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Abstract

Prototypical networks aim to build intrinsically explainable models based on the
linear summation of concepts. Concepts are coherent entities that we, as humans,
can recognize and associate with a certain object or entity. However, important
challenges remain in the fair evaluation of explanation quality provided by these
models. This work first proposes an extensive set of quantitative and qualitative
metrics which allow to identify drawbacks in current prototypical networks. It
then introduces a novel architecture which provides compact explanations, out-
performing current prototypical models in terms of explanation quality. Overall,
the proposed architecture demonstrates how frozen pre-trained ViT backbones
can be effectively turned into prototypical models for both general and domain-
specific tasks, in our case biomedical image classifiers. Code is available at
https://github.com/hturbe/protosvit.

1 Introduction

As deep learning (DL) models are increasingly used for decision making, transparency is becoming
a critical issue. Lack of transparency has been repeatedly identified as a key barrier for adoption
of DL models in high-risk areas, including the healthcare sector [1]. In this sense, research around
explainable AI (XAI) has seen the development of a number of methods which can be broadly
separated into two areas: i) post-hoc interpretability methods, and ii) self-explainable models. Post-
hoc interpretability methods are applied on trained models and typically provide a relevance or
saliency map that reveals the importance of each input feature to a certain output [2]. This work
instead focuses on models which are explainable by design, or self-explainable model (SEM),
bypassing the need for post-hoc interpretability. Part-prototype models are special SEM aimed at
learning concepts that can be linearly combined to classify images [3].

Along the development of XAI models, the evaluation of the explanations provided by these models
is critical. Several works showed that while post-hoc interpretability methods have some attractive
properties: they are model agnostic (e.g. SHAP [4]), and they do not affect the performance of the
underlying DL model, they also suffer from some critical drawbacks. Key drawbacks include a lack
of faithfulness to explaining the model [5, 6, 7] and sensitivity to negligible perturbations [8, 9].
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More recently, explanations provided by prototypical networks have also been shown to be inaccurate,
mainly because they often do not correctly localize important parts of the image for the classification
[10, 11] as well as not representing coherent concepts in the input space [12, 13].

A comprehensive set of 12 properties (Co-12) to evaluate explanation quality has been defined in
[14]. Evaluating model’s interpretability has been shown to be difficult as it often relies on human’s
apriori knowledge [5] or might be plagued by distribution’s shift induced by the interpretability
evaluation methods [15]. The FunnyBirds framework [16] was designed to evaluate several aspects
of explanation quality while addressing the difficulties listed above. It includes a synthetic dataset
along a number of metrics. While not designed specifically for SEM models it covers several aspects
found in the Co-12 properties. In addition, the dataset can be used to adapt previous metrics designed
specifically to evaluate prototypical part models. Based on these aspects, the contributions of this
work are the following:

1. We provide an extensive set of quantitative metrics and qualitative evaluation adapted to
prototypical-part models and tackling different issues identified in the literature. Applying
these metrics on state-of-the-art (SOTA) part-prototypical model, highlights important issues
regarding the correctness and contrastivity of the explanations obtained with these models.

2. We propose a novel architecture, ProtoS-ViT, addressing the shortcomings identified with
previous SEM models. ProtoS-ViT, leverages frozen foundation models (ViT) as the back-
bone to provide SOTA performance in terms of explanation i) correctness, ii) compactness,
using no more than seven prototypes for the benchmark datasets which cover both general
and biomedical tasks; iii) consistency, explanations are consistent, semantically and visually
coherent; iv) contrastivity, explanation correctly identifies discriminative parts of the image
while being competitive in terms of classification performance on a wide range of datasets.
ProtoS-ViT is computationally efficient as it only requires training a lightweight head.

2 Related Work

Research on outcome explainability using SEMs that are explainable by design has been very
active in the last few years. Many self-explainable classifiers are based on the prototypical part
architecture following the ProtoPNet model [3]. Prototypical part models aim to extract concepts
that can be linearly combined to classify images. While part-projection has been commonly used to
align prototypes with specific patches in the training data, recent studies [12, 17] have moved away
from this approach. We argue that part-projection conflicts with neuroscience theories of human
brain concept learning mechanisms, which propose two models for concept representation: (i) the
exemplar model, where concepts are represented by multiple exemplars, and (ii) the prototype model,
where concepts are abstracted from specific exemplars [18]. Forcing prototypes to match specific
patches fails to align with either the exemplar or prototype model of concept representation in human
cognition.

Starting from ProtoPNet work [3] different methods were developed to improve the classification
performance, the faithfulness of the explanations as well as reduce the number of prototypes used by
the model to make a decision [19, 20, 21, 12]. These improvements were mainly achieved by devising
new ways to create the prototypes and introducing new losses to lower the semantic gap between
the prototypes and meaningful concepts from images. The developed architectures use different
variations of CNN backbones including VGG [22], ResNet [23] and DenseNet [24], followed by a
linear classifier. Other approaches replaced the final linear classifier with a decision tree. For instance,
ProtoTree combined a CNN backbone with a decision tree [25], while the ViT-NeT architecture
combines a vision transformer (ViT) backbone with a neural tree decoder [26].

