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Abstract

Snapshot compressive hyperspectral imaging requires reconstructing a hyperspec-1

tral image from its snapshot measurement. This paper proposes an augmented deep2

unrolling neural network for solving such a challenging reconstruction problem.3

The proposed network is based on the unrolling of a proximal gradient descent4

algorithm with two innovative modules for gradient update and proximal mapping.5

The gradient update is modeled by a memory-assistant descent module motivated6

by the momentum-based acceleration heuristics. The proximal mapping is mod-7

eled by a sub-network with a cross-stage self-attention which effectively exploits8

inherent self-similarities of a hyperspectral image along the spectral axis, as well9

as enhancing the feature flow through the network. Moreover, a spectral geometry10

consistency loss is proposed to encourage the model to concentrate more on the11

geometric layer of spectral curves for better reconstruction. Extensive experiments12

on several datasets showed the performance advantage of our approach over the13

latest methods.14

1 Introduction15

Hyperspectral imaging captures a hyperspectral image (HSI) which is a 3D cube of intensities16

that represents the integrals the radiance of a real scene across a wide range of spectral bands.17

As an HSI provides rich spectral characteristics of objects of a scene, hyperspectral imaging has18

found wide applications in many areas, e.g., agriculture, industry, and science. Snapshot compres-19

sive spectral imaging [1], often known as coded aperture snapshot spectral imaging (CASSI), is20

a compressed-sensing-based technique for rapid and efficient acquisition of HSIs. In contrast to21

traditional hyperspectral imaging techniques which use a sensor array for measuring the object at22

many spectral bands, the CASSI only collects a single coded 2D snapshot, which measures the23

object modulated by a physical mask and a disperser at the mixture of different wavelengths. A24

reconstruction algorithm is then called to reconstruct the 3D HSI from its 2D compressive snapshot.25

Let X ∈ RM×N×Λ denote an HSI with spatial indices m,n and spectral index λ. In general, the26

snapshot from a CASSI device can be expressed as the following [1]:27

Y (m,n) =

Λ∑
λ=1

ρ(λ)ϕ(m− J(λ), n)X(m− J(λ), n, λ) +N(m,n), (1)

where ρ(·) is the spectral response of the camera, ϕ(·, ·) the coded aperture pattern, J(·) the dispersive28

function, and N the measurement noise. For convenience, we re-express it in a matrix-vector form:29

y = Φx+ n, (2)
where Φ denotes the measurement matrix determined by ρ, ψ, and x,y,n are the vectorized form of30

X,Y ,N , respectively. As Eq. (2) is an under-determined linear system with measurement noise,31

HSI reconstruction needs to solve an ill-posed inverse problem,32
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In recent years, deep learning has become a prominent approach for developing powerful solutions to33

HSI reconstruction; see e.g. [2, 36, 3–6, 3, 7–10].Most of them models the inverse mapping from34

the 2D snapshot to its corresponding HSI by a neural network (NN) trained over a dataset. Among35

existing designs of NN architecture, deep unrolling is the most popular one for HSI reconstruction, as36

it allows the inclusion of the physics of imaging. A typical deep unrolling network (DUN) unfolds37

an iterative scheme for solving some regularized variational model of (2), where the regularization-38

related parts are replaced by learnable NN modules. It can also be interpreted as a concatenation of39

the steps that alternates between an updating step and a refinement step: x(0) Update−−−−→ z(0) Refine−−−−−→40

x(1) Update−−−−→ z(1) Refine−−−−−→ x(2) −→ · · · . Despite extensive studies on HSI reconstruction, the41

practical need remains for the methods with better reconstruction accuracy.42

The paper aims at developing a DUN for HSI reconstruction that brings noticeable performance43

improvement over existing deep NNs. The proposed DUN is based on the proximal gradient descent44

(PGD) algorithm [11, 12], one often seen iterative scheme for solving inverse problems in imaging.45

The PGD algorithm alternatively iterates between the following two steps:46

1. A gradient descent step for updating the estimate of the image47

2. A proximal mapping for refining the estimate via fitting some regularization term.48

In comparison to existing DUNs for HSI reconstructions, there are three innovations in the design49

and training of the proposed one:50

1. Updating step: Modeling the gradient descent step using an NN block with a momentum-51

motivated memory-assistant module which is implemented by long short-term memory.52

