SOLMformer - Incorporating Sequence and Observation Level Metadata for
Categorical Time Series Modeling

Yamini Ananth! Gregory Benton !

Abstract

Sequential modeling, such as time series fore-
casting or language generation, traditionally uses
the set of previous observations to predict future
outcomes. However, it is often insufficient to
exclusively model the sequence of observations.
Not only may the observations themselves be de-
pendent on metadata about the sequence, but pre-
dicting future metadata itself may be of interest.
To address the shortcomings of sequential model-
ing alone, we propose SOLMformer, a multi-task
approach that incorporates Sequence and Obser-
vation Level metadata into the transformer archi-
tecture as both inputs and as multi-task outputs.
We evaluate SOLMformer on real-world process
mining datasets and where it outperforms state of
the art deep learning methods.

1. Introduction

Sequential modeling has been one of the massive successes
of machine learning in recent years. However, often just
a sequence of observations is insufficient to capture a true
understanding of the generative process, and we need to both
use and predict metadata either about the sequence or about
the observations themselves. If we are predicting the future
locations of a shipment, the past states will not provide the
full picture. In order to make accurate predictions, we need
to know what is being shipped, how long it has been in
transit, and ideally a host of other salient attributes.

To better use and predict Sequence and Observation Level
Metadata we propose SOLMformer. SOLMformer accounts
for sequence level metadata like information about the con-
tents of the shipment, and observation level metadata like
how long the shipment was at a given location. In Fig. 1 we
give an overview of the SOLMformer architecture. SOLM-

!CeloAl Celonis, New York. Correspondence to: Yamini
Ananth <y.ananth@celonis.com>.

Accepted by the Structured Probabilistic Inference & Generative
Modeling workshop of ICML 2024, Vienna, Austria. Copyright
2024 by the author(s).

Jingxing Fang ! Jerry Cheung! Xu Chu' Cong Yu'

Seq. text metadata Obs. Emb. B
emb.

—
Obs. text metadata
b, Output
emb.

Transformer

Seq. numerical
metadata emb.

Obs numerical
metadata emb.

-

Seq. metadata emb.

Figure 1. SOLMformer architecture - Sequence-level metadata em-
bedding prepends composite embedding containing both an obser-
vation and its metadata. This sequence is passed through a Trans-
former, and the output embedding passes through task-specific
output heads to produce multi-task predictions.

former includes trainable models for embedding metadata.
Each observation is concatenated with its corresponding
metadata embedding, and the entire sequence of embed-
dings is prepended with an embedding of the sequence level
metadata. To our knowledge, this is the first modification
to the transformer architecture to allow for the modeling
and prediction of sequences, sequence level metadata, and
observation level metadata using a single unified model.

1.1. Process Prediction

In this work we focus SOLMformer on the task of predic-
tive monitoring of processes. A process refers to a series of
events that result in a desired output (van der Aalst, 2016).
While process mining in general tends to look at large event
logs to draw general insights into processes overall, predic-
tive process monitoring aims to predict outcomes of each
individual case in the event log (Di Francescomarino and
Ghidini, 2022). In this setting an event log may consist
of large quantities of distribution data for an organization,
while an individual case may be a single shipment along
with the sequence of activities it has gone through, such
as being packed or stopping at intermediate locations. For
individual cases), the event log may look different; however,
mining a large event log can enable the predictive analysis
of any individual case.

Predictive process monitoring poses unique challenges from
a machine learning perspective. The sequence of observa-
tions that defines a case function as categorical time series,

SOLMformer - Incorporating Case and Activity Level Metadata into Transformer Architecture for Predictive Process Modeling

with observations being unevenly spaced in time (van der
Aalst et al., 2011). Since the time series defined by the
observations is categorical we can also choose to view these
sequences as traversals over a graph, as is typically done
for process visualization (Dijkman et al., 2009; Reichert,
2013). In the graph view, nodes represent the possible activ-
ities, with edges being the connections between sequential
activities.

Beyond just sequences of activities, each case is accom-
panied by its own metadata. For a shipment undergoing
delivery, the metadata may be the contents of the shipment,
the vendor, or the total time it will take to be delivered.
Some metadata is known before the case begins and re-
mains constant for the duration of the case (for example, the
content of the shipment). Others, like the total time of the
shipment, will not be known a priori and are of predictive
interest. Together, these attributes are considered sequence
level metadata as they apply to the sequence as a whole,
rather than individual observations.

Just as each sequence has metadata, so too does each obser-
vation (or activity). Observation level metadata can include
if the task was automated, when it was completed, and the
duration of the activity. Some components of the obser-
vation metadata are known in advance and can be used to
enrich the embeddings of each observation, while others are
only discovered post hoc, but can be predicted as part of the
sequential forecast.

