. A diffusion process (Xt)t∈[0,T ] in Rd is governed by a stochastic
differential equation

dXt = b(t,Xt) dt+ σ(t,Xt) dBt, X0 = x0, (1)

for drift b : [0, T ] × Rd → Rd and diffusion coefficient σ : [0, T ] × Rd → Rd×d. In this work we
will consider elliptic diffusions, so σσ⊤ is of full-rank, and make the standard assumptions that b, σ
are Lipschitz continuous and of linear growth.

Given the SDE dynamics (1), one can use time-discretisation schemes such as the Euler-Maruyama
method to simulate samples of the diffusion process. However, often in applications it is required to
simulate the conditioned dynamics of this underlying reference process, conditional on terminating at
a point XT = xT . The sampling of such diffusion bridges has applications in chemistry (Bolhuis
et al., 2002; E and Vanden-Eijnden, 2010), finance (Elerian et al., 2001; Durham and Gallant, 2002),
and shape evolution (Arnaudon et al., 2022) to name a few. This is typically a challenging problem,
particularly when the conditioned event in question occurs rarely under the base dynamics (1).

Existing approaches Traditional approaches for sampling diffusion bridges have commonly used
MCMC or SMC-based methods (Beskos et al., 2008; Fearnhead et al., 2008). More recently, neural
approximations have been used to learn the control drift of the conditioned dynamics, leveraging
tools from score-matching (Heng et al., 2025; Baker et al., 2025) or Malliavin calculus (Pidstrigach
et al., 2025). However, these methods learn the neural approximation using samples from uncon-
trolled dynamics, limiting their success for rare conditioning events as the training samples may not
adequately cover the support of the diffusion bridge solution. Motivated by this, Yang et al. (2025)
learn a neurally-guided bridge by minimising the KL-divergence to the true conditioned dynamics,
though they require backpropagation through the simulated trajectories which can impact scalability.

Contributions In this work, we derive a self-consistency property of the diffusion bridge solution
in terms of the control drift u(t,Xt) and the Jacobian process Jt|s along the solution trajectories. We
consider a class of neural-controlled diffusion processes that ensures transportation to the conditioned
endpoint xT , and train according to a proposed family of self-consistency losses based on the
above property of the solution. These fixed-point-style losses are trained in an online manner, and
provide scalable training without the need to backpropagate through the simulated trajectories. We
demonstrate the validity of our proposed approach in a range of settings, showing competitive
performance with existing methods at a lower computational cost.
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Figure 1: The self-consistency property
u(s,Xs) = EPu [u(t,Xt)Jt|s|Xs] relates the
control value at an earlier time s to its value
at a later time t, along the trajectories.
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Figure 2: The diffusion bridge is the unique
process of form (3) bridging from x0 to xT
with u of gradient form, that satisfies the self-
consistency property (6).

2 Background
Controlled diffusions Let us denote by P the path measure induced by the unconditioned reference
process Xt in (1), and consider a ‘target’ path measure Q induced by a reweighting density function
F (XT ) defined on the terminal state,

dQ
dP

(X) ∝ F (XT ). (2)

It is a well-known result from stochastic analysis (Eberle, 2019, Section 1.3) that samples from Q
can be obtained by simulating the controlled diffusion process Xu

t , whose dynamics are governed by
the SDE

dXu
t =

[
b(t,Xu

t ) + (σσ⊤)(t,Xu
t )u(t,X

u
t )
]
dt+ σ(t,Xu

t ) dBt, Xu
0 = x0, (3)

where the control drift is given by Doob’s h-transform, u(t, x) = ∇x logEP[F (XT )|Xt = x]. Ob-
serve that diffusion bridges are recovered from this framework by using the singular reweighting func-
tion F (XT ) = δxT

(XT ), which intuitively corresponds to ‘retaining only trajectories that terminate
at xT ’. In this case, Doob’s h-transform takes the more familiar form u(t, x) = ∇x log p(T, xT |t, x),
where p(t, y|s, x) denotes the transition densities of the base process Xt.

Self-consistency of the control In order to explain our approach, we now introduce the Jacobian,
or derivative, process Jt|s = ∇Xs

Xt (Rogers and Williams, 2000, Chapter V.13), which evolves for
t > s according to the SDE

dJt|s = ∇b(t,Xt)Jt|s dt+∇σ(t,Xt)Jt|s dBt, Js|s = Id. (4)

Intuitively, this measures the sensitivity of the value of Xt to perturbations in the earlier value of
Xs, along trajectories of the uncontrolled process X . Importantly, the Jacobian process satisfies the
semigroup property: for s < r < t we have Jt|s = Jt|rJr|s. Using this object, we can now state the
following key result, which is proved in Appendix D.

Theorem 2.1. The control drift u∗ of the solution satisfies

u∗(t, x) = EPu∗ [J⊤
T |t ∇ logF (XT )|Xt = x]. (5)

Moreover, the control drift satisfies the following self-consistency property,

u∗(s, x) = EPu∗ [J⊤
t|s u

∗(t,Xt)|Xs = x], for s < t. (6)

This property characterises how the control at an earlier time s should relate to its value at later times
t along the solution trajectories (see Figure 1), and it will form the basis for our approach.

3 Control consistency losses for diffusion bridges
Method The result above shows that self-consistency is a necessary property of the optimal control
u∗, but it falls short of sufficiency; indeed, it holds for any choice of F . For sufficiency, we must
enforce an additional terminal condition that incorporates information of the solution’s behaviour at
the terminal time. The following theorem shows that the diffusion bridge control can be characterised
as the unique gradient-form control that forces the dynamics to end at xT while satisfying the
self-consistency property.
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Figure 3: Comparison of our proposed approach with Neural Guided Diffusion Bridge (NGDB)
(Yang et al., 2025) in the Ornstein-Uhlenbeck bridge experiment (mean± std, over 5 runs).

Theorem 3.1. Within the class of controlled diffusion processes of the form (3) that ter-
minate at xT , there is a unique process Xu

t that satisfies the self-consistency property
u(s,Xs) = EPu [J⊤

t|s u(t,Xt)|Xs] and whose control is of gradient form for some time t, and this
process is the diffusion bridge Xu

t = X∗
t .

We provide the proof of the theorem in Appendix D. This result provides the theoretical justification
for our proposed approach. Namely, we propose to (see Figure 2)

• enforce the bridging and gradient-form properties by construction.

• optimise for the self-consistency property using a fixed-point style self-consistency loss.

Below, we outline how these two aspects can be implemented to give a practical algorithm.

Bridging property and drift parameterisation Since the termination point is known, in the final
discretisation step we can jump directly to xT . This directly enforces the bridging property, and the
control function u(T − δt, ·) at the penultimate timestep is completely determined by construction.

There is considerable freedom in the drift parameterisation and the exact form can be chosen by the
user. A simple and natural choice is to parameterise the drift as

fθ(t,Xt) =
xT −Xt

T − t
+ σ(t,Xt) ηθ(t,Xt). (7)

where ηθ is a neurally-parameterised vector field. The first term in the parameterisation is the drift
of a Brownian bridge, which guides the controlled process towards the terminal point xT , and the
second is an ‘adjustment’ term that we learn. In many applications, the reference drift b in (1) is
of gradient form and the diffusion term σ is independent of x. As the Brownian drift in (7) is of
gradient form, we can directly enforce the same property for u, for all t, by taking η = ∇ψθ for a
scalar-valued neural network ψ. See Appendix B for more details regarding other cases.

Self-consistency losses To encourage satisfying the consistency property from Theorem 2.1,
u(s,Xs) = EPu [u(t,Xt)Jt|s|Xs], we wish to minimise the expression

EPu

[
∥u(s,Xs)− EPu [J⊤

t|s u(t,Xt)|Xs]∥2
]
= EPu

[
∥u(s,Xs)− J⊤

t|s u(t,Xt)∥2
]
+ C. (8)

Note that there are two dependencies on u in this expression, namely through the control values
themselves, but also implicitly through the simulated trajectories of Xu

t . We thus propose to optimise
a fixed-point style loss, akin to similar fixed-point losses used in Domingo-Enrich et al. (2025).
Namely, we regress the control values towards the current estimates of the targets, obtained using
samples of the current controlled process Xθ

t = Xuθ
t , resulting in a ‘self-play’ style algorithm.

Importantly, we do not need to propagate the gradients through the simulated trajectories, which
provides significant scalability benefits. Note too that this relation holds for any s < t, so one can
integrate over the values of t to obtain the following family of losses,

L(θ) = EX∼Puθ̄

s∼U[0,T ]

[∥∥∥uθ(s,Xs)− 1
As

∫ T

s

αtJ
⊤
t|s uθ̄(t,Xt) dt

∥∥∥2]. (9)

Here, θ̄ denotes the stopgrad operator, αt can be any weighting function, and As =
∫ T

s
αt dt is a

normalisation factor. We provide a full description of the resulting procedure in Appendix B, along
with a generalised version of the algorithm that can improve performance in some settings.
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Figure 4: Visualisation of obtained bridge tra-
jectories for the 1d double-well potential.

Figure 5: Visualisation of obtained bridge tra-
jectories for the 2d Müller-Brown potential.

4 Experiments
We now provide experiments to validate our approach, in a range of different settings. We present a
selection below, with additional experiments and comparisons to other diffusion bridge methods in
Appendix C. We first provide a comparison with the neural-guided bridge approach (NGDB) of Yang
et al. (2025) for sampling Ornstein-Uhlenbeck bridges, a standard benchmark in the literature. This
is the most directly comparable method for simulating diffusion bridges, as it also learns a neural
control term in an online manner.