2. Refinement step: Modeling the proximal mapping by a sub-NN with a across-stage self- attention53

module, for exploiting specific characteristics of HSIs and efficient feature flow.54

3. Training loss: A spectral geometry consistency loss is proposed for regularizing the reconstruc-55

tion with better accuracy.56

Learnable memory-assistant module In most existing DUNs for HSI reconstruction, the updating57

step usually is some pre-defined non-learnable process, e.g. gradient-based update. Gradient-based58

updates are in a zig-zag direction which slows down the movement to a minima. Also, the updates59

crawl near the minima or saddle points slowly as the gradient magnitude vanishes rapidly over there.60

A popular technique used for acceleration is the so-called momentum (e.g. RMSProp and Adam).61

Instead of using only the current gradient, momentum accumulates the gradients of the past steps to62

determine the direction to go, which helps move more quickly towards the minima as it dampens the63

zig-zag oscillations and builds the speed to quicken the convergence.64

Motivated by the benefit brought by momentum in gradient-based update, we propose to learn an65

NN-based model for gradient-based update with the concept of momentum. As the effectiveness of66

momentum comes from its memory of the gradients of past steps, we propose an NN block with a67

memory-assistant mechanism such that it will leverage the gradient descents from previous stages,68

which is implemented using convolutional long short-term memory (ConvLSTM) units.69

Cross-stage self-attention module An HSI has its specific physical characteristics. One is the70

self-similarity and strong correlation along the spectral axis, as the entries along the spectral axis71

measure the same object region but at different wavelengths. To exploit such specific physical72

property of HSIs, we propose a self-attention module along the spectral axis. While self-attention is73

not completely new in image reconstruction, our implementation is different from existing ones by74

defining in a cross-stage manner.75

One additional function for such a cross-stage self-attention module is to exploit the similarity of the76

features learned over different stages by forming a path between two different stages. Such similarities77

among the featured learned at different stages come from the fact that the role of refinement step is78

supposed to the same across different stages. The benefit of utilizing such similarity is two-fold. One79

is for more efficient feature delivery across the full stages, and the other is for enabling interactions80

among the features at different stages during the training.81

Loss on spectral geometry consistency In addition to the standard `1 loss, a spectral geometry82

consistency loss is proposed for training the DUN for HSI reconstruction. Such a loss encourages the83
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model to concentrate more on the profile of spectral changes during reconstruction, which helps to84

improve the reconstruction accuracy as empirically observed.85

2 Related Work86

By imposing certain priors on HSIs, regularization is a widely-used approach to solving the problem87

of HSI reconstruction. The priors for natural images have been extended to HSIs, e.g., sparsity prior88

in image gradients used in total variation [13, 14], sparsity prior under a learned dictionary [2, 15],89

and non-local self-similarity prior in the form of low-rankness for spatial-spectral patches [16–19].90

These pre-defined priors are often insufficient for the HSIs with complex and diverse structures.91

There is an increasing trend to use the implicit image prior encoded in a pre-trained or untrained92

NN for regularization. Plug-and-play methods [14, 20, 21] employ the NNs pre-trained on the93

denoising tasks of HSIs or natural images to regularize the reconstruction process. However, pre-94

trained denoising NNs are usually not very effective to handle the noise and artifacts generated in the95

iterative reconstruction process. Self-supervised learning methods [22, 23] use an untrained NN to96

re-parameterize the latent HSI and train it to match the observed snapshot. Such an online learning97

scheme is computationally expensive and cannot leverage the knowledge from external data.98

It has been a prominent approach that to end-to-end train a DNN that maps a snapshot to the latent99

HSI; see e.g. [24, 5, 25, 26, 9, 8]. Many existing studies employ the DUN architecturee.g. [3, 6, 7, 4].100

Recall that a DUN often consists of pairs of steps: one step for updating the estimate of the latent HSI101

and the other step for refining the estimate with a learnable prior. Most existing works focus on the102

latter, which can be viewed as a denoising NN that exploits different image priors, e.g., spatial-spectral103

prior [3],non-local self-similarity prior [6], and patch-level Gaussian scale mixture prior [7].104