Explainability is multifaceted, imposing a number of desiderata for a model to be explainable [14].
The Co-12 properties [14] aim to define 12 properties that comprehensively evaluate the quality of an
explanation. We quickly introduce the most relevant properties from [14] along the stability property
from [27]:

1. Correctness: Whether the explanation faithfully represents the model’s behavior.
2. Completeness: How much of the model’s behavior is captured by the explanation.
3. Consistency: Whether similar inputs have similar explanations [14], with its extension for

prototypical part networks to include the prototype consistency in the input space [27].

2



4. Contrastivity: Whether the explanation correctly captures parts of the image that are
discriminant for the predicted class.

5. Compactness: Whether the explanation is compact.

6. Composition: The explanation presentation should reflect the model’s behavior.

7. Stability: Prototype attribution should be stable under small perturbations, such that pertur-
bations invisible to the human’s eyes do not change the prototype attribution [27].

We identify two important flaws in how current XAI evaluations are performed, which we address
in this work: i) lack of precise part annotations, and ii) human apriori bias. First, several research
evaluate consistency [27, 11, 12] or stability [27] on the center location of the object parts provided
in the CUB dataset, with a box of arbitrary size often drawn around the centre to see if a prototype
corresponds to a given object part. Instead, in this work, we leverage the precise part annotations
provided in the FunnyBirds dataset to avoid this issue. Regarding apriori human bias, the evaluation
of an explanation contrastivity has often been based again on CUB [21, 12], evaluating whether the
prototypes used for classification lie over the bird or the background. This introduces a human bias in
the evaluation of the model interpretability as the environment of a bird might be used by the model
in classifying bird species.

One common concern for SEM models and more specifically prototypical part networks is the
spatial misalignment of the explanations: “Here does not correspond to there” [11]. Given that the
models have a receptive field that can reach 100% of the initial image, there is no assurance that the
embedding of a patch is directly correlated to the same position in the input image. More evidence of
the latter issue has also recently been raised by several authors – see e.g.,[10, 11]. However, none of
the metrics found in the litterature directly evaluate spatial alignment. Indeed the metrics presented
in [11] such as ROT evaluate the correctness of the model and not directly the spatial alignment.
This distinction is shown to be important in our discussion. The metric proposed by [10] is based
on adversarial noise added to the input pixels outside the pixels activated by the prototype with
the largest activation in an image. Given this augmentation, we argue that this method essentially
evaluates a model’s robustness to adversarial attacks (stability) and not the spatial alignment. A
model robust to such attacks could perform well without necessarily encoding local information. We
therefore observe that currently, no single metric can alone guarantee the spatial alignment of the
proposed explanations.

3 Methodology

3.1 Benchmark for evaluation of prototypical-part models

Based on the properties presented above, metrics from the FunnyBirds framework are used to evaluate
the correctness, completeness, consistency, and contrastivity of the explanations. We refer the reader
to the paper that introduces the framework [16] for more details on the metrics used for the evaluation
of these properties. The part importance function PI used to compute the metrics is adapted to
prototypical part models as described in Appendix H. This adaptation follows a recent work on how to
design the importance function for prototypical part models [28]. Consistency and stability properties
are evaluated by adapting the corresponding metrics developed by [27] to the FunnyBirds dataset,
leveraging the precise part-annotations available for this dataset. More details on the adaptation can be
found in Appendix I. This change allows for a finer evaluation of the explanations by considering the
full similarity map and not only the top relevance. Explanation compactness is evaluated following
the metrics defined in [12], that is, the global size to measure the total number of prototypes retained
by the model to make its predictions across the whole task; and the local size, to measure the average
number of prototypes used to make a prediction on a single image. We restrict the number of local
prototypes to the ones used for the predicted class following the definitions in [12].

3.2 ProtoS-ViT architecture

An overview of the global architecture is depicted in Figure 1 and is described in more detail next.
Consider a classification task that consists in mapping an image x ∈ RH×W×C to a labelled target
y ∈ NK where H,W,C represent, respectively, the height, width and number of channels of the
input image, and K is the number of classes. The input image is fed to a pre-trained feature extractor
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Figure 1: Model architecture. The grey box depicts the similarity head. The pink box indicates the
operations forming the prototypical head. Transparency of the elements aims to reflect the model’s
sparsity. Bottom: similarity maps interpolated from the similarity head.

F : x → fi ∈ RCe for patch index i ∈ [1, · · · , I], and I = H
s · W

s , with s indicating the patch size
of the encoder, and Ce the size of the image embedding dimension.

Following the pre-trained feature extractor, a projection head map consisting of three convolution
layers with residual connections maps the features to the corresponding projected features gi ∈ RD.
This organization is inspired by [29] for unsupervised segmentation. All convolutions at this stage
have a 1× 1 kernel size to retain local information. The projected features are then compared to the
prototypes by calculating their cosine similarity:

Si,j = cos < gi, pj > . (1)

where pj denotes prototype j in the set of all prototypes P = {pj ∈ RD}, with j ∈ [1, · · · , J ]
where J represents the initial number of learned prototypes and D their dimension. The prototypes
similarity distribution for each patch is then normalised with a softmax function so that the normalised
similarity is equal to S̃i,j = σi (Si,j/τ).