We show that SOLMformer is well suited to metadata laden
prediction problems and can improve the performance of
predictive process modeling, while unifying pipelines to a
single model that is trained end to end. Specifically, our
work is laid out as follows: in Sec. 2 we show the connec-
tions of SOLMformer to recent work from both the machine
learning and process mining communities. In Sec. 3 we de-
scribe in detail how SOLMformer works including training
and prediction procedures. In Sec. 4 we show comparisons
with related methods on process prediction tasks, demon-
strating a clear improvement over baselines. In Sec. 4.3
we include an ablation study to show the contribution of
metadata and multi-task learning on SOLMformer’s perfor-
mance. Finally, in Sec. 5 we outline a future path for work
in this direction in both process mining and beyond.

2. Related Work

The transformer was introduced by Vaswani et al. (2017)
for neural machine translations; it is a sequential model
that uses a self-attention mechanism to learn representations
between input and output. Given transformers operate on
sequences of embeddings, past works have used concatena-
tions of embeddings representing information at different
levels, such as Cohan et al. (2020).

Shalaby et al. (2022) introduce a metadata-aware trans-
former for performing multiple tasks in session-based rec-
ommender systems. Several transformer-based multi-task
models have shown improvements in performance through
the incorporation of auxiliary tasks (Ye and Xu, 2023; Mo
et al., 2023; Bhattacharjee et al., 2022). SOLMformer im-
plements a multi-task approach with hard parameter sharing,
as we share all relevant information and only add separate
prediction layers at the very end (Vandenhende et al., 2020).

Transformers and other deep learning architectures have
seen increasing use in process mining. Evermann et al.
(2017) demonstrate an RNN-based framework for process
prediction. Camargo et al. (2019) propose another approach
using parameter sharing to design a business process pre-
diction method using a generative LSTM, and additionally
encoded some sequence- and observation-level attributes
into the model. This was an early instance of a deep learn-
ing based multi-task model, as it predicted next activities
and time remaining in a given sequence. Khan et al. (2018)
demonstrate that memory-aware neural networks (MANNS),
which provide additional memory to RNNs, are a useful tool
for process analysis. Another approach transforms temporal
event log data into an image-like structure in order to use
convolutional neural networks to predict the next activity in
a sequence (Pasquadibisceglie et al., 2019).

In ProcessTransformer (PT), the event log was treated as to-
kens and a separate transformer model was trained for each
dataset and each predictive task (Bukhsh et al., 2021). PT set
the precedent for the usage of pooling and dropout layers in
the prediction head of the Transformer. SOLMformer lever-
ages a similarly straightforward architecture, but improves
on performance by including metadata. SOLMformer also
uses one model for all three prediction tasks, significantly
reducing the training and evaluation cost.

The HiP Transformer leverages the Hierarchical-
Transformer architecture (Wu et al.,, 2021) towards
process mining, using an Event-level transformer (with
event self-attention) to compute the next activity and time
remaining in a case (Ni et al., 2023). The concept drift
detection algorithm uses OPTICS clustering to identify
sub-sequences with stable internal distributions, which
are then passed to two more sub-sequence and case-level
transformers for next state prediction, essentially stacking
3 transformers in layers. SOLMformer is comparatively
efficient, using a single transformer with only extra
overhead being the end-to-end training of the lightweight
embedding models.

3. Methods

In a standard setting, transformers operate on a sequence
of token embeddings. We first embed tokens via a lookup

SOLMformer - Incorporating Case and Activity Level Metadata into Transformer Architecture for Predictive Process Modeling

table, then pass this sequence of embeddings through the
transformer itself in order to generate an embedding for the
next token in the sequence (Vaswani et al., 2017). With this
final embedding we use a classification head to generate log-
its over the vocabulary for the next token. Using these basic
building blocks, SOLMformer allows us to re-use much of
the existing architecture and training methods, while allow-
ing for the inclusion of metadata as both inputs and outputs
of the model.

In a standard transformer we have,

€; :Emb(ti); €41 = f(el,...,eT;G)). (1)
Where Equation 1 represents first the embedding operation,
and second the generation of a new embedding by passing

the sequence through a transformer f with parameters O.

To generate the next embedding, e71, SOLMformer modi-
fies both the sequence itself, as well as each of the individual
embeddings e;. Equation 1 then becomes:

s = SequenceMetadataEmb(S; Os) 2)
0, = ObservationMetadataEmb(O;; ©¢) 3)
é; = Concat (e;, 0;) 4

éT+1 = f(S,él,...,éT;@). (5)
Equation 2 is the embedding of the sequence level metadata
S, and Equation 3 is the embedding of the observation level
metadata O;. The details on these embedding functions are
given below in Section 3.1. To emphasize that these are
trainable embedding models we include their parameters
Os and ©p. In Equation 5 we pass the complete set of
information including all activities, their metadata, and the
sequence level metadata to the transformer model, f.

By prepending the sequence with s we are mirroring the be-
havior of in-context learning through prompting (Dong et al.,
2022). Since metadata is often typically semi-structured
data (a mixture of text and numeric features) we manage
the embedding procedure as a trainable component of the
input and consider the first embedding in the sequence as a
“metadata prompt” used to generate predictions.