Learning updating steps in DUNs Zhang et al. [4] replaced the operators Φ,Φ> appearing in the105

gradient descent step of PGD by convolutions and residual blocks, with a channel attention block to106

estimate the step size in PGD from the estimate output by the previous stage. Different from that, we107

do not learn those operators but utilize them to have a better update step. Working on natural image108

recovery rather than on HSI reconstruction, Mou et al. [27] used a residual block to estimate the109

gradient descent step. In comparison, we use an LSTM to leverage the dependency between different110

stages for estimating the updating step.111

Self-attention for HSI reconstruction Self-attention (SA) has been exploited in existing works for112

HSI reconstruction. Miao et al. [5] used a generative adversarial network with SA for the initial stage113

in the NN. Meng et al. [28] used three spatial-spectral SA modules to exploit the spatial-spectral114

correlation of an HSI. Hu et al. [9] develops a spatial-spectral attention module with efficient feature115

fusion. In comparison to these methods, ours treats spectral maps as tokens for SA and calculates the116

SA along the spectral dimension. This shares a similar idea with a parallel work [8] which also treats117

spectral maps as tokens in a transformer-based model. Different from it, we use SA in a cross-stage118

manner which enhances the feature flow at the same time.119

Training loss for HSI reconstruction Most existing NNs for HSI reconstruction are trained by120

the standard mean-squared-error loss or `1 loss. Hu et al. [9] introduced a frequency-domain loss121

to narrow the frequency-domain discrepancy between network predictions and ground truths. In122

comparison, the loss we proposed narrows the discrepancy in terms of spectral geometric changes.123

3 Proposed Approach124

The proposed DUN for HSI reconstruction is based on the PGD algorithm [11, 12] for the following125

optimization model regularized by the functionalR:126

min
x
‖y −Φx‖22 + λR(x), λ ∈ R+, (3)

The PGD algorithm for solving Eq. (3) alternately iterates between two steps: gradient-descent (GD)127

step for updating the estimate, and proximal mapping (PM) step for refining the estimate by fitting128

the functionalR with encoded image prior: For k = 1, · · · ,K,129

[GD]: u(k) = x(k−1) + γ(k)Φ>(y −Φx(k−1)), (4)

[PM]: x(k) = ProxR(u(k)) , argmin
x′

‖x− u(k)‖22 + 2γ(k)R(u(k)). (5)
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where γ(k) denotes step size. Most existing DUNs focus on modeling the PM step (5) by an NN for a130

data-driven prior. The GD step (4) usually is kept unchanged with the learnable parameter γ(k).131

We propose a Memory-Assistant Descent (MAD) block to model the GD step (4) and a Cross-stage132

Attentive Proximal (CAP) sub-network to model the PM step (5). The former functions as gradient133

descent across different stages for momentum-motivated acceleration, which leads to a more efficient134

update than that only using the gradient at current stage. The latter is to utilize the self-similarities135

existing in an HSI with a cross-stage manner, which enable us to exploit special characteristics of136

HSIs and fasten feature flow through the DNN. In short, the proposed NN, called MadcapNet, is the137

concatenation of K stages, each of which contains a pair of a MAD block and a CAP sub-network;138

see Figure 1 for the diagram of MadcapNet.139
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Figure 1: Diagram of the proposed augmented deep unrolling neural network for HSI reconstruction.

3.1 Memory-Assistant Descent Blocks140

The MAD blocks are a set of ConvLSTM units [29] placed at each stage of the NN, which utilizes141

the long-range dependencies among all cascading stages for momentum-assistant gradient update. In142

each MAD block, the gradient map is defined by143

u(k) = Φ>(y −Φx(k−1)) (6)

is taken as the input for the k-th ConvLSTM unit, which introduces information on gradient descent.144

Let h(k), c(k) denote the hidden state and cell state in the ConvLSTM at the k-th stage respectively,145

where h(k) is of the same size as x(k). The MAD block is defined as146

[h(k), c(k)] = ConvLSTM(u(k),x(k−1), c(k−1)), (7)

for k = 1, · · · ,K. Different from original ConvLSTM units which use the previous hidden state147

h(k−1) as input, we replace h(k−1) by x(k−1), the output from the CAP sub-network of the previous148

stage. The motivation behind is to utilize the current gradient decent defined over x(k−1). Then, h(k)149

is used as the input of the CAP sub-network and c(k) is fed to the MAD block at the next stage as an150

accumulator of state information.151

In the k-th stage, the ConvLSTM unit calculates hk, ck by the following rules152

c(k) = fk � c(k−1) + i(k) � tanh(g(k)), (8)

h(k) = o(k) � tanh(c(k)), (9)