Ornstein-Uhlenbeck bridges To provide a quantitative assessment of performance, we consider
finding bridges of an Ornstein-Uhlenbeck process dXt = −αXt dt + σdBt, as in this case the
true bridge can be calculated in closed form (see Appendix C.1). In Figure 3a, we report how the
KL divergence relative to the ground truth evolves throughout training, and see that our method
displays improved convergence to the solution in this example. Moreover, running 5000 steps took
approximately 230s with our method, compared to 800s for NGDB; this speed-up can be attributed
to the fact that our method does not require backpropagation through the simulated trajectories.
In Figures 3b and 3c we also include plots to illustrate the dependence on dimension and the OU
parameter α. Full experimental details are provided in Appendix C.1. In Appendix C, we also provide
further results for other experiments used in the diffusion bridge literature.

Double-well potential A prominent application of diffusion bridge algorithms is for sampling
transition paths between metastable states in molecular dynamics (Bolhuis et al., 2002). As a simple
synthetic example, we consider dynamics evolving as dXt = −∇U(Xt) dt+ σdBt, and first use
a 1d double-well potential U(x) = v(x2 − 1)2 for v = 3.0 and σ = 1.0. We visualise obtained
trajectories in Figure 4. Experimental details and quantitative results are included in Appendix C.3.

Müller-Brown potential The results in Appendix C and above demonstrate that our method shows
strong performance on the standard experiments from the diffusion bridge literature, comparable
with the strongest existing method NGDB at a significantly reduced computational cost. To conclude,
we consider a harder example inspired by applications in computational chemistry. In Figure 5, we
plot a selection of obtained paths for the Müller-Brown potential, a commonly-used benchmark for
transition path sampling. The steep slopes of the potential make this a challenging setting, so we
use the generalised form of our algorithm presented in Appendix B.5, taking b̃ = −b to avoid large
Jacobian terms. We use the experimental setting of Du et al. (2024); a full description of the problem
and implementation details are given in Appendix C.5, along with a comparison with the methods of
Du et al. (2024) and Yang et al. (2025).

5 Discussion and future directions
In this work, we have presented a novel algorithm for sampling diffusion bridges based on a self-
consistency property of the optimal control u∗. The experiments presented here validate our proposed
method, and demonstrate strong performance in a range of settings. Limitations of our approach
include the ellipticity requirement, and the need for simulating the current process during training.
Future work could include investigating extensions to hypoelliptic diffusions, and targeting specific
applications in computational chemistry for which we report promising initial findings.
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Appendix
The Appendix is structured as follows. In Appendix A, we discuss related work. In Appendix B, we
provide more details regarding the method and present a generalised version of our algorithm. In
Appendix C, we provide experimental details and additional results. In Appendix D we provide the
proofs of the results in the paper. Finally, in Appendix E we provide the licenses and links to the
assets used in the work.

A Related work
Diffusion bridge simulation has been the subject of extensive study over recent decades; we highlight
a selection of works from the literature here. A common approach is to use simulations from
tractable dynamics, and correct using importance-sampling (Papaspiliopoulos and Roberts, 2012)
or Metropolis-Hastings steps. Pedersen (1995) use the unconditional dynamics, and Clark (1990)
and Delyon and Hu (2006) utilise the Brownian bridge to ensure termination at the correct state.
Schauer et al. (2017) consider a class of guided diffusions that includes an additional drift term while
preserving tractability. We also highlight the works Stuart et al. (2004) and Beskos et al. (2008)
who consider Langevin-type algorithms on the space of paths, Bierkens et al. (2021) who utilise
a piecewise deterministic Monte-Carlo approach, and Lin et al. (2010) who use an SMC-based
approach. Often, diffusion bridges approaches are used for inferring the parameters of a discretely-
observed diffusion process (Elerian et al., 2001; Roberts and Stramer, 2001; Durham and Gallant,
2002; Stramer and Yan, 2007; Golightly and Wilkinson, 2008; Bladt and Sørensen, 2014; Bladt et al.,
2015; Meulen and Schauer, 2017).

More recently, neural approximations have been used to learn the control term u(t, x). Heng et al.
(2025) utilised the expression of the control drift in the time-reversed bridge dynamics as a score
function, and trained the drift using score-matching on simulated trajectories of the unconditioned
forwards process. The conditioned forward dynamics can subsequently be learned via a time-reversal.
This approach was extended in Baker et al. (2025) to learn the forward dynamics directly, using
trajectories of an adjoint process simulated backwards in time. Pidstrigach et al. (2025) uses a novel
characterisation of the control based on Malliavin calculus, which is learned from simulations of
the unconditioned process. Such approaches enable direct simulation of the conditioned dynamics
using the learned drifts. However, as they rely on simulations of the unconditioned dynamics, they
are limited in their ability to learn accurate dynamics for rare events, as these will hardly ever arise
in the trajectories used for training. Recent work Yang et al. (2025) aims to address this by using
a neural guiding drift in addition to the linear drift from Schauer et al. (2017), and optimising a
KL-based objective to encourage movement towards the true conditioned dynamics. While exhibiting
good performance, the need for backpropagation through simulated trajectories can pose challenges
for scalability. We also highlight the recent work Du et al. (2024), which introduces a variational
formulation to learn a Gaussian mixture path parameterisation. Of these, the most related to our
approach is the recent work of Pidstrigach et al. (2025), as the self-consistency property that we use
can also be derived from their Malliavin calculus framework.

Finally, we highlight that the self-consistency framework that we use in this work has many connec-
tions to recent advances in the stochastic optimal control literature (Domingo-Enrich et al., 2024,
2025; Domingo-Enrich, 2024), though their focus is on optimal control for rewards with gradi-
ent information rather than on diffusion bridges. We provide a discussion of these connections in
Appendix B.5.

B Method details and discussion
A complete description of the method outlined in Section 3 is provided in Algorithm 1. We now
discuss further implementation details regarding the proposed approach. We also discuss potential
issues that might arise in certain settings, and present a generalised version of our algorithm which
can help to mitigate them.

B.1 Choice of neural parameterisation
Recall from the discussion around equation (7) that we use the neural parameterisation to enforce
the gradient property. Aside from this consideration, there is considerable freedom in the choice of
neural parameterisation, though it is clearly beneficial to direct the samples towards the endpoint
through this choice. As discussed in Section 3, in cases where the base drift b is of gradient form, we
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Algorithm 1: Control Consistency Diffusion Bridges

Input: Drift parameterisation fθ = b+ (σσ⊤)uθ, number of iterations N , batch size B,
weighting schedule αt.
for n = 0 to N − 1 do

Simulate B paths of (Xθ
t )t∈[0,T ] using the current control,

dXθ
t =

(
b+ (σσ⊤)uθ

)
(t,Xθ

t )dt+ σ(t,Xθ
t )dBt, (10)

Solve for training targets Ss backwards along the obtained paths, using (12).
Perform a gradient step on θ using the self-consistency loss function (9).

end for

use the parameterisation

fθ(t,Xt) =
xT −Xt

T − t
+ σ(t,Xt)∇ψθ(t,Xt), (11)

for a scalar-valued network ψθ. For non-conservative base drifts b, we include the drift in the base
process and use the parameterisation

fθ(t,Xt) = b(t,Xt) +
xT −Xt

T − t
+ σ(t,Xt)∇ψθ(t,Xt).

Certain choices of spatially-dependent diffusion coefficients σ may require further modifications, and
the appropriate adjustments can again be made to ensure that u remains of gradient form in these
cases too. There are also further possibilities for the parameterisation, such as incorporating the
linearised guiding drift used in Mider et al. (2021) and Yang et al. (2025).

We remark here that enforcing the gradient property directly is not strictly necessary for a theoretically-
grounded algorithm. Recalling the result in Theorem 3.1, we in fact only need to enforce the gradient
property at a single point in time. Note that in cases with base drifts of gradient form, this is ensured
by our construction where we directly jump to the terminal state in the final step; this enforces that
the control u(T − δt, ·) is conservative. Therefore, one can use a general neural parameterisation
rather than enforcing gradient form directly. However, in practice, rotational terms may accrue if the
optimisation is not performed perfectly; we found improved performance by enforcing the gradient
property throughout time as described above.

B.2 Solving for the training targets

Recall from Section 3 that we require to compute the training targets Ss :=
1
As

∫ T

s
αtJ

⊤
t|s u(t,Xt) dt,

which can be done by solving backwards along the simulated trajectories. In particular, we can
avoid computing the full Jacobian matrices J⊤

t|s by using vector-Jacobian products. To performs the
computations, we can write the target Ss in terms of the next-step target Ss+δt according to

Ss =
1
As

∫ T

s

αtJ
⊤
t|s u(t,Xt) dt

= 1
As

∫ T

s+δt

αtJ
⊤
t|s u(t,Xt)dt+

1
As

∫ s+δt

s

αtJ
⊤
t|s u(t,Xt) dt

= 1
As

∫ T

s+δt

αt(Jt|s+δtJs+δt|s)
⊤ u(t,Xt)dt+

1
As

∫ s+δt

s

αtJ
⊤
t|s u(t,Xt) dt

= As+δt

As
J⊤
s+δt|s Ss+δt +

1
As

∫ s+δt

s

αtJ
⊤
t|s u(t,Xt) dt

≈ J⊤
s+δt|s

[As+δt

As
Ss+δt + (δt)αs+δt

As
u(s+ δt,Xs+δt)

]
, (12)

where in the final line we approximate the second integral using value of the integrand at the larger
timestep. By relabelling λs :=

As+δt

As
, this can be written as

J⊤
s+δt|s

[
λsSs+δt + (1− λs)us+δt(Xs+δt)

]
. (13)

9



This is intuitive; each target Ss is constructed as a weighted combination of the ‘running’ next-step
target Ss+δt and the next-step control u(s+ δt,Xs+δt), and is then transformed by the single-step
Jacobian Js+δt|s ≈ Id + ∇b(s,Xs)(δt) + ∇σ(s,Xs) · δBs. The weighting is determined by the
choice of α-schedule, which therefore determines how ‘far into the future’ the algorithm looks to
enforce the self-consistency property. Following Pidstrigach et al. (2025), we consider three different
choices of α-schedule: next-step, average, and endpoint prediction. For clarity, we explicitly write
out the recursions for these three α-schedules below.