3.1. Metadata Embedding Functions

Sequence and observation metadata take various modes, in-
cluding high-dimensional categorical data, unstructured text,
and ordinal data. To form the embedding functions for both
sequence and observation metadata, we split metadata into
text and numerical attributes. We handle these separately
before re-joining them to form a final metadata embedding.

Numerical features are extracted from the metadata and
passed through a small multi-layer perceptron (MLP) to
be transformed into an embedding. Textual attributes are

extracted and embedded using a lightweight sentence em-
bedding model (Jiao et al., 2019). We take this text embed-
ding and concatenate with the embedding of the numerical
features to form our final metadata embedding vector. The
generation of the embedding s from the metadata S is as
follows:

s = Concat(MLP(S,,ym, Os), BERT(Stext, O5)). (6)

With the same procedure being followed for producing o;
from O;.

Thus, from a set of text-based and numerical metadata, we
can construct the metadata embeddings s and o;. Both the
MLP for embedding numerical attributes and the sentence
embedding model are included in the set of trainable pa-
rameters for the metadata embedding functions © s and O¢.
These parameters are trained alongside the main transformer
architecture end-to-end.

3.2. Constructing Input Sequences

A given observation ¢ has an associated embedding e; € R*
constructed using a hash table embedding layer as is stan-
dard in tokenized language problems. For predictive process
monitoring the tokens represent observed activities in the
sequence rather than tokens produced through a tokenizer.

We use the procedure in Sec. 3.1 to produce both the se-
quence metadata embedding s and the observation metadata
embeddings o;. The sequence metadata vector s has dimen-
sionality ||e;|| + ||o;]| so it can be concatenated along the
sequence axis as the first "prompting” token (see Fig. 1).

3.3. Predictions & Training

The output embedding e 1 (Equation 5), is passed through
various output heads to produce a set of predictions g.

y = {OutputHead, (ér4+1) | i = 1,2,..., Ntasks} (7)

Output heads are determined on a per-task basis. For these
tasks, we use a single linear layer, although a two layer
MLP did also provide similar results for next observation
duration and time remaining in case predictions. The di-
mensionality of each prediction varies depending on the
task (for instance, to predict the next activity we generate
a vector of probabilities across the dimension of possible
activities, whereas to predict the time remaining in the case
we generate a real-valued scalar).

For a given model output g, we also have the true value for
each task, y. Then, to train ¢ tasks simultaneously, we use a
composite loss function (Equation 8) where the loss weights
w are selected empirically for each specific dataset and the
loss functions £; are selected to suit each task. In this case,
categorical cross-entropy loss is used for next activity pre-
diction and L1 loss is used for the next observation duration

SOLMformer - Incorporating Case and Activity Level Metadata into Transformer Architecture for Predictive Process Modeling

and time remaining in sequence.
L(5,y:0) = wili(yi,y:) ®)

Manging loss is an ongoing challenge in multi-task learning.
One scheme, random loss weighting, presented by Lin et al.
(2022), had no significant effect on SOLMformer perfor-
mance. It is possible that other dynamic gradient balancing
techniques, such as GradNorm or Conflict-Averse gradient
descent may lead to further improvement, and this is an
open area for future study (Chen et al., 2018; Liu et al.,
2024).

Details of training and setup are included in Appendix B.
For the focus use case of predictive process monitoring,
auxiliary numerical features are added to the observation-
level numerical metadata as described in Appendix A.2.

4. Results
4.1. Datasets, Baselines, & Metrics

We selected 5 open-source datasets from the Business
Process Intelligence Challenge (BPIC) that contain event
logs rich with metadata to demonstrate the performance of
SOLMformer. Information describing the datasets including
their metadata can be found in Appendix A.1. We include
6 baselines across the tasks, prioritizing deep learning and
multi-task models.

We include LSTM, GRU, MANN, and CNN-based models
to highlight multiple deep learning architectures and their
performance on these tasks (Tax et al., 2017; Khan et al.,
2018; Hinkka et al., 2018; Pasquadibisceglie et al., 2019).
We also select ProcessTransformer as it is the landmark
implementation of the transformer architecture for process
mining (Bukhsh et al., 2021). Also, the HiP Transformer is
the only improvement to the architecture specifically aimed
at process mining use cases to our knowledge (Ni et al.,
2023).

For models with open-source implementations we make best
efforts to train as specified by the authors (Tax et al., 2017;
Bukhsh et al., 2021). Where we were unable to retrieve the
baselines, we use results as benchmarked by Rama-Maneiro
et al. (2020).

We select the evaluation metric of accuracy for next activ-
ity prediction, a classic classification problem. Weighted
F1 score and Mathews Correlation Coefficient are some-
times also reported, but are typically aligned with accuracy
and provide limited additional information in the predictive
process modeling context (Matthews, 1975; Rama-Maneiro
et al., 2020). We select mean absolute error (MAE) as the
evaluation metric for next observation duration and time
remaining in case predictions. This does not overpenalize
variable observations, since time between two observations

in a sequence can be quite large (Willmott and Matsuura,
2005).