4



where � denotes Hadamard product, and ik, fk, ok, gk denote the input gate, forget gate, output153

gate, and the intermediate result, respectively, which are calculated as follows:154

i(k) = sigmoid(Wmiu
(k) +Wxix

(k−1) + bi), (10)

f (k) = sigmoid(Wmfu
(k) +Wxfx

(k−1) + bf), (11)

g(k) = Wmgu
(k) +Wxgx

(k−1) + bg, (12)

o(k) = sigmoid(Wmou
(k) +Wxox

(k−1) + bo), (13)

where W∗∗ are implemented by 3× 3 convolutional layers with bias terms b*.155

3.2 Cross-stage Attentive Proximal Sub-networks156

The CAP blocks function as a learnable PM step (5) which refines the estimate from the MAD157

block. It can be understood as a denoising NN by interpreting the estimation residual as noise. Given158

h(k) (of the same size as x) from the MAD block as input, we map it to a feature tensor z(k) via a159

convolutional layer, which is then processed by a cross-stage SA module. Afterward, the results are160

fed to a sequence of convolutional layers with rectified linear units (ReLUs) and a triplet attention [30].161

The output with the same size as x is combined with the input h(k) via a skip connection, yielding162

the reconstructed HSI x(k) at the current stage. See Figure 1 for the details.163

Recall that SA [31] relates input feature tokens to compute a refined feature representation. It first164

generates a key/query/value vector of length d from each token, and all the key/query/value vectors165

are stored as K,Q,V respectively. Then, SA is calculated as follows:166

SA(Q,K,V ) = softmax
( 1√

d
QK>

)
V . (14)

We treat each feature channel as a token so as to exploit the self-similarities among feature channels.167

Such tokens are aligned due to natural alignment of spectral slices of an HSI. In the kth stage, rather168

than use the feature z(k) at current stage to calculate K(k),Q(k),V (k), we only use z(k) for Q(k)169

while using the feature z(k−1) of previous stage for K(k),V (k). Concretely, we calculate170

Q(k) = W
(k)
Qd W

(k)
Qp z(k),K(k) = W

(k)
Kd W

(k)
Kp z(k−1),V (k) = W

(k)
Vd W

(k)
Vp z(k−1), (15)

where W (k)
(∗p),W

(k)
(∗d) are 1× 1 convolutions and 3× 3 depth-wise convolutions respectively for better171

encoding spatial-channel context.172

The motivation of the cross-stage strategy is as follows. The DUN architecture alternates between173

the update and the refinement. Since the CAP sub-networks at different stages play the same role174

of refinement, their extracted features should be highly correlated and the features extracted from175

the previous stage provide good initials for the corresponding ones at the next stage. However, the176

aforementioned pipeline does not utilize such correlations for more efficient training, which may177

result in a bottleneck for features flowing through the whole DUN. The proposed cross-stage SA178

scheme forms a path between two stages, which allows efficient feature transmission during inference179

and enhances feature interactions during training.180

The mutli-head strategy [31] is adopted for the cross-stage SA. First, we split the key/query/value ma-181

trices into H heads along channel dimension: Q(k) = [Q
(k)
1 , · · · ,Q(k)

H ], K(k) = [K
(k)
1 , · · · ,K(k)

H ],182

and V (k) = [V
(k)

1 , · · · ,V (k)
H ]. Then, the output is calculated as183

O(k) = ∪Hj=1SA(Q
(k)
j ,K

(k)
j V

(k)
j ), (16)

which is reshaped for subsequent processing.184

3.3 Loss function for Training185

To better train a NN for HSI reconstruction, we propose an additional loss called spectral geometry186

consistency (SGC) loss. For an HSI X ∈ RM×N×Λ, we define the geometry map D(x) as follows.187