• Next-step prediction: This choice of schedule chooses to only enforce the self-consistency
property at consecutive timesteps; that is, it tries to enforce u(s,Xs) = EPu [J⊤

s+δt|s u(s+

δt,Xs+δt)|Xs]. This corresponds to taking λs = 0 in the above expression (13), so the
targets are calculated as

Ss = J⊤
s+δt|s us+δt(Xs+δt). (14)

This choice results in small target variance — u(s,Xs) is likely close to Ss, as there is only
a single step for variance to accrue. As we enforce the correct control at the final step, this
choice can be thought of as ‘passing the information along the trajectory one-by-one’. As a
result, this can cause slower learning, but can give more stable training in settings where
the training target variance might become large due to large Jacobians (for example, see the
double-well experiments in Appendix C.6).

• Average prediction: This choice instead aims to enforce the self-consistency uniformly
across the remaining time t ∈ [s, T ], so Ss = 1

T−s

∫ T

s
J⊤
t|s u(t,Xt) dt. In this case, the

recursive formula becomes

Ss = J⊤
s+δt|s

[T−(s+δt)
T−s Ss+δt +

(δt)
T−su(s+ δt,Xs+δt)

]
. (15)

We found this choice to provide a good balance between training target variance and propa-
gation of the terminal information, and it worked consistently well across the experimental
settings (see results in Appendix C.6). For this reason, the results reported in the main body
use the average α-schedule.

• Endpoint prediction: This choice chooses to only enforce the self-consistency property to
the terminal step; that is, it tries to enforce u(s,Xs) = EPu [J⊤

T−δt|s u(T − δt,XT−δt)|Xs].
This corresponds to taking λs = 1 in (13), so the targets are calculated as

Ss = J⊤
s+δt|s Ss+δt. (16)

While this choice directly fits to the known terminal information, variance can accrue in the
many intermediate steps. Moreover, target variance is exacerbated in the case of diffusion
bridges, as the control grows sharply towards the terminal time. In the experiments in
Appendix C.6, we consistently found this choice to perform worse than average prediction.

We remark that other choices of α-schedule are possible and can be chosen by the practitioner. The
method for computing the training targets for a single trajectory in the generalised case is presented
in Algorithm 3.

B.3 Sticking-the-landing adjustments
Here, we explain how ‘Sticking-the-Landing’ (STL) adjustments (Roeder et al., 2017) can be included
in the training target recursions, similar to the adjustments discussed in Domingo-Enrich (2024).
The idea of the STL adjustments is to remove the variance in the training targets at the solution, by
leveraging the knowledge that the corresponding potential must solve the appropriate HJB equation.
Below, we provide a sketch proof showing how the STL adjustments arise in our framework, and
show how they can be incorporated into our algorithm. For full details, see the proof in Appendix D.
Note that this presentation is for a scalar noise term σ; the general case follows similarly by making
the appropriate changes.

We know that the control u∗ of the solution is of the form u∗ = ∇ϕ, where ϕ solves the HJB equation,

∂tϕ+ Lϕ+ 1
2 |σ∇ϕ|

2 = 0. (HJB)

Taking gradients of the HJB equation and using u = ∇ϕ, we see that

0 = ∂tu+∇Lϕ+ σ2

2 ∇|u|2 = ∂tu+∇(b · u) + σ2

2 ∆u+ σ2

2 ∇|u|2. (Grad-HJB)
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By applying the product rule of Itô stochastic calculus to J⊤
t|s u(t,X

u
t ) (for full details see the proofs

in Appendix D), we have

d(J⊤
t|s u(t,X

u
t )) = J⊤

t|s

(
∂tu+∇(b · u) + σ2

2 ∆u+ σ2

2 ∇|u|2
)
(t,Xu

t ) dt+σJ
⊤
t|s ∇u(t,X

u
t )·dBt.

Observe that the deterministic term contains precisely the right-hand side of (Grad-HJB), so is zero at
the solution. Integrating over time, the optimal control u∗ therefore satisfies the following path-wise
self-consistency property, which holds almost surely along trajectories of the solution,

u(s,Xu
s ) = J⊤

t|su(t,X
u
t )− σ

∫ t

s

J⊤
r|s∇u(r,X

u
r ) · dBr. (17)

By taking expectations, we recover the standard self-consistency property (6) used in the standard
version of our algorithm. However, numerically speaking, working with the expectation introduces
variance, as the stochastic term must be averaged out across samples. Rather than working with the
standard self-consistency property, ‘sticking-the-landing’ means instead working with this path-wise
property directly, which at optimality will be satisfied almost surely.

Computing the STL training targets To incorporate the STL adjustment into our algorithm, we
instead fit to the STL training targets

Ss :=
1

As

∫ T

s

αtJ
⊤
t|s u(t,X

u
t ) dt−

1

As

∫ T

s

αt

(
σ

∫ t

s

J⊤
r|s∇u(r,X

u
r ) · dBr

)
dt. (18)

The first term is the same as in the usual case, and the second term constitutes the STL adjustments.
It remains to show the recursion that the STL targets satisfy, in order to compute the target backwards
along the trajectories. To do so, it is first helpful to rearrange the noise term as follows (using the fact∫ T

s
1r∈[s,t]αt dt =

∫ T

r
αt dt = Ar),

1

As

∫ T

s

αt

(∫ t

s

J⊤
r|s∇u(r,X

u
r ) · dBr

)
dt =

1

As

∫ T

s

∫ T

s

1r∈[s,t]αtJ
⊤
r|s∇u(r,X

u
r ) · dBr dt

=
1

As

∫ T

s

(∫ T

s

1r∈[s,t]αt dt

)
J⊤
r|s∇u(r,X

u
r ) · dBr

=
1

As

∫ T

s

ArJ
⊤
r|s∇u(r,X

u
r ) · dBr.

The STL training targets can then be computed according to the following recursion, mirroring the
calculation in the standard case.

Ss =
1
As

∫ T

s

αtJ
⊤
t|s u(t,Xt)dt+

σ
As

∫ T

s

ArJ
⊤
r|s∇u(r,X

u
r ) · dBr

=
[

1
As

∫ T

s+δt

αtJ
⊤
t|s u(t,Xt)dt+

σ
As

∫ T

s+δt

ArJ
⊤
r|s∇u(r,X

u
r ) · dBr

]
+
[

1
As

∫ s+δt

s

αtJ
⊤
t|s u(t,Xt)dt+

σ
As

∫ s+δt

s

ArJ
⊤
r|s∇u(r,X

u
r ) · dBr

]
= J⊤

s+δt|s

[
1
As

∫ T

s+δt

αtJ
⊤
t|s+δt u(t,Xt)dt+

σ
As

∫ T

s+δt

ArJ
⊤
t|s+δt∇u(r,X

u
r ) · dBr

]
+
[

1
As

∫ s+δt

s

αtJ
⊤
t|s u(t,Xt)dt+

σ
As

∫ s+δt

s

ArJ
⊤
r|s∇u(r,X

u
r ) · dBr

]
≈ σ∇u(s,Xs) · δBs + J⊤

s+δt|s
[As+δt

As
Ss+δt + (δt)αs+δt

As
u(s+ δt,Xs+δt)

]
.

The only change to the standard case is the inclusion of the additional STL adjustment σ∇u(s,Xs) ·
δBs in the recursion; note that this agrees with the calculations in Domingo-Enrich (2024). In the
case of a possibly spatially-dependent diffusion coefficient σ, performing similar calculations gives
the path-wise self-consistency property

u(s,Xu
s ) = J⊤

t|su(t,X
u
t )−

∫ t

s

J⊤
r|s(∇uσ + u∇σ)(r,Xu

r ) · dBr, (19)

and the STL adjustment is (∇uσ + u∇σ)(r,Xu
r ) · δBr.
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Performance using STL adjustments We compare performance with and without the STL adjust-
ments in Appendix C.7, and observe that it generally improves performance by a small amount, with
the largest improvements seen in cases where large Jacobian terms arise (that is, the double-well and
Müller-Brown experiments). The additional terms (∇uσ + u∇σ)(r,Xu

r ) · δBr can be computed
efficiently using Jacobian-vector products, however this still adds an additional computational cost;
generally we found that including the STL adjustments made the training steps approximately 1.5
times slower.

B.4 A generalised self-consistency property
The presentation so far provides a clean and intuitive self-consistency property (6) that can be used to
learn diffusion bridges, and in our experiments we find that the resulting algorithm often performs
extremely well in practice. Here, we shed light on potential issues that can arise in certain settings,
and present a generalisation of the self-consistency property which can help to mitigate them.

Behaviour of the Jacobian process Recall that the sensitivity process Jt|s evolves as

dJt|s = ∇b(t,Xt)Jt|sdt+∇σ(t,Xt)Jt|sdBt, Js|s = Id.

Note that the incremental values depend on the current value of Jt|s. In particular, when ∇b or ∇σ
have positive eigenvalues then the value will increase along those directions, and if the eigenvalues
are negative then they will decrease. Compounding of any such increases over time can lead to
explosion of the value of Jt|s and subsequently in the control estimates J⊤

t|s u(t,Xt), potentially
causing numerical issues during training.