4.2. SOLMformer on predictive tasks

As shown in Figure 2 (exact values in Appendix 5) we find
SOLMformer improves performance in 4 out of 5 datasets
on next activity prediction, with other transformer-based
implementations slightly outperforming on the BPI2013
dataset. Notably, BPI2013 contains no sequence metadata or
numerical observation metadata. All other datasets contain
at least one sequence metadata attribute.

For the next observation duration, we are predicting the
expected time until the next observation occurs. Over a
sequence, the duration of each activity is not monotonic
and varies significantly based on activity type and context.
From sequence to sequence, the same activity can vary in
duration depending on outside circumstances which are not
documented in the sequence or its metadata.

SOLMformer outperforms baselines on 4 datasets in pre-
dicting the next activity duration. For BPI2012, it performs
similarly to ProcessTransformer, an implementation from
Transformer that does not incorporate case-level metadata or
non-numerical observational metadata (Bukhsh et al., 2021).
SOLMformer outperforms several baselines in predicting
the next observation duration and time remaining in a se-
quence. However, ProcessTransformer lags behind in small
datasets or datasets with minimal data (BP12012/2013). For
the time remaining in the case, the HiP Transformer slightly
outperforms SOLMformer for BPI2013 and SOLM per-
forms squarely between ProcessTransformer and HiP Trans-
former for BPI2012.

4.3. Breaking apart SOLMformer

We include the results of an ablation study in this section to
illustrate the impact of including case- and observation-level
metadata and multi-task learning on multiple prediction
tasks. We present a baseline method and two variants of
SOLMformer (architectures illustrated in Figures 3, 4, 5).
Architectures for the baseline, S-former, and SOLMformer-
1T variants are included in Figures 3, 4, 5.

1. Baseline - A transformer model that uses only se-
quences of activities as input and predicts only next
activities. The baseline does not include any metadata
as either inputs or outputs.

2. S-former Uses activities and case level metadata to
predict next activities only (since observation level
metadata is excluded).

3. SOLMformer-1T Uses case and event level metadata,
but only performs 1 task at a time. A different model
must be trained for each task.

SOLMformer - Incorporating Case and Activity Level Metadata into Transformer Architecture for Predictive Process Modeling

Next Activity Prediction Error 80 Time Remaining Prediction Error Next Duration Prediction Error
0.5 70 3.0
60
0.4 25
=50 —
3 ES 220
> © @©
+0.3 el el
5 =40 -
2 w Wis
w < <
02 =30 =
1.0
20
0.1
10 0.3
0.0°8pI3012 BPI2013 BPI2015 BPI2017 BPI2020i © BPI2012 BPI2013 BPI2015 BPI2017 BPI2020i °"° BPI2012BPI2013BPI2015BPI201 7BPI2020i
Il MANN I SOLM B PT I CNN
I HiP I GRU 1 LSTM

Figure 2. For next activity prediction, on BPI2012 SOLMformer performs comparably with HiP-Transformer and GRU; on the other tasks
SOLMformer outperforms all competing methods. Results are omitted for models that do not produce predictions for a given problem, or
where results are not available. For next duration and time remaining, SOLMformer outperforms baselines. Beyond being able to predict
metadata, the inclusion of metadata into activity prediction improves performance.

o [~ Activity Activity
et metadata| | obeding || _embedding
- rumerical oo et output | [output | [asics
| o [= o [
embedding metadata | = o
Seq metacata || embedding ([amm .
embedding eressons ||| |
| Activity Activity
beag | _embecaing |{_embedaing |
- rumerical o] output | [output | [rask2
A o [| e
LT metadata || e[= [arsormer
Seq. metacata || embedding | e
embedding cressons ||| |
ke [Actvty Activity
st embedding |{ _embedding
Activit Activit
] smbedslyng embed::lyng ‘Seq. numerical Obs. text motadata Output Output Task3
Aty Activity S [T e Tnetacia Obs. oesans . |embedaing| | ‘hesd pred.
embedding embedding Output 1 heag [_pred. CIESCERE) R] e
lembedding T Seq. metadata || embedding || e o
—— nbedaing embedding anbeiiny

Figure 4. S-former only includes sequence Figure 5. SOLMformer-1T includes se-
level metadata, and predicts the next activity quence and observational metadata, and
performs only 1 task at a time.

Figure 3. Baseline method has no sequence
or observational metadata, and predicts next

activity only. only.

We can observe in Table 1 the general trend that adding Datasets Baseline S-former SOLM-1T SOLM
-level metadata significantly i f f

case-level metadata significantly improves performance o BPL2012 53.05 37 87.10 %6.50

next-activity prediction (Baseline vs S-former), particularly BPI2013 73.00 N/A 63.34 76.15

for BPI2012 and BPI2017. Adding event-level metadata BPI2015 59‘95 63.43 6 6‘30 - 3' 10

leads to some further improvement as well, particularly for))) :

datasets rich in event metadata (BP12017). Finally, multi- BPL2017 87.07 87.32 92.46 93.53
BPI20201 87.01 86.73 92.89 96.42

task learning improves performance for the next activity

prediction task in datasets BP12012, 2017, 2020i.
Table 1. Ablation Study: Next Activity Prediction - Accuracy(%).