D(X) = ∇c(sign(∇cX)) ∈ {−1, 0, 1}M×N×Λ, (17)
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where ∇c calculates the gradient along the spectral axis, and sign(·) denotes element-wise sign188

function. For a spatial location (m0, n0), D(X)[m0, n0, ·] indicates the wavelengths where the189

monotony of spectral values changes, which is one geometrical property of the spectral curve. Based190

on D, the SGC loss emphasizes the geometrical layout consistency between the reconstructed HSI191

and ground truth.192

Considering HSIs exhibit high spatial sparsity, the irrelevant dark regions are omitted for robustness.193

This is achieved by constructing a mask MX that thresholds the max density along spectral dimension:194

MX(m,n, λ) = 1 if maxλX(m,n, λ) ≥ α; and 0otherwise. Let X, X̂ denote the reconstructed195

HSI and its ground truth respectively. The SGC loss is defined as196

Lsgc , ‖MX �D(X)−MX̂ �D(X̂)‖1. (18)

By minimizing Lsgc, the HSI predicted by the NN is biased to the one with the same wavelength-197

density trends of ground truths, which helps to alleviate possible over-fitting. Then, the overall loss is198

199

L , L1 + γLsgc = ‖X − X̂‖1 + γ‖MX �D(X)−MX̂ �D(X̂)‖1, γ ∈ R+. (19)

4 Experiments200

We implement MadcapNet with PyTorch. The stage number K is set to 6. On all convolutional201

layers, the kernel sizes are all set to 3× 3, and both the stride and padding number are set to 1. The202

head number H for the self-attention in CAP blocks is set to 8. Regarding the training loss, we203

set α = 5
255 for MX and γ = 0.5 for Eq. (19) The training is done via the Adam optimizer with204

a fixed learning rate of 10−4 and a maximal epoch number of 200. The same data augmentation205

scheme as [7] is adopted, including rotation and flipping. All the models are trained and tested206

on an NVIDIA GeForce RTX 1080Ti GPU. Our code will be released on GitHub. upon paper’s207

acceptance. Following [7], Peak-Signal-to-Noise-Ratio (PSNR) and Structured SIMilarity (SSIM)208

index are adopted as the metrics to evaluate the reconstruction results quantitatively.209

4.1 Evaluation on Synthetic Data210

CAVE and KAIST datasets Following [28, 7], we use the CAVE dataset [32] containing 32 HSIs211

with 31 spectral bands for training, and 10 scenes with 31 spectral bands from the KAIST dataset [14]212

for test. All these HSIs are cropped into patches with a spatial size of 256× 256 and reduced to 28213

wavelengths ranging from 450nm to 650nm via spectral interpolation. The snapshot measurements214

are generated by the 256× 256 mask of CASSI used in [28].215

Ten existing methods are chosen for comparison, including (a) two conventional methods: GAP-216

TV [13] and DeSCI [17]; (b) one self-supervised learning-based method: PnP-DIP [22]; and (c)217

seven supervised learning-based methods: λ-Net [5] HSSP [3], DNU [6], TSA-Net [28], DGSMP [7],218

HDNet [9], and MST-L [8]. The HSSP, DNU and DGSMP are based on DUNs. The HDNet and219

MST-L are from two latest works accepted in an upcoming conference.220

The quantitative results are listed in Table 1, which are quoted from [8, 9] whenever possible and221

otherwise obtained with released codes. It can be seen that our approach significantly outperforms the222

compared ones. Specifically, MadcapNet shows remarkable superior performance over other DUNs.223

It also surpasses MST-L and HDNet (i.e. two latest methods) with an average PSNR gain of more224

than 1dB and 2dB respectively. Table 1 also compares the model complexity of different methods in225

terms of number of parameters and number of Giga Floating-point Operations Per Second (GFLOPS).226

Although our model contains ConvLSTM and self-attention blocks, it is still kept compact to maintain227

a relatively-low model complexity. Among all compared methods, our MadcapNet has the smallest228

number of GLOPS, and it is smaller than all other models except DNU. These results show the229

practicability of MadcapNet for real applications. To conclude, our approach can achieve the best230

trade-off between performance and model complexity.231

ICVL and Harvard datasets We also conduct experiments on the ICVL dataset [33] and the232

Harvard dataset [34], respectively. The ICVL dataset consists of 201 HSIs of real-world objects, each233

with 31 spectral bands collected from 400nm to 700 nm at a 10nm step. The Harvard dataset consists234

of 50 outdoor scenes, each with 31 spectral bands collected from 420nm to 720nm at a 10nm step.235
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Table 1: Quantitative results in PSNR(dB) (even rows) and SSIM (odd rows) on KAIST dataset.