Once the prototype similarity distribution is known for each patch, the second step aims to determine
the importance of the prototype distribution at the image level towards the final class with a novel
prototypical head. Most prototypical models only use the maximal value for each prototype across
the image as an input to the final classification head [3, 30, 31] such that the prototype score
hj = maxi S̃i,j . However, this operation prevents the model from learning how the distribution of a
prototype presence across the image influences its importance. To tackle this issue, we introduced
depthwise convolutions with independent kernels for each prototype. Independent kernels are key
for the score to properly reflect the importance of a single prototype presence with no interactions
between prototypes. In addition, to model the presence of the prototype at different scales, two
convolutions were introduced following insights from the Inception architecture [32]; a convolution
with a kernel of size 1 × 1 and another one with size 3 × 3. The output of the two convolutions
applied to the matrix S̃i,j is then summed and normalised by a LayerNorm:

hj = max
{

LayerNorm
(

Conv1×1(S̃j) + Conv3×3(S̃j)
)}

. (2)

The max operator is finally applied to the sum and values of hj below 0.1 are set to 0 when doing
inference. The final classification head is then a simple linear classifier with weights W restricted to
being positive to improve the explainability of the model. This linear layer takes as input the vector h
that indicates the global score of each prototype in the input image. The linear layer converts this
score into a class based on the importance of each prototype towards the class of interest. For the
rest of the work, we define the importance matrix I = (ik,j) ∈ RK×J with the importance ik,j of
prototype j toward class k as:

ik,j = Wk,j × hj , (3)

It is important to note that concepts are not specific to a single class, allowing the model to share
common concepts across classes and reducing the overall number of prototypes required to perform a
given classification task. This is particularly relevant for tasks where some classes might share many
concepts in common, as shown in the experiment section.
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In order to fulfil the compactness properties described in the introduction, the model should provide
a classification using as few concepts as required for a single image (local size of the explanation),
as well as using the smallest number of coherent concepts for the entire task (global size) to avoid
redundancy of the learned prototypes. In our work, compactness is promoted with a regularization
loss applied on the importance matrix I, namely the Hoyer-Square (HS) [33]:

LHS = α
|I|2

∥I∥22
+ γ∥I∥2. (4)

In order to minimise the number of concepts used for each prediction, we set α = γ = 0.01. In
addition to these terms, we also adopt the tanh-loss LT devised by [12]:

LT = − 1

J

J∑
j

log

(
tanh (

I×B∑
i

S̃i,j) + ϵ

)
(5)

where B is the batch size. This last loss is key for the model not to collapse under the pressure of the
sparsity loss LHS at the beginning of the training procedure, enforcing that each prototype is at least
present once in each batch. The total loss function is therefore:

L = LCE + ϕLHS + LT (6)

where LCE is the cross-entropy loss between the model’s prediction and the target, and ϕ the sparsity
loss factor. Nomenclature can be found in Appendix A

4 Experiments

Table 1: Accuracy (Acc.), Global Size (Glob. Size), and Local Size (Loc. Size) for different models
on the general datasets. Bold indicates the best score for the given metric. ⋆Additional evaluation of
this architecture reported a lower accuracy of 84.51% [34].

CUB CARS PETS Funny Birds
Method Acc.

↑
Glob.
Size
↓

Loc.
Size
↓

Acc.
↑

Glob.
Size
↓

Loc.
Size
↓

Acc.
↑

Glob.
Size
↓

Loc.
Size
↓

Acc.
↑

Glob.
Size
↓

Loc.
Size
↓

DINO-L/14 90.5 NA NA 90.1 NA NA 96.6 NA NA
ProtoPNet 79.2 2000 86.1 1960 94 500
ProtoTree 82.2 202 86.6 195

ProtoPShare 74.7 400 86.4 480
ProtoPool 85.5 202 88.9 195
PIP-Net 84.3 495 4 88.2 515 4 92 172 2 81.2 47 1
ViT-NeT 91.6⋆ 93.6
PixPNet 81.8 2000 10

ST-ProtoPNet 86.1 8000 92.7 3920 99.6 1000 20
ProtoS-ViT (ours) 85.2 39 6 93.5 54 7 95.2 44 4 96.8 26 6

Backbones We choose DINOv2 [35] and OpenClip [36] as the backbone for general tasks. Both
these models have demonstrated strong performance across a range of computer vision benchmarks.
DINOv2 is particularly interesting as it has been used for unsupervised segmentation tasks achieving
SOTA performance and demonstrating the quality of local information obtained with this model [35,
37]. To further demonstrate the versatility of the proposed approach we also apply our model to three
Biomedical tasks using the ViT from BioMedCLIP [38]. Full experimental setups and datasets are
described in respectively Appendix B and Appendix C.

Baselines We compare the proposed approach to a non-explainable baseline (DINOv2 ViT-L/14,
with a linear classifier reporting results from the initial model publication [35]) along SOTA
explainable prototypical models, namely ProtoPNet [3], ProtoTree [25], ProtoPShare [19], Pro-
toPool [39], PIP-Net [12], ViT-Net [26], ST-ProtoPNet [21], PixPNet [11]. We present all re-
sults found in the litterature, that is either in the paper presenting the model or in further work.
In addition, we also benchmark our architecture along PIP-Net and ST-ProtoPNet on the Fun-
nyBirds dataset [16]. These models were selected because ST-ProtoPNet consistently achieves
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the highest accuracy among prototypical models in the literature, while PIP-Net offers the most
compact explanations in terms of both local and global size. We additionally retrained the
PIP-Net architecture on FunnyBirds with a DINOv2 ViT-B/14 to differentiate the impact of the
backbone architecture from the overall prototypical part architecture. Results are shown in Ap-
pendix J along with additional results to analyse the impact of training or freezing the backbone.