Something else to note is that SOLM-1T outperforms Pro- We find that the inclusion of metadata significantly improves accu-

cessTransformer on 4 out of 5 datasets for both next obser-
vation duration and time remaining in case (BPI2012 being
the exception). ProcessTransformer is a 1-task model, so
SOLMformer’s incorporation of metadata makes a notice-
able difference in performance.

racy. Importantly, SOLMformer performs close to or better than
SOLM-1T, which is much more flexible as each task is trained
independently. This result suggests effective mutual information
between the tasks, and is an open area for further investigation.
BPI2013 lacks case-level metadata so S-former results are omitted.

SOLMformer - Incorporating Case and Activity Level Metadata into Transformer Architecture for Predictive Process Modeling

Datasets ND TR
SOLM-1T SOLM SOLM-1T SOLM
BPI12012 0.44 0.32 5.01 4.31
BPI2013 0.29 0.29 4.09 4.10
BPI12015 2.40 2.43 20.99 21.20
BPI2017 0.30 0.32 4.04 4.12
BP120201 2.28 3.03 6.45 6.56

Table 2. Ablation Study: Next observation Duration (ND) and
Time Remaining in sequence (TR) - MAE (days). SOLM-1T
performs marginally better than SOLM for all datasets except
BPI2012, indicating that performance on next activity prediction is
boosted by auxiliary tasks such as ND and TR but not vice versa.

5. Discussion & Future Work

We have presented SOLMformer, an adaptation of trans-
formers to include sequence and object level metadata both
as inputs and in prediction. While we have specifically fo-
cused on process mining, SOLMformer is a very general
framework that applies to transformers in a broad range of
domains. In particular, as transformers see more use for
time series problems in domains like finance and clima-
tology which contain significant amounts of metadata, we
see SOLMformer as a simple but natural extension to the
transformer architecture.

References

Deblina Bhattacharjee, Tong Zhang, Sabine Siisstrunk, and
Mathieu Salzmann. Mult: An end-to-end multitask learn-
ing transformer, 2022.

Zainab Abbas Bukhsh, Ayesha Saeed, and Remco M. Di-
jkman. Process transformer: Predictive business process
monitoring with transformer network. arXiv preprint
arXiv:2104.00721, 2021.

Manuel Camargo, Marlon Dumas, and Oscar Gonzalez-
Rojas. Learning accurate Istm models of business pro-
cesses. In Business Process Management: 17th Interna-
tional Conference, BPM 2019, Vienna, Austria, Septem-
ber 1-6, 2019, Proceedings, page 286-302, Berlin, Hei-
delberg, 2019. Springer-Verlag. ISBN 978-3-030-26618-
9. doi: 10.1007/978-3-030-26619-6_19.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and An-
drew Rabinovich. Gradnorm: Gradient normalization for
adaptive loss balancing in deep multitask networks, 2018.

Arman Cohan, Sergey Feldman, Iz Beltagy, Doug Downey,
and Daniel S Weld. Specter: Document-level representa-
tion learning using citation-informed transformers. arXiv
preprint arXiv:2004.07180, 2020.

Chiara Di Francescomarino and Chiara Ghidini. Predictive
Process Monitoring, pages 320-346. Springer Interna-
tional Publishing, Cham, 2022. ISBN 978-3-031-08848-3.
doi: 10.1007/978-3-031-08848-3_10. URL https://
doi.org/10.1007/978-3-031-08848-3_10.

Remco Dijkman, Marlon Dumas, and Luciano Garcia-
Bafiuelos. Graph matching algorithms for business pro-
cess model similarity search. In Umeshwar Dayal, Jo-
hann Eder, Jana Koehler, and Hajo A. Reijers, editors,
Business Process Management, pages 48-63, Berlin, Hei-
delberg, 2009. Springer Berlin Heidelberg. ISBN 978-3-
642-03848-8.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong
Wu, Baobao Chang, Xu Sun, Jingjing Xu, and Zhifang
Sui. A survey on in-context learning. arXiv preprint
arXiv:2301.00234, 2022.

Joerg Evermann, Jochen R. Rehse, and Peter Fettke. A deep
learning approach for predicting process behaviour at run-
time. In Marlon Dumas and Marcello Fantinato, editors,
International Conference on Business Process Manage-
ment, volume 281, pages 327-338, Cham, Switzerland,
2017. Springer.