Method #Param. #GFLOPS Scene#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Mean

GAP-TV - - 26.82 22.89 26.31 30.65 23.64 21.85 23.76 21.98 22.63 23.10 24.36
0.754 0.61 0.802 0.852 0.703 0.663 0.688 0.655 0.682 0.584 0.669

DeSCI - - 27.13 23.04 26.62 34.96 23.94 22.38 24.45 22.03 24.56 23.59 25.27
0.748 0.62 0.818 0.897 0.706 0.683 0.743 0.673 0.732 0.587 0.721

λ-net 62.64M 117.98 30.10 28.49 27.73 37.01 26.19 28.64 26.47 26.09 27.50 27.13 28.53
0.849 0.805 0.870 0.934 0.817 0.853 0.806 0.831 0.826 0.816 0.841

HSSP - - 31.48 31.09 28.96 34.56 28.53 30.83 28.71 30.09 30.43 28.78 30.35
0.858 0.842 0.823 0.902 0.808 0.877 0.824 0.881 0.868 0.842 0.852

DNU 1.19M 163.48 31.72 31.13 29.99 35.34 29.03 30.87 28.99 30.13 31.03 29.14 30.74
0.863 0.846 0.845 0.908 0.833 0.887 0.839 0.885 0.876 0.849 0.863

PnP-DIP 33.85M 64.42 32.68 27.26 31.30 40.54 29.79 30.39 28.18 29.44 34.51 28.51 31.26
0.890 0.833 0.914 0.962 0.900 0.877 0.913 0.874 0.927 0.851 0.894

TSA-Net 44.25M 110.06 32.03 31.00 32.25 39.19 29.39 31.44 30.32 29.35 30.01 29.59 31.46
0.892 0.858 0.915 0.953 0.884 0.908 0.878 0.888 0.890 0.874 0.894

DGSMP 3.76M 646.65 33.26 32.09 33.06 40.54 28.86 33.08 30.74 31.55 31.66 31.44 32.63
0.915 0.898 0.925 0.964 0.882 0.937 0.886 0.923 0.911 0.925 0.917

HDNet 2.35M 154.00 34.95 32.52 34.52 43.00 32.49 35.96 29.18 34.00 34.56 32.22 34.34
0.948 0.953 0.957 0.981 0.957 0.965 0.937 0.961 0.958 0.950 0.957

MST-L 2.03M 28.15 35.40 35.87 36.51 42.27 32.77 34.80 33.66 32.67 35.39 32.50 35.18
0.941 0.944 0.953 0.973 0.947 0.955 0.925 0.948 0.949 0.941 0.948

MadcapNet 1.51M 24.24 36.24 37.49 37.07 42.85 34.09 35.61 35.37 33.96 36.67 33.12 36.32
0.951 0.961 0.963 0.981 0.962 0.966 0.949 0.962 0.960 0.948 0.961

Following the protocol of [3, 35], 50 HSIs in the ICVL dataset and 9 HSIs in the Harvard dataset are236

used for test respectively, and the rest samples for training. All HSIs for training and test are cropped237

into patches with a spatial size of 48× 48, while keeping the band number unchanged. The snapshot238

measurements are generated by the 48× 48 mask of CASSI used in [3].239

Six existing methods are selected for comparison, including (a) a conventional method: SSNR [16];240

and (b) six supervised learning-based methods: HSCNN [36],λ-Net [5], DNU [6], DTLP [37], and241

HDNet [9]. The DNU and DTLP use DUNs, and the HDNet is a latest method.242

See Table 2 for the quantitative comparison. The results of the compared methods are cited from [37].243

The proposed one outperformed all other methods, with more than 0.85db PSNR improvement on244

both datasets. Such noticeable performance gains of MadcapNet over other DUNs again demonstrated245

the effectiveness of our network architecture.246

Table 2: Quantitative results in PSNR(dB) and SSIM on ICVL and Harvard datasets.