Acc.
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 Size
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Figure 2: Radar plot summarizing model perfor-
mance both in terms of Accuracy (Acc.) as well as
explainability quality with the following metrics
Global Size (Glob. Size), and Local Size (Loc.
Size), Completeness (Compl.), Correctness (Cor-
rect.), and Contrastivity (Contrast.), Consistency
(Consist.), and Stability (Stabil.).

Model performance in terms of accuracy as well
as local and global size are shown for the gen-
eral datasets in Table 1. Results for the Biomed-
ical datasets are shown in Appendix F. Figure 2
shows a radar plot of six explainability proper-
ties described above along with the classification
accuracy for the proposed model and two SOTA
prototypical models, namely PIP-Net and ST-
ProtoPNet. This quantitative assessment of the
quality of the explainability was complemented
by a user-study on FunnyBirds with the results
presented in Appendix K.2. The accuracy for
our model on the CUB dataset is an average over
four runs, where the standard deviation was re-
spectively 0.14, 0.11 and 2.9 for the accuracy,
local size and global size. Results for the gen-
eral dataset with the OpenCLIP backbone are
presented in Appendix E.

We show score sheets with predictions on two
instances from the CUB dataset in Figure 3 with
the relative importance of the four most impor-
tant prototypes for each prediction. The first
image in each row shows the location of the four
prototypes while the heatmap in the subsequent
images represents the similarity map between
each patch following the projection head and
the corresponding prototype pj . Given that the
backbone output has a reduced spatial dimen-
sion (e.g., DINOv2 has a stride of 14), we inter-
polate the similarity map back to the original input resolution. Above each prototype, we indicate
the corresponding importance, and we retain a consistent color scheme across images to represent
identical concepts. Above the first image of each row, we show the predicted score as well as the
percentage of this score explained by the prototypes shown in the figure. Additional score sheets for
all datasets are shown in Appendix D and in Supplementary materials [40].

5 Discussion

The aim of this work was twofold: i) to provide a comprehensive set of metrics to identify current
issues in common prototypical part networks, ii) propose a novel architecture aiming to address some
of these flaws.

The evaluation of explanation quality is complex and requires a multifaceted evaluation. Based
on the requirements set out in the literature, the proposed set of metrics is the first to allow a
thorough evaluation of prototypical part models. This global assessment is key to highlight critical
issues that might not appear when only considering specific aspects of the evaluation. For instance,
while PIP-Net achieves good classification accuracy and consistent explanations, as observed both
visually by inspecting the prototypes and through the quantitative evaluation (see Figure 2), it fails to
produce contrastive explanations as highlighted by the contrastive metric equal to zero. The patches
highlighted by the prototype do not represent the discriminative portions of the images. Instead, the
model encoded discriminative features found across the images in given patch embeddings with no
direct relation to the features found at this precise location.

Another issue with models found in the literature is the local and global size of the explanations.
Models such as ST-ProtoPNet have up to 40 prototypes per image while showing activation maps for
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Figure 3: Score sheet for predictions on two random samples of the CUB dataset. Each row shows a
prediction on a different sample. The first column indicates the position of the top four prototypes.
Each subsequent column shows a prototype along with its importance towards the predicted class.
Above the first column, we present the total score for the predicted class as well as how much of this
score is explained by the prototypes shown in the figure.

only a few prototypes, which breaks the completeness and composition requirements set by [14]. In
the score sheets presented in this work, see for example Figure 3, we present the percentage of the
predicted score explained by the prototypes shown in the score sheet. With a small local size, a very
large fraction of the explanation can be easily shown to the user. As shown in Table 1, the proposed
architecture matches or exceeds the accuracy of comparable SOTA prototypical networks2. Regarding
explanation quality, the radar plot in Figure 2 shows that ProtoS-ViT achieves the highest overall
explainability score. ST-ProtoPNet performs well in explanation faithfulness, with similarity maps
accurately reflecting pixel importance for classification, as seen in the evaluation of contrastivity and
correctness. However, its lower completeness indicates that parts of the image outside the explanations
still influence predictions. ProtoS-ViT performs strongly in completeness and contrastivity, capturing
all relevant pixels. Further evaluation shows that the model is robust to part deletion, compensating
by enhancing the contribution of remaining parts; see Appendix H. An ablation study demonstrated
that the design of the prototypical head is key to reduce the global size of the developed model;
see Appendix G. A trade-off involving the global size of the model must be carefully considered,
as prototypical models need to generate a diverse array of prototypes to accurately classify images.
However, these models often produce redundant prototypes, which leads to an increased global
size and hinders the explainability of their results. Going beyond quantitative metrics, user studies
were used to evaluate this trade-off, demonstrating that the developed architectures effectively reuse
concepts across different classes.; see Appendix K.1 as well as producing consistent prototypes from
a human perspective; see Appendix K.2.