Matti Hinkka, Timo Lehto, Keijo Heljanko, and Adrian
Jung. Classifying process instances using recurrent neural
networks. In Florian Daniel, Quan Z. Sheng, Hamid
Motahari, and Eds., editors, International Conference

on Business Process Management, volume 342, pages
313-324, Cham, Switzerland, 2018. Springer.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. Tinybert: Dis-
tilling BERT for natural language understanding. CoRR,
abs/1909.10351, 2019. URL http://arxiv.org/
abs/1909.10351.

Aagib Khan, Huynh Le, Kieu Do, Truyen Tran, Aditya
Ghose, Hoa Dam, and Ramasuri Sindhgatta. Memory
augmented neural networks for predictive process analyt-
ics. arXiv preprint arXiv:1802.00938, 2018.

Baijiong Lin, Feiyang Ye, Yu Zhang, and Ivor W. Tsang.
Reasonable effectiveness of random weighting: A litmus
test for multi-task learning, 2022.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang
Liu. Conflict-averse gradient descent for multi-task learn-
ing, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization, 2019.

B.W. Matthews. = Comparison of the predicted and
observed secondary structure of t4 phage lysozyme.
Biochimica et Biophysica Acta (BBA) - Protein

https://doi.org/10.1007/978-3-031-08848-3_10
https://doi.org/10.1007/978-3-031-08848-3_10
http://arxiv.org/abs/1909.10351
http://arxiv.org/abs/1909.10351

SOLMformer - Incorporating Case and Activity Level Metadata into Transformer Architecture for Predictive Process Modeling

Structure, 405(2):442-451, 1975. ISSN 0005-2795. Niek Tax, Ivan Verenich, Marcello La Rosa, and Marlon
doi: https://doi.org/10.1016/0005-2795(75)90109-9. Dumas. Predictive business process monitoring with Istm
URL https://www.sciencedirect.com/ neural networks. In Proc. of CAiSE. Springer, 2017.

science/article/pii/0005279575901099.)
Wil van der Aalst. Process Mining: Data Science

Ying Mo, Hongyin Tang, Jiahao Liu, Qifan Wang, Zenglin in Action. Springer Berlin, Heidelberg, 2 edition,
Xu, Jingang Wang, Wei Wu, and Zhoujun Li. Multi-task 2016. ISBN 978-3-662-49850-7. doi: 10.1007/
transformer with relation-attention and type-attention for 978-3-662-49851-4. URL https://doi.org/
named entity recognition, 2023. 10.1007/978-3-662-49851-4. Springer-Verlag

Berlin Heidelberg 2016.

Nicolo Navarin, Beatrice Vincenzi, Mirko Polato, and
Alessandro Sperduti. Lstm networks for data-aware re- ~ W.M.P. van der Aalst, M.H. Schonenberg, and M. Song.
maining time prediction of business process instances, Time prediction based on process mining. In-
2017. formation Systems, 36(2):450-475, 2011. ISSN

. . L 0306-4379. doi: https://doi.org/10.1016/j.i5.2010.09.001.
An Nguyen, Srijeet Chatterjee, Sven Weinzierl, Leo URL https://www.sciencedirect .com/

Schwinn, Martln Matzner, and Bjoe'rn. Eskoﬁ.er. Time science/article/pii/S0306437910000864.
matters: Time-aware Istms for predictive business pro-

- Special Issue: Semantic Integration of Data, Multimedia,
cess monitoring, 2020.

and Services.

Weijian Ni, Gang Zhao, Tong Liu, Qingtian Zeng. g g (Boudewijn) van Dongen. Bpi challenge 2015, 2015.
and Xingzong Xu. Predictive business process mon- URL https://data.4tu.nl/collections/ /
itoring approach based on hierarchical transformer. 5065424 /l. ’) -

Electronics, 12(6):1273, 2023. doi: 10.3390/
electronics12061273. URL https://doi.org/10. Boudewijn van Dongen. Bpi challenge 2012, 2012.
3390/electronicsl12061273. URL https://data.4tu.nl/articles/_/

. - 12689204/1.
Vito Pasquadibisceglie, Annalisa Appice, Giovanni Castel-

lano, and Donato Malerba. Using convolutional neural Boudewijn van Dongen. Bpi challenge 2017, 2017.

networks for predictive process analytics. In Proceedings URL https://data.4tu.nl/articles/_/
of the IEEE International Conference on Process Mining, 12696884/1.

pages 129-136, Aachen, Germany, 2019.
Boudewijn van Dongen. Bpi challenge 2020, 2020.