Dataset Metric SSNR HSCNN λ-Net DNU DTLP HDNet MadcapNet

ICVL PSNR 30.40 28.45 29.01 32.61 34.53 36.38 37.60
SSIM 0.943 0.934 0.946 0.966 0.977 0.981 0.985

Harvard PSNR 31.14 27.60 29.37 31.11 32.43 34.02 34.88
SSIM 0.942 0.895 0.909 0.929 0.941 0.950 0.956

Visual inspection See Figure 2 for the visualization of HSI reconstruction results on two samples247

from the KAIST and Harvard datasets respectively. The spectral curves (density versus wavelength)248

correspond to the points marked by green boxes in the RGB references. In the legends of both249

figures, we provide the curve correlation value between the result of a compared method and the250

ground truth. Those values show that the HSIs reconstructed by the proposed MadcapNet have251

the highest correlation to the ground truths. We also visualize three spectral channels of an entire252

reconstructed HSI and zoom in the selected regions marked by yellow boxes. It can be seen that the253

results of MadcapNet are more visually pleasing than that of other compared methods, with a better254

reconstruction of structures.255
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Figure 2: Visual comparison of HSI reconstruction on two samples from KAIST and Harvard
datasets respectively. Left: spectra curves of the selected regions marked by green boxes. Right:
reconstruction on the spectral channels.

4.2 Evaluation on Real Data256

We also conduct a test on the real snapshots of spatial size 660×714 from [7, 28], which are captured257

by a real system with 28 wavelengths ranging from 450nm to 650nm and with 54-pixel dispersion258

in the column dimension. Following [7, 28], we use the mask associated with that real system to259

generate snapshots on both the CAVE and KAIST datasets, and then we inject 11-bit shot noise to the260

snapshots for simulating real situations. The resulting data is used to retrain our model. Due to the261

lack of ground truths in test data, we only compare the qualitative results of different methods. See262

Figure 3 for the reconstruction results on a real scene, and see more in the supplementary materials.263

The performance of MadcapNet is also good on the real data. This indeed has demonstrated the good264

generalization performance of our model.265

4.3 Ablation Studies266

Ablation studies are conducted on the KAIST dataset. We form some baselines by removing one or267

more main components of our approach. Concretely, we consider (a) replace the MAD blocks by268

the GD steps (4); (b) replace the cross-stage SA in the CAP network with the inner-stage SA which269

uses the features at current stage to calculate K(k),Q(k),V (k) in (15); (c) replace the cross-stage SA270
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Figure 3: Visual comparison of HSI reconstruction on real data, in terms of two spectral channels.

with a same number of convolutional layers; (d) remove the SGC loss Lsgc. For a fair comparison,271

each baseline is configured to have (nearly) the same number of parameters as the original model, by272

uniformly increasing the channel numbers of convolutional layers. The results are listed in Table 3.273

It can be seen that each main component in our approach plays an important role. Using the MAD274

blocks as an alternate to GD steps can improve PSNR by almost 1db. It also brings improvement across275

all baseline settings. Benefiting from the power of SA, the cross-stage SA brings noticeable PSNR276

gain. In addition, the SA utilized in the cross-stage manner leads to around 0.36dB improvement in277

PSNR over that utilized in the inner-stage manner. The SGC loss also has a solid contribution to the278

performance. See Figure 4 for an illustration of the effect of the SGC loss, where training with Lsgc279

makes the tendency of the predicted spectral curves closer to ground truths. See also supplementary280

materials for more results.281

Table 3: Results in ablation studies on KAIST dataset.

Metric w/o MAD w/o CAP Cross→Inner w/o Lsgc Original

PSNR(dB) 35.35 35.80 35.96 35.53 36.32
SSIM 0.947 0.956 0.958 0.951 0.961
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Figure 4: Spectra of selected regions on Scene#1 (first two) and Scene#5 (last two) of KAIST dataset.

5 Conclusion282

In this paper, we proposed an augmented DUN for CASSI-based hyperspectral imaging. The proposed283

DUN is based on the unfolding of PGD, with three-fold augmentations: momentum-motivated284

ConvLSTM-assistant module for improving the gradient descent steps, a sub-network with cross-stage285

self-attention for exploiting self-similarities of an HSI and enhancing feature flow simultaneously,286

and a loss to induce predictions biased to spectral geometry consistency. The combination of these287

augmentations leads to noticeable performance improvement in HSI reconstruction, which were288

demonstrated by extensive experiments. The proposed DUN also sees its potential application to289

other compressive imaging problems. We will study it in the future.290
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