To illustrate this effect conceptually, it is instructive to consider overdamped Langevin dynamics
dXt = −∇U(Xt)dt + σdBt for a scalar potential U , which is a frequently occurring scenario in
applications. The process traverses the potential randomly, with a tendency to move ‘downhill’. In
such a setting, negative eigenvalues of ∇b correspond to a convex ‘bowl’ shape in the potential, while
positive eigenvalues occur where the shape is concave, such as passing over a peak or ridge. Recalling
the definition Jt|s = ∇Xs

Xt, this is indeed intuitive—a perturbation of Xs within a convex valley
has little effect on the later state Xt, but a perturbation made while crossing a peak can compound to
cause large deviations in the subsequent trajectory.

Generalising the self-consistency property To combat such troublesome behaviour in the Jacobian
Jt|s, we can derive a generalisation of the self-consistency property that retains the same theoretical
guarantees as the standard case.

Recall from the derivation in (50) that the Jacobian Jt|s arises from taking the derivative through the
P-expectation. We can instead consider a change of measure before performing this operation. Let P̃
be an ‘auxiliary’ measure associated to the process dX̃t = (b+ b̃)(t, X̃t)dt+ σ(t, X̃t)dBt, in which
we include an additional drift term b̃. In the derivation, we can instead perform the change of measure

∇xEP[F (XT )|Xt = x] = ∇xEP̃[F (XT )
dP
dP̃ |Xt = x],

where the Radon-Nikodym derivative is given by the Girsanov weights dP
dP̃ =

exp(−
∫ T

s
σ−1b̃(r,Xr)

⊤dBr −
∫ T

s
(σσ⊤)−1

2 ∥b̃(r,Xr)∥2dr) (Øksendal, 2003, Theorem 8.6.8).
Continuing the calculation as previously, we obtain a generalised self-consistency property which
instead includes Jacobian terms J̃t|s associated to the auxiliary process X̃ rather than the base
process X , while also picking up additional ‘running cost’ terms.

Theorem B.1 (Generalised self-consistency property). For any differentiable b̃ satisfying the
conditions of Girsanov’s theorem, the control drift u∗ of the solution satisfies

u∗(s, x) = EPu∗

[
−
∫ t

s

J̃⊤
r|s ∇b̃(r,Xr)

⊤u∗(r,Xr)dr + J̃⊤
t|s u(t,Xt)|Xs = x

]
. (20)

Importantly, we retain the same theoretical guarantees when using the generalised self-consistency
property (20) as we do in the standard case.

Theorem B.2. The result of Theorem 2.1 holds with the generalised self-consistency property (20) in
place of the usual self-consistency property (6).
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Algorithm 2: Control Consistency Diffusion Bridges (Generalised version)

Input: Additional drift b̃ for auxiliary process, drift parameterisation fθ = b+ (σσ⊤)uθ, number
of iterations N , batch size B, weighting schedule αt.
for n = 0 to N − 1 do

Simulate B paths of (Xθ
t )t∈[0,T ] using the current control,

dXθ
t =

(
b+ (σσ⊤)uθ

)
(t,Xθ

t )dt+ σ(t,Xθ
t )dBt, (21)

Solve for training targets Ss (23) backwards along the obtained paths (Xθ
t ), using Algorithm 3.

Perform a gradient step on θ using the squared loss function

L(θ) = E
X∼Pu

θ̄

s∼U[0,T ]

[
∥uθ(s,Xs)− Ss∥2

]
. (22)

end for

We are free to choose the additional drift b̃ in the auxiliary process. A natural choice is to use b̃ = −b,
so that the auxiliary process X̃ has no drift term—in cases where the diffusion coefficient is constant,
this will mean J̃t|s is always the identity. In practice, we find that this gives a significant improvement
in settings where the growth of the base Jacobian Jt|s would cause numerical issues.

Solving for the training targets Unlike in the standard case, the generalised self-consistency
property includes ‘running costs’. As before, we can construct the targets by weighting according to
a α-schedule. The resulting training targets are therefore of the form

Ss =
1
As

∫ T

s

αt

(
−
∫ t

s

J̃⊤
r|s ∇b̃(r,Xr)

⊤u(r,Xr)dr + J̃⊤
t|s u(t,Xt)

)
dt. (23)

To compute these targets backwards along the trajectories, we can modify the reverse recursions as
follows,

Ss =
1
As

∫ T

s

αt

(
−
∫ t

s

J̃⊤
r|s ∇b̃(r,Xr)

⊤u(r,Xr)dr + J̃⊤
t|s u(t,Xt)

)
dt (24)

= 1
As

∫ s+δt

s

αt

(
−
∫ t

s

J̃⊤
r|s ∇b̃(r,Xr)

⊤u(r,Xr)dr + J̃⊤
t|s u(t,Xt)

)
dt

+ 1
As

∫ T

s+δt

αt

(
−
∫ t

s

J̃⊤
r|s ∇b̃(r,Xr)

⊤u(r,Xr)dr + J̃⊤
t|s u(t,Xt)

)
dt (25)

= 1
As

∫ s+δt

s

αt

(
−
∫ t

s

J̃⊤
r|s ∇b̃(r,Xr)

⊤u(r,Xr)dr + J̃⊤
t|s u(t,Xt)

)
dt

+ 1
As

∫ T

s+δt

αt

(
−
∫ s+δt

s

J̃⊤
r|s ∇b̃(r,Xr)

⊤u(r,Xr)dr
)
dt (26)

+ 1
As

∫ T

s+δt

αt

(
−
∫ t

s+δt

J̃⊤
r|s ∇b̃(r,Xr)

⊤u(r,Xr)dr + J̃⊤
t|s u(t,Xt)

)
dt

(27)

= 1
As

∫ s+δt

s

αt

(
−
∫ t

s

J̃⊤
r|s ∇b̃(r,Xr)

⊤u(r,Xr)dr + J̃⊤
t|s u(t,Xt)

)
dt

+ 1
As

∫ T

s+δt

αt

(
−
∫ s+δt

s

J̃⊤
r|s ∇b̃(r,Xr)

⊤u(r,Xr)dr
)
dt (28)

+ 1
As
J̃⊤
s+δt|s

∫ T

s+δt

αt

(
−
∫ t

s+δt

J̃⊤
r|s+δt ∇b̃(r,Xr)

⊤u(r,Xr)dr + J̃⊤
t|s+δt u(t,Xt)

)
dt

(29)

≈ −(δt)∇b̃(s,Xs)
⊤u(s,Xs) + J⊤

s+δt|s

[
(δt)αs+δt

As
u(s+ δt,Xs+δt) +

As+δt

As
Ss+δt

]
(30)
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Algorithm 3: Computing training targets along a single trajectory (generalised version)
Input: Trajectory X = {X0, Xδt, X2δt, ..., XT }, Noise increments
δB = {δB0, δBδt, δB2δt, ..., δBT−δt}, additional drift b̃, weighting schedule αt, optionally
include STL adjustments.
do: Initialise at known final control

ST−δt = u(T − δt,XT−δt) = (σσ⊤)(T − δt,XT−δt)
−1
(XT −XT−δt

δt
− b(T − δt,XT−δt)

)
(31)

for s = T − 2δt, T − 3δt, ..., δt, 0 do
Compute next training target Ss as

Ss = −(δt)∇b̃(s,Xs)
⊤u(s,Xs) + J̃⊤

s+δt|s

[
(δt)αs+δt

As
u(s+ δt,Xs+δt) +

As+δt

As
Ss+δt

]
(32)

+(∇uσ + u∇σ)(t,Xu
t ) · δBt (Optional STL adjustment)

using the approximation J̃s+δt|s ≈ Id +∇(b+ b̃)(s,Xs)(δt) +∇σ(s,Xs) · δBs.
end for

Algorithm A description of the resulting generalised version of the algorithm is given in Algo-
rithm 2. The method for solving for the training targets Ss backwards along the trajectories in the
generalised case is given in Algorithm 3.

Sticking-the-Landing Adjustments By examining the proof of Theorem B.1 in Appendix D, we
see that the STL adjustments for the generalised version of the algorithm remain the same as the
standard case discussed in Appendix B.3. They are included in blue in Algorithm 3.

B.5 Connections to stochastic optimal control methods
We now discuss connections of the self-consistency property with recent methodological develop-
ments in the stochastic optimal control literature. In Section 3, we discussed how the self-consistency
property is a necessary property for the optimal control, but for sufficiency we must also impose
additional information about the behaviour at the terminal time. We remark here that the recently
introduced adjoint matching objective (Domingo-Enrich et al., 2025), which has proven highly effec-
tive for fine-tuning flow-based generative models, can also be recovered from this self-consistency
framework by taking t = T in (6) and imposing the terminal condition u(T, x) = ∇ logF (x). The
adjoint matching objective was originally derived through the adjoint equation and removing terms
that are zero at the solution; here, we see that it arises naturally from the self-consistency derivation
in Theorem 2.1.

We also note that the generalised self-consistency property relates to the family of ‘reparameterisation
matrices’ used in the SOCM loss (Domingo-Enrich et al., 2024), by choosing the matrices to be J̃t|s.
The resulting generalised version of our algorithm therefore shares connections to the unweighted
SOCM loss discussed in Domingo-Enrich (2024), but crucially we do not compromise the theoretical
guarantees of the method.

Note that the general stochastic optimal control problem also includes a running cost f , while the
self-consistency properties we discuss in this work correspond to zero running costs. Analogous
self-consistency properties can be derived for non-zero running costs by making the appropriate
changes in the derivations. The self-consistency properties hold for general s < t, so give rise to a
large family of losses by time-weighting according to chosen α-schedules. This is crucial for the
diffusion bridge setting studied in this work due to the singular behaviour at the endpoint.

C Experimental details and additional results
We now provide additional experiments to validate our approach in a range of different settings. We
will compare the standard form of the algorithm presented in Algorithm 1 (that is, b̃ = 0), along with
the ‘generalised’ version in Algorithm 2 in which we take b̃ = −b. The main reported results use the
average α-schedule; in Appendix C.6 we also report results for other α-schedules. We first consider
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four standard experimental settings used in the diffusion bridge literature, before finally testing on a
more challenging example from the computational chemistry literature.