Efrén Rama-Maneiro, Juan Carlos Vidal, and Manuel Lama. URL https://data.4tu.nl/collections/_/
Deep learning for predictive business process monitoring: 5065541/1.
Review and benchmark. CoRR, abs/2009.13251, 2020.
URL https://arxiv.org/abs/2009.13251. Simon Vandenhende, Stamatios Georgoulis, Marc Proes-
mans, Dengxin Dai, and Luc Van Gool. Revisiting
Manfred Reichert. Visualizing large business process mod- multi-task learning in the deep learning era. CoRR,
els: Challenges, techniques, applications. In Marcello abs/2004.13379, 2020. URL https://arxiv.org/
La Rosa and Pnina Soffer, editors, Business Process Man- abs/2004.133709.

agement Workshops, pages 725-736, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg. ISBN 978-3-642- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

36285-9. reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and
))) o B Illia Polosukhin. Attention is all you need. Advances in
Walid Shalaby, Sejoon Oh, Amir Afsharinejad, Srijan Ku- neural information processing systems, 30, 2017.

mar, and Xiquan Cui. M2trec: Metadata-aware multi-task
transformer for large-scale and cold-start free session- ~ Cort J Willmott and Kenji Matsuura. Advantages of the

based recommendations. In Proceedings of the 16th mean absolute error (mae) over the root mean square

ACM Conference on Recommender Systems, RecSys *22. error (rmse) in assessing average model performance.

ACM, September 2022. doi: 10.1145/3523227.3551477. Climate research, 30(1):79-82, 2005.

URL http://dx.doi.org/10.1145/3523227.)

3551477, Chuhan Wu, Fangzhao Wu, Tao Qi, and Yongfeng Huang.

Hi-transformer: Hierarchical interactive transformer for

Ward Steeman. Bpi challenge 2013, incidents, efficient and effective long document modeling. CoRR,

2013. URL https://data.4tu.nl/articles/ abs/2106.01040, 2021. URL https://arxiv.org/

_/12693914/1. abs/2106.01040.

https://www.sciencedirect.com/science/article/pii/0005279575901099
https://www.sciencedirect.com/science/article/pii/0005279575901099
https://doi.org/10.3390/electronics12061273
https://doi.org/10.3390/electronics12061273
https://arxiv.org/abs/2009.13251
http://dx.doi.org/10.1145/3523227.3551477
http://dx.doi.org/10.1145/3523227.3551477
https://data.4tu.nl/articles/_/12693914/1
https://data.4tu.nl/articles/_/12693914/1
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-662-49851-4
https://www.sciencedirect.com/science/article/pii/S0306437910000864
https://www.sciencedirect.com/science/article/pii/S0306437910000864
https://data.4tu.nl/collections/_/5065424/1
https://data.4tu.nl/collections/_/5065424/1
https://data.4tu.nl/articles/_/12689204/1
https://data.4tu.nl/articles/_/12689204/1
https://data.4tu.nl/articles/_/12696884/1
https://data.4tu.nl/articles/_/12696884/1
https://data.4tu.nl/collections/_/5065541/1
https://data.4tu.nl/collections/_/5065541/1
https://arxiv.org/abs/2004.13379
https://arxiv.org/abs/2004.13379
https://arxiv.org/abs/2106.01040
https://arxiv.org/abs/2106.01040

SOLMformer - Incorporating Case and Activity Level Metadata into Transformer Architecture for Predictive Process Modeling

Hanrong Ye and Dan Xu. Taskprompter: Spatial-channel
multi-task prompting for dense scene understanding. In
ICLR, 2023.

SOLMformer - Incorporating Case and Activity Level Metadata into Transformer Architecture for Predictive Process Modeling

A. Data
A.1. Datasets

The following 5 real-world datasets were selected for the benchmarking of SOLMformer. BPI datasets are important
benchmarks in the process mining community and have been benchmarked extensively (Tax et al., 2017; Bukhsh et al.,
2021; Rama-Maneiro et al., 2020; Hinkka et al., 2018; Pasquadibisceglie et al., 2019; Ni et al., 2023). Summary statistics
regarding the datasets are available in table A.1, and their metadata is summarized in table A.1

1. BPI2012 is a Holland financial institution loan applying process during the period from October 2011 to March 2012
(van Dongen, 2012).

2. BPI2013 documents the process related to the Volvo back office management system during the period from April
2010 to May 2012 (Steeman, 2013).

3. BPI2015 is the Holland building permit applying process during the period from April 2014 to September 2014 (van
Dongen, 2015).

4. BPI2017 is the Holland financial institution loan applying process during the period from January 2016 to December
2016 (van Dongen, 2017).

5. BPI2020i captures the permits, declaration documents, and administrative approvals necessary for travel expense
claims at a university (van Dongen, 2020).

Table 3. Datasets

Dataset Num. Cases Num. Num. Mean Num. Max Num. Mean Case
Observations Activities Observations Activities per ~ Duration

per Case Case (days)

BPI2012 13,087 262,200 24 20 175 8.6

BPI2013 586 6,499 13 11.4 123 11.9

BPI2015 1,199 27,409 38 22.8 61 95.9

BP12017 31,509 15,214 26 36 180 18

BPI2020i 6,449 72,151 34 11.2 27 84.15

A.2. Data Processing

All sequences and observations were included with no particular preprocessing or treatment. No additional context regarding
the dataset, such as process models, were used.

For all observations, three numerical features were included by default: time since beginning of case, duration of previous
activity, and duration of second to last activity. These temporal features are shown to have a positive effect on process
prediction in past works (Bukhsh et al., 2021; Nguyen et al., 2020; Navarin et al., 2017).