A key aspect of our architecture was to retain the backbone frozen throughout the training. ViT
models like DINOv2 have been shown to produce semantically consistent embeddings with local
information [41]. By maintaining the backbone frozen along a projection head with a receptive
field equal to one, we were able to retain this spatial alignment offered by foundational ViT models
and obtain explanations quality surpassing other models. We conducted a study to demonstrate
that training the backbone along the rest of the architecture might indeed improve classification
performance but at the cost of lower explanation quality, see Appendix J. Although spatial alignment
is not directly measurable through a single metric, it is a key aspect to obtain good explanations with
prototypical part networks (as demonstrated in our analysis of PIP-Net). Further work should therefore
focus on how the spatial alignment of backbones such as ViT can be retained while training the model
end-to-end for specific tasks. In addition, experiments on biomedical datasets showed classification
performance on par with non-explainable baseline. Further works will need to investigate in more
details the possible applications of this architecture for biomedical datasets.

2ViT-Net achieves the top accuracy on CUB and CARS but do not support simple (linear) case-based
reasoning on prototypes, as noted in [11].
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Appendix

A Nomenclature

Table 2: Notations and symbols used in this paper.
Symbol Definition

Variables x ∈ RH×W×C Sample (image)
y ∈ NK Labeled target
K Number of classes
H Sample height
W Sample width
C Sample number of channels (3 for RGB images)
s Patch size of encoder
i ∈ [1, · · · , I] patch index
I = H

s · W
s Number of patches

Ce Patch embedding dimension
J Initial number of prototypes
P = {pj ∈ RD} Learnable set of prototypes
pj Prototypes j
j ∈ [1, · · · , J ] Prototype index
D Prototype dimension
gi Projected sample feature i
I = (ik,j) ∈ RK×J Importance matrix
hj Prototype score

Operators F : x → fi ∈ RCe Encoder operator
Si,j Cosine similarity between projected sample gi and prototype pj
S̃i,j Normalised cosine similarity

B Experimental Setup

The proposed architecture is implemented in PyTorch [42]. First, all images were resized to a pixel
resolution of 224 using random resizing and cropping during training and center cropping at test
time. Image augmentation was also performed during training using the AugMix method [43]. The
large version of DINOv2, ViT-L/14 with registers [35, 41] as well as OpenCLIP ViT-L/14 [36] were
tested as backbone for the general classification tasks. For biomedical tasks, the ViT encoder from
BioMedCLIP [38] was used as the backbone. The backbone was frozen and the rest of the architecture
trained for 80 epochs, with 10 epochs used for the warm-up. The learning rate (lr) increased linearly
during the warm-up to a value of 0.01 with subsequent application of cosine decay. In addition, each
model was initialized with 300 prototypes P = {pj}300j=1 with pj ∈ R512.

All models were trained on an internal cluster with each model trained on a single NVIDIA GeForce
RTX 3090, 12 cores and 64 GB of memory. All models are trained for 80 epochs with an AdamW
optimiser and a base learning rate equal to 0.01. The learning is progressively increased for 15
warm-up epochs and then progressively following a cosine-decay schedule. ϕ and ρ were both set
equal to 1. With this configuration, individual models were trained in between one and three hours.

B.1 Setup for baseline models

ST-ProtoPNet and PIP-Net were trained on the FunnyBirds in order to act as a baseline across the set
of metrics presented in this work. Both models were trained following the baseline parameters found
in the corresponding article that introduces the respective models. Parameters for ST-ProPNet are
found in Table 3 and parameters for PIP-Net are listed in Table 4.
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Table 3: Hyperparameters for ST-ProtoPNet
Parameter Value

Backbone model Densenet 161
Image size 224× 224
Batch size 80
Protototype shape (1000, 64, 1, 1)
Prototype activation function log
LR joint optimizer {features: 1e-4, add on layers: 3e-3, prototype vectors: 3e-3}
LR joint step size 10
Warm LR {add on layers: 3e-3, prototype vector: 3e-3}
LR last layer 1e-4
Epochs train 20
Warmup epochs 10
Push start 100
Push epochs [100,110,120]

Table 4: Hyperparameters for PIP-Net
Parameter Value

Backbone Model Convnext Tiny 26
Batch Size 16
Batch Size Pretrain 16
Epochs 20
Optimizer Adam
Learning Rate 0.05
Learning Rate Block 0.0005
Learning Rate Network 0.0005
Weight Decay 0.0
Number of Features 0
Image Size 224
Freeze Epochs 5
Epochs Pretrain 5

C Dataset description

The datsets used in the study are either general purpose datasets (CUB-200-2011, referred as CUB,
Stanford Cars, referred as CARS, and Oxford-IIIT Pets referred as PETS), medical datasets (ISIC
2019, RSNA, and LC25000), and one synthetic dataset designed for evaluating part-prototypical
models (FunnyBirds). The seven datasets details (including the licence type) are described below:

CUB-200-2011 [44]: The Caltech-UCSD Birds-200-2011 dataset is a dataset containing
11,788 images across 200 bird species. Each species is represented by roughly 60 images, and
the dataset includes detailed annotations such as species, bounding boxes, and part locations. The
CUB-200-2011 dataset is publicly available and can be used under the Creative Commons Attribution
(CC-BY) license.

Stanford Cars [45]: The Stanford Cars dataset contains 16,185 images of 196 classes of cars, with
each class typically corresponding to a make, model, and year of a specific car. The dataset includes
annotations for the car model, bounding boxes, and viewpoints. The Stanford Cars dataset licence is
unknown.