We focus our comparisons on the recent neural-guided method of Yang et al. (2025) (NGDB); this is
the most directly comparable method, as it similarly learns a neural control of the drift in an online
manner, enabling applications for rare event scenarios in which the alternative neural methods would
struggle. Note that we do not aim to necessarily beat the NGDB method, as this method differentiates
through the trajectory which provides an advantage. We use NGDB here as a strong baseline and aim
to achieve comparable results at a lower computational cost, since our approach does not differentiate
through the trajectory. We also include comparisons with the methods score-diffusion bridge (SDB)
(Heng et al., 2025) and forward-bridge (FB) (Baker et al., 2025), which both learn from uncontrolled
simulations. As expected, we find these approaches to generally perform well in settings where the
terminal point occurs frequently under the unconditioned dynamics, but to struggle otherwise, which
agrees with the findings in Yang et al. (2025).

All experiments were carried out on a Nvidia GeForce RTX 2080Ti GPU. For the neural adjustment
term ηθ = ∇ψθ, we parameterise ψθ using the MLP architecture with sinusoidal time-embedding
used in De Bortoli et al. (2021), with main hidden dimensions [128,128] and time-embedding hidden
dimensions [64,64]. For fair comparison, we also used the same conservative architecture for NGDB,
which we found performed slightly better than a standard architecture. In all experiments, we use
the Adam optimiser (Kingma and Ba, 2015). Below, we describe the individual experiment setups
and implementation details used. For the alternative methods, we use the default hyperparameters
provided in their respective codebases unless otherwise specified; we provide the links to these
codebases in Appendix E.

Metrics In several of the experimental settings, we have access to the ground-truth diffusion bridge
solution. In these experiments, we report the KL divergence KL(P∗∥Pθ) relative to this ground-truth,
which can be calculated according to the expression

KL(P∗∥Pθ) = EP∗

[
1
2

∫ T

0

∥σ(t,Xt)
⊤u∗(t,Xt)− σ(t,Xt)

⊤uθ(t,Xt)∥2dt
]
. (33)

When we do not have access to the ground-truth, we instead report the KL divergence KL(Pθ∥P)
relative to the base process. Amongst stochastic processes bridging between the initial and terminal
states, the diffusion bridge solution is the one that minimises this divergence, so provided that the
obtained solutions transport to the endpoint correctly then this metric provides an indication of how
well the problem has been solved. This metric can be computed as

KL(Pθ∥P) = EPθ

[
1
2

∫ T

0

∥σ(t,Xt)
⊤uθ(t,Xt)∥2dt

]
. (34)

In our experiments, we report values for these metrics computed using 1,000 trajectories. For the
SDB method (Heng et al., 2025), we report these values for the forward bridge, which is learned by
reversing the learned backwards bridge.

C.1 Ornstein-Uhlenbeck process
We consider sampling bridges of Ornstein-Uhlenbeck processes of the form

dXt = −αXtdt+ σdBt, (35)

with starting state x0 = e1, termination state x1 = e2, termination time T = 1, and diffusion coeffi-
cient σ = 0.1. Ornstein-Uhlenbeck bridges are a standard setting in the literature for quantitatively
evaluating performance (Heng et al., 2025; Baker et al., 2025; Yang et al., 2025), as the ground-truth
control u∗(t, x) can be calculated in closed-form as

u∗(t, x) =
2αe−α(1−t)

(1− e−2αt)σ2
(x1 − xe−αt). (36)

The training curves shown in Figure 3a are for α = 2.0 and d = 2. The results in Figure 3b comparing
the effect of dimension use α = 2.0, and the results comparing the effect of OU parameter in Figure 3c
use d = 2. To enable a fair comparison between the methods, we use the same conservative neural
architecture for both, and use the same learning rate, number of gradient update steps, and number
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Table 1: Quantitative results for experiments (mean±std over 5 runs), comparing our method (with
both b̃ = 0 and b̃ = −b with NGDB (Yang et al., 2025), SDB (Heng et al., 2025), and (Baker et al.,
2025). We note that the result marked with an asterisk* is likely unreliable as this result gave an
extremely large control at the end of training, meaning that the integration underestimates the correct
value.

CIR model,
KL(P∗∥Pθ) ↓

Double Well,
KL(P∗∥Pθ) ↓

Cell Diffusion, KL(Pθ∥P) ↓
Normal Rare Multimodal

Ours (b̃ = 0) 0.023±0.010 0.148±0.073 6.53±0.14 66.1±0.9 792.8±0.9
Ours (b̃ = −b) 0.055±0.009 0.041±0.013 6.53±0.17 66.0±0.5 792.4±1.0
NGDB 0.051±0.012 0.098±0.047 6.48±0.15 65.5±0.6 783.4±0.8
SDB 0.104±0.011 0.229±0.024 5.56±0.39* 75.0±5.1 1845±230
FB 0.074±0.011 - 6.51±0.14 237±98 4836±954

of trajectory simulations per step. We used 500 time-discretisation steps, simulated 64 trajectories
at each step, and used a learning rate of 1e-4. For Figures 3b and 3c, we ran the algorithms for
10,000 steps; we sometimes found the value for NGDB to start increasing again later in training,
so the reported results are the lowest value for NGDB over the 10,000 training iterations. In all
experiments, our method trained significantly faster than NGDB, which can be attributed to not
requiring backpropagation through the trajectories.

Both methods learn the true drift to a very high degree of accuracy, and we remark that the difference
in KL that is visible between the two methods is predominantly due to the behaviour towards the
terminal time T . The methods behave comparably earlier in time, but the error of NGDB significantly
increases approaching the endpoint. We hypothesise this is a consequence of the differing types of
training objective; NGDB uses a KL-based objective, while our approach fits to the desired endpoint
behaviour directly in the loss construction so is more accurate towards the terminal time. We found
that the methods SDB and FB did not learn the bridges successfully in these experiments, which is
unsurprising given that they involve rare events under the base dynamics.

C.2 Cox–Ingersoll–Ross model
We now consider computing bridges for the Cox-Ingersoll-Ross (CIR) model (Cox et al., 1985),
which is used in mathematical finance to model the evolution of interest rates. The CIR model (Cox
et al., 1985) is a 1-dimensional stochastic process that evolves according to the SDE

dXt = a(b−Xt)dt+ ε
√
XtdBt. (37)

We consider this example as it allows us to verify our method on an SDE with a spatially-dependent
diffusion coefficient σ(t, x) = ε

√
x, and also because the ground-truth is again known in closed form,

as the transition densities can be written as ce−u−v
(

v
u

)q/2
Iq(2

√
uv),where c = 2a

(1−e−a(T−t))σ2 , q =
2ab
σ2 − 1, u = cxe−a(T−t), v = cxT , and Iq is the modified Bessel function of the first kind of order
q. This again allows us to report KL(P∗∥Pθ) and verify that the learned diffusion bridges are correct.

In the experiment, we set a = b = 1.0, use a noise parameter of ε = 1.0, and aim to learn the
bridge from x0 = 2.0 to x1 = 2.0. For each method, we used 500 time-discretisation steps and
2,000 training steps. For our method and for NGDB, we use a learning rate of 1e-4, and simulated
64 trajectories at each step. For FB and SDB we used a learning rate of 1e-3. When computing the
values of KL(P∗∥Pθ), we truncated the final five steps to avoid numerical issues when computing the
ground-truth towards the terminal time.

We find that taking b̃ = 0 performs slightly better than b̃ = −b, which in turn performs comparably
with NGDB. The methods SDB and FB learn reasonably well in this example as the terminal state is
well-covered by the unconditioned dynamics, though they are still outperformed by the methods that
learn from controlled dynamics.

C.3 Double-well potential
Next, we consider overdamped Langevin dynamics dXt = −∇U(Xt)dt+ σdBt using a classical
double-well potential U(x) = v(x2 − 1)2, and aim to learn the bridge from x0 = 1 to x1 = −1; this
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Figure 6: Comparison of performance on the double-well experiment, for different barrier height
parameters v.
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Figure 7: Rare event example for cell diffu-
sion process, from Yang et al. (2025), show-
ingXt,1 (•) andXt,2 (•). Left: NGDB; Right:
Ours.
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Figure 8: Multi-modal example for cell diffu-
sion process, from Yang et al. (2025), show-
ingXt,1 (•) andXt,2 (•). Left: NGDB; Right:
Ours

bridge problem was previously considered in Pidstrigach et al. (2025). In light of the discussion in
Appendix B.4, this presents a potentially more troublesome problem setting for our method, as the
concave peak between the two metastable states can lead to large Jacobian terms. We again report
KL(P∗∥Pθ) relative to the ground-truth, which in 1 dimension can be approximated by numerically
solving the backwards Kolmogorov equation.

For each method, we used 500 time-discretisation steps and 4,000 training steps. For our method
and NGDB we used a learning rate of 1e-3, and simulated 64 trajectories at each step, and we use
the default hyperparameters for SDB. We note that we were unable to obtain good results for the
double-well experiments using the FB method; we hypothesise that is due to the behaviour of the
adjoint process used for the training samples, which Baker et al. (2025) remark can exacerbate the
difficulty of learning the correct dynamics for rare events.

We report results in Table 1 for a well height of v = 3.0, which results in a strong peak between the
states. In Figure 6, we also compare the methods for different heights v of the well barrier. We see
that the methods that learn from controlled dynamics (that is, NGDB and our method) outperform
SDB which learns from the unconditional dynamics; in particular, the performance of SDB becomes
significantly worse for the largest value, which is unsurprising as the uncontrolled simulations will
rarely cross between the wells in this case. For lower well heights, our method performs comparably
with NGDB for both choices of b̃. As the well height increases, we see that taking b̃ = −b performs
better; this reflects the discussion in Appendix B.4 and demonstrates how avoiding large growths in
the Jacobian terms can improve performance.