B. Experiment Details

We use a train/validation/test split of 80/10/10% and batch sizes of 128 for BPI2012/2017/2020i or 24 for BPI 2013/2015.
we train for 25 epochs using a cosine annealing learning rate schedule with a minimum of le-4 and a maximum of le-1. The
model with the best performance on the validation set was used for testing. We used 4 attention heads with 2 layers, an
activity embedding dimension of 256, an observation text metadata embedding dimension of 128, and a observation ordinal
metadata embedding dimension of 128 (total input dimension being 512), with a hidden dimension of 1024. We used an
AdamW optimizer with a weight decay of 1e-4 (Loshchilov and Hutter, 2019). Data processing, training, evaluation, and
model code are available to view in this repository.

Experiments were performed on 1x NVIDIA A10 (24 GB VRAM 30 vCPUs 200 GiB RAM) for BP12012, 2013, 2015,
2020i and 1x NVIDIA A6000 (48 GB VRAM, 14 vCPUs, 100 GiB RAM) for BP12017.

9

https://github.com/yaminivibha/SOLMformer

SOLMformer - Incorporating Case and Activity Level Metadata into Transformer Architecture for Predictive Process Modeling

Table 4. Dataset Metadata

Observation-level metadata

Dataset Sequence-level metadata
Numerical Text Numerical Text
BPI2012 None ’AMOUNT REQ’ None “org:resource’, "life-
cycle:transition’
BPI2013 None None None ’product’,
“org:group’, ’lifecy-
cle:transition’,
’resource country’,
“org:role’,
’organization
involved’, ’impact’,
’organization
country’,
’org:resource’
BPI2015 ’SUMleges’ ’caseProcedure’, None ’action code’, *mon-
"caseStatus’, ’parts’, itoringResource’,
‘requestComplete’, ’question’,
"IDofConceptCase’, “activityNameNL’,
’concept:name’, ’dateFinished’,
’termName’, ’In- "activityNameEN’,
cludesSubCases’, “org:resource’, ’life-
’landRegisterID’, cycle:transition’,
’ResponsibleActor’, ’dateStop’
’lastPhase’,
*caseType’
BPI12017 "RequestedAmount’ ’ApplicationType’, ’MonthlyCost’, ’Selected’, *Action’,
’LoanGoal’ *FirstWith- ’EventOrigin’,
drawal Amount’, *EventID’,
’Offered Amount’ *Accepted’,
*org:resource’, ’life-
cycle:transition’,
*OfferID’
BPI12020i ’AdjustedAmount’, ’Permit - ’id’, *org:resource’,
’Permit BudgetNumber’, “org:role’
RequestedBudget’, ’Permit
’OriginalAmount’, ActivityNumber’,
Re- ’Permit
questedAmount’, ProjectNumber’,
> Amount’ ’DeclarationNum-
ber’, ’Permit
TaskNumber’,

’concept:name’,
"Permit Organiza-
tionalEntity’,
’Permit travel
permit number’,
’travel permit
number’, ’id’,
’BudgetNumber’,
Permit ID’

10

SOLMformer - Incorporating Case and Activity Level Metadata into Transformer Architecture for Predictive Process Modeling

Table 5. Next Activity Prediction - Accuracy (%)

Dataset LSTM GRU CNN PT HiP SOLM
BPI2012 85.46 86.65 83.25 85.20 86.30 86.75
BPI2013 70.09 74.69 46.03 62.11 79.33 76.15
BPI2015 68.58 71.02 58.43 71.98 73.02 73.10
BPI2017 83.15 84.25 78.45 81.88 85.88 93.53
BPI2020i - - - 93.35 94.33 96.42

Table 6. Next observation duration prediction - MAE (days)

Dataset LSTM MANN PT SOLM
BPI2012 0.31 0.31 0.25 0.32
BPI2013 0.47 0.55 0.37 0.28
BPI2015 - - 3.05 243
BPI2017 - - 0.43 0.32
BPI2020i - - 3.26 3.03

Table 7. Time remaining in case prediction - MAE (days)

Dataset LSTM MANN PT Hi-P SOLM
BPI2012 330.61 30.56 4.60 3.89 4.31
BPI2013 38.41 260.64 8.36 4.17 4.10
BPI2015 42.36 - 28.42 24.88 21.20
BPI12017 127.80 - 10.28 9.93 3.66
BPI2020i - - 10.68 - 6.56

In order to train the model reasonably given the different scales of task losses, we log-scale the observation duration and
time remaining in sequence-related observation numerical metadata features. Losses for the next observation duration and
time remaining in sequence tasks are calculated in log-space during training. Model outputs for these tasks are scaled back
to linear space in order to make predictions and in the reported metrics.

C. Results

Results containing exact results corresponding to Fig. 2 are included in Tables 5, 6, 7. ”-”” denotes that no baseline assessment
was possible.

11