Oxford-IIIT Pets [46]: The Oxford-IIIT Pet dataset consists of 7,349 images of 37 different breeds
of cats and dogs. Each image includes a class label, species, and detailed pixel-level segmentation
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annotations. The dataset is available under the Creative Commons Attribution-NonCommercial-
ShareAlike (CC BY-NC-SA 4.0) license.

ISIC 2019 [47, 48, 49]: The ISIC 2019 dataset contains 25,331 dermoscopic images representing
nine different types of skin lesions, with associated ground truth diagnoses. The dataset is part of the
International Skin Imaging Collaboration (ISIC) and is available for research purposes under the CC
BY-NC 4.0 license.

RSNA Pneumonia Detection [50]: The RSNA Pneumonia Detection Challenge dataset includes
30,000 annotated chest X-ray images, with labels indicating the presence or absence of pneumonia.
This dataset was created for the RSNA 2018 Machine Learning Challenge and is freely available
for non-commercial use under the terms provided by the RSNA, typically aligning with the CC
BY-NC-SA 4.0 license.

LC25000 (Lungs) [51]: The LC25000 dataset includes 25,000 histopathology images of lung tissue,
categorized into three classes: lung adenocarcinoma, lung squamous cell carcinoma, and benign
lung tissue. The dataset is openly available for research and educational purposes under a Creative
Commons Attribution (CC BY 4.0) license.

FunnyBirds [16]: The FunnyBirds dataset consists of 50 500 images (50k train, 500 test) of synthetic
50 bird species. The authors manually designed 5 bird parts: eyes (3 types), beak (4 types), wings (6
types), legs (4 types) and tail (9 types) to construct the 50 classes. The data set is openly available
under the Apache-2.0 license.
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D Additional score sheets

We present score sheet for results on the CARS and PETS dataset in Figure 4. Additional results can
be found in the Supplementary Materials [40]

(a)

(b)

Figure 4: Score sheet for predictions on three random samples of the CARS (a) and PETS (b) dataset.
Each row shows a prediction on a different sample. The first column indicates the position of the top
four prototypes. Each subsequent column shows a prototype along with its importance towards the
predicted class. Above the first column, we present the total score for the predicted class as well as
how much of this score is explained by the prototypes shown in the figure.
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E Results with OpenCLIP backbone

In order to evaluate the influence of the backbone on the results, the proposed architecture was
evaluated with on the general datasets with OpenCLIP-L as its backbone. Results for this study
are presented in Table 5. Interestingly, in the table above, the model outperforms our baseline
configuration only on the CARS dataset which is the only dataset where the OpenCLIP model
evaluated using a simple classification head outperforms the DINOv2 model [35].

Table 5: Accuracy (Acc.), Global (Glob.) Size, and Local (Loc.) Size comparison of different models
on general datasets with OpenCLIP-Large backbone

Acc. ↑ Glob. Size ↓ Loc. Size ↓
CUB 79.1 27 5
CARS 93.8 50 6
PETS 93.8 37 4

F Results on Biomedical datasets

The developed architecture was further tested with the ViT from BioMedCLIP [38] in order to
demonstrate the usefulness of the proposed methods on specialised tasks such as biomedical tasks.
Results for three tasks are presented in Table 6.

Table 6: Accuracy (Acc.), Global (Glob.) Size, and Local (Loc.) Size comparison on three biomedical
classification tasks. † BiomedCLIP was evaluated on zero shot classification on LUNGS and 100-shot
on RSNA. In addition accuracy for both models are extracted from graphs in the corresponding model
publication [38].

Method Acc. ↑ Glob.
Size ↓

Loc.
Size ↓

ISIC ProtoS-ViT (ours) 77.5 13 4.5

RSNA BiomedCLIP 83†

ProtoS-ViT (ours) 82.8 9 4

LUNGS BiomedCLIP 65†

ProtoS-ViT (ours) 100 21 7

F.1 Samples from the RSNA dataset

The RSNA dataset is labeled to indicate the presence or absence of pneumonia on chest X-rays. To
diagnose pneumonia on chest radiographs, clinicians focus on identifying areas that show opacification
of airspaces or consolidation of lung parenchyma. Interestingly, a clinician observed that prototypes
associated with the presence of pneumonia consistently lay within the lungs and appeared to identify
white regions corresponding to opacification or consolidation. In contrast, prototypes associated with
the absence of pneumonia were located outside the lungs and seemed to lack any obvious clinical
significance. One possible explanation for these irrelevant prototypes is that the model effectively
learned to identify signs of pneumonia but then generated unrelated prototypes to increase the score
for the absence of pneumonia, functioning similarly to a bias in the classification head. Examples of
prototypes associated with both the absence and presence of pneumonia are shown in Figure 5a and
Figure 5b, respectively.
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(a) (b)

Figure 5: Random sample with activation for a prototype associated with the absence (a) and presence
(b) of a penuomnia

G Ablation studies

Ablation studies were carried to demonstrate the effectiveness of the prototypical head and sparsity
loss. For the experiment without the prototypical head, the latter was replaced with a simple max
operation over the similarity matrix S̃. The experiment without the sparsity loss, was conducted by
replacing the loss in equation 4 with an L1 norm on the weight matrix of the classification head. The
results of these two experiments are presented in Table 7. A study to assess the usefulness of the
second kernel in the prototypical head is found in Table 8. Finally, the impact of the weighting terms
in the sparsity loss on classification accuracy, local size and global size are shown in Table 9.