C.4 Cell Diffusion Process
We now consider an example in which the reference drift b is not conservative, so following the
discussion in Section 3 we include the reference drift in our parameterisation. We consider the cell
differentiation model of Wang et al. (2011), which has previously been used to provide a qualitative
evaluation of diffusion bridge methods in Heng et al. (2025), Baker et al. (2025), and Yang et al.
(2025). The model dynamics are given by the 2-dimensional SDE

dXt =

 X4
t,1

2−4+X4
t,1

+ 2−4

2−4+X4
t,2

−Xt,1

X4
t,2

2−4+X4
t,2

+ 2−4

2−4+X4
t,1

−Xt,2

 dt+ σ dBt. (38)
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(a) Using b̃ = 0 gives unstable learning due to the
large Jacobian terms, and thus fails to learn the
correct dynamics.

(b) Using b̃ = −b avoids large growth in the Jaco-
bians, enabling successful learning of the correct
dynamics.

Figure 9: Comparison of the trajectories obtained by taking auxiliary drifts b̃ = 0 and b̃ = −b in our
method, in the Müller-Brown example.

Table 2: Comparison of results for the Müller–Brown experiment. The values for KL(Pθ∥P) show
mean±std over 5 runs, while the Max Energy values report the average mean and average std over
the 5 runs.

KL(Pθ∥P) ↓ Max Energy

Ours (b̃ = −b) 27.8±1.7 -33.6±6.1
NGDB (Yang et al., 2025) 28.6±0.4 -35.9±4.9
DL (Du et al., 2024) 38.6±0.2 -32.5±5.9

We consider the three settings used in Yang et al. (2025): a normal event, a rare event, and a
multi-modal example. For the normal event, the starting state is x0 = [0.1,−0.1], the termination
state is xT = [2.0,−0.1], and the termination time is T = 4. For the rare event, the starting state is
again x0 = [0.1,−0.1], the termination state is xT = [1.0,−0.1], and the termination time is again
T = 4. For the multi-modal example, the starting state is x0 = [−1.0,−1.0], the termination state
is xT = [−1.0,−1.0], and the termination time is T = 5. In all settings, the diffusion coefficient is
σ = 0.1, and we train for 1000 steps. For our approach and NGDB, we use a learning rate of 1e-3,
and otherwise use the default parameters for the alternative methods.

There is no ground-truth available in this setting, so to provide a quantitative assessment of perfor-
mance we report KL(Pθ∥P) relative to the base process. All methods performed similarly well in
the ‘normal’ setting. In the rare and multimodal settings, NGDB appears to perform slightly better
than our method, but both performed strongly and significantly outperformed the methods that use
unconditioned dynamics. SDB performed reasonably in the rare setting but failed in the multimodal
setting, and FB failed to learn the dynamics accurately in both settings. We also provide a qualitative
comparison with NGDB in Figures 7 and 8, and observe similar bridge simulations for the two
methods.

C.5 Müller-Brown potential

So far, we have demonstrated strong performance of our method in the standard experimental settings
considered in the diffusion bridge literature, comparable with the strongest existing method NGDB
at a significantly reduced computational cost. We have also observed how taking b̃ = −b in the
generalised version of our algorithm can provide improved performance over the standard version
in settings where the Jacobian terms become large. To conclude, we consider a harder example in
this vein which is chosen to challenge our method and better understand its limitations, inspired by
applications in computational chemistry.

The Müller-Brown potential is a classical example of a potential energy surface U , and is widely
used as a benchmark for studying transition paths of overdamped Langevin dynamics between two
metastable states. To examine performance in this setting, we follow the experimental setup used in
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Du et al. (2024). The potential used is defined as

U(x, y) =− 200 exp
(
− (x− 1)2 − 10y2

)
(39)

− 100 exp
(
− x2 − 10(y − 0.5)2

)
(40)

− 170 exp
(
− 6.5(0.5 + x)2 + 11(x+ 0.5)(y − 1.5)− 6.5(y − 1.5)2

)
(41)

+ 15 exp
(
0.7(1 + x)2 + 0.6(x+ 1)(y − 1) + 0.7(y − 1)2

)
, (42)

with initial state x0 = [−0.559, 1.442], terminal state xT = [0.624, 0.028], diffusion term
σ(t, x) = 3Id2, and termination time T = 0.05.

We compare against NGDB, and also to the recent Doob’s Lagrangian method (DL) (Du et al., 2024);
this method uses a Gaussian path parameterisation and is specifically designed for transition path
sampling, making it a strong baseline for comparison. The steep slopes of the potential make this a
challenging setting, so we use b̃ = −b in our method to avoid large Jacobian terms. Indeed, using
b̃ = 0 generally failed to learn the correct dynamics, again reflecting the discussion in Appendix B.4.
We used 1000 discretisation steps. For our method and for NGDB, we ran for 4000 training steps,
simulated 64 trajectories at each outer step, and used a learning rate of 3e-4; for DL (Du et al., 2024)
we use the default parameters provided in their codebase. For our method, we also clipped the losses
at 1e4, which we found to improve stability.

The results are shown in Table 2, and a visualisation of the obtained trajectories for our method is
given in Figure 5. We see that NGDB and our method learn similar values of KL(Pθ∥P) relative to the
base process, though our method has a slightly larger variance across runs. These values are lower than
for DL, which is likely because the Gaussian path parameterisation cannot capture the true dynamics
as accurately. Their parameterisation does however mean that DL can train significantly faster than
our method and NGDB, as it can be trained without requiring simulations. All of the methods learn
qualitatively similar trajectories, and have similar maximum energies along the transition paths. We
emphasise that we do not aim to achieve state-of-the-art results for transition path sampling (TPS)
in this work; this is a field with an extensive literature, with many methods specifically designed to
tackle this problem. We instead aim to provide a method for general diffusion bridge problems, and
use this example to again highlight the improvements that come from the generalised form of the
self-consistency property. Nevertheless, our method obtains good performance in this setting, and
extending our method to target TPS problems specifically is a promising direction for future work.

This experiment provides another example showcasing the benefit of taking b̃ = −b in the generalised
version of our algorithm, compared to taking b̃ = 0. This helps to avoid large growth in the Jacobian
terms caused by the steep potential. Taking b̃ = 0 generally caused learning to be unstable and
usually fail, other than for some specific choices of α-schedule (see the trajectories in Figure 9). In
contrast, taking b̃ = −b gave consistent and reliable training.

C.6 α-schedule experiments
In Table 3, we perform the same experiments as above, and show the results for the next-step, average,
and endpoint α-schedules. We use the same hyperparameters as above (aside from adding loss
clipping of 10 for the CIR model, for b̃ = 0 with next-step α-schedule). Generally, we find the
average schedule to perform strongest so we report those results in the main comparison above; it
outperforms the endpoint schedule in all examples, and next-step prediction in the majority. In cases
where the Jacobian can lead to large target variance (like in the double-well example, for b̃ = 0),
next-step prediction performs better than average prediction, which is in line with the discussion in
Appendix B.4.

C.7 Sticking-the-landing adjustments
We now compare performance of our algorithm with and without the STL adjustments discussed
in Appendix B.3. We use the same hyperparameters as in the previous experiments, and report the
results in Table 4. Including the STL adjustments generally appears to improve performance slightly,
with the largest improvements seen in cases where large Jacobians arise (that is, the double-well
and Müller-Brown experiments). However, as the STL adjustments require computing the terms
(∇uσ + u∇σ)(t,Xu

t ) · δBt, they increase the computational cost of the method and training steps
are approximately 1.5 times slower.
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Table 3: Quantitative results for experiments, comparing α-schedules (mean ±std, over 5 runs).

CIR model,
KL(P∗∥Pθ) ↓

Double Well,
KL(P∗∥Pθ) ↓

Cell Diffusion, KL(Pθ∥P) ↓
Normal Rare Multimodal

b̃ = 0, next-step 0.021±0.007 0.126±0.069 7.38±0.49 74.6±14.1 959.9±55.3
b̃ = 0, average 0.023±0.010 0.150±0.078 6.53±0.14 66.1±0.9 792.8±0.9
b̃ = 0, endpoint 0.026±0.005 3.49±2.40 6.79±0.10 69.1±1.1 793.0±1.0

b̃ = −b, next-step 0.042±0.022 0.067±0.044 6.95±0.29 68.6±1.9 1136.2±288.9
b̃ = −b, average 0.055±0.009 0.041±0.013 6.53±0.17 66.0±0.5 792.4±1.0
b̃ = −b, endpoint 0.068±0.027 0.278±0.101 7.64±0.59 67.4±0.9 795.5±3.2

Table 4: Quantitative results for experiments, comparing performance with and without STL adjust-
ments (mean ±std, over 5 runs).

CIR model,
KL(P∗∥Pθ) ↓

Double Well,
KL(P∗∥Pθ) ↓

Cell Diffusion, KL(Pθ∥P) ↓
Normal Rare Multimodal

b̃ = 0, without STL 0.023±0.010 0.148±0.073 6.53±0.14 66.1±0.9 792.8±0.9
b̃ = 0, with STL 0.016±0.001 0.042±0.024 6.47±0.16 65.7±0.6 792.4±1.0

b̃ = −b, without STL 0.055±0.009 0.041±0.013 6.53±0.17 66.0±0.5 792.4±1.0
b̃ = −b, with STL 0.051±0.007 0.022±0.015 6.48±0.14 66.1±0.5 792.6±0.8

D Proofs
In this section, we provide proofs for the results stated in the paper.

Recall that we consider making a change of measure dQ
dP (X) ∝ F (XT ). We first provide a brief

lemma concerning conditional expectations under this change of measure, which we will utilise to
prove Theorem 2.1.