Table 7: Results from the ablation studies, presenting the baseline model compared to the architecture
w/o the prototypcial head and w/o the sparsity loss. Bold indicates the best score for the given metric.

CUB Cars PETS

Acc. ↑ Glob.
Size
↓

Loc.
Size
↓

Acc. ↑ Glob.
Size
↓

Loc.
Size
↓

Acc.↑ Glob.
Size
↓

Loc.
Size
↓

Baseline 85.2 39 6 93.5 54 7 95.2 44 4
w/o prototypical head 85.4 142 20 93.5 148 19 95.9 164 15

w/o sparsity loss 84.6 44 7 92.8 50 7 95.2 44 4

H FunnyBirds methodology and results

The FunnyBirds framework devised by Hesse et al [16] relies on a part importance function PI(·)
that needs to be adapted to the chosen explanation method. We adapt the PI(·) to reflect prototypical
approaches. For each prototype pj , we normalise the corresponding similarity map such that it
sums to one and then multiply it by the corresponding importance ij,k. All metrics computed on

17



Table 8: Ablation study for ProtoS-ViT with a single kernel in the prototypical head with size (1,1).
Dataset Accuracy Glob size Loc size

CUB 85 37 7
CARS 93 44 7
PETS 95 56 6
ISIC 76 18 7
RSNA 83 7 3
LUNGS 100 28 9

Table 9: Study on the impact of the weighting term in the loss.
α γ Accuracy Local size Global size

0.01 0.01 85.2 6 39
0.1 0.01 85.2 4 34
0.01 0.1 86.7 4 113

0.001 0.01 86.0 8 51

the FunnyBirds dataset to evaluate the quality of the explanation are presented for the proposed
architecture, as well as for PIP-Net and ST-ProtoPNet in Table 10.

Table 10: FunnyBirds evaluation metrics.
Metric Abbreviations Value

ST-ProtoPNet PIP-NET ProtoS-ViT (ours)

Controlled synthetic data check CSDC 0.78 0.45 0.94
Preservation check PC 0.69 0.20 0.97
Deletion check DC 0.67 0.29 0.92
Distractability D 0.69 0.92 0.90
Background independence BI 1 1 1
Single deletion SD 0.52 0.60 0.61
Target sensitivity TS 0.64 0.01 0.99
Mean explainability score mX 0.62 0.41 0.84

The lowest metric for our approach is the single deletion (SD) metric. This metric evaluates whether
the relevance attributed to each category: beak, eye, foot, tail and wing is correlated to their influence
on the model’s predictions. Figure 6 and Figure 7 help illustrate how the model might be affected as
different parts of the birds are removed. First, we observe that as the different parts are individually
deleted, the corresponding prototype disappears reinforcing the strong spatial ability of the model.
With this experiment, we can see that the local information encoded in the patch embeddings is
directly related to the parts highlighted by the similarity. Regarding the single deletion metric, we
observe that as a prototype is deleted, this prototype effectively disappears, but the importance of the
other remaining prototypes increases. With this increase, the drop in score observed in the predictions
with deleted parts cannot be directly related to the importance of the parts and the metric penalizes
the model for this increase. However, this increase in the score of the prototypes might also help
the model to be more robust as in most cases it is able to make a correct prediction and exploit the
redundancy of the parts found in this specific dataset to make a correct prediction.

The metrics from [16] have been calculated for ST-ProtoPNet, PIP-NET and ProtoS-ViT along with
the adaptation of Consistency and Stability. They are presented in Table 11 in percentage rather
than between zero and one to match the results in Figure 2. Contrastivity and Stability could not
be calculated for PIP-NET as the explanation was a single patch not overlapping with any bird part,
preventing us from running the analysis. Retaining local information is key for explainability. Indeed
if the model shows an explanation which uses information not contained in the highlighted relevant
patches, the model fails to provide transparent explanations. An indication that the local information
is not retained is the contrastivity metric which is almost equal to zero.
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Table 11: Explainability metrics evaluated on the FunnyBirds dataset. Top three metrics come from
[16], while the last two are adapted from [27].

Metric Value
ST-ProtoPNet PIP-NET ProtoS-ViT (ours)

Completeness 70 62 92
Correctness 52 60 61
Contrastivity 64 1 99
Consistency 55 NA 74
Stability 99 NA 99

Figure 6: Part deletion analysis on a sample from the FunnyBirds dataset. The first row represents
the initial prediction on the non-corrupted sample. The following rows show the model’s predictions
along with the most important prototypes as different parts of the bird are removed. This figure allows
to compare the importance attribution of each part with the change in score as this part is removed.
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Figure 7: Part deletion analysis on a sample from the FunnyBirds dataset. The first row represents
the initial prediction on the non-corrupted sample. The following rows show the model’s predictions
along with the most important prototypes as different parts of the bird are removed. This figure allows
to compare the importance attribution of each part with the change in score as this part is removed.
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I Consistency and stability metrics adaptation

The consistency and stability metrics initially developed by Huang et al. [27] were adapted to the
FunnyBirds dataset. The aim was to allow a finer evaluation of the prototypes by taking advantage of
the part-segmentation provided with this dataset. Both metrics are based for each image on the vector
op. This vector is a binary vector indicating whether prototype pj is related to category q ∈ Q. There
are five categories for the FunnyBirds dataset: beak, eye, foot, tail and wing. For each category we set
the entry of the vector op to one if an entry of the similarity map Mj weighted by the importance of
the corresponding prototype ij,k is larger than 0.1 within the binary segmentation mask corresponding
to the given category Nq:

oqpj
= max {ij,k (Mj ◦Nc)} > 0.1 (7)

The consistency and stability scores are then evaluated using the same formula as [27] with our
modified vector op. However as the initial paper considers prototypical models where prototypes only
belong to one class, we repeat the operations across all classes. Only the prototype that appears in the
prediction for the considered class is included, and the result is averaged across all classes.