Lemma D.1. Define Ft = EP[F (XT )|Xt]. Then for any H , we have
1
Ft
EP[FH|Xt] = EQ[H|Xt], Q− a.s. (43)

Proof. As we are considering the change of measure dQ
dP (X) ∝ F (XT ), a quick calculation shows

that the local densities are given by dQ
dP |σ(Xt) = Ft. For a test function g(Xt), we therefore have

EQ
[
g(Xt)

1
Ft
EP[FH|Xt]

]
= EP

[
g(Xt)EP[FH|Xt]

]
(44)

= EP
[
g(Xt)FH

]
(45)

= EQ
[
g(Xt)H

]
(46)

= EQ
[
g(Xt)EQ[H|Xt]

]
. (47)

Here, we used properties of conditional expectations in the second and final lines, and in
the first and third lines used the definition of the reweighted measure Q. We thus see that
1
Ft
EP[FH|Xt] = EQ[H|Xt] Q-almost surely, as required.

For the next theorem, we assume for the first part that F is differentiable. The second part holds for
more general F , including for F = δxT

corresponding to diffusion bridges.

Theorem 2.1. The control drift u∗ of the solution satisfies

u∗(t, x) = EPu∗ [J⊤
T |t ∇ logF (XT )|Xt = x]. (5)

Moreover, the control drift satisfies the following self-consistency property,

u∗(s, x) = EPu∗ [J⊤
t|s u

∗(t,Xt)|Xs = x], for s < t. (6)
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Proof. We obtain the first statement of the theorem by making the following calculations, starting
from Doob’s h-transform and using Lemma D.1 with H = ∇ logF (XT ) in the final line.

u∗(t, x) = ∇x logEP[F (XT ) | Xt = x] (48)

=
∇xEP[F (XT ) | Xt = x]

EP[F (XT ) | Xt = x]
(49)

=
EP[J

⊤
T |t ∇F (XT ) | Xt = x]

EP[F (XT ) | Xt = x]
(50)

=
EP[J

⊤
T |t F (XT )∇ logF (XT ) | Xt = x]

EP[F (XT ) | Xt = x]
(51)

= EQ[J
⊤
T |t ∇ logF (XT ) | Xt = x] (52)

∇ log f = ∇f
f

interchange ∇x and EP

∇ log f = ∇f
f

Lemma C.1

Each of these steps are self-explanatory, with the exception of the interchanging of the derivative and
the expectation in the third line. This step is nevertheless intuitive and is well-known in stochastic
analysis, and is often referred to as the reparameterisation trick in the machine learning literature.
It can be made rigorous using the theory of stochastic flows (Kunita, 1984; Elworthy et al., 1999);
namely, if one considers a fixed realisation ω of the Brownian path between t and T , then the terminal
state XT is a function of the value x at time t, which we can denote x 7→ φt,T (x, ω) = XT (ω).
Under mild assumptions on b, σ (see Kunita (1986)), the stochastic flow φt,T (·, ω) is continuously
differentiable. Using Leibniz’s rule, for continuously differentiable F we then have

∇xEP[F (XT )|Xt = x] = ∇x

∫
F (φt,T (x, ω))dµ(ω) (53)

=

∫
∇xφt,T (x, ω)

⊤ ∇F (φt,T (x, ω))dµ(ω) (54)

= EP[J
⊤
T |t ∇F (XT )|Xt = x] (55)

The self-consistency property follows from this expression by utilising the semigroup property of the
Jacobian process. For s < t, we can ‘invert’ the property at the later time,

u∗(s, x) = EQ[J
⊤
T |s ∇ logF (XT )|Xs = x] (56)

= EQ[(JT |tJt|s)
⊤∇ logF (XT )|Xs = x] (57)

= EQ
[
EQ[J

⊤
t|s J

⊤
T |t ∇ logF (XT )|X[s,t]] |Xs = x

]
(58)

= EQ
[
J⊤
t|s EQ[J

⊤
T |t ∇ logF (XT )|Xt] |Xs = x

]
(59)

= EQ
[
J⊤
t|s u

∗(t,Xt)|Xs = x
]
. (60)

Here, we used the tower rule in line 3, and the Markov property of X in line 4.

Finally, we remark that this self-consistency property also holds in the singular case when F = δxT
,

which corresponds to diffusion bridges. To see this, take T̃ < T , and apply the above result with T̃
in place of T and with F (XT̃ ) = p(XT = xT |XT̃ ), which is smooth. We thus obtain the result for
s < t < T̃ , and as T̃ was arbitrary we see that the self-consistency property holds for s < t < T .

D.1 Proof of Theorem 3.1
In this section we will prove a slightly stronger result, from which Theorem 3.1 will follow. We first
start with a definition.

Definition D.1. We call a (time-dependent) vector field u

• bridge-preserving, if the bridges of (3) coincide with those of (1),

• self-consistent, if (6) is satisfied,
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• of gradient form, if there exists a time-dependent potential ϕ such that u(t, x) = ∇xϕ(t, x),

• of gradient form at one point in time, if u(t, ·) = ∇ϕ for some t > 0 and time-independent
potential ϕ.

The statement of our next result requires the generator of the base dynamics,

L =
∑
i

bi∂i +
1
2

∑
ij

(σσ⊤)ij∂ij . (61)

Theorem D.2. The following are equivalent:

(i) The vector field u is bridge-preserving,

(ii) we have u = ∇ϕ, and ϕ satisfies the Hamilton-Jacobi-Bellman (HJB) equation

∂tϕ+ Lϕ+ 1
2 |σ∇ϕ|

2 = 0, (HJB)

(iii) the vector field u is of gradient form and self-consistent.

(iv) the vector field u is of gradient form at one point in time and self-consistent.

Proof. To simplify the notation, we present the proof here for a scalar diffusion term σ, but the proof
proceeds similarly for general diffusion coefficients under our ellipticity assumption by making the
appropriate modifications.

(i) ⇐⇒ (ii): This equivalence is well known (and SDEs with bridge preserving drifts are in the
reciprocal class of the base process), see for example Léonard (2013) and Rœlly (2013), or Vargas
et al. (2024, Section E.5).

(ii) ⇐⇒ (iii): Taking the gradient of the HJB-equation and using u = ∇ϕ, we see that

0 = ∂tu+∇Lϕ+
σ2

2
∇|u|2 = ∂tu+∇(b · u) + σ2

2 ∆u+ σ2

2 ∇|u|2, (Grad-HJB)

using the facts that ∇Lϕ = ∇(b · u) + σ2

2 ∇(∆ϕ) and ∇(∆ϕ) = ∆u. Here and throughout, it is
understood the Laplacian is taken element-wise in ∆u.

On the other hand, we can compute the time evolution of t 7→ J⊤
t|s u(t,X

u
t ) along the controlled

dynamics, using the product rule of (Itô) stochastic calculus:

d(J⊤
t|s u(t,X

u
t )) = J⊤

t|s du(t,Xu
t ) + dJ⊤

t|s u(t,X
u
t ) (62a)

= J⊤
t|s

(
∂tu(t,X

u
t ) dt+∇u(t,Xu

t ) ·
(
b(t,Xu

t ) dt+ σ2u(t,Xu
t ) dt+ σdBt

)
+ σ2

2 ∆u(t,Xu
t ) dt

)
+ J⊤

t|s∇b(t,X
u
t ) · u(t,Xu

t ) dt (62b)

= J⊤
t|s

(
∂tu+∇(b · u) + σ2

2 ∆u+ σ2

2 ∇|u|2
)
(t,Xu

t )︸ ︷︷ ︸
RHS of (Grad-HJB)

dt+ σJ⊤
t|s ∇u(t,X

u
t ) · dBt. (62c)

The last line of this calculation uses 1
2∇|u|2 = (u·∇)u, which holds for vector fields of gradient form.

Note that in the general case with a possibly spatially-dependent diffusion coefficient, performing
similar calculations gives the expression

d(J⊤
t|s u(t,X

u
t )) = J⊤

t|s

(
∂tu+∇(b · u) + σ2

2 ∆u+ σ2

2 ∇|u|2
)
(t,Xu

t )︸ ︷︷ ︸
RHS of (Grad-HJB)

dt

+ J⊤
t|s (∇uσ + u∇σ)(t,Xu

t ) · dBt. (63)

22



The equivalence between (ii) and (iii) essentially follows from the observation that the drift in
d(J⊤

t|s u(t,X
u
t )) coincides with the right-hand side of (Grad-HJB). More precisely, from the above

calculation the self-consistency property (6) can be re-expressed in the form

u(s, x) = EPu [J⊤
t|s u(t,Xt)|Xs = x] (64)

= EPu

[
J⊤
s|s u(s,X

u
s ) +

∫ t

s

(
∂tu+∇(b · u) + σ2

2 ∆u+ σ2

2 ∇|u|2
)
(r,Xu

r ) dr
∣∣∣Xu

s = x

]
,

(65)

owing to the fact that the martingale term ∇u(t,Xu
t ) · dBt has zero expectation. Using Js|s = Id,

this is equivalent to

EPu

[∫ t

s

(
∂tu+∇(b · u) + σ2

2 ∆u+ σ2

2 ∇|u|2
)
(r,Xu

r ) dr
∣∣∣Xu

s = x

]
= 0. (66)

Now it is clear that (ii) implies (iii), because (Grad-HJB) implies (66), for all s ≤ t and x ∈ Rd.
Conversely, we can obtain (Grad-HJB) from (66) by taking the derivative with respect to t of (66)
and setting t = s; hence (iii) implies (ii).

(iii) ⇐⇒ (iv): We first define the vorticity

Ωij(t, x) := ∂iuj(t, x)− ∂jui(t, x), t > 0, x ∈ Rd. (67)

The Poincaré lemma implies that Ω(t, ·) = 0 if and only if u(t, ·) is of gradient form. As above,
self-consistency yields the equation

∂tu+ σ2

2 ∆u+ (∇b)u+ (b · ∇)u+ (u · ∇)u = 0. (68)

Note that this does not simplify to (Grad-HJB), since we do not make the assumption u = ∇ϕ.
Taking another spatial derivative and anti-symmetrising, we see that Ω solves the linear parabolic
PDE (

∂t + (b+ u) · ∇+ 1
2∆
)
Ω+ (∇(b+ u)) Ω + Ω (∇(b+ u))

⊤
= 0, (69)

which clearly admits Ω ≡ 0 as a solution. Under standard regularity assumptions, solutions to (69)
are unique once Ω(t, ·) is prescribed for some t (both forwards and backwards in time), see for
example Pazy, 2012. From this, it follows that (iv) implies (iii), and the converse implication follows
directly from the definition.

Theorem 3.1. Within the class of controlled diffusion processes of the form (3) that ter-
minate at xT , there is a unique process Xu

t that satisfies the self-consistency property
u(s,Xs) = EPu [J⊤

t|s u(t,Xt)|Xs] and whose control is of gradient form for some time t, and this
process is the diffusion bridge Xu

t = X∗
t .

Proof of Theorem 3.1. The result follows as a corollary from Theorem D.2. More precisely, we use
the implication (iv) ⇐⇒ (ii). Under the gradient form and consistency assumptions, the addition of
the control u does not change the process when conditioned on XT = xT .

D.2 Generalised self-consistency property
In this section, we provide the proofs of the analogous results for the generalised self-consistency
property (20) presented in Appendix B.4. We first fill in the details of the change-of-measure argument
outlined in Appendix B.4. Recall that J̃t|s is the Jacobian process associated to the auxiliary process
X̃ , which evolves according to the SDE dX̃t = (b + b̃)(t, X̃t)dt + σ(t, X̃t)dBt that includes an
additional drift function b̃.

Theorem B.1 (Generalised self-consistency property). For any differentiable b̃ satisfying the
conditions of Girsanov’s theorem, the control drift u∗ of the solution satisfies

u∗(s, x) = EPu∗

[
−
∫ t

s

J̃⊤
r|s ∇b̃(r,Xr)

⊤u∗(r,Xr)dr + J̃⊤
t|s u(t,Xt)|Xs = x

]
. (70)
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Proof. Define P̃ to be the path measure associated to the auxiliary process dX̃t = (b+ b̃)(t, X̃t)dt+

σ(t, X̃t)dBt. For ease of notation, we will present the result for scalar constant diffusion coefficient
σ; the proof of the general case follows with the appropriate changes. By Girsanov’s theorem
(Øksendal, 2003, Theorem 8.6.8), the Radon-Nikodym derivative is

dP
dP̃ (X[s,T ]) = exp

(
−
∫ T

s

σ−1b̃(r,Xr)
⊤dBr −

∫ T

s

σ−2

2 ∥b̃(r,Xr)∥2 dr
)
. (71)

As in the proof of Theorem 2.1, we begin with Doob’s h-transform, then perform the following
calculations (where BP, BP̃, BQ denote standard Brownian motions under their respective measures).

u∗(s, x) = ∇x logEP[F (XT )|Xs = x] (72)

=
1

EP[F (XT )|Xs = x]
∇xEP[F (XT )|Xs = x] (73)

=
1

EP[F (XT )|Xs = x]
∇xEP̃[F (X̃T )

dP
dP̃ |X̃s = x] (74)

=
1

EP[F (XT )|Xs = x]
EP̃

[
J̃⊤
T |s ∇F (X̃T )

dP
dP̃

+ F (X̃T )
dP
dP̃

(
−
∫ T

s

1
σ2 J̃

⊤
r|s ∇b̃(r, X̃r)

⊤b̃(r, X̃r)dr

∫ T

s

1
σ J̃

⊤
r|s ∇b̃(r, X̃r)

⊤dBP̃
r

)
|X̃s = x

]
(75)

=
1

EP[F (XT )|Xs = x]
EP

[
J̃⊤
T |s ∇F (XT )

+ F (XT )
(
−
∫ T

s

1
σ2 J̃

⊤
r|s ∇b̃(r,Xr)

⊤b̃(r,Xr)dr

−
∫ T

s

1
σ J̃

⊤
r|s ∇b̃(r,Xr)

⊤(dBP
r − 1

σ b̃)
)
|Xs = x

]
(76)

=
1

EP[F (XT )|Xs = x]
EP

[
J̃⊤
T |s ∇F (XT ) + F (XT )

(
−
∫ T

s

1
σ J̃

⊤
r|s ∇b̃(r,Xr)

⊤dBP
r

)
|Xs = x

]
(77)

= EQ

[
J̃⊤
T |s ∇ logF (XT )−

∫ T

s

1
σ J̃

⊤
r|s ∇b̃(r,Xr)

⊤(dBQ
r + σu∗dt)|Xs = x

]
(78)

= EQ

[
J̃⊤
T |s ∇ logF (XT )−

∫ T

s

J̃⊤
r|s ∇b̃(r,Xr)

⊤u∗(r,Xr)dr|Xs = x
]
. (79)

Much of this derivation follows similarly to the standard case. When we perform the change of
measures, we include the appropriate modifications to the Brownian motions; namely, we have
dBP

r = dBP̃
r + 1

σ b̃(r,Xr)dt, and dBP
r = dBQ

r + σu∗dt.
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The remainder of the proof follows similarly to the proof of Theorem 2.1; as before, we ‘invert’ the
property at a later time t, utilising the tower rule and the semigroup property of the Jacobian J̃ .

u∗(s, x) = EQ[J̃
⊤
T |s ∇ logF (XT )−

∫ T

s

J̃⊤
r|s ∇b̃(r,Xr)

⊤u∗(r,Xr)dr|Xs = x] (80)

= EQ[−
∫ t

s

J̃⊤
r|s ∇b̃(r,Xr)

⊤u∗(r,Xr)dr

−
∫ T

t

J̃⊤
r|s ∇b̃(r,Xr)

⊤u∗(r,Xr)dr + J̃⊤
T |s ∇ logF (XT )|Xt = x] (81)

= EQ[−
∫ t

s

J̃⊤
r|s ∇b̃(r,Xr)

⊤u∗(r,Xr)dr

−
∫ T

t

(Jr|tJt|s)
⊤ ∇b̃(r,Xr)

⊤u∗(r,Xr)dr + (JT |tJt|s)⊤∇ logF (XT )|Xt = x] (82)

= EQ
[
EQ[−

∫ t

s

J̃⊤
r|s ∇b̃(r,Xr)

⊤u∗(r,Xr)dr

−
∫ T

t

(J̃r|tJ̃t|s)
⊤ ∇b̃(r,Xr)

⊤u∗(r,Xr)dr + (J̃T |tJ̃t|s)
⊤ ∇ logF (XT )|X[s,t]] |Xs = x

]
(83)

= EQ
[
−
∫ t

s

J̃⊤
r|s ∇b̃(r,Xr)

⊤u∗(r,Xr)dr

+ J̃⊤
t|s EQ[−

∫ T

t

J̃⊤
r|t ∇b̃(r,Xr)

⊤u∗(r,Xr)dr + J̃⊤
T |t ∇ logF (XT )|Xt]|Xs = x

]
(84)

= EPu∗
[
−
∫ t

s

J̃⊤
r|s ∇b̃(r,Xr)

⊤u∗(r,Xr)dr + J̃⊤
t|s u

∗(t,Xt)|Xs = x
]

(85)

To conclude, we show that the generalised self-consistency property retains the same theoretical
results as in the standard case.

Theorem B.2. The result of Theorem 2.1 holds with the generalised self-consistency property (20) in
place of the usual self-consistency property (6).

Proof. In light of the proof of Theorem D.2, we need only to show that the equivalence (ii) ⇐⇒
(iii) still holds. To do so, we mirror the proof of the standard case, and apply an Itô expansion of
J̃⊤
t|s u(t,X

u
t ) along the controlled dynamics,

d(J̃⊤
t|s u(t,X

u
t )) = J̃⊤

t|s du(t,X
u
t ) + dJ̃⊤

t|s u(t,X
u
t ) (86)

= J̃⊤
t|s

(
∂tu(t,X

u
t ) dt+∇u(t,Xu

t ) ·
(
b(t,Xu

t ) dt+ σ2u(t,Xu
t ) dt+ σdBt

)
+ σ2

2 ∆u(t,Xu
t ) dt

)
+ J̃⊤

t|s ∇(b+ b̃)(t,Xu
t ) · u(t,Xu

t )dt (87)

= J̃⊤
t|s

(
∂tu+∇(b · u) + σ2

2 ∆u+ σ2

2 ∇|u|2
)
(t,Xu

t )︸ ︷︷ ︸
(Grad-HJB)

dt

+ J⊤
t|s∇b̃(t,X

u
t ) · u(t,Xu

t ) dt+ σJ̃⊤
t|s ∇u(t,X

u
t ) · dBt. (88)

The equivalence then follows by the same argument as in the proof of Theorem D.2.
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E Licenses
The following assets were used in this work.

• Neural Guided Diffusion Bridges (NGDB) (Yang et al., 2025),
https://github.com/gefanyang/neuralbridge

• Simulating Diffusion Bridges with Score Matching (SDB) (Heng et al., 2025),
https://github.com/jeremyhengjm/DiffusionBridge

• Score matching for bridges without learning time-reversals (FB) (Baker et al., 2025), MIT
License
https://github.com/libbylbaker/forward_bridge

• Doob’s Lagrangian (DL) (Du et al., 2024), MIT License
https://github.com/plainerman/Variational-Doob
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