J Impact of backbone

This section presents results aiming to better understand the choice of the backbone on model
performance, for both ProtoS-Vit and PIP-Net. In order to understand the impact of the backbone
on PIP-Net, this architecture was retrained with DINO ViT-B/14 and evaluated on the FunnyBirds
dataset. This change allow to compare our architecture with PIP-Net with the same backbone. Results
presented in Table 12 show that while the model with a trainable backbone performs better in terms
of explanation quality across different metrics, it still suffers from the contrastivity metric equal to
zero, meaning it does not retain local information, which is key for explainability.

Table 12 also shows the explanation metrics comparing ProtoS-Vit when freezing or training the
backbone. Overall, we observe that training the backbone greatly reduces the quality of the explana-
tion provided by the model especially the consistency of the metric. An example of a score sheet
obtained when the backbone is trained is shown in Figure 8.

Table 12: Comparison between ProtoS-Vit and PIP-NET on explainability metrics evaluated on the
FunnyBirds dataset. BI stands for background independence. Bold indicates the best score for the
given metric.

Architecture ProtoS-ViT PIP-Net

Backbone DINO ViT-B/14
(Freeze)

DINOv2 ViT-B/14
(Trainable)

DINO ViT-B/14
(Trainable)

Accuracy 0.96 0.95 0.99
CSDC 0.94 0.92 0.60
PC 0.96 0.90 0.43
DC 0.95 0.87 0.39
Distractability 0.89 0.84 0.93
BI 0.99 1.00 1.00
SD 0.63 0.76 0.70
TS 0.99 0.95 0.00
Consistency 0.70 0.57 1.00
Stability 0.99 0.97 1.00
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Figure 8: Score sheet for predictions on two random samples from the FunnyBirds dataset. Top row:
frozen backbone, Bottom row: trainable backbone.
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K Evaluation of prototypes quality and semantical consistency

K.1 Classification head correlation

To qualitatively evaluate how the prototypes are reused across classes, we also looked at the correlation
of the weights from the classification head. These weights assign prototypes to the different classes.
Analyses of the correlation across classes of the CUB dataset show that subspecies from a common
species have a high correlation across their corresponding vector in the classification weights as
measured using the Pearson correlation coefficient. Figure 9 shows a strong correlation across
sparrow subspecies while Figure 10 shows the same level of correlation across both woodpecker and
wren. Overall, this analysis shows that prototypes are shared across subspecies effectively sharing
prototypes across similar classes.

Figure 9: Classification head correlation matrix for classes 112 to 135 of the CUB dataset
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Figure 10: Classification head correlation matrix for classes 112 to 135 of the CUB dataset

K.2 User Study

In addition to the five quantitative metrics used to assess the quality of the explanations provided by
the designed architecture, an additional user-study was carried to better understand the consistency of
the prototypes with respect to concepts human would associate together as well as their relevance
towards the classifications tasks. The user-study rely on a random selection for each prototype of
100 samples where this prototype is playing a role toward the model’s prediction. This user-study
was carried on the Funny-Birds dataset. Indeed this dataset was designed so that the discriminative
portion of each image is well defined by meta-features: the eyes, beak, wings, legs and tail. The
samples used for the two user-studies can be found in Supplementary Materials [40].
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Figure 11: User-Study performed on the Funny-Birds datasets. The user was asked to assess the
prototype visual consistency of the prototype (whether a prototype is associated to a specific bird
part). 100 samples were visualised per prototype, when available (some prototypes were not present
100 times in the test set.)

The authors of the FunnyBirds dataset manually designed 5 bird parts: eyes (3 types), beak (4 types),
wings (6 types), legs (4 types) and tail (9 types) to construct the 50 classes. As depicted in Figure 11,
the learned prototypes were attributed consistently to the same parts with the following number of
prototypes per part: eye (3 prototypes), beak (4 prototypes), wings (7 prototypes), legs (7 prototypes)
and tail (5 prototypes). The consistency of the prototype was then evaluated by counting how many
times each prototype highlighted the same region of the bird. It was found that 21 prototypes scored
100%, 2 prototypes scored 99%, 1 scored 93%, 1 scored 90%, and one scored 83%. For the eyes
and beaks parts, the number of learned prototypes match exactly the number of bird part types.
Each prototype can therefore be directly attributed to a specific part, e.g. prototype #101 relates to
"eye0", prototype #297 relates to "beak1". This user study allows to confirms the meaningfulness of
the prototypes derived from the proposed architecture, as well as compactness of the explanations
allowing direct comparison with how a human would approach the classification task. Full results for
this study can be found in Supplementary Materials [40].